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Abstract. Many problems in science and engineering require the evaluation of functionals of

the form F (A) = uT f(A)u, where A is a large symmetric matrix, u a vector, and f a nonlinear
function. A popular and fairly inexpensive approach to determining upper and lower bounds for
such functionals is based on first carrying out a few steps of the Lanczos procedure applied to A with
initial vector u, and then evaluating pairs of Gauss and Gauss-Radau quadrature rules associated
with the tridiagonal matrix determined by the Lanczos procedure. The present paper extends this
approach to allow the use of rational Gauss quadrature rules.

1. Introduction. Richard Varga has made many significant contributions to
numerical analysis, approximation theory, linear algebra, and analysis. His work
is concerned with iterative methods, matrices, moments, polynomial and rational
approximation, as well as quadrature; see, e.g., [5, 6, 9, 19, 20, 21, 23]. This paper
combines results from these areas to develop a new method for determining fairly
easily computable upper and lower bounds for functionals of the form

F (A) = uT f(A)u,(1.1)

where A ∈ Rn×n is a large, sparse or structured, symmetric matrix, u ∈ Rn, and f
is a nonlinear function. The need to evaluate this kind of functionals arises in many
applications, such as inverse problems, lattice quantum cromodynamics, and fractals;
see, e.g., [2, 4, 11, 17] and references therein. However, the computation of f(A) may
be prohibitively expensive for large matrices A. It is therefore important to be able
to evaluate upper and lower bounds with fairly little computational effort.

Introduce the spectral decomposition

A = SΛST , Λ = diag[λ1, λ2, . . . , λn] ∈ Rn×n, S ∈ Rn×n, ST S = I,

where I denotes the identity matrix, and define

f(A) = Sf(Λ)ST .(1.2)

The function f is required to be differentiable sufficiently many times in an interval
containing the spectrum of A. The exact requirements on f are specified in Sections
2 and 3. For notational simplicity, we order the eigenvalues according to

λ1 ≤ λ2 ≤ · · · ≤ λn

and scale the vector u in (1.1) so that ‖u‖ = 1, where ‖ · ‖ denotes the Euclidean
vector norm.

Golub and Meurant [11] describe an elegant technique for computing upper and
lower bounds for F (A) based on the connection between the Lanczos procedure, or-
thogonal polynomials, and Gauss-type quadrature rules. The quality of the bounds
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obtained by application of m steps of the Lanczos procedure to A depends on how
well the function f can be approximated by a polynomial of degree 2m − 1 on the
spectrum of A. We extend the approach in [11] to allow rational approximation of f .
This extension allows cancellation of poles of the integrand, which makes it possible
to determine upper and lower bounds for functionals that cannot be bounded using
the technique in [11]. Our approach also can be attractive when the technique in
[11] requires more Lanczos steps to give bounds of comparable accuracy. Our method
requires the solution of linear systems of equations of the form (A + sI)y = u for one
or a few values of the scalar s.

This paper is organized as follows. The remainder of this section reviews prop-
erties of Gauss quadrature rules. Section 2 discusses the connection between the
Lanczos procedure, orthogonal polynomials, and Gauss-type quadrature rules, and
describes how these quadrature rules can be applied to compute upper and lower
bounds for the functional (1.1). Further details on these connections can be found in
the survey by Golub and Meurant [11]. Section 3 presents an extension that allows ra-
tional approximation of f . In particular, properties of rational Gauss quadrature rules
are discussed. Section 4 describes a few computed examples and Section 5 contains
concluding remarks.

Define the vector [µ1, µ2, . . . , µn] = uT S and, using (1.2), express the functional
(1.1) in the form

F (A) = uT Sf(Λ)ST u =
n∑

j=1

f(λj)µ2
j .(1.3)

The right-hand side of (1.3) is a Stieltjes integral

If =
∫ ∞

−∞
f(s)dµ(s)

with a nonnegative measure dµ, such that µ is a nondecreasing step function defined
on R with jumps at the eigenvalues λj . It follows from ‖u‖ = 1 that the measure dµ
has total mass one. The m-point Gauss quadrature rule associated with dµ,

Gmf =
m∑

j=1

f(θj)γ2
j ,(1.4)

is characterized by

If = Gmf ∀f ∈ P2m−1,(1.5)

where P2m−1 denotes the set of polynomials of degree at most 2m− 1. The nodes θj

of the quadrature rule are the zeros of the mth degree orthonormal polynomial with
respect to the inner product

(f, g) = I(fg).(1.6)

It is well known that for a 2m times continuously differentiable function f in the
interval Ω = [λ1, λn], the error of the quadrature rule (1.4) can be expressed as

Emf = (I − Gm)f =
f (2m)(θG)

(2m)!
·
∫ ∞

−∞

m∏
j=1

(s− θj)2dµ(s)(1.7)
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for some θG in the interior of Ω; see, e.g., Gautschi [7, p. 24]. It follows that if the
derivative f (2m) is of known constant sign in the interior of Ω, then the sign of the
error Emf can be determined without evaluating the right-hand side of (1.7). For
instance if f (2m) is nonnegative on Ω, then so is Emf .

