
URV decomposition based structured methods for

palindromic and even eigenvalue problems

Christian Schröder∗

March 14, 2007

Abstract

In this work numerical methods for the solution of two classes of structured generalized
eigenvalue problems, Ax = λBx, are developed. Those classes are the palindromic (B = AT)
and the even (A = AT , B = −BT) eigenvalue problems. The spectrum of these problems is
not arbitrary, rather do eigenvalues occur in pairs. We will construct methods for palindromic
and even eigenvalue problems that are of cubic complexity and that are guaranteed to produce
eigenvalues that are paired to working precision.

At the heart of both methods is a new URV-type matrix decomposition, that simulta-
neously transforms three matrices to skew triangular form, i.e., to a form that is triangular
with respect to the Northeast-Southwest diagonal. The algorithm to compute this URV de-
composition uses several other methods to reduce a single square matrix to skew triangular
form: the skew QR factorization and the skew QRQT decomposition. Moreover, a method to
compute the singular value decomposition of a complex, skew symmetric matrix is presented
and used.

MSC2000 classification: 15A18, 15A22, 15A23
Keywords: URV decomposition, palindromic/even eigenvalue problem, structure pre-

serving method, skew QR factorization, skew QRQT factorization, skew Takagi factorization

1 Introduction

A generalized eigenvalue problem of the form

Ax = λA
T
x (1)

is called a palindromic eigenvalue problem. Here, A ∈ C
n,n is a given square complex matrix,

AT its transpose, and x ∈ C
n \ {0} and λ ∈ C denote the wanted eigenvector and eigenvalue,

respectively. For the largest part of the paper we will assume that A is indeed complex
and we will use complex transformations. However, many applications yield real palindromic
problems which are discussed in a separate section. There is a third variant, the ∗-palindromic
problem Ax = λA∗x (where A∗ is the conjugate transpose of A), but this type is not considered
here (see section 3 for details).

Palindromic eigenvalue problems of the form (1) are (up to a sign) the linear case of
polynomial palindromic eigenvalue problems

P (λ)x =

k
X

i=0

Aiλ
i

!

x = 0, where A
T
k−i = Ai ∈ C

n,n
, i = 0, . . . , k. (2)

The underlying matrix polynomial P (λ) is invariant under reversing the order of the coef-
ficients (and transposing). This explains the term ’palindromic’, as palindromes are words
or sentences that are invariant under reversing the order of the letters, like ’mom’, ’dad’,

∗
schroed@math.tu-berlin.de, Institut für Mathematik, MA 4-5, Technische Universität Berlin, Germany. Sup-

ported by Deutsche Forschungsgemeinschaft through Matheon, the DFG Research Center Mathematics for key

technologies in Berlin.

1

’rotor’ or ’A man, a plan, a canal, Panama’. Polynomial palindromic eigenvalue problems
were introduced and analyzed in [18] and arise for example in the vibration analysis of rail
tracks [13].

Here, we only consider linear palindromic problems of the form (1). This is not a se-
vere restriction as polynomial problems of the form (2) can (under mild assumptions) be
transformed into linear palindromic problems, see [18].

Another class of structured eigenvalue problems are symmetric/skew symmetric problems
of the form

Mx = λNx, with M = M
T
, N = −N

T
. (3)

Also these problems can be generalized to polynomial problems,

P (λ)x =

k
X

i=0

Aiλ
i

!

x = 0, where A
T
i = (−1)i

Ai ∈ C
n,n

, i = 0, . . . , k. (4)

These problems are also called even, because P (−λ) = P (λ)T . A polynomial even eigenvalue
problem can again (under mild assumptions) be transformed into a linear even eigenvalue
problem (3), see [18].

Even and palindromic eigenvalue problems are closely related by the generalized Cayley
transformation [18]. It rewrites the generalized eigenvalue problem Ax = λBx as

(A + B)x =
λ + 1

λ− 1
(A−B)x.

The generalized Cayley transform of a palindromic problem is even and vice versa.
The structure in the coefficient matrices of (1) and (3) results in a symmetry in the

spectrum. Indeed, transposing the palindromic problem (1) we have xT A = 1

λ
xT AT . So, if λ

is an eigenvalue (and x an associated eigenvector), then so is 1

λ
(with xT as left eigenvector).

This pairing also holds for a zero eigenvalue - its counterpart is an infinite eigenvalue (from
here on, we will use the convention 1

0
=∞ in order to unify the treatment of finite and infinite

eigenvalues). Also the number and sizes of Jordan blocks corresponding to the eigenvalues
λ and 1

λ
coincide. This follows from structured Kronecker canonical forms for palindromic

eigenvalue problems as presented in [21] or (as canonical forms under congruence) in [15, 16,
20].

Analogously, transposing (3) yields xT M = −λxT N . Hence, the eigenvalues of an even
problem come in pairs ±λ. Canonical forms of a symmetric/ skew symmetric pencil under
congruence (see [25] and the references therein) show that also the number and sizes of Jordan
blocks corresponding to λ and −λ coincide.

The spectral symmetries of palindromic and even eigenvalue problems call for efficient
algorithms whose results comply with these symmetries. But, due to rounding errors, the
spectrum computed by standard methods for the generalized eigenvalue problem (like the
QZ algorithm) is in general not structured. Existing methods for the palindromic eigenvalue
problem include a QR-like algorithm [22], a Jacobi-style method [13], and the Laub trick, a
postprocessing step of the generalized Schur form [19]. However, the latter method works
well, only if there are no eigenvalues near ±1. The Jacobi method typically needs a multitude
of computing time compared to the qz algorithm. It (probably) is of complexity O(n3 log(n)),
and the QR-like algorithm is of complexity O(n4) in general, reducing to O(n3) only if the
matrix A in (1) is given in so-called skew Hessenberg form (defined below). A combination of
these three methods, however, seems to be quite powerful [19]. In this paper we will present
algorithms for both, the palindromic and the even problem that produce eigenvalues that
fulfill the spectral symmetry also in finite precision arithmetic. They are of complexity O(n3)
and need less work (measured in flops) than the QZ algorithm. Both algorithms are based on
a URV-type matrix decomposition.

A URV decomposition of a matrix A is a factorization of the form A = URV ∗ where U

and V are unitary and R is triangular. Such a factorization is far from being unique. Thus,
it is not surprising that there are several URV decompositions for different applications, each
posing special additional restrictions on U , V , and/or R.

The best known variant is probably the rank revealing URV decomposition of Stew-
art [23], [10, sec.12.5.5], where U, V are requested to be efficiently computable and R is
of the form

ˆ

R11 R12

0 R22

˜

with R11 ∈ C
r,r and σmin(R11)≫ σmax(R22). (Here, σmin(A), σmax(A)

2

denote the smallest and largest singular value of a matrix A.) This decomposition can be
used to decide on the (numerical) rank of a matrix. In this it is an alternative to the singular
value decomposition, but other than the SVD it is efficiently computable by a finite algorithm
and it can be easily updated after rank-1 modifications.

Sometimes, this factorization is called the URV decomposition. However, we want to
stress that in the context of this paper it is just one among many and that other URV
decompositions may not reveal the (numerical) rank of a matrix and need not be computable
by a finite algorithm.

A predecessor of the rank revealing URV decomposition is the QR factorization with
column pivoting [6, 10], a URV decomposition where V is a permutation matrix and the
elements of R are required to decrease in magnitude along the diagonal.

Another variant of a URV decomposition is used in the context of Hamiltonian and sym-
plectic matrices. Here, we define H ∈ C

2n,2n to be Hamiltonian if (JH)T = JH where
J =

ˆ

0 In

−In 0

˜

. We call S ∈ C
2n,2n symplectic, if ST JS = J . (Again, we could also, but

do not, consider the ∗-case, (JH)∗ = JH, S∗JS = J .) The symplectic URV decomposi-
tion [1, 2, 3] restricts U and V to be unitary and symplectic and R must be of the form

R =

»

R11 R12

0 RT
22

–

with R11, R22 ∈ C
n,n upper triangular. (5)

This URV decomposition can be used to solve the Hamiltonian eigenvalue problem. Our new
URV decomposition is a generalization of the symplectic URV decomposition (see Section 7 for
details). Recently, a postprocessing step for the symplectic URV decomposition was presented
that yields a matrix R that is Hamiltonian itself, [8].

This paper is structured as follows. The use of a URV decomposition for the solution of
structured eigenvalue problems is motivated in Section 2. This leads to the introduction of a
new URV decomposition. Section 3 contains an algorithm to compute this factorization in even
dimensional case. In Section 4 the method is generalized to arbitrary dimension. Sections 5
and 6 show how this URV decomposition can be used to solve the even and palindromic
eigenvalue problems, respectively. Section 7.1 restricts the scope to real matrices.

Notation A square matrix A is called skew triangular, if aij = 0 whenever i + j ≤ n.
Similarly, a matrix B is called skew Hessenberg, if bij = 0 for i + j < n. Such matrices are
depicted by

A =�, B =�� .

The inverse of a skew triangular matrix (if it exists) is upper skew triangular. The product
of an upper skew triangular matrix and a skew triangular matrix is upper triangular. Such
relations are depicted by

�−1 =�, � ·� =@. (6)

The direct sum of matrices is defined by A⊕B :=

»

A 0
0 B

–

.Throughout the paper, F denotes

the flip matrix,

F =

2

6

4

1

. .
.

1

3

7

5
.

If a matrix A is premultiplied by F this causes A to be flipped upside down. Analogously,
postmultiplication by F affects a flip leftside right.

We use MATLAB notation to address submatrices, so, A(i : j, k : l) denotes the matrix
that consists of the rows i to j of the columns k to l of the matrix A. A(i : j, :) consists of
the rows i to j and A(:, k : l) consists of the columns k to l.

Rounding a real scalar α towards the nearest integer in positive or negative direction is
denoted by ⌈α⌉ and ⌊α⌋, respectively.

In matrix diagrams we denote by . . .

x: a potentially non-zero element of a matrix,

0: a zero element of a matrix,

3

space: same as 0,

y: an element that was affected by the last transformation,

+: fill-in, an element that was introduced by the last transformation, but has been zero
before,

0: an matrix element that has been zeroed out in the last transformation (this was the
reason to do that transform),

gray: rows/columns that have been affected by the last transformation.

2 Motivation

In order to motivate the use of a URV decomposition to solve a structured eigenvalue problem
we consider the even eigenvalue problem Mx = λNx, where M ∈ C

n,n is symmetric and
N ∈ C

n,n is skew symmetric. Further assume that N is non-singular (this implies that n is
even).

