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1. Introduction. Consider a linear time-invariant second-order system

M q̈(t) + D q̇(t) + K q(t) = B2u(t),
C2q̇(t) + C1q(t) = y(t), (1.1)

where M ∈ Rn,n is nonsingular, D ∈ Rn,n, K ∈ Rn,n, B2 ∈ Rn,m, C1, C2∈Rp,n,
q(t) ∈ Rn, u(t) ∈ Rm is a control input and y(t) ∈ Rp is an output. Such systems
arise in many practical applications including electrical circuits, mechanical systems,
large structures and microsystem technology [8, 9, 11, 23]. In mechanical engineering,
the matrices M , D and K are known as the mass, the damping and the stiffness
matrices, respectively. Often, the number of equations and variables in system (1.1)
exceeds tens of millions. Simulation, real-time controller design and optimization
of such large-scale systems is unfeasible within a reasonable computation time. This
motivates model reduction that consists in approximation of (1.1) by a reduced system

M̃ ¨̃q(t) + D̃ ˙̃q(t) + K̃ q̃(t) = B̃2u(t),
C̃2

˙̃q(t) + C̃1q̃(t) = ỹ(t),
(1.2)

where M̃ , D̃, K̃ ∈ R`,`, B̃2 ∈ R`,m and C̃1, C̃2 ∈ Rp,` with ` ¿ n. It is required that
the approximate system (1.2) preserves essential properties of (1.1) like stability and
passivity and that the approximation error is small.
A classical model reduction approach for second-order systems is first to rewrite (1.1)
as a first-order generalized state space system

E ẋ(t) = Ax(t) + B u(t),
y(t) = C x(t), (1.3)

where x(t) = [ q(t)T , q̇(t)T ]T and

E =
[

I 0
0 M

]
, A =

[
0 I

−K −D

]
, B =

[
0

B2

]
, C = [ C1, C2 ], (1.4)
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and then apply any model reduction method to (1.3). If a projection-based method
like moment matching approximation [1, 10] or balanced truncation [12, 17] is used,
we obtain a reduced model

Ẽ ˙̃x(t) = Ã x̃(t) + B̃ u(t),
ỹ(t) = C̃ x̃(t),

(1.5)

where Ẽ = WTE T , Ã = WTAT , B̃ = WTB, C̃ = C T and the projection matrices
W, T ∈ R2n,k determine subspaces of interest. Note that instead of (1.4) one can also
take other first-order systems that keep the structure in E and A for structured M ,
D and K, see [11, 15, 23].
Unfortunately, the reduced system (1.5) cannot, in general, be turned into the second-
order form (1.2), see [16, 19] for special cases when it can be done. Note that preserva-
tion of the second-order structure in the reduced model allows a meaningful physical
interpretation and usually provides more accurate approximations. In addition, soft-
ware tools specially developed for second-order systems can also be used for reduced
models.
Recently, structure-preserving model reduction of second-order systems received a lot
of attention [2, 3, 5, 6, 11, 16, 19, 20]. Moment matching approximation based on
Krylov subspace methods is one of the most used model reduction techniques for large-
scale systems, see [1, 10] for surveys on these methods. Two different modifications of
this approach have been proposed for second-order systems. The first one is based on
projection onto subspaces spanned by suitably partitioned Krylov basis matrices that
are computed by standard Krylov subspace methods applied to the first-order sys-
tem (1.3), see [5, 11]. The second approach is based on projection onto second-order
Krylov subspaces obtained by modified Arnoldi methods specifically designed for the
second-order system [3, 2, 20, 22]. Krylov-based model reduction methods are effi-
cient for large-scale problems, since only matrix-vector multiplications are required.
However, stability is not necessarily preserved in the reduced system and no global
error bound exists.
In this paper we consider structure-preserving model reduction of second-order sys-
tems using balanced truncation. This method has been proved to be an efficient
model reduction technique for first-order systems [4, 12, 17]. The balanced trunca-
tion method consists in the state space transformation of (1.3) into a balanced form
whose controllability and observability Gramians are equal and diagonal with nonneg-
ative diagonal entries, which are called the Hankel singular values. Then the reduced
system (1.5) is computed by truncating the states corresponding to the small Hankel
singular values. Important properties of the balanced truncation method for (1.3) are
that stability is preserved in the reduced model (1.5) and that there exists an a priori
error bound [12, 18].
Balancing-related model reduction of second-order systems has been previously con-
sidered in [5, 6, 16, 21]. The goal of this paper is to present a general framework for
this type of second-order model reduction. Using the position and velocity Gramians
introduced in [5, 21], we define in Section 2 several concepts of singular values and
balanced realizations for (1.1). The singular values play a crucial role in identifying
which states are important and which states can be truncated without changing the
system properties significantly. In Section 3, we present different variants of second-
order balanced truncation method and compare them with existing approaches from
[6, 16]. We also discuss the symmetric case and stability issues. Numerical examples
are given in Section 4.
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Throughout the paper we denote by Rn,m the space of n×m real matrices. The ma-
trix AT denotes the transpose of A ∈ Rn,m and A−T = (A−1)T . An identity matrix of
order n is denoted by In or simply by I. We denote by rank(A) the rank of the matrix
A, λj(·) and σj(·) denote, respectively, eigenvalues and singular values of a matrix or
an operator. We use L2(I,Rm) to denote the Hilbert space of vector-valued functions
of dimension m whose elements are quadratically integrable on I ⊆ R.