Let θ̂ ∈ R satisfy θ̂ ≤ λ1 or θ̂ ≥ λn, and let Ω̂ denote the convex hull of the
set {λ1, λn, θ̂}. The (m + 1)-point Gauss-Radau quadrature rule associated with the
measure dµ and with a prescribed node at θ̂ is an expression of the form

Ĝm+1f =
m∑

j=1

f(θ̂j)γ̂2
j + f(θ̂)γ̂2.(1.8)

Properties of the nodes θ̂j and weights γ̂2
j are reviewed in Section 2. The Gauss-Radau

rule (1.8) satisfies

If = Ĝm+1f ∀f ∈ P2m.(1.9)

Let the function f be 2m + 1 times continuously differentiable in Ω̂.. Then the
error in the quadrature rule (1.8) is given by

Êm+1f = (I − Ĝm+1)f =
f (2m+1)(θĜ)
(2m + 1)!

·
∫ ∞

−∞
(s− θ̂)

m∏
j=1

(s− θ̂j)2dµ(s)(1.10)

for some θĜ in the interior of Ω̂; see, e.g., Gautschi [7, p.. 26]. We note for future
reference that if the derivative f (2m+1) is of known constant sign in Ω̂, then the sign
of the error Êm+1f can be determined from (1.10) without explicit evaluation of the
right-hand side expression.

2. Bounds via the Lanczos procedure. The discussion of the present sec-
tion reviews results by Golub and Meurant [11] and Hanke [15]. More details can be
found in [11]. Gauss quadrature rules with respect to the measure dµ can be deter-
mined conveniently by the Lanczos procedure. Application of m steps of the Lanczos
procedure to the matrix A with initial vector v1 = u yields the decomposition

AVm = VmTm + βmvm+1e
T
m,(2.1)

where Vm = [v1, v2, . . . , vm] ∈ Rn×m and vm+1 ∈ Rn satisfy V T
m Vm = I, ‖vm+1‖ = 1,

V T
m vm+1 = 0, and βm ≥ 0. Moreover, em denotes the mth axis vector and

Tm =



α1 β1 0
β1 α2 β2

β2 α3

. . .
. . . . . . βm−1

0 βm−1 αm


∈ Rm×m(2.2)

is a symmetric tridiagonal matrix with positive subdiagonal entries; see, e.g., [12,
Chapter 9] for a detailed discussion on the Lanczos procedure. We tacitly assume
that m is sufficiently small so that the decomposition (2.1) with the stated properties
exists.
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If βm = 0, then we set vm+1 = 0, and obtain from (2.1) that

F (A) = eT
1 f(Tm)e1.

Thus, F (A) can be evaluated exactly. Henceforth, we assume that βm > 0.
The relation (2.1) between the columns vj of Vm shows that

vj = pj−1(A)u, 1 ≤ j ≤ m + 1,(2.3)

for certain polynomials pj−1 of degree j−1. It follows from the orthonormality of the
vectors vj that

(pj−1, pk−1) =
∫∞
−∞ pj−1(s)pk−1(s)dµ(s) = uT Spj−1(Λ)pk−1(Λ)ST u

= uT pj−1(A)pk−1(A)u = vT
1 pj−1(A)pk−1(A)v1

= vT
j vk =

{
0, j 6= k,
1, j = k.

This shows that the polynomials pj are orthonormal with respect to the inner product
(1.6). Combining (2.1) and (2.3) yields a recurrence relation for the polynomials,

β1p1(s) = (s− α1)p0(s), p0(s) = 1,
βjpj(s) = (s− αj)pj−1(s)− βj−1pj−2(s), 2 ≤ j ≤ m.

(2.4)

Thus, the Lanczos procedure is equivalent to the Stieltjes procedure for generating
orthonormal polynomials. It follows from the recurrence relation (2.4) that only the
columns vj and vj−1 have to be available in order to determine the next column, vj+1.