Premultiplication by N−1 and squaring yields

Bx := N
−1

MN
−1

Mx = λ
2
x. (7)

Since the eigenvalues of B are the squares of the eigenvalues of (M, N) and since the eigen-
values of (M, N) appear in pairs, we have

Λ(M, N) = {±√µ |µ ∈ Λ(B)} . (8)

We are now solving the eigenvalue problem for B without explicitly forming the product or
the inverses therein. To this aim assume we could determine unitary matrices U, V ∈ C

n,n

such that

U
T
MV =: R =�, U

T
NU =: T =�, V

T
NV =: P =�. (9)

Carrying out a similarity transformation with such a V on B results in

B̃ = V
−1

BV = V
−1

N
−1

V
−T

V
T
MUU

−1
N

−1
U

−T
U

T
MV

= (V T
NV)−1(UT

MV)T (UT
NU)−1(UT

MV)

= P
−1

R
T
T

−1
R

= �−1 ·�T ·�−1 ·�

= � ·� ·� ·�

= @.

This means that V transforms B to Schur form and thus reveals the spectrum of B. The
eigenvalues of B are the diagonal entries of B̃, which only depend on the skew diagonal
entries of R, T , and P . Note, that B only has double eigenvalues, because T and P are skew
symmetric. Indeed, (with j := n + 1− i)

b̃ii =
rijrji

pjitji

=
rjirij

(−pij)(−tij)
= b̃jj .

This means that the eigenvalues of (M, N) can be read off the decomposition (9). Using (8)
we have

Λ(M, N) =



±
r

rijrji

pjitji

˛

˛

˛i = 1, . . . ,
n

2
, j = n + 1− i

ff

. (10)

Note, that the eigenvalues are paired as desired. Section 5 shows how to handle the case when
N is singular and how to extract eigenvectors form the transformation matrices U and V .

Summarizing, we use the URV–like decomposition (9) as structured generalized periodic
Schur form [4, 12, 17, 26] for the related problem (7).

4

This motivates the following definition. Let A, N,S ∈ C
n,n be three given square matrices

with N, S skew symmetric. Unitary matrices U, V ∈ C
n,n are said to define a skew URV

decomposition of (A, N,S) if

U
T
AV =�, U

T
NU =�, V

T
SV =�. (11)

Equations (11) can be interpreted as a URV decomposition of A (as A = ŪRV ∗ with skew
triangular R) under the restrictions that UT NU and V T NV are skew triangular.

Here the matrix A plays the role of the symmetric matrix M in the motivating example
(9), but A is not assumed to be symmetric, and even if it is, symmetry will be lost for UT AV .

3 A special URV decomposition –
the complex, even dimensional case

In the following we present a method to compute a skew URV decomposition (11) for given
A, N,S. In this section, we restrict ourselves to even dimensional matrices in order to simplify
the presentation. Later, the method is modified to arbitrary n reusing much of the material
in this section.

Our algorithm for the computation of decomposition (11) for even n can be divided into
four phases. First, S is transformed to skew triangular form. To this aim, let V1 be a unitary
matrix such that S1 = V T

1 SV1 is skew triangular. Such an V1 is generated during the skew
QRQT decomposition which is described in Section 3.1. This V1 has to be applied to A, too,
yielding A1 = AV1.

Then, A1 is skew triangularized while keeping S1 unchanged. This can be accomplished
by a skew QR decomposition, discussed in Section 3.2. The result is a unitary matrix U2

such that A2 = UT
2 A1 is skew triangular. Subsequently, U2 has to be applied to N giving

N2 = UT
2 NU2.

In the third phase, N2 is transformed to skew Hessenberg form without destroying the
skew triangular form of A2 and S1, i.e., two unitary matrices U3, V3 have to be determined
such that N3 = UT

3 N2U3 is in skew Hessenberg form, while A3 = UT
3 A2V3 and S3 = V T

3 S1V3

are skew triangular. Section 3.3 presents a process resulting in such U3, V3.
Finally, in the fourth phase all, N3, A3, and S3, are transformed to skew triangular form.

In Section 3.4 we describe a method to compute unitary matrices U4, V4 such that N4 :=
UT

4 N3U4, A4 := UT
4 A3V4, and S4 := V T

4 S3V4 are skew triangular. This is the only phase
where iterative methods have to be used.

Choosing U = U2U3U4 and V = V1V3V4 we obtain (11), as requested. Summarizing, the
forms of N,A, S after accomplishing the various phases are depicted in the following table.

Start Phase 1 Phase 2 Phase 3 Phase 4

N �� �
A � � �
S � � � �

Note, that Phases 1 and 3 make heavy use of the fact that skew symmetric matrices have
zeros on their diagonal. Because of that, there is no analogous algorithm for the case that N

and S are skew Hermitian matrices, which may have non-zero (purely imaginary) entries on
their diagonal.

On the other hand, if A, N and S are real, an almost identical algorithm can be derived
that stays in real arithmetic. Section 7.1 discusses the necessary changes.

3.1 Phase 1: Skew QRQT factorization

In this section, we describe a method to compute a decomposition of a skew symmetric matrix
S of the form

S = QRQ
T
,

5

where Q is unitary, and R is skew triangular.
This can be achieved by a series of Householder transformations. The process is demon-

strated for an 8-by-8 matrix.

S =

2

6

6

6

6

6

6

6

6

6

6

4

0 x x x x x x x

x 0 x x x x x x

x x 0 x x x x x

x x x 0 x x x x

x x x x 0 x x x

x x x x x 0 x x

x x x x x x 0 x

x x x x x x x 0

3

7

7

7

7

7

7

7

7

7

7

5

Let H̃1 be a Householder reflector, such that H̃1S(2 : 8, 1) = α1e7. Set H1 := 1⊕ H̃1. Then

S1 := H1SH
T
1 =

2

6

6

6

6

6

6

6

6

6

6

4

0 0 0 0 0 0 0 y

0 0 y y y y y y

0 y 0 y y y y y

0 y y 0 y y y y

0 y y y 0 y y y

0 y y y y 0 y y

0 y y y y y 0 y

y y y y y y y 0

3

7

7

7

7

7

7

7

7

7

7

5

.

The remainder of the process consists of the recursive application of the scheme to the subma-
trix S1(2 : 7, 2 : 7): so let H̃2 be a Householder matrix that reflects S1(3 : 7, 2) to a multiple
of e5 and define H2 := I2 ⊕ H̃2 ⊕ 1. Then

S2 := H2H1SH
T
1 H

T
2 =

2

6

6

6

6

6

6

6

6

6

6

4

x

0 0 0 0 0 y x

0 0 y y y y y

0 y 0 y y y y

0 y y 0 y y y

0 y y y 0 y y

y y y y y 0 y

x x y y y y y 0

3

7

7

7

7

7

7

7

7

7

7

5

.

Finally, defining a Householder reflector, such that H̃3S1(4 : 6, 3) = α3e3 and H3 := I3⊕H̃3⊕
I2 gives

R := H3H2H1SH
T
1 H

T
2 H

T
3 =

2

6

6

6

6

6

6

6

6

6

6

4

x

x x

0 0 0 y x x

0 0 y y y y

0 y 0 y y y

y y y 0 y y

x x y y y 0 x

x x x y y y x 0

3

7

7

7

7

7

7

7

7

7

7

5

.

Defining Q := H∗
1 H∗

2 H∗
3 , we have S = QRQT with skew triangular R, as desired.

A pseudocode for this algorithm is provided in Appendix A.1 (code lines 1–7). The
algorithm can be implemented working only on the upper triangular part of S. Then it costs
5

6
n3 +O(n2) flops to reduce S to skew triangular form. Applying the unitary factor Q to an

n×k matrix costs n2k +O(nk) further operations. Forming Q itself takes 2

3
n3 +O(n2) flops.

As the method consists only of a sequence of Householder updates of the matrix S standard
analysis techniques [10] can be used to show that the computed skew triangular factor is the
exact factor of a nearby skew symmetric matrix, i.e., there is a unitary matrix Q̃ such that
‖S − Q̃RQ̃T ‖2 ≈ ε‖S‖2 and ‖Q∗Q− I‖2 ≈ ε. So the algorithm is strongly backward stable.

3.2 Phase 2: Skew QR factorization

In this subsection we dicuss the factorization of a matrix A of the form

A = QR

6

where Q is unitary, and R is skew triangular.
Being a variant of the standard QR factorization, the skew QR factorization can be imple-

mented as a series of n− 1 Householder reflections in an obvious way: the first reflection, H1,
zeros out all but the last entries in the first column of A yielding A1; the second reflection,
H2, zeros out all but the last two entries in the second column of A1 yielding A2; . . . the
ith reflection, Hi, zeros out all but the last i entries in the ith column of Ai−1 yielding Ai,
for i = 1, . . . , n − 1. Then, with Q = H∗

1 · · ·H∗
n−1 and R = An−1, A = QR is a skew QR

factorization.
Also the stability and cost aspects of this method equal those of the standard QR factor-

ization: it is backward stable, and it requires 4

3
n3 flops to manipulate A, and further 4

3
n3

flops to generate Q.
Another way to compute a skew QR factorization is to use a QL factorization: if AF = QL,

where L is lower triangular, then A = QR where R = LF is skew triangular. Also a standard
QR factorization can be used if a QL factorization is not at hand (like in MATLAB). If
FA = QR (with R upper triangular), then A = (FQF)(FR) is a skew QR factorization.

3.3 Phase 3: URV-Hessenberg reduction

In this subsection we will describe how to transform a skew symmetric matrix N to skew
Hessenberg form, while preserving the skew triangular forms of A and S = −ST by transfor-
mations of the form A 7→ UT AV , N 7→ UT NU , S 7→ V T SV . The process is illustrated for an
8-by-8 example. After phase 2 the matrices N, A, S are of the form

N A S
2

6

6

6

6

6

6

6

6

6

6

4

0 x x x x x x x

x 0 x x x x x x

x x 0 x x x x x

x x x 0 x x x x

x x x x 0 x x x

x x x x x 0 x x

x x x x x x 0 x

x x x x x x x 0

3

7

7

7

7

7

7

7

7

7

7

5

�

2

6

6

6

6

6

6

6

6

6

6

4

x

x x

x x x

x x x x

x 0 x x x

x x x 0 x x

x x x x x 0 x

x x x x x x x 0

3

7

7

7

7

7

7

7

7

7

7

5

In the following, Uij is a rotation in the i,j-plane acting on N as a congruence and on A

from the left, while Vij denotes a rotation in the i,j-plane acting on S as a congruence and on
A from the right.