2. Second-order systems. Consider the second-order system (1.1). A transfer
function of (1.1) is given by

G(s) = (sC2 + C1)(s2M + sD + K)−1B2. (2.1)

It describes the input-output behavior of (1.1) in the frequency domain. For simplicity,
we will also denote system (1.1) by G = [ M, D, K, B2, C1, C2 ]. Two systems G =
[M, D, K, B2, C1, C2 ] and Ĝ = [ M̂, D̂, K̂, B̂2, Ĉ1, Ĉ2 ] are called restricted system
equivalent if there exist nonsingular matrices Tl, Tr ∈ Rn,n such that

M̂ = Tl M Tr, D̂ = Tl D Tr, K̂ = Tl K Tr,

B̂2 = Tl B2, Ĉ1 = C1 Tr, Ĉ2 = C2 Tr.
(2.2)

The pair (Tl, Tr) is called system equivalence transformation. A characteristic quantity
of (1.1) is system invariant if it is preserved under a system equivalence transforma-
tion. For example, the transfer function G(s) is system invariant, since

G(s) = (sC2 + C1)(s2M + sD + K)−1B2

= (sĈ2 + Ĉ1) T−1
r (s2 T−1

l M̂ T−1
r + s T−1

l D̂ T−1
r + T−1

l K̂ T−1
r )−1 T−1

l B̂2

= (sĈ2 + Ĉ1)(s2M̂ + sD̂ + K̂)−1B̂2 = Ĝ(s).

Let [ M, D, K, B2, C1, C2 ] and [ M̂, D̂, K̂, B̂2, Ĉ1, Ĉ2 ] be restricted system equiv-
alent. Then the associated first-order systems with the matrix coefficients E, A, B, C
as in (1.4) and

Ê =
[

I 0
0 M̂

]
, Â =

[
0 I

−K̂ −D̂

]
, B̂ =

[
0

B̂2

]
, Ĉ = [ Ĉ1, Ĉ2 ]

are also restricted system equivalent, i.e.,

Ê = Tl E Tr, Â = TlATr, B̂ = Tl B, Ĉ = C Tr,

with the transformation matrices

Tl =
[

T−1
r 0
0 Tl

]
, Tr =

[
Tr 0
0 Tr

]
.

The second-order system (1.1) is called asymptotically stable if the matrix polynomial
P (λ) = λ2M + λD + K is stable, i.e., all the zeros of P (λ) have negative real part.
System (1.1) is controllable if

rank [λ2M + λD + K, B2 ] = n for all λ ∈ C,

and it is observable if

rank [ λ2MT + λDT + KT , λCT
2 + CT

1 ] = n for all λ ∈ C.

It has been shown in [13] that the second-order system (1.1) is controllable (ob-
servable) if and only if the first-order system (1.3) is controllable (observable), i.e.,
rank [λẼ − Ã, B̃ ] = 2n ( rank [λẼT − ÃT , C̃T ] = 2n ) for all λ ∈ C.
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2.1. Position and velocity Gramians. The Gramians play an important role
in balanced truncation model reduction. For second-order systems, different types
of Gramians have been proposed in the literature [5, 6, 16, 21]. In this subsection,
we consider the position and velocity controllability and observability Gramians as
introduced in [5, 21].
Assume that the matrix polynomial P (λ) = λ2M + λD + K is stable. Then all the
eigenvalues of the pencil λE −A with E and A as in (1.4) have negative real part. In
this case the generalized Lyapunov equations

E PAT +AP ET = −BBT , ETQA+ATQE = −CTC (2.3)

have unique symmetric, positive semidefinite solutions P and Q which define, respec-
tively, the controllability Gramian and the observability Gramian of the first-order
system (1.3). These Gramians have the following integral representations

P =
∫ ∞

0

F(t)BBTF(t)T dt, Q =
∫ ∞

0

F(t)TCTCF(t) dt,

where F(t) = eE
−1A tE−1 is the fundamental solution matrix of (1.3). Equivalently,

the Gramians can be represented as

P = ΨcΨ
∗
c , Q = Ψ∗oΨo

for the controllability operator

Ψc : L2((−∞, 0 ],Rm) → R2n,

u 7→
∫ 0

−∞
F(−t)Bu(t)dt

and the observability operator

Ψo : R2n → L2([ 0,∞),Rp),
x0 7→ CF(·)x0.