The recurrence relation (2.4) can be expressed as

[p0(s), p1(s), . . . , pm−1(s)]Tm = s[p0(s), p1(s), . . . , pm−1(s)]
− βm[0, . . . , 0, pm(s)],(2.5)

which shows that the zeros of pm are the eigenvalues of Tm.
Introduce the spectral decomposition

Tm = QmDmQT
m, Dm = diag[θ1, θ2, . . . , θm], QT

mQm = Im.

The weights of the Gauss rule (1.4) are given by γ2
j = (eT

1 Qmej)2, 1 ≤ j ≤ m, see,
e.g., Gautschi [7, Theorem 3.1] or Golub and Meurant [11], and it follows that the
Gauss rule (1.4) can be expressed as

Gmf = eT
1 Qmf(Dm)QT

me1 = eT
1 f(Tm)e1.(2.6)

Hence, Gmf can be determined by first computing the Lanczos decomposition (2.1)
and then evaluating one of the expressions (2.6). The following result is an immediate
consequence of the above discussion. The matrix Tm−1 in Theorem 2.1 is the leading
principal submatrix of order m− 1 of Tm.

Theorem 2.1. Let the function f be 2m times continuously differentiable in the
interval Ω = [λ1, λn]. Assume that βm > 0 in (2.1). Then

eT
1 f(Tm−1)e1 < eT

1 f(Tm)e1 < uT f(A)u, if f (2m) > 0 in Ω,(2.7)
eT
1 f(Tm−1)e1 > eT

1 f(Tm)e1 > uT f(A)u, if f (2m) < 0 in Ω.(2.8)
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Proof. It follows from βm > 0 that the integral on the right-hand side of (1.7)
does not vanish. Therefore, the right-hand side inequality of (2.7) follows from (1.7).
The nodes and weights of the m-point Gauss quadrature rule Gm associated with
the measure dµ, given by (2.6), defines a discrete measure on the real axis. The
(m− 1)-point Gauss rule

Gm−1f = eT
1 f(Tm−1)e1

associated with the measure dµ also is a Gauss rule associated with the discrete
measure determined by the nodes and weights of Gm. This shows the left-hand side
inequality of (2.7). The inequalities (2.8) can be shown similarly.

We turn to the computation of Gauss-Radau quadrature rules associated with
the measure dµ with a preassigned node θ̂, and follow the approach in [10]; see also
[7, Theorem 3.2]. Introduce the symmetric tridiagonal matrix

T̂m+1 =



α1 β1 0
β1 α2 β2

β2 α3
. . .

. . . . . . βm−1

βm−1 αm βm

0 βm α̂m+1


∈ R(m+1)×(m+1)(2.9)

with the leading m × m principal submatrix (2.2). The last subdiagonal entry, βm,
is defined by (2.1) and the last diagonal entry, α̂m+1, is chosen so that T̂m+1 is
semidefinite and has the eigenvalue θ̂ as follows. Introduce the polynomial

p̂m+1(s) = (s− α̂m+1)pm(s)− βmpm−1(s).(2.10)

Then analogously to (2.5),

[p0(s), p1(s), . . . , pm(s)]T̂m+1 = s[p0(s), p1(s), . . . , pm(s)]
− [0, . . . , 0, p̂m+1(s)],

which shows that α̂m+1 should be chosen so that θ̂ is a zero of p̂m+1. Substituting
s = θ̂ into (2.10) yields

α̂m+1 = θ̂ − βm
pm−1(θ̂)

pm(θ̂)
..(2.11)

This determines the Gauss-Radau matrix (2.9) and we obtain similarly to (2.6) that

Ĝm+1f = eT
1 f(T̂m+1)e1.(2.12)

Hence, Ĝm+1f can be computed by applying m steps of the Lanczos procedure and
then evaluating the expressions (2.11) and (2.12).

The following result is analogous to Theorem 2.1. The symmetric tridiagonal
matrix T̂m ∈ Rm×m in Theorem 2.2 is associated with the m-point Gauss-Radau rule
for the measure dµ with a prescribed node at θ̂.