We begin by eliminating the (2,1) and (1,2) elements of N by a rotation U23 in the (2,3)
plane. This rotation, when applied to A from the left, will generate fill-in at position (2,6).
This fill-in can be annihilated by a rotation V67 applied from the right. This restoring rotation
V67 has to be applied to S as a congruence affecting fill-in at positions (2,6) and (6,2).

N A S

↓ U23 ց
2

6

6

6

6

6

6

6

6

6

6

4

0 0 y x x x x x

0 0 y y y y y y

y y 0 y y y y y

x y y 0 x x x x

x y y x 0 x x x

x y y x x 0 x x

x y y x x x 0 x

x y y x x x x 0

3

7

7

7

7

7

7

7

7

7

7

5

�
V67−−→

2

6

6

6

6

6

6

6

6

6

6

4

x

+ y x

y y x

x y y x

x 0 y y x

+ y y y 0 y y

y y y y y 0 y

x x x x x y y 0

3

7

7

7

7

7

7

7

7

7

7

5

In order to annihilate these new elements a congruence rotation V23 is applied to S. This,
in turn, will introduce a non-zero element in A at position (6,2). Now, a further rotation U67

can be used to zero out this element again. In general, if a rotation in the (i, i + 1)-plane,
applied from either side, destroys the skew triangular structure of A, a second rotation in the
(n− i, n− i + 1)-plane applied from the other side can be used to restore the skew triangular
form.

7

Applying U67 to N does not generate fill-in in N .

N A S

ւ V23 ↓
2

6

6

6

6

6

6

6

6

6

6

4

0 0 x x x y y x

0 0 x x x y y x

x x 0 x x y y x

x x x 0 x y y x

x x x x 0 y y x

y y y y y 0 y y

y y y y y y 0 y

x x x x x y y 0

3

7

7

7

7

7

7

7

7

7

7

5

U67←−− �

2

6

6

6

6

6

6

6

6

6

6

4

x

0 y y

y y y

x x x x

x 0 x x x

0 y x x 0 x x

y y x x x 0 x

x y y x x x x 0

3

7

7

7

7

7

7

7

7

7

7

5

This process is repeated to zero out elements (3,1) and (1,3) (in general: elements 3, . . . , n
2
−

1 in the first row/column) of N :

N A S

↓ U34 ց
2

6

6

6

6

6

6

6

6

6

6

4

0 y x x x x

0 y y x x x x

0 y 0 y y y y y

y y y 0 y y y y

x x y y 0 x x x

x x y y x 0 x x

x x y y x x 0 x

x x y y x x x 0

3

7

7

7

7

7

7

7

7

7

7

5

�
V56−−→

2

6

6

6

6

6

6

6

6

6

6

4

x

x x

+ y x x

y y x x

+ y 0 y y y

y y y 0 y y

x x x y y 0 x

x x x x y y x 0

3

7

7

7

7

7

7

7

7

7

7

5

ւ V34 ↓
2

6

6

6

6

6

6

6

6

6

6

4

x y y x x

0 x x y y x x

x 0 x y y x x

x x x 0 y y x x

y y y y 0 y y y

y y y y y 0 y y

x x x x y y 0 x

x x x x y y x 0

3

7

7

7

7

7

7

7

7

7

7

5

U56←−− �

2

6

6

6

6

6

6

6

6

6

6

4

x

x x

0 y y y

y y y y

0 y 0 x x x

y y x 0 x x

x y y x x 0 x

x x y y x x x 0

3

7

7

7

7

7

7

7

7

7

7

5

Next, we eleminate the elements (4, 1) and (1, 4) of N by a rotation U45. Restoring the
skew triangular shape of A results in a rotation V45 that does not generate fill-in in S, because
the diagonal entries of skew symmetric matrices are necessarily zero.

N A S

↓ U45 ց
2

6

6

6

6

6

6

6

6

6

6

4

0 x x x x

0 x y y x x x

x 0 y y x x x

0 y y 0 y y y y

y y y y 0 y y y

x x x y y 0 x x

x x x y y x 0 x

x x x y y x x 0

3

7

7

7

7

7

7

7

7

7

7

5

�
V45−−→

2

6

6

6

6

6

6

6

6

6

6

4

x

x x

x x x

y y y y

y 0 y y y

x y y 0 x x

x x y y x 0 x

x x x y y x x 0

3

7

7

7

7

7

7

7

7

7

7

5

Now, the second half of the first row/column of N can be reduced leaving just the last
two elements non-zero. This is accomplished in an analogous manner as for the first half.

8

N A S

↓ U56 ց
2

6

6

6

6

6

6

6

6

6

6

4

0 y x x

0 x x y y x x

x 0 x y y x x

x x 0 y y x x

0 y y y 0 y y y

y y y y y 0 y y

x x x x y y 0 x

x x x x y y x 0

3

7

7

7

7

7

7

7

7

7

7

5

�
V34−−→

2

6

6

6

6

6

6

6

6

6

6

4

x

x x

+ y y y

y y y y

+ y 0 x x x

y y x 0 x x

x y y x x 0 x

x x y y x x x 0

3

7

7

7

7

7

7

7

7

7

7

5

ւ V56 ↓
2

6

6

6

6

6

6

6

6

6

6

4

x x x

0 y y x x x x

y 0 y y y y y

y y 0 y y y y

x y y 0 x x x

x x y y x 0 x x

x x y y x x 0 x

x x y y x x x 0

3

7

7

7

7

7

7

7

7

7

7

5

U34←−− �

2

6

6

6

6

6

6

6

6

6

6

4

x

x x

0 y x x

y y x x

0 y 0 y y y

y y y 0 y y

x x x y y 0 x

x x x x y y x 0

3

7

7

7

7

7

7

7

7

7

7

5

↓ U67 ց
2

6

6

6

6

6

6

6

6

6

6

4

0 y x

0 x x x y y x

x 0 x x y y x

x x 0 x y y x

x x x 0 y y x

0 y y y y 0 y y

y y y y y y 0 y

x x x x x y y 0

3

7

7

7

7

7

7

7

7

7

7

5

�
V23−−→

2

6

6

6

6

6

6

6

6

6

6

4

x

+ y y

y y y

x x x x

x 0 x x x

+ y x x 0 x x

y y x x x 0 x

x y y x x x x 0

3

7

7

7

7

7

7

7

7

7

7

5

ւ V67 ↓
2

6

6

6

6

6

6

6

6

6

6

4

x x

0 y y y y y y

y 0 y y y y y

y y 0 x x x x

y y x 0 x x x

y y x x 0 x x

x y y x x x 0 x

x y y x x x x 0

3

7

7

7

7

7

7

7

7

7

7

5

U23←−− �

2

6

6

6

6

6

6

6

6

6

6

4

x

0 y x

y y x

x y y x

x 0 y y x

0 y y y 0 y y

y y y y y 0 y

x x x x x y y 0

3

7

7

7

7

7

7

7

7

7

7

5

At this point, the first row/column of N is in skew Hessenberg form. Note, that the first
and last elements of the first row/column of N were not touched during the process so far.
Thus, applying this procedure recursively to the (2:n-1,2:n-1) submatrices preserves the just
generated zeros. This recursive application yields U, V such that N is in skew Hessenberg
form, while A and S are skew triangular, as required.

N A S

↓ Ũ ↓ ↓ Ṽ
2

6

6

6

6

6

6

6

6

6

6

4

x x

y x x

y y y y

0 y y y y

y y 0 y y y

y y y y 0 y y

x x y y y y 0 x

x x y y y y x 0

3

7

7

7

7

7

7

7

7

7

7

5

�

2

6

6

6

6

6

6

6

6

6

6

4

x

x x

y y y

y y y y

y 0 y y y

y y y 0 y y

x y y y y 0 x

x x y y y y x 0

3

7

7

7

7

7

7

7

7

7

7

5

A pseudocode for general even n can be found in Appendix A.4.

9

3.4 Phase 4: URV-triangularization

Finally, we will describe how N can be skew triangularized while keeping A and S skew
triangular. Note, that, because N is skew symmetric, (N,A, S) can be partitioned as

N =

»

0 −(FH)T

FH N22

–

, A =

»

0 (FR1)
T

FR3 A22

–

, S =

»

0 −(FR2)
T

FR2 S22

–

, (12)

where H, R1, R2, R3 ∈ C
n

2
, n

2 and H is upper Hessenberg and R1, R2, R3 are upper triangular.
Let Q1, Q2 and Z1, Z2 be unitary matrices that transform H, R1, R2, R3 to generalized periodic
Schur form, i.e.,

Q
∗
1HZ2 = T4 =@, (13)

Q
∗
2R1Z2 = T1 =@,

Q
∗
2R2Z1 = T2 =@,

Q
∗
1R3Z1 = T3 =@.

These can be computed, e.g., by the periodic QZ algorithm [4, 12, 17, 26] applied to the
matrix product HR−1

1 R2R
−1
3 . Note, that R1 and R3 do not have to be non-singular for the

method to work. Note further, that the first step of the periodic QZ algorithm, the reduction
to Hessenberg-triangular form is not necessary, because H, R1, R2, R3 are already in this form.

Setting U = Z2 ⊕ FQ̄1F and V = Z1 ⊕ FQ̄2F , we have

U
T
NU =

»

0 −ZT
2 (FH)T FQ̄1F

FQ∗
1FFHZ2 Ñ22

–

=

»

0 −(FT4)
T

FT4 Ñ22

–

=

2

6

4

0 �

�

3

7

5
,

U
T
AV =

»

0 ZT
2 (FR1)

T FQ̄2F

FQ∗
1FFR3Z1 Ã22

–

=

»

0 (FT1)
T

FT3 Ã22

–

=

2

6

4

0 �

�

3

7

5
,

V
T
SV =

»

0 −ZT
1 (FR2)

T FQ̄2F

FQ∗
2FFR2Z1 S̃22

–

=

»

0 −(FT2)
T

FT2 S̃22

–

=

2

6

4

0 �

�

3

7

5
.

Here, Ñ22 = FQ∗
1FN22FQ̄1F , Ã22 = FQ∗

1FA22FQ̄2F , and S̃22 = FQ∗
2FS22FQ̄2F .

At this point, phase 4 and with it the URV-decomposition (11) is completed.

4 The general complex case

The process presented in the last section does not work if the matrices are of odd dimension.
In this section we will generalize that process to cover problems of any dimension. This
generalization consists mainly of a modification of phase one and the introduction of an
additional fifth phase.

During the first phase S is now reduced to the form

S1 := V
T
1 SV1 =

2

6

6

6

4

m r r

m 0 0 0

r 0 0 �
r 0 �

3

7

7

7

5

, (14)

where r, m are such that n = 2r + m. Further define A1 := AV1, as before.
There are several methods to achieve this reduction. If n is even, the skew QRQT fac-

torization yields form (14) with m = 0. If n is odd, the reduced skew QRQT factorization

10

(described in Section 4.1) yields form (14) with m = 1. If S is highly rank defective, the skew
Takagi factorization can be used. This method is described in Section 4.2 and results in form
(14) with 2r = rank(S).

In phase two, A1 is transformed to skew triangular form. This can be done by the skew

QR factorization as in the even case. This results in A2 := UT
2 A1 =� and N2 := UT

2 NU2.

Next, N2 and A2 are partitioned according to S1 as follows:

N2 =

2

4

r r m

r N11 −NT
21 −NT

31

r N21 N22 −NT
32

m N31 N32 N33

3

5, A2 =

2

4

m r r

r 0 0 A13

r 0 A22 A23

m A31 A32 A33

3

5, S1 =

2

4

m r r

m 0 0 0
r 0 0 S23

r 0 −ST
23 S33

3

5.

Now, the usual phases three and four (described in the Sections 3.3 and 3.4) can be applied
to the even dimensional triple

„»

N11 −NT
21

N21 N22

–

,

»

0 A13

A22 A23

–

,

»

0 S23

−ST
23 S33

–«

.

This yields unitary matrices Ũ3, Ũ4, Ṽ3, Ṽ4. Setting Ui := Ũi ⊕ Im, Vi := Im ⊕ Ṽi, i = 3, 4, we
have

(N4, A4, S4) := (UT
4 U

T
3 N2U3U4, U

T
4 U

T
3 A2V3V4, V

T
4 V

T
3 S1V3V4)

=

0

B

B

B

B

B

B

B

B

B

B

@

2

6

6

6

6

6

4

r r m

r 0 �
r �
m

3

7

7

7

7

7

5

,

2

6

6

6

6

6

4

m r r

r 0 0 �
r 0 �
m �

3

7

7

7

7

7

5

,

2

6

6

6

4

m r r

m 0 0 0

r 0 0 �
r 0 �

3

7

7

7

5

1

C

C

C

C

C

C

C

C

C

C

A

.(15)

It remains to transform N4 and S4 to skew triangular form while preserving the form of A4.
More precisely, unitary matrices U5, V5 have to be determined such that

(N5, A5, S5) := (UT
5 N4U5, U

T
5 A4V5, V

T
5 S4V5)

=

0

B

B

B

B

B

B

B

B

B

B

@

2

6

6

6

6

6

4

r m r

r 0 0 �
m 0 �
r �

3

7

7

7

7

7

5

,

2

6

6

6

6

6

4

r m r

r 0 0 �
m 0 �
r �

3

7

7

7

7

7

5

,

2

6

6

6

6

6

4

r m r

r 0 0 �
m 0 0

r �

3

7

7

7

7

7

5

1

C

C

C

C

C

C

C

C

C

C

A

.(16)

Note, that the dimensions of the blocks have changed. The procedure is described in Sec-
tion 4.3 below.

At this point, the URV decomposition is completed.

4.1 Phase 1a: Reduced skew QRQT factorization

We will discuss a method to decompose a skew symmetric matrix S = −ST ∈ C
n,n of odd

dimension n into
S = QRQ

T
,

where Q is unitary and R is of the form (14) with m = 1.
The method builds upon the QRQT factorization, described in Section 3.1. Indeed, the

method can be extended as depicted in the following for an example of size 7. Application of

11

the process in Section 3.1 brings S to skew triangular form.

S =

2

6

6

6

6

6

6

6

6

4

0 x x x x x x

x 0 x x x x x

x x 0 x x x x

x x x 0 x x x

x x x x 0 x x

x x x x x 0 x

x x x x x x 0

3

7

7

7

7

7

7

7

7

5

, S1 = Q̃SQ̃
T =

2

6

6

6

6

6

6

6

6

4

x

x x

x x x

0 x x x

x x 0 x x

x x x x 0 x

x x x x x x 0

3

7

7

7

7

7

7

7

7

5

Now, we will eleminate the skew diagonal elements, starting in the center going outwards. A
two sided rotation in the (3,4) plane can be used to eleminate the elements (3,5) and (5,3):

S2 =

2

6

6

6

6

6

6

6

6

4

x

x x

0 y y

y y y

0 y 0 x x

x y y x 0 x

x x y y x x 0

3

7

7

7

7

7

7

7

7

5

.

Analogously, rotations in the (i, i+1) plane can be used to eleminate the elements (i, n+1−i)
and (n + 1− i, i), for i = n−1

2
− 1, n−1

2
− 2, . . . , 1.

S3 =

2

6

6

6

6

6

6

6

6

4

x

0 y

y y

x x x

x 0 x x

0 y x x 0 x

x y y x x x 0

3

7

7

7

7

7

7

7

7

5

, R =

2

6

6

6

6

6

6

6

6

4

0

y

x x

x x x

x 0 x x

x x x 0 x

0 y x x x x 0

3

7

7

7

7

7

7

7

7

5

At this point S is of the form (14) with m = 1, r = n−1

2
.

A pseudocode for this algorithm is provided in Appendix A.1. The complexity is of the
same order as that of the unreduced QRQT factorization, as the added reduction is an O(n2)
process.

4.2 Phase 1b: Skew Takagi factorization

In this section we show how to transform a skew symmetric matrix S = −ST ∈ C
n,n to the

form

QSQ
T =

2

4

r r

r D

0
r −DT

3

5, with D =� skew diagonal, real, positive. (17)

This factorization may be thought of as a structured version of the singular value decompo-
sition, as S = UΣV ∗ with U = Q∗, Σ = DF ⊕ 0n−2r ⊕ FD, V = QT F (In−r ⊕−Ir). We call
it skew Takagi factorization.

The name is inspired by the Takagi factorization [24, according to [5]], a decomposition
of a complex symmetric matrix M = MT ∈ C

n,n into M = UΣUT , where U is unitary and
Σ is real diagonal. This factorization can be seen as a symmetric variant of the singular
value decomposition. An algorithm to compute the Takagi factorization was described by
Bunse-Gerstner and Gragg, [5].

The process for the skew symmetric case is demonstrated for a 7-by-7 example.

S =

2

6

6

6

6

6

6

6

6

4

0 x x x x x x

x 0 x x x x x

x x 0 x x x x

x x x 0 x x x

x x x x 0 x x

x x x x x 0 x

x x x x x x 0

3

7

7

7

7

7

7

7

7

5

,

12

We begin by transforming S to skew bidiagonal form. First, the first row and column are
reduced to the last entry. Then the last row/column are reduced to the first two entries.

2

6

6

6

6

6

6

6

6

4

0 0 0 0 0 y

0 0 y y y y y

0 y 0 y y y y

0 y y 0 y y y

0 y y y 0 y y

0 y y y y 0 y

y y y y y y 0

3

7

7

7

7

7

7

7

7

5

,

2

6

6

6

6

6

6

6

6

4

x

0 y y y y y

y 0 y y y 0

y y 0 y y 0

y y y 0 y 0

y y y y 0 0

x y 0 0 0 0

3

7

7

7

7

7

7

7

7

5

,

Then, this scheme is recursively applied to the S(2 : n− 1, 2 : n− 1) submatrix,

2

6

6

6

6

6

6

6

6

4

x

0 0 0 y x

0 0 y y y

0 y 0 y y

0 y y 0 y

y y y y 0
x x

3

7

7

7

7

7

7

7

7

5

,

2

6

6

6

6

6

6

6

6

4

x

x x

0 y y y

y 0 y 0

y y 0 0

x y 0 0

x x

3

7

7

7

7

7

7

7

7

5

,

yielding S in the form

S1 =

2

6

6

6

6

6

6

6

6

4

x

x x

0 y x

0 0 y

y y 0
x x

x x

3

7

7

7

7

7

7

7

7

5

.

At this point, the matrix decouples. It can be partitioned as

S1 =

»

⌈n
2
⌉ ⌊n

2
⌋

⌈n
2
⌉ 0 −(FB)T

⌊n
2
⌋ FB 0

–

where B is upper bidiagonal. Let B = U [Σ 0
0 0

] V ∗ with Σ ∈ R
r,r be the singular value

decomposition of B. Then with Q = V T ⊕ FU∗F we have

QS1Q
T =

»

⌈n
2
⌉ ⌊n

2
⌋

⌈n
2
⌉ 0 −V T (FB)T FŪF

⌊n
2
⌋ FU∗FFBV 0

–

=

2

6

6

4

r r

r 0 0 0 −(FΣ)T

0 0 0 0
0 0 0 0

r FΣ 0 0 0

3

7

7

5

.

This matrix is in form (17).
A pseudocode for this algorithm can be found in Appendix A.2. Reducing S to bidiagonal

form costs 4

3
n3 flops. The following SVD computation is neglectable, if an O(n2) algorithm

(like MRRR, see [27] and the references therein) is used. Generating Q costs another 2n3

flops.
Note, that the form (17) is easily permuted to the form (14).

4.3 Phase 5

In this section we discuss how matrices N,A, S of the form (15) are transformed to the form
(16).

This process is illustrated for a 7× 7 example with r = 2, m = 3.

13

N A S
2

6

6

6

6

6

6

6

6

4

x x x x

x x x x x

x 0 x x x x

x x x 0 x x x

x x x x 0 x x

x x x x x 0 x

x x x x x x 0

3

7

7

7

7

7

7

7

7

5

�

2

6

6

6

6

6

6

6

6

4

0
0
0

x

x x

x 0 x

0 0 0 x x x 0

3

7

7

7

7

7

7

7

7

5

We begin by eliminating elements (4, 1) and (1, 4) of N by a rotation in the (4, 5) plane.
Pushing the transformation through A results in a rotation in the (3, 4) plane introducing fill
in in S at the positions (7, 3) and (3, 7).

N A S

↓ U45 ց
2

6

6

6

6

6

6

6

6

4

0 y x x

x y y x x

x 0 y y x x

0 y y 0 y y y

y y y y 0 y y

x x x y y 0 x

x x x y y x 0

3

7

7

7

7

7

7

7

7

5

�
V34−−→

2

6

6

6

6

6

6

6

6

4

0
0
+
y

x x

x 0 x

0 0 + y x x 0

3

7

7

7

7

7

7

7

7

5

Continuing in this manner, we reduce the first row/column of N to a multiple of en.
During this process the last row/column of S becomes fully populated.