5



Theorem 2.2. Let the function f be 2m + 1 times continuously differentiable in
Ω̂, the convex hull of the set {λ1, λn, θ̂}, and assume that the step function µ has at
least m + 2 points of increase. If θ̂ ≤ λ1, then

eT
1 f(T̂m)e1 < eT

1 f(T̂m+1)e1 < uT f(A)u, if f (2m+1) > 0 in Ω̂,(2.13)
eT
1 f(T̂m)e1 > eT

1 f(T̂m+1)e1 > uT f(A)u, if f (2m+1) < 0 in Ω̂.(2.14)

If instead θ̂ ≥ λn, then

eT
1 f(T̂m)e1 < eT

1 f(T̂m+1)e1 < uT f(A)u, if f (2m+1) < 0 in Ω̂,(2.15)
eT
1 f(T̂m)e1 > eT

1 f(T̂m+1)e1 > uT f(A)u, if f (2m+1) > 0 in Ω̂.(2.16)

Proof. The requirement that µ have at least m+2 points of increase secures that
the integral on the right-hand side of (1.10) is nonvanishing. Assume that θ̂ ≤ λ1 and
f (2m+1) > 0 in Ω̂. Then the right-hand side inequality of (2.13) follows from (1.10).

The nodes and weights of the (m + 1)-point Gauss-Radau rule Ĝm+1 associated
with the measure dµ define a discrete measure on the real axis. The m-point Gauss-
Radau rule

Ĝmf = eT
1 f(T̂m)e1

associated with the same measure dµ also is a Gauss-Radau rule associated with
the discrete measure determined by the nodes and weights of Ĝm+1. This shows the
left-hand side inequality of (2.13). The inequalities (2.14)-(2.16) follow similarly.

3. Rational Gauss rules. This section is concerned with an extension of Gauss
quadrature rules that is exact for certain rational functions with preselected poles.
These rules are known as rational Gauss rules. They were first discussed in [13, 16]
and have subsequently received considerable attention; see, e.g., [3, 7, 8, 14, 22] for
discussions on the rate of convergence, error bounds, and the selection of poles. Pairs
of rational Gauss and Gauss-Radau rules can be used to bound certain functionals
(1.1) for which pairs of standard Gauss and Gauss-Radau rules are not guaranteed
to provide upper and lower bounds. This is illustrated in Section 4. Moreover, when
the integrand f is analytic in a set that contains the interval [λ1, λn] and has a
singularity close to this interval, quadrature rules that are exact for rational functions
with poles at or near the singularity of f may yield significantly higher accuracy
than standard Gauss quadrature rules with the same number of nodes. Therefore,
for some integrands rational Gauss rules provide tighter bounds than standard Gauss
rules using the same number of nodes.

We review properties of rational Gauss rules and discuss their application to
the computation of upper and lower bounds for functionals of the form (1.1). Let
{zj}k

j=1 be a set of not necessarily distinct real or complex numbers outside the
interval [λ1, λn], and assume that the set is symmetric with respect to the real axis.
The zj will be poles of rational functions that are integrated exactly by the rational
Gauss quadrature rules. Introduce the polynomial

w(s) = σ

k∏
j=1

(s− zj),(3.1)
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where we choose the scaling factor σ ∈ R\{0} so that the measure

dµ(w)(s) =
dµ(s)
w(s)

(3.2)

has total mass one. The m-point Gauss quadrature rule associated with this measure,

G(w)
m f =

m∑
j=1

f(θ(w)
j )(γ(w)

j )2,(3.3)

is the basis of the rational Gauss quadrature rules.
Theorem 3.1. Let {θ(w)

j , (γ(w)
j )2}m

j=1 be the node-weight pairs of the Gauss rule
(3.3). Assume that m ≥ 1

2 (k+1), where k is the degree of the polynomial w; cf. (3.1).
Then the m-point rational Gauss quadrature rule

R(w)
m f =

m∑
j=1

f(θ(w)
j )w(θ(w)

j )(γ(w)
j )2(3.4)

satisfies

If = R(w)
m f ∀f ∈ Qk ⊕P2m−1−k,(3.5)

where

Qk = span{
∏̀
j=1

(· − zj)−1, 1 ≤ ` ≤ k}(3.6)

with Q0 = ∅. Moreover,

E(w)
m f = (I −R(w)

m )f

=
d2m

ds2m
(fw)s=θR

1
(2m)!

·
∫ ∞

−∞

m∏
j=1

(s− θ
(w)
j )2dµ(w)(s),(3.7)

where θR is in the interior of Ω = [λ1, λn].
Proof. Rational Gauss rules of the form (3.4) are discussed, e.g., by Gautschi

[7, Section 3.1.4], where also (3.5) is shown. The proof follows by choosing suitable
polynomials f in (1.5) with dµ replaced by (3.2). The remainder formula (3.7) is
obtained by replacing dµ by (3.2) and f by fw in the remainder formula (1.7) for
standard Gauss quadrature. The lower bound for m secures that the quadrature rule
integrates constants exactly.