N A S

↓ U56 ց
2

6

6

6

6

6

6

6

6

4

0 y x

x x y y x

x 0 x y y x

x x 0 y y x

0 y y y 0 y y

y y y y y 0 y

x x x x y y 0

3

7

7

7

7

7

7

7

7

5

�
V23−−→

2

6

6

6

6

6

6

6

6

4

0
+
y

x

x x

x 0 x

0 + y x x x 0

3

7

7

7

7

7

7

7

7

5

↓ U67 ց
2

6

6

6

6

6

6

6

6

4

0 y

x x x y y

x 0 x x y y

x x 0 x y y

x x x 0 y y

0 y y y y 0 y

y y y y y y 0

3

7

7

7

7

7

7

7

7

5

�
V12−−→

2

6

6

6

6

6

6

6

6

4

+
y

x

x

x x

x 0 x

+ y x x x x 0

3

7

7

7

7

7

7

7

7

5

Now apply the same procedure to the remainder of the first r rows/columns of N .

N A S

↓ U34, U45, U56 ց
2

6

6

6

6

6

6

6

6

4

x

0 0 0 y x

0 0 y y y y

0 y 0 y y y

0 y y 0 y y

y y y y 0 y

x x y y y y 0

3

7

7

7

7

7

7

7

7

5

�

V56,

V45,

V34−−−→

2

6

6

6

6

6

6

6

6

4

x

y y

y y

y y

y y

y y y y 0 x

x y y y y x 0

3

7

7

7

7

7

7

7

7

5

Finally, the middle block, N(3 : 5, 3 : 5) is skew triangularized by a skew QRQT factoriza-

14

tion. Pulling this transformation through A does not change the structure of S.

N A S
2

6

6

6

6

6

6

6

6

4

x

x x

y y y

0 y y y

y y 0 y y

x y y y 0 x

x x y y y x 0

3

7

7

7

7

7

7

7

7

5

�

2

6

6

6

6

6

6

6

6

4

x

x x

y y

y y

y y

x y y y 0 x

x x y y y x 0

3

7

7

7

7

7

7

7

7

5

At this point N, A, S are of the form (16) and the URV decomposition is complete. A
pseudocode for this algorithm is given in Appendix A.5.

Summarizing, for any square matrix A and any two skew symmetric matrices N , S of
the same size we showed how to compute unitary matrices U , V such that all three, UT AV ,
UT NU , and V T SV are skew triangular. In the next sections we demonstrate how eigenvalues
and eigenvectors of even or palindromic problems can be extracted from these transformations.

5 Application to even eigenvalue problems

In this section we return to the even eigenvalue problem Mx = λNx with M = MT ∈ C
n,n,

N = −NT ∈ C
n,n.

In Section 2 we have shown, how the eigenvalues of (M, N) may be read off a skew URV
decomposition of (M, N,N) provided that N is non-singular. Now, we want to generalize
this idea to general pencils (M, N). We can assume w.l.o.g. that the pencil is regular, as the
singular part can be deflated off as a preliminary step, see [7].

The role of the matrix B = N−1MN−1M is taken by the 2n–dimensional pencil

(M̃, Ñ) =

„»

0 M

M 0

–

,

»

N 0
0 N

–«

. (18)

The following lemma relates the Weierstraß form [9] of (M̃, Ñ) to that of (M, N).

Lemma 1 Let M − λN ∈ C
n,n be a regular even pencil. Define (M̃, Ñ) as in (18). Then, if

there exist m Jordan blocks of size k associated with the eigenvalue λ in the Weierstraß form
of (M, N), then there are 2m Jordan blocks of size k for eigenvalue λ in the Weierstraß form
of (M̃, Ñ).

Proof: Consider matrices X, Y ∈ C
n,k of full column rank k, and J1, J2 ∈ C

k,k, one being
a Jordan block and the other one the identity matrix, such that MX = Y J1, NX = Y J2.
This means that span(X) is a deflating subspace of (M, N). Then, with X̃± = [XT ,±XT]T

and Y± = [Y T ,±Y T]T we have M̃X̃± = Ỹ±(±J1) and ÑX̃± = Ỹ±J2. So, both, X̃+ and
X̃− span deflating subspaces of (M̃, Ñ). Since (M, N) was assumed to be regular, (M̃, Ñ)
has no further eigenvalues. The result follows as λ and −λ agree in the number and sizes of
associated Jordan blocks in the Weierstraß form of (M, N),[25]. �

Summarizing, (M̃, Ñ) has the same eigenvalues as (M, N), but of double multiplicity.
Next, we determine the spectrum of (M̃, Ñ). To this end, let U, V define a skew URV

decomposition of (M, N, N), i.e.,

U
T
MV = R =�, U

T
NU = T =�, V

T
NV = P =�.

Then, with Q = U ⊕ V , it follows that

(M̂, N̂) = Q
T (M̃, Ñ)Q =

„»

0 R

RT 0

–

,

»

T 0
0 P

–«

.

Evaluating the determinant of M̂ − λN̂ , the eigenvalues of (M̃, Ñ) are given by

Λ(M̃, Ñ) =



±
r

rijrji

pjitji

˛

˛

˛i = 1, . . . , n, j = n + 1− i

ff

. (19)

15

So, the eigenvalues of (M, N) are given by the same formula (19), but with i ranging from
1 to ⌈n

2
⌉. (Note that if n is odd, then for i = ⌈n

2
⌉ we have i = j and pji = tji = 0. This

corresponds to infinite eigenvalues.) This nicely coincides with formula (10) for the case that
N is non-singular.

Also the eigenvectors of (M, N) can be derived using the skew URV decomposition. Eval-
uating the first columns of MV = ŪR, MU = V̄ RT , NU = ŪT , and NV = V̄ P we have

M [u1, v1] = [ūn, v̄n]

»

0 rn1

r1n 0

–

,

N [u1, v1] = [ūn, v̄n]

»

tn1 0
0 pn1

–

.

So, span([u1, v1]) is a deflating subspace of (M, N) corresponding to the eigenvalues λ1;2 =

±
q

r1nrn1

tn1pn1
. The eigenvectors are given by x1;2 =

√
rn1pn1 u1 ±

√
r1ntn1 v1.

Note, that it is possible, that u1 and v1 are linearly dependent. In this case the algorithm,
as it is now, breaks down. It is topic of future research to circumvent this failure.

Eigenvectors corresponding to other eigenvalue pairs can be obtained by reordering the
generalized periodic Schur form [11].

6 Application to palindromic eigenvalue problems

Consider a palindromic eigenvalue problem Ax = λAT x. Of course, it could be addressed by
treating its Cayley transform (A + AT , A − AT). But cancellation errors could occur during
these computations. In the following we will present a method, that still needs the matrix
A− AT , but circumvents the computation of A + AT .

Again, we use a pencil whose spectrum is related to that of (A, AT),

(M̃, Ñ) =

„»

0 A

AT 0

–

,

»

A−AT 0
0 A− AT

–«

. (20)

The next lemma relates the Weierstraß form of (M̃, Ñ) to that of (A, AT).

Lemma 2 Let A − λAT ∈ C
n,n be a regular palindromic pencil. Let µ(λ) :=

√
λ

λ−1
. Define

(M̃, Ñ) as in (20). Then, if there exist m Jordan blocks of size k for eigenvalue λ in the
Weierstraß form of (A, AT) there are

(case 1: λ 6= 0,∞,±1) 2m Jordan blocks of size k for eigenvalue µ(λ),
(case 2: λ = 0,∞) m Jordan blocks of size 2k for eigenvalue 0 = µ(0) = limλ→∞ µ(λ),
(case 3: λ = 1) 2m Jordan blocks of size k for eigenvalue ∞ = limλ→1 µ(λ),
(case 4: λ = −1) m Jordan blocks of each size ⌈ k

2
⌉, ⌊k

2
⌋ for both eigenvalues ± i

2
= ±µ(−1)

in the Weierstraß form of (M̃, Ñ).

Proof: Let X, V ∈ C
n,k be such that AX = AT XJ and AV J = AT V where J is a Jordan

block of size k for eigenvalue λ 6= ±1, i.e. span(X) is a deflating subspace for λ and span(V)
is a deflating subspace for 1

λ
. Since λ 6= 1

λ
, [X, V] is of rank 2k. Then we have

»

0 A

AT 0

– »

±X V

−V ±X

–

=

»

±AT X −AV

AV ±AT X

– »

0 J

I 0

–

,

»

A− AT 0
0 A−AT

– »

±X V

−V ±X

–

=

»

±AT X −AV

AV ±AT X

– »

J − I 0
0 J − I

–

.

The Weierstraß form of ([0 J
I 0] ,

ˆ

J−I 0
0 J−I

˜

) consists of Jordan blocks of size k for the eigenval-

ues ±
√

λ
λ−1

(if λ 6= 0,±1) or of one Jordan block of size 2k for eigenvalue 0 (if λ = 0). Using the

fact that λ and 1

λ
agree in the number and sizes of associated Jordan blocks in the Weierstraß

form of (A, AT), e.g.,[21], this proves the cases 1 and 2.
To treat the cases 3 and 4, let X, Y ∈ C

n,k be such that AX = Y J and AT X = Y , where

J ∈ C
k,k is a Jordan block for eigenvalue ±1. Set C = J− 1

2 . (Here, we mean the square
root of J−1 that can be written as polynomial in J−1. For existence see [14].) So, JC2 = I.
Further, let Λ = (J − I)C. Note, that J, C, Λ are all upper triangular Toeplitz matrices and

16

thus commute. (This all follows from the fact, that upper triangular Toeplitz matrices can be
represented as polynomials in the nilpotent Jordan block.) The diagonal elements of Λ are
given by λ−1√

λ
. Then we have

»

0 A

AT 0

– »

X

±XC

–

(±Λ) =

»

±Y JC

Y

–

(±Λ) =

»

Y (J − I)
±Y (J − I)C

–

=

»

A− AT 0
0 A− AT

– »

X

±XC

–

.

So, span([XT , (±XC)T]T) is an invariant subspace of (M̃, Ñ) corresponding to the inverses
of the eigenvalues of ±Λ. It remains to determine the Jordan form of Λ.

In case 3, i.e., λ = 1, Λ is a strict upper triangular matrix. Since it is the product of the
non-singular matrix C and the matrix (J − I) of rank k − 1 also Λ is of rank k − 1. Thus Λ
is similar to the nilpotent Jordan block, which proves case 3.

In case 4, i.e. λ = −1, C is of the form

C = ±i

2

6

6

6

6

6

6

6

6

6

6

6

4

1 1

2

3

8
∗ · · · ∗

1 1

2

3

8

. . .
...

1 1

2

. . . ∗

1
. . . 3

8

. . . 1

2

1

3

7

7

7

7

7

7

7

7

7

7

7

5

.

This follows from the Taylor series expansion of f(x) = x− 1

2 at x = −1 yielding f(−1 + x) =
i(1 + 1

2
x + 3

8
x2 + O(x3)). Since Λ is the product of C with (J − I) it is a upper triangular

Toeplitz matrix with ±2i on the diagonal. Further, Λ has a vanishing super diagonal and
a non-vanishing second super diagonal. Considering powers of (Λ ∓ 2iI) it is clear that
the Jordan form of Λ consists of a Jordan block of each size ⌈ k

2
⌉, ⌊k

2
⌋ for both eigenvalues

± i
2

= ±µ(−1). �

In other words, when going from (A, AT) to (M̃, Ñ) the eigenvalues are transformed from λ

to ±µ(λ). Note, that µ(1

λ
) = −µ(λ). So, (M̃, Ñ) has only double eigenvalues. Inverting the

formula for µ(λ) it follows that if µ is eigenvalue of (M̃, Ñ), then

λ1;2 =
1 + 2µ2 ±

p

1 + 4µ2

2µ2
(21)

are eigenvalues of (A, AT). Eigenvalues computed in this way are paired as λ1λ2 = 1. In order
to avoid cancellation one would use (21) to compute the value of λ that is larger in modulus
(say, λ1) and then set λ2 = 1

λ1
.

The spectrum of (M̃, Ñ) can be computed analogously to the even case: let U, V define a
skew URV decomposition of (A, A− AT , A−AT), i.e.,

U
T
AV = R =�, U

T (A−A
T)U = T =�, V

T (A−A
T)V = P =�.

Then, with Q = U ⊕ V we have

(M̂, N̂) = Q
T (M̃, Ñ)Q =

„»

0 R

RT 0

–

,

»

T 0
0 P

–«

.

The eigenvalues of (M̃, Ñ) are given by (19). So, the eigenvalues of (A, AT) are given by

Λ(A,A
T) =

(

1 + 2µ2
i ±

p

1 + 4µ2
i

2µ2
i

˛

˛

˛µ
2
i =

rijrji

pjitji

, i = 1, . . . , ⌈n
2
⌉, j = n + 1− i

)

.

Again, also eigenvectors can be extracted from U, V . Evaluation of the first columns of
AV = ŪR, AT U = V̄ RT , (A− AT)U = ŪT , and (A−AT)V = V̄ P gives

A[u1, v1] = [ūn, v̄n]

»

tn1 rn1

r1n 0

–

,

A
T [u1, v1] = [ūn, v̄n]

»

0 rn1

r1n −pn1

–

.

17

phase \ target A, N, S U V all

1a, skew QRQT 11
6 n3 – 2

3n3

1b, skew Takagi 13
3 n3 – n3

2, skew QR 10
3 n3 4

3n3 –

3, URV-Hessenberg 30nr2 − 5
6r3 12nr2 12nr2

4, periodic QZ 8nr2 + 75 1
3r3 4nr2 4nr2

5, triangularization
19
6 n3 − n2r

−10nr2 − 4
3r3

n3 + 2n2r

−8nr2
2n3 − 2n2r

−4nr2

URV(1a) ≈ 24n3 16
3 n3 14

3 n3 ≈ 34n3

URV(1b)
≈ 11n3 − n2r

+28nr2 + 73r3

7
3n3 + 2n2r

+8nr2
3n3 − 2n2r

+12nr2
≈ 49

3 n3 − n2r

+48nr2 + 73r3

URV(1b,r = n

3) ≈ 33
2 n3 ≈ 4n3 11

3 n3 ≈ 24n3

QZ 30n3 16n3 20n3 66n3

Table 13: Flop counts of the URV algorithm. The numbers are in terms of the problem size n

and the parameter r in the partition (14). It is assumed that only the upper or lower triangular
part of N and S are stored/updated. Only dominant terms are shown, so every number should
be understood as ’plus O(n2 + nr + r2)’. The row labeled URV(1a) shows numbers for the whole
algorithm using the (reduced) skew QRQT factorization in the first phase (so, r = ⌊n

2 ⌋). If the skew

Takagi factorization is used in the first phase (row ’URV(1b)’), then r = rank(S)
2 . The next row

lists the terms for the URV(1b) algorithm for the special case of rank(S) = 2
3n. For comparison,

the terms for the QZ algorithm are given, too. The four numbers are the flop counts to compute
the generalized Schur form, the transformation matrices Q, Z, and the sum of all. Flop counts for
classic algorithms (QR-factorization, QZ-algorithm, etc.) are taken from [10]. The iterative part
of the perodic QZ algorithm is taken to consume 4 times as many flops as the iterative part of the
standard QR algorithm.

So, span([u1, v1]) is a deflating subspace of (A, AT) corresponding to the eigenvalues

λ1;2 =
pn1tn1 + 2rn1r1n ±

p

p2
n1t

2
n1 + 4pn1tn1rn1r1n

2r1nrn1

.

Eigenvectors of (A, AT) are given by

x1;2 = (pn1tn1 ±
p

pn1tn1(pn1tn1 + 4rn1r1n))u1 + 2r1ntn1 v1.

Again, eigenvectors corresponding to other eigenvalue pairs can be obtained by reordering
the generalized periodic Schur form [11].

7 Various topics

In this section we discuss several topics.
We begin by discussing the performance of our algorithm. Table 13 shows flop counts for

the method, separated by phases and whether only A, N, S or additionally U and/or V need
to be formed. For comparison, we also list flop counts of the QZ algorithm applied to (A, AT)
or (M, N). Notably, the URV algorithm needs less flops then the QZ algorithm, if the entire
factorization is computed even by a factor of almost two (34n3 vs. 66n3). Note further that
in the case of a highly rank deficient matrix S the higher cost of the skew Takagi factorization
in the first phase pays off by lower cost for the third and fourth phases resulting in an overall
lower amount for the whole algorithm (24n3 vs. 34n3 for rank(S) = 2

3
n).

The URV algorithm as presented above has been implemented in Matlab. (In Phase 4 we
used a preliminary version of the periodic QZ algorithm, that will be part of the Fortran77
periodic eigenvalue toolbox announced in [11].) For randomly generated matrices (Matlab:

18

A=randn(n)+i*randn(n)) of medium size (n ≈ 700), our implementation is slower than Mat-
labs QZ algorithm by only a factor of ca. 2.5. Given that we use a research implementation
using only BLAS1 operations while qz uses highly optimized LAPACK routines, this is a
promising result.

Now, we turn to the subtle topic of error analysis. Let Û , V̂ , R̂, T̂ , P̂ be the computed
decomposition (11). Note, that every step of the algorithm consists either of a Householder
or Givens update or of setting a small element to zero. Thus, by standard techniques [10], the
URV algorithm is backward stable for (A, N, S), i.e., Û and V̂ are unitary to machine precision
and R̂, T̂ , P̂ are the exact triangular factors of a nearby problem. This in turn means that
there exist Ã, Ñ , S̃ with ‖A−Ã‖2 = O(ε)‖A‖2, ‖N−Ñ‖2 = O(ε)‖N‖2, ‖S−S̃‖2 = O(ε)‖S‖2,
ÑT = −Ñ , S̃T = −S̃ and perfectly unitary matrices U, V such that UT ÃV = R̂, UT ÑU = T̂ ,
V T S̃V = P̂ .

Using these facts, it is clear that using (19) to compute eigenvalues of an even pencil

(
ˆ

A

AT

˜

, [N
S]) yields the exact eigenvalues of the nearby pencil (

h

Ã

ÃT

i

,
h

Ñ

S̃

i

). But it

is not clear, if this implies backward stability for even or palindromic eigenvalue problems,
because there is more structure in the corresponding double size pencils (18) (N = S, A

symmetric) or (20) (N = S = A− AT). In general, the perturbed pencil will not share these
extra properties. More research is needed in this field. However, it is enough to achieve paired
eigenvalues, which is the primary interest in this paper. (In the Hamiltonian case, in [3] the
symplectic URV algorithm was shown to produce eigenvalues that are of the same quality as
those computed by a backward stable method, i.e., the error in an eigenvalue λ is of the order
of ε

yT x
, where x and y are right and left eigenvectors corresponding to λ.)

We now want to specify our statement in Section 1 that the skew URV decomposition
generalizes the symplectic URV decomposition.

Lemma 3 Let A ∈ C
2n,2n. Let U, V,R, T, P define a skew URV decomposition of the triple

(JT A, J, J), where J =
ˆ

0 In

−In 0

˜

, i.e., all R = UT (JT A)V, T = UT JU, and P = V T JV

are skew triangular.
Then there are unitary diagonal matrices D, D2 ∈ C

n,n, such that Ũ := U(I ⊕ D∗F),
Ṽ := V (I⊕D∗

2F) and R̃ := J(I⊕D∗F)T R(I⊕D∗
2F) make up a symplectic URV decomposition,

A = ŨR̃Ṽ ∗ of A.

Proof: With U and J also T is unitary. Since T is also skew symmetric and skew triangular,
it must be of the form

T =

»

0 FD

−DT F 0

–

,

where D is unitary and diagonal. Ũ is symplectic as ŨT JŨ = (I⊕D∗F)T UT JU(I⊕D∗F) =
(I ⊕D∗F)T T (I ⊕D∗F) = J . By an analogous argument, there is a diagonal, unitary matrix
D2, such that Ṽ is symplectic. The matrix R̃ is of the right shape (5), as

R̃ = J

»

I

FD∗

–T

2

6

4

0 �

�

3

7

5

»

I

FD∗
2

–

=

2

6

4

@
0 @

3

7

5
.

Finally,

R̃ = J(I ⊕D
∗
F)T

R(I ⊕D
∗
2F) = J(I ⊕D

∗
F)T

U
T
J

T
AV (I ⊕D

∗
2F) = JŨ

T
J

T
AṼ = Ũ

∗
AṼ ,

thus A = ŨR̃Ṽ ∗. (Here, we used JŨJT = U−1, a property of symplectic matrices.) �

In other words, a skew URV decomposition of (JT A, J, J) defines a symplectic URV decom-
position of A.

7.1 The real case

Until now, complex matrices A, N,S were modified by complex transformation matrices U, V .
However, most physical problems result in real matrices. Of course, we could just treat the
real problem as a complex one, but there are good reasons to stay in real arithmetic, e.g.,
the execution time of complex floating point operations is three to four times that of real
operations. Moreover, real eigenvalue problems have more structure: the eigenvalues appear
in complex conjugate pairs.