Rational Gauss-Radau rules can be defined analogously. Thus, let the prescribed
node θ̂ satisfy θ̂ ≤ λ1 or θ̂ ≥ λn, and introduce the (m + 1)-point Gauss-Radau
quadrature rule associated with the measure (3.2),

Ĝ(w)
m+1f =

m∑
j=1

f(θ̂(w)
j )(γ̂(w)

j )2 + f(θ̂)(γ̂(w))2.(3.8)

The following result, which is based on properties of this Gauss-Radau rule, is analo-
gous to Theorem 3.1.
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Theorem 3.2. Let {θ̂(w)
j , (γ̂(w)

j )2}m
j=1 ∪ {θ̂, (γ̂(w))2} be the node-weight pairs of

the Gauss-Radau rule (3.8). Assume that m ≥ k/2, where k is the degree of the
polynomial w; cf. (3.1). Then the (m + 1)-point rational Gauss-Radau quadrature
rule

R̂(w)
m+1f =

m∑
j=1

f(θ̂(w)
j )w(θ̂(w)

j )(γ̂(w)
j )2 + f(θ̂)w(θ̂)(γ̂(w))2(3.9)

satisfies

If = R̂(w)
m+1f ∀f ∈ Qk ⊕P2m−k,(3.10)

where Qk is defined by (3.6). Moreover,

Ê(w)
m+1f = (I − R̂(w)

m+1)f

=
d2m+1

ds2m+1
(fw)s=θR̂

1
(2m + 1)!

·
∫ ∞

−∞
(s− θ̂)

m∏
j=1

(s− θ̂
(w)
j )2dµ(w)(s),(3.11)

where θR̂ is in the interior of Ω̂, the convex hull of the set {λ1, λn, θ̂}.
Proof. Rational Gauss-Radau rules (3.9) are discussed by Gautschi [7, Section

3.1.4.4]. The theorem can be shown similarly as Theorem 3.1. Thus, the property
(3.10) is obtained by choosing suitable polynomials f in (1.9) with dµ replaced by
(3.2). The remainder formula (3.11) follows by replacing dµ by (3.2) and f by fw in
(1.10).

Let T
(w)
m ∈ Rm×m be the symmetric tridiagonal matrix associated with the Gauss

quadrature rule (3.3), i.e., the nodes {θ(w)
j }m

j=1 are the eigenvalues of T
(w)
m and the

weights {(γ(w)
j )2}m

j=1 are the square of the first component of the normalized eigen-

vectors. Thus, the matrix T
(w)
m relates to the Gauss rule (3.3) similarly as the matrix

(2.2) relates to the Gauss rule (1.4). Analogously to the right-hand side of (2.6), the
rational Gauss rule (3.4) can be expressed as

R(w)
m f = eT

1 f(T (w)
m )w(T (w)

m )e1.(3.12)

Substituting the function f ≡ 1 into (3.4) and (3.5) yields

1 = R(w)
m f =

m∑
j=1

w(θ(w)
j )(γ(w)

j )2 = eT
1 w(T (w)

m )e1,

which determines the scaling factor

σ = (eT
1

k∏
j=1

(T (w)
m − zjI)e1)−1

in (3.1). Whether it is preferable to determine the spectral decomposition of T
(w)
m

and evaluate (3.4) or to compute (3.12) depends on the function f , the degree k of
the polynomial (3.1), the order m of the quadrature rule, as well as on the number of
times the quadrature rule is to be evaluated.
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In the following analogue of Theorem 2.1, T
(w)
m−1 denotes the leading principal

submatrix of T
(w)
m of order m − 1; the matrix T

(w)
m−1 is associated with the (m − 1)-

point Gauss rule G(w)
m−1 analogous to (3.3). The requirement in the theorem below

that the (m + 1)-node Gauss rule exists is equivalent to the requirement βm > 0 in
Theorem 2.1.

Theorem 3.3. Let the function f be 2m times continuously differentiable in the
interval Ω = [λ1, λn] and assume that the (m+1)-point Gauss rule analogous to (3.3)
exists. If d2m(fw)/dt2m > 0 in Ω, then

eT
1 f(T (w)

m−1)w(T (w)
m−1)e1 < eT

1 f(T (w)
m )w(T (w)

m )e1 < uT f(A)u.(3.13)

Similarly, if d2m(fw)/dt2m < 0 in Ω, then

eT
1 f(T (w)

m−1)w(T (w)
m−1)e1 > eT

1 f(T (w)
m )w(T (w)

m )e1 > uT f(A)u.(3.14)

Proof. The theorem follows from the observation that the rational Gauss rule
(3.4) is the Gauss rule (3.3) applied to the function fw. The inequalities (3.13) and
(3.14) are a consequence of Theorem 2.1.