19

Luckily, almost the whole URV algorithm works in real arithmetic just as well as with
complex numbers. Householder reflections, Givens rotations, skew QR-, QRQT - and Takagi
factorizations all yield real results for real problems. Only one aspect changes: the real
periodic QZ algorithm in phase 4 returns a real periodic generalized Schur form, i.e., the
matrix T4 in (13) is not upper triangular, but quasi upper triangular with 1 × 1 and 2 × 2
blocks on the diagonal, the 2 × 2 blocks corresponding to a pair of conjugate eigenvalues.
Thus, at the end of phase 4, N, A, S will have the form

N4 =

2

4

r r m

r 0 −NT
21 −NT

31

r N21 N22 −NT
32

m N31 N32 N33

3

5, A4 =

2

4

m r r

r 0 0 A13

r 0 A22 A23

m A31 A32 A33

3

5, S4 =

2

4

m r r

m 0 0 0
r 0 0 S23

r 0 −ST
23 S33

3

5

with A13, A22, A31, S23 skew triangular and N21 quasi skew triangular.
At the end of phase 5, N,A, S will have the form (the symbols Nij , Aij , Sij are reused for

different matrices)

N5 =

2

4

r m r

r 0 0 −NT
31

m 0 N22 −NT
32

r N31 N32 N33

3

5, A5 =

2

4

r m r

r 0 0 A13

m 0 A22 A23

r A31 A32 A33

3

5, S5 =

2

4

r m r

r 0 0 S13

m 0 0 S23

r −ST
13 −ST

23 S33

3

5

with A13, A22, A31, N22, N31 skew triangular and S13 quasi skew triangular.

8 Conclusion and acknowledgments

In this paper we have introduced a new URV decomposition affecting a matrix triple. It
was shown how this URV decomposition can be used to solve palindromic or even eigenvalue
problems. The eigenvalues computed in this way are paired in compliance with the spectral
symmetry that palindromic and even eigenproblems show.

An algorithm for the computation of the URV decomposition has been developed. It
consists of several phases, some of them could be of interest in their own right: reduction
of a square matrix to skew triangular form by one sided transformations, reduction of a
skew symmetric matrix to (reduced) skew triangular form by congruence, or the structure
preserving singular value decomposition of a skew symmetric matrix.

Thanks go to Volker Mehrmann, Christian Mehl, and Hongguo Xu for discussions on
the topic and giving comments on draft versions of this work. Special thanks go to Daniel
Kressner and Bo K̊agström for their hospitality during a research stay in Ume̊a in fall 2006.

A Algorithms

In this section we list pseudocodes of the discussed algorithms.
In the following house(x,i) returns a Householder reflector H, such that Hx = αei,

with α ∈ C. The variant house(x,end) is short for house(x,n), where x ∈ C
n. Further,

givens(α, β,i) returns a Givens rotation G such that G [α
β] = γei, with γ ∈ C. The functions

qr(A) and rq(A) perform the standard QR- and RQ factorizations. fliplr(A) and flipud(A)

flip the argument leftside-right, or upside-down, respectively.

A.1 (Reduced) Skew QRQT factorization

function [Q, R]=skewqrqt(S,want reduced)

Input: skew symmetric matrix S ∈ C
n,n; flag want reduced, indicating whether a reduced

factorization is wanted
Output: unitary Q, skew triangular, skew symmetric R such that S = QRQT , S is overwrit-

ten by R

1: Q← In

2: for i = 1 : ⌈n
2
⌉ − 1 do

3: H ← house(S(i + 1 : n + 1− i, i), end)

20

4: S ← HS(i + 1 : n + 1− i, :)
5: S ← S(:, i + 1 : n + 1− i)HT

6: Q← HQ(i + 1 : n + 1− i, :)
7: end for

8: if n is odd and want reduced then

9: for i = n−1

2
: −1 : 1 do

10: G← givens(S(i, n + 1− i), S(i + 1, n + 1− i), 2)
11: S ← GS(i : i + 1, :)
12: S ← S(:, i : i + 1)GT

13: Q← GQ(i : i + 1, :)
14: end for

15: end if

A.2 Skew Takagi factorization

function [Q, R]=skewtakagi(S)

Input: skew symmetric matrix S ∈ C
n,n

Output: unitary Q, skew symmetric, skew diagonal, real R such that S = QRQT , S is
overwritten by R

1: Q← In

2: for i = 1 : ⌊n
2
⌋ − 1 do

3: H ← house(S(i + 1 : n + 1− i, i), end)
4: S ← HS(i + 1 : n + 1− i, :)
5: S ← S(:, i + 1 : n + 1− i)HT

6: Q← HQ(i + 1 : n + 1− i, :)
7: H ← house(S(i + 1 : n− i, n + 1− i), 1)
8: S ← HS(i + 1 : n− i, :)
9: S ← S(:, i + 1 : n− i)HT

10: Q← HQ(i + 1 : n− i, :)
11: end for

12: if n is odd then

13: i← n+1

2

14: G← givens(S(i, i− 1), S(i + 1, i− 1), 2)
15: S ← GS(i : i + 1, :)
16: S ← S(:, i : i + 1)GT

17: Q← GQ(i : i + 1, :)
18: end if

19: B ← flipud(S(⌈n
2
⌉ : n, 1 : ⌊n

2
⌋))

20: [U, Σ, V]← svd(B)
21: S(⌈n

2
⌉+ 1 : n, 1 : ⌊n

2
⌋)← flipud(Σ)

22: S(1 : ⌊n
2
⌋, ⌈n

2
⌉+ 1 : n)← −fliplr(Σ)

23: Q(1 : ⌈n
2
⌉, :)← V T Q(1 : ⌈n

2
⌉, :)

24: Q(⌊n
2
⌋+ 1 : n, :)← FU∗FQ(⌊n

2
⌋+ 1 : n, :)

A.3 Skew QR factorization

function [Q, R] = skewqr(A)

Input: matrix A ∈ C
n,n

Output: unitary Q, skew triangular R such that A = QR

1: A← fliplr(A)
2: [Q, R]← ql(A)
3: R← fliplr(R)

function [R, Q] = skewrq(A)

Input: matrix A ∈ C
n,n

Output: unitary Q, skew triangular R such that A = RQ

1: A← flipud(A)
2: [R, Q]← rq(A)

21

3: R← flipud(R)

A.4 URV-Hessenberg reduction

function [U, V, Ã, Ñ , S̃]=urvhess(A, N, S)

Input: matrices A, N = −NT , S = −ST ∈ C
n,n, n even, A, S skew triangular

Output: unitary U, V such that Ñ = UT NU is skew Hessenberg, while Ã = UT AV and
S̃ = V T SV are skew triangular, A, N, S are overwritten by Ã, Ñ , S̃

1: U ← In

2: V ← In

3: for j = 1 : n
2
− 1 do

4: for i = j + 1 : n
2
− 1 do

5: {annihilate N(i,j) by Givens rotation in (i,i+1) plane}
6: G← givens(N(i, j),N(i + 1, j), 2)
7: {apply rotation to N as congruence}
8: N(i : i + 1, :)← GN(i : i + 1, :)
9: N(:, i : i + 1)← N(:, i : i + 1)GT

10: {apply rotation to U from the right}
11: U(:, i : i + 1)← U(:, i : i + 1)GT

12: {apply rotation to A from the left generating fill-in at (i,n-i)}
13: A(i : i + 1, :)← GA(i : i + 1, :)
14: {annihilate A(i,n-i) by Givens rotation in (n-i,n-i+1) plane}
15: G← givens(A(i, n− i), A(i, n− i + 1), 2)
16: {apply rotation to A from the right}
17: A(:, n− i : n− i + 1)← A(:, n− i : n− i + 1)GT

18: {apply rotation to V from the right}
19: V (:, n− i : n− i + 1)← V (:, n− i : n− i + 1)GT

20: {apply rotation to S as congruence generating fill-in at (i,n-i)}
21: S(:, n− i : n− i + 1)← S(:, n− i : n− i + 1)GT

22: S(n− i : n− i + 1, :)← GS(n− i : n− i + 1, :)
23: {annihilate S(i,n-i) by Givens rotation in (i,i+1) plane}
24: G← givens(S(i, n− i), S(i + 1, n− i), 2)
25: {apply rotation to S as congruence}
26: S(i : i + 1, :)← GS(i : i + 1, :)
27: {apply rotation to V from the right}
28: V (:, i : i + 1)← V (:, i : i + 1)GT

29: {apply rotation to A from the right generating fill-in at (n-i,i)}
30: A(:, i : i + 1)← A(:, i : i + 1)GT

31: {annihilate A(n-i,i) by Givens rotation in (n-i,n-i+1) plane}
32: G← givens(A(n− i, i), A(n− i + 1, i), 2)
33: {apply rotation to A from the left}
34: A(n− i : n− i + 1, :)← GA(n− i : n− i + 1, :)
35: {apply rotation to U from the right}
36: U(:, n− i : n− i + 1)← U(:, n− i : n− i + 1)GT

37: {apply rotation to N as congruence, no fill-in}
38: N(n− i : n− i + 1, :)← GN(n− i : n− i + 1, :)
39: N(:, n− i : n− i + 1)← N(:, n− i : n− i + 1)GT

40: end for

41: i← n
2

42: {annihilate N(i,j) by Givens rotation in (i,i+1) plane}
43: G← givens(N(i, j),N(i + 1, j), 2)
44: {apply rotation to N as congruence}
45: N(i : i + 1, :)← GN(i : i + 1, :)
46: N(:, i : i + 1)← N(:, i : i + 1)GT

47: {apply rotation to U from the right}
48: U(:, i : i + 1)← U(:, i : i + 1)GT

49: {apply rotation to A from the left generating fill-in at (i,n-i)}
50: A(i : i + 1, :)← GA(i : i + 1, :)

22

51: {annihilate A(i,n-i) by Givens rotation in (n-i,n-i+1) plane}
52: G← givens(A(i, n− i), A(i, n− i + 1), 2)
53: {apply rotation to A from the right}
54: A(:, n− i : n− i + 1)← A(:, n− i : n− i + 1)GT

55: {apply rotation to V from the right}
56: V (:, n− i : n− i + 1)← V (:, n− i : n− i + 1)GT

57: {apply rotation to S as congruence, no fill-in}
58: S(n− i : n− i + 1, :)← GS(n− i : n− i + 1, :)
59: S(:, n− i : n− i + 1)← S(:, n− i : n− i + 1)GT