We turn to Gauss-Radau quadrature rules (3.8) associated with the measure (3.2)
with a preassigned node θ̂. Let T̂

(w)
m+1 ∈ R(m+1)×(m+1) be the symmetric tridiagonal

matrix associated with the Gauss-Radau rule (3.8). Then the rational Gauss-Radau
rule (3.9) can be evaluated as

R̂(w)
m+1f = eT

1 f(T̂ (w)
m+1)w(T̂ (w)

m+1)e1.

In the following theorem, T̂
(w)
m denotes the symmetric tridiagonal matrix associated

with the m-point Gauss-Radau rule Ĝ(w)
m analogous to the (m + 1)-point rule Ĝ(w)

m+1.
Theorem 3.4. Let the function f be 2m + 1 times continuously differentiable in

Ω̂, the convex hull of the set {λ1, λn, θ̂}. Assume that the (m + 2)-point Gauss-Radau
rule analogous to (3.9) exists. If d2m+1(fw)/dt2m+1 > 0 in Ω̂, then

eT
1 f(T̂ (w)

m )w(T̂ (w)
m )e1 < eT

1 f(T̂ (w)
m+1)w(T̂ (w)

m+1)e1 < uT f(A)u.(3.15)

Similarly, if d2m+1(fw)/dt2m+1 < 0 in Ω̂, then

eT
1 f(T̂ (w)

m )w(T̂ (w)
m )e1 > eT

1 f(T̂ (w)
m+1)w(T̂ (w)

m+1)e1 > uT f(A)u.(3.16)

Proof. The theorem follows from the observation that the rational Gauss rule
(3.4) is the Gauss rule (3.3) applied to the function fw. The inequalities (3.15) and
(3.16) are a consequence of Theorem 2.2.

We turn to the computation of the m-point rational Gauss rule (3.4) when the
measure dµ is defined by (1.3). In view of Theorem 3.1, we need to determine the
symmetric tridiagonal matrix T

(w)
m ∈ Rm×m associated with the Gauss rule (3.3).

The nontrivial entries of this matrix are recurrence coefficients for orthonormal poly-
nomials with respect to the inner product

(f, g)(w) = uT f(A)g(A)(w(A))−1u.(3.17)
9



The matrix T
(w)
m can be computed in several ways. First assume that the poly-

nomial (3.1) can be factored according to

w(s) = (w̃(s))2,(3.18)

where w̃ is a polynomial of degree k/2, say,

w̃(s) =
k/2∏
j=1

(s− zj).

Then m steps of the standard Lanczos procedure with initial vector (w̃(A))−1
u yields

the matrix T
(w)
m . We note that the first k/2 steps of the Lanczos procedure can

be carried out without evaluating matrix-vector products with A if the intermediate
vectors

wj = (A− zjI)−1wj−1, j = 1, 2, . . . ,
k

2
− 1,

are stored with w0 = u.
If the polynomial w cannot be factored according to (3.18), then a Lanczos-type

procedure that generates two biorthogonal vector sequences with respect to the inner
product (3.17), such as

vj = pj−1(A)u, wj = pj−1(A)(w(A))−1u, j = 1, 2, 3, . . . ,

can be used to compute T
(w)
m . Such a procedure requires the evaluation of two

matrix-vector products with the matrix A in each step. The need to determine two
biorthogonal sequences arises when it is infeasible or impractical to compute the vector
(w(A))−1/2u.

Alternatively, we may first generate the symmetric tridiagonal matrix Tm asso-
ciated with the standard Gauss quadrature rule Gm for the measure dµ by applying
m steps of the Lanczos procedure to A with initial vector u, as described in Section
2, and then modifying this matrix to obtain T

(w)
m as follows. Assume that the ma-

trix Tm and the “next” subdiagonal element, βm, already have been computed, cf.
(2.1), and let z1 be a real zero of the polynomial (3.1). We compute the moment
µ−1 = uT (A− z1I)−1u, e.g., by solving the linear system of equations

(A− z1I)y(1) = u.(3.19)

Algorithm 2.8 in Gautschi [7, p. 129], with Tm, βm, and µ−1 as input, yields the
symmetric tridiagonal matrix T

(1)
m , associated with the m-point Gauss quadrature

rule for the measure dµ(1)(s) = σ(1)(s − z1)−1dµ(s), and the next subdiagonal entry
β

(1)
m . Here σ(1) is a scaling factor chosen to give the measure dµ(1) total mass one.

If the polynomial (3.1) has another real zero, say z2, then we update T
(1)
m and β

(1)
m

similarly as Tm and βm. Thus, we first compute the moment µ−2, e.g., by solving the
linear system of equations (A − z2I)y(2) = y(1), where y(1) satisfies (3.19), and then
use T

(1)
m , β(1), and µ−2 as input for Algorithm 2.8 in [7]. The algorithm determines

the symmetric tridiagonal matrix T
(2)
m , associated with the m-point Gauss quadrature

rule for the measure dµ(2)(s) = σ(2)(s−z1)−1(s−z2)−1dµ(s), and the next subdiagonal
entry β

(2)
m . The coefficient σ(2) is a scaling factor.
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When the polynomial (3.1) has a pair of complex conjugate zeros, say z3 and
z4, Algorithm 2.9 in [7, p. 131] can be used to compute the tridiagonal matrix T

(4)
m ,

associated with the m-point Gauss quadrature rule for the measure

dµ(4)(s) = σ(4)
4∏

j=1

(s− zj)−1dµ(s),(3.20)

and the next subdiagonal entry β
(4)
m . The algorithm computes the tridiagonal matrix

associated with the poles z3 and z4 without using complex arithmetic. It requires the
matrix T

(2)
m , the next sudiagonal entry β

(2)
m , and the moment µ−3 = uT (A−z3I)−1y(2)

as input. The output from Algorithms 2.8 and 2.9 in [7] allows the computation of
the matrix T̂

(4)
m+1 associated with the (m + 1)-point Gauss-Radau quadrature rule for

the measure (3.20) and a specified node, θ̂, as described in Section 2.
Given Tm, βm, and the moments µ−j , 1 ≤ j ≤ 3, the computation of the tridi-

agonal matrices T
(4)
m and T̂

(4)
m+1 by Algorithms 2.8 and 2.9 in [7] requires only O(m)

arithmetic floating point operations. In the applications of the present paper, k typ-
ically is small and m is not large. Algorithms 2.8 and 2.9 in [7] perform well in this
situation.

4. Computed examples. The numerical examples of this section illustrate the
application of rational Gauss quadrature rules to compute bounds for functionals of
the form (1.1). All computations are carried out in MATLAB with approximately 16
significant decimal digits.

m F (A)−R(w)
m f F (A)− R̂(w)

m+1f
2 1.1 · 10−1 −9.5 · 10−2

4 3.7 · 10−5 −2.1 · 10−5

6 1.9 · 10−9 −7.6 · 10−10

Table 4.1
Example 4..1: f(s) = (s + 1)−1 exp(s/2), w(s) = s + 1, F (A) = 3.25117509770 · 101, and A is

a symmetric positive definite Toeplitz matrix.

Example 4.1. Let A ∈ Rn×n be the symmetric Toeplitz matrix with first row
[1, 1/2, . . . , 1/n] and n = 1024. Its smallest and largest eigenvalues are λmin(A) =
3.86 · 10−1 and λmax(A) = 1.22 · 101, respectively. Let u = n−1/2[1, 1, . . . , 1]T ∈ Rn.
We seek to determine upper and lower bounds for the functional (1.1) with

f(s) =
1

s + 1
exp(

s

2
).

The polynomial w(s) = s+1 determines the rational Gauss and Gauss-Radau quadra-
ture rules Rmf and R̂m+1f , respectively. The latter have the fixed node θ̂ = 13. We
compute the tridiagonal matrices for the quadrature rules by Algorithm 2.8 in [7].
The computations require the solution of a linear system of equations (3.19) with the
symmetric positive definite Toeplitz matrix A + I. Fast algorithms are available for
this purpose; they require only O(n log2

2 n) arithmetic floating point operations, see,
e.g., [1]. This is not much more computational work than the O(n log2 n) arithmetic
floating point operations needed for the evaluation of a matrix-vector product with
the matrix A; see, e.g., [18, Section 3.4] for a discussion of the latter.
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Table 4.1 displays the errors in the computed rational Gauss and Gauss-Radau
quadrature rules. The errors are seen to decrease quickly as m increases. The table
illustrates that

Rmf < F (A) < R̂m+1f ∀m.