60: for i = m + 1 : n− j − 1 do

61: {annihilate N(i,j) by Givens rotation in (i,i+1) plane}
62: G← givens(N(i, j),N(i + 1, j), 2)
63: {apply rotation to N as congruence}
64: N(i : i + 1, :)← GN(i : i + 1, :)
65: N(:, i : i + 1)← N(:, i : i + 1)GT

66: {apply rotation to U from the right}
67: U(:, i : i + 1)← U(:, i : i + 1)GT

68: {apply rotation to A from the left generating fill-in at (i,n-i)}
69: A(i : i + 1, :)← GA(i : i + 1, :)
70: {annihilate A(i,n-i) by Givens rotation in (n-i,n-i+1) plane}
71: G← givens(A(i, n− i), A(i, n− i + 1), 2)
72: {apply rotation to A from the right}
73: A(:, n− i : n− i + 1)← A(:, n− i : n− i + 1)GT

74: {apply rotation to V from the right}
75: V (:, n− i : n− i + 1)← V (:, n− i : n− i + 1)GT

76: {apply rotation to S as congruence generating fill-in at (n-i,i)}
77: S(n− i : n− i + 1, :)← GS(n− i : n− i + 1, :)
78: S(:, n− i : n− i + 1)← S(:, n− i : n− i + 1)GT

79: {annihilate S(n-i,i) by Givens rotation in (i,i+1) plane}
80: G← givens(S(n− i, i), S(n− i, i + 1), 2)
81: {apply rotation to S as congruence}
82: S(:, i : i + 1)← S(:, i : i + 1)GT

83: S(i : i + 1, :)← GS(i : i + 1, :)
84: {apply rotation to V from the right}
85: V (:, i : i + 1)← V (:, i : i + 1)GT

86: {apply rotation to A from the right generating fill-in at (n-i,i)}
87: A(:, i : i + 1)← A(:, i : i + 1)GT

88: {annihilate A(n-i,i) by Givens rotation in (n-i,n-i+1) plane}
89: G← givens(A(n− i, i), A(n− i + 1, i), 2)
90: {apply rotation to A from the left}
91: A(n− i : n− i + 1, :)← GA(n− i : n− i + 1, :)
92: {apply rotation to U from the right}
93: U(:, n− i : n− i + 1)← U(:, n− i : n− i + 1)GT

94: {apply rotation to N as congruence, no fill-in}
95: N(n− i : n− i + 1, :)← GN(n− i : n− i + 1, :)
96: N(:, n− i : n− i + 1)← N(:, n− i : n− i + 1)GT

97: end for

98: end for

A.5 Phase 5

function [U, V, Ã, Ñ , S̃]=phase5(A, N,S, r)

Input: matrices A, N = −NT , S = −ST ∈ C
n,n of the form (15)

Output: unitary U, V such that Ñ = UT NU , Ã = UT AV , S̃ = V T SV are of the form (16),
A, N,S are overwritten by Ã, Ñ , S̃

1: for j = 1 : r do

2: for i = 2r + 1− j : n− j do

3: {annihilate N(i,j) by Givens rotation in (i,i+1) plane}

23

4: G← givens(N(i, j),N(i + 1, j), 2)
5: {apply rotation to N as congruence}
6: N(i : i + 1, :)← GN(i : i + 1, :)
7: N(:, i : i + 1)← N(:, i : i + 1)GT

8: {apply rotation to U from the right}
9: U(:, i : i + 1)← U(:, i : i + 1)GT

10: {apply rotation to A from the left generating fill-in at (i,n-i)}
11: A(i : i + 1, :)← GA(i : i + 1, :)
12: {annihilate A(i,n-i) by Givens rotation in (n-i,n-i+1) plane}
13: G← givens(A(i, n− i), A(i, n− i + 1), 2)
14: {apply rotation to A from the right}
15: A(:, n− i : n− i + 1)← A(:, n− i : n− i + 1)GT

16: {apply rotation to V from the right}
17: V (:, n− i : n− i + 1)← V (:, n− i : n− i + 1)GT

18: {apply rotation to S as congruence}
19: S(n− i : n− i + 1, :)← GS(n− i : n− i + 1, :)
20: S(:, n− i : n− i + 1)← S(:, n− i : n− i + 1)GT

21: end for

22: end for

23: {triangularize middle block in N}
24: [Q, N(r + 1 : n− r, r + 1 : n− r)]← skewqrqt(N(r + 1 : n− r, r + 1 : n− r),false)
25: {apply transformation to rest of N as congruence}
26: N(r + 1 : n− r, n− r + 1 : n)← Q∗N(r + 1 : n− r, n− r + 1 : n)
27: N(n− r + 1 : n, r + 1 : n− r)← N(n− r + 1 : n, r + 1 : n− r)Q̄
28: {apply transformation to U from the right}
29: U(:, r + 1 : n− r)← U(:, r + 1 : n− r)Q̄
30: {apply transformation to A from the left destroying triangular form}
31: A(r + 1 : n− r, :)← Q∗A(r + 1 : n− r, :)
32: {retriangularize middle block of A(i,n-i) by skew RQ factorization}
33: [A(r + 1 : n− r, r + 1 : n− r), Q]← skewrq(A(r + 1 : n− r, r + 1 : n− r))
34: {apply transformation to rest of A from the right}
35: A(n− r + 1 : n, r + 1 : n− r)← A(n− r + 1 : n, r + 1 : n− r)Q∗

36: {apply transformation to V from the right}
37: V (:, r + 1 : n− r)← V (:, r + 1 : n− r)Q∗

38: {apply transformation to S as congruence}
39: S(r + 1 : n− r, :)← Q̄S(r + 1 : n− r, :)
40: S(:, r + 1 : n− r)← S(:, r + 1 : n− r)Q∗

References

[1] Peter Benner, Ralph Byers, Volker Mehrmann, and Hongguo Xu. Numerical computation
of deflating subspaces of skew-Hamiltonian/Hamiltonian pencils. SIAM J. Matrix Anal.
Appl., 24(1):165–190 (electronic), 2002.

[2] Peter Benner, Volker Mehrmann, and Hongguo Xu. A new method for computing the sta-
ble invariant subspace of a real Hamiltonian matrix. J. Comput. Appl. Math., 86(1):17–43,
1997.

[3] Peter Benner, Volker Mehrmann, and Hongguo Xu. A numerically stable, structure pre-
serving method for computing the eigenvalues of real Hamiltonian or symplectic pencils.
Numer. Math., 78(3):329–358, 1998.

[4] Adam Bojanczyk, Gene H. Golub, and Paul Van Dooren. The periodic schur decomposi-
tion; algorithms and applications. In Proc. SPIE conference, volume 1770, pages 31–42,
1992.

[5] Angelika Bunse-Gerstner and William B. Gragg. Singular value decompositions of com-
plex symmetric matrices. J. Comput. Appl. Math., 21(1):41–54, 1988.

[6] Peter Businger and Gene H. Golub. Handbook series linear algebra. Linear least squares
solutions by Householder transformations. Numer. Math., 7:269–276, 1965.

24

[7] Ralph Byers, Volker Mehrmann, and Hongguo Xu. A structured staircase algorithm for
skew-symmetric/symmetric pencils. ETNA, 26:1–33, 2007.

[8] Delin Chu, Xinmin Liu, and Volker Mehrmann. A numerical method for computing the
Hamiltonian Schur form. Numer. Math., 105(3):375–412, 2007.

[9] Felix R. Gantmacher. The theory of matrices. Vols. 1, 2. Translated by K. A. Hirsch.
Chelsea Publishing Co., New York, 1959.

[10] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins Studies
in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, third
edition, 1996.

[11] Robert Granat, Bo K̊agström, and Daniel Kressner. Computing periodic deflating sub-
spaces associated with a specified set of eigenvalues. BIT Numerical Mathematics,
43(1):001–018, 2003.

[12] John J. Hench and Alan J. Laub. Numerical solution of the discrete-time periodic Riccati
equation. IEEE Trans. Automat. Control, 39(6):1197–1210, 1994.

[13] Andreas Hilliges, Christian Mehl, and Volker Mehrmann. On the solution of palindromic
eigenvalue problems. In Proceedings of the 4th European Congress on Computational
Methods in Applied Sciences and Engineering (ECCOMAS). Jyväskylä, Finland, 2004.
CD-ROM.

[14] Roger A. Horn and Charles R. Johnson. Topics in matrix analysis. Cambridge University
Press, Cambridge, 1991.

[15] Roger A. Horn and Vladimir V. Sergeichuk. Canonical forms for complex matrix con-
gruence and *congruence. Linear Algebra and its Appl., 2006. in press.

[16] Roger A. Horn and Vladimir V. Sergeichuk. A regularization algorithm for matrices of
bilinear and sesquilinear forms. Linear Algebra Appl., 412(2-3):380–395, 2006.

[17] Daniel Kressner. An effcient and reliable implementation of the periodic QZ algorithm.
In IFAC Workshop on Periodic Control Systems.

[18] D. Steven Mackey, Niloufer Mackey, Christian Mehl, and Volker Mehrmann. Structured
polynomial eigenvalue problems: Good vibrations from good linearizations. SIAM Jour-
nal on Matrix Analysis and Applications, 28(4):1029–1051, 2006.

[19] D. Steven Mackey, Niloufer Mackey, Christian Mehl, and Volker Mehrmann. Numerical
methods for palindromic eigenvalue problems, 2007. in preparation.

[20] Leiba Rodman. Bounded and stably bounded palindromic difference equations of first
order. ELA, 15:22–49, January 2006.

[21] Christian Schröder. A canonical form for palindromic pencils and palindromic factoriza-
tions. Preprint 316, TU Berlin, Matheon, Germany, 2006.

[22] Christian Schröder. A QR-like algorithm for the palindromic eigenvalue problem.
Preprint, TU Berlin, Matheon, Germany, in preparation.

[23] G. W. Pete Stewart. Updating a rank-revealing ULV decomposition. SIAM J. Matrix
Anal. Appl., 14(2):494–499, 1993.

[24] T. Takagi. On an algebraic problem related to an analytic Theorem of Carathédory and
Fejér and on an allied theorem of Landau. Japan J. Math., 1:82–93, 1924.

[25] Robert C. Thompson. Pencils of complex and real symmetric and skew matrices. Linear
Algebra Appl., 147:323–371, 1991.

[26] Andreas Varga and Paul Van Dooren. Computational methods for periodic systems —
an overview. In Proc. of IFAC Workshop on Periodic Control Systems, Como, Italy,
pages 171–176, 2001.

[27] Paul R. Willems, Bruno Lang, and Christof Vömel. Computing the bidiagonal SVD
using multiple relatively robust representations. preprint BUW-SC 2005/5, Bergische
Universität Wuppertal, 2005.

25