We remark that the standard Gauss and Gauss-Radau rules of Section 2 are not
guaranteed to determine approximations that bracket F (A). 2

m F (A)−R(w)
m f F (A)− R̂(w)

m−1f
3 −1.5 · 10−6 6.5 · 10−7

4 −5.7 · 10−8 2.3 · 10−8

5 −2.2 · 10−9 8.8 · 10−10

6 −8.5 · 10−11 3.3 · 10−11

Table 4.2
Example 4.2: f(s) = (s2 + 1

4
)−1 log( 1

2
+ s), w(s) = s2 + 1

4
, F (A) = 3.10166289819 · 10−1, and

A is a symmetric positive definite Toeplitz matrix.

Example 4.2. Let A ∈ R1024×1024 be the symmetric Toeplitz matrix with the
first row 1

10 [1, 1/2, . . . , 1/1024]. Its extreme eigenvalues are λmin(A) = 3.86 · 10−2

and λmax(A) = 1.22. The vector u is the same as in Example 4.1. We would like to
compute upper and lower bounds for the functional (1.1) with

f(s) =
1

s2 + 1
4

log(
1
2

+ s).

The polynomial w(s) = s2 + 1
4 determines the rational Gauss and Gauss-Radau

quadrature rules Rmf and R̂m+1f , respectively. The latter have a fixed node at the
origin. We compute the tridiagonal matrices for the quadrature rules by Algorithm
2.9 in [7].

Table 4.2 displays the errors in the computed rational Gauss and Gauss-Radau
quadrature rules. The table illustrates that

Rmf > F (A) > R̂m+1f ∀m.

The values determined by the standard Gauss and Gauss-Radau rules of Section 2
are not guaranteed to bracket F (A). 2

t F (A)− G6f F (A)− Ĝ7f F (A)−R(w)
6 f F (A)− R̂(w)

7 f
0.5 2.9 · 10−10 −1.3 · 10−10 −3.0 · 10−12 1.2 · 10−12

0.6 8.4 · 10−11 −3.1 · 10−11 −1.1 · 10−11 4.2 · 10−12

0.7 2.7 · 10−11 −9.0 · 10−12 −7.1 · 10−12 2.3 · 10−12

Table 4.3
Example 4.3: f(s) = (s + t)−9/10, w(s) = s + 1

2
, F (A) ≈ 0.6 for the tabulated values of t, and

A is a symmetric positive definite Toeplitz matrix.

Example 4.3. Let the matrix A and vector u be the same as in Example 4.2.
We wish to determine upper and lower bounds for the functional (1.1) with f(s) =
(s + t)−9/10 for a few values of the parameter t ≥ 1/2. Pairs of Gauss and Gauss-
Radau rules of Section 2 yield such bounds, and so do pairs of rational Gauss and
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Gauss-Radau rules of Section 3 with w(s) = s + 1
2 . The Gauss-Radau and rational

Gauss-Radau rules have a fixed node at the origin. The so determined quadrature
rules satisfy

Gmf < F (A) < Ĝm+1f, R̂m+1f < F (A) < Rmf ∀m.

Table 4.3 shows the rational Gauss-Radau rule to give smaller errors of the same sign
than the standard Gauss rule, and a much smaller error for t = 1/2. The rational
Gauss rule yield smaller errors of the same sign than the standard Gauss-Radau
rule. The exact values of F (A) are (after rounding) 6.20904123704 · 10−1 for t = 0.5,
5.89614813104 · 10−1 for t = 0.6, and 5.61495157374 · 10−1 for t = 0.7.

The accuracy of the standard Gauss rules can be improved by increasing the sizes
of the corresponding tridiagonal matrices. The availability of an accurate approxima-
tion of the functional (1.1) with a small matrix can be important if the approximant
is to be evaluated for many values of the parameter t. 2

5. Conclusion. Rational Gauss rules can be used to bound functionals of the
form (1.1) in situations when standard Gauss rules cannot. Moreover, when both
standard and rational Gauss rules provide bounds, the latter may give higher accuracy
with the same number of nodes.
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Theory II, eds. G. G. Lorentz, C. K. Chui, and L. L. Schumaker, Academic Press, New
York, 1976, pp. 519–531.

[22] W. van Assche and I. Vanherwegen, Quadrature formulas based on rational interpolation, Math.
Comp., 61 (1993), pp. 765–783.

[23] R. S. Varga, Matrix Iterative Analysis, 2nd ed, Springer, Heidelberg, 2000.

14