The operators Ψ∗c and Ψ∗o denote the adjoint operators of Ψc and Ψo, respectively.
Let the Gramians be partitioned as

P =

[
Pp P12

PT
12 Pv

]
, Q =

[
Qp Q12

QT
12 Qv

]
,

where all the blocks are of size n× n. Then Pp and Pv are the position and velocity
controllability Gramians of the second-order system (1.1), whereas Qp and Qv are
the position and velocity observability Gramians of (1.1). Defining the position and
velocity controllability operators by

Ψc,p = [ I, 0 ]T Ψc, Ψc,v = [ 0, I ]T Ψc

and the position and velocity observability operators by

Ψo,p = Ψo[ I, 0 ]T , Ψo,v = Ψo[ 0, I ]T ,

the position and velocity Gramians can be represented as

Pp = Ψc,pΨ
∗
c,p, Pv = Ψc,vΨ∗c,v, Qp = Ψ∗o,pΨo,p, Qv = Ψ∗o,vΨo,v.
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2.2. Singular values. Under a system equivalence transformation (Tl, Tr) the
position and velocity Gramians are transformed into

P̂p = T−1
r Pp T−T

r , P̂v = T−1
r Pv T−T

r ,

Q̂p = TT
r Qp Tr, Q̂v = T−T

l Qv T−1
l .

Then it follows from the equations

P̂pQ̂p = T−1
r PpQpTr, P̂vQ̂p = T−1

r PvQpTr,

P̂pM̂
TQ̂vM̂ = T−1

r PpM
TQvMTr,

P̂vM̂TQ̂vM̂ = T−1
r PvMTQvMTr

that the eigenvalues of the matrices PpQp, PvQp, PpM
TQvM and PvMTQvM are

system invariant. Furthermore, since these matrices are the products of two symmet-
ric, positive semidefinite matrices, they are diagonalizable and have real non-negative
eigenvalues [25, p.76]. Using these eigenvalues, we can define different sets of singular
values for the second-order system (1.1).

Definition 2.1. Consider a second-order system (1.1) with the stable matrix
polynomial P (λ) = λ2M + λD + K.

1. The square roots of the eigenvalues of the matrix PpQp, denoted by ξp
j , are

called the position singular values of (1.1).
2. The square roots of the eigenvalues of the matrix PvMTQvM , denoted by ξv

j ,
are called the velocity singular values of (1.1).

3. The square roots of the eigenvalues of the matrix PpM
TQvM , denoted by ξpv

j ,
are called the position-velocity singular values of (1.1).

4. The square roots of the eigenvalues of the matrix PvQp, denoted by ξvp
j , are

called the velocity-position singular values of (1.1).

We will assume that the position, velocity, position-velocity and velocity-position
singular values of (1.1) are ordered decreasingly. Note that the position singular values
coincide with the free velocity singular values defined in [16] and are the singular values
of the operator Γp = Ψo,pΨc,p. This holds due to

λj(Γ∗pΓp) = λj(Ψ∗c,pΨ
∗
o,pΨo,pΨc,p) = λj(Ψc,pΨ

∗
c,pΨ

∗
o,pΨo,p) = λj(PpQp).

Analogously, we can show that ξv
1 , . . . , ξv

n are the singular values of the operator Γv =
Ψo,vMΨc,v, the numbers ξpv

1 , . . . , ξpv
n are the singular values of Γpv = Ψo,vMΨc,p, and

ξvp
1 , . . . , ξvp

n are the singular values of Γvp = Ψo,pΨc,v.
If the second-order system (1.1) is controllable and observable, then the position and
velocity Gramians of (1.1) are positive definite, since they are principal submatrices
of P and Q. In this case all the singular values of (1.1) are strictly positive. However,
the positivity of ξp

j , ξv
j , ξpv

j and ξvp
j does not imply that system (1.1) is controllable

and observable.

2.3. Balancing. Using different singular values we can define different balanced
realizations for second-order systems.

Definition 2.2. Consider a second-order system (1.1) with the stable matrix
polynomial P (λ) = λ2M + λD + K.

1. System (1.1) is called position balanced if Pp = Qp = diag(ξp
1 , . . . , ξp

n).
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2. System (1.1) is called velocity balanced if Pv = Qv = diag(ξv
1 , . . . , ξv

n).
3. System (1.1) is called position-velocity balanced if

Pp = Qv = diag(ξpv
1 , . . . , ξpv

n ).

4. System (1.1) is called velocity-position balanced if

Pv = Qp = diag(ξvp
1 , . . . , ξvp

n ).

We will now show that if system (1.1) is controllable and observable, then there
exist nonsingular matrices Tl and Tr that transform (1.1) into one of the balanced
forms. For this purpose consider the Cholesky factorizations of the position and
velocity Gramians

Pp = RpR
T
p , Pv = RvRT

v , Qp = LpL
T
p , Qv = LvLT

v , (2.4)

where Rp, Rv, Lp, Lv ∈ Rn,n are nonsingular lower triangular Cholesky factors. Then
the position singular values of (1.1) can be computed as the classical singular values
of the matrix RT

p Lp. Indeed, we have

(ξp
j )2 = λj(PpQp) = λj(RpR

T
p LpL

T
p ) = λj(LT

p RpR
T
p Lp) = σ2

j (RT
p Lp).

Similarly, we can show that the velocity, position-velocity and velocity-position singu-
lar values of (1.1) are the classical singular values of the matrices RT

v MTLv, RT
p MTLv

and RT
v Lp, respectively, i.e., ξv

j = σj(RT
v MTLv), ξpv

j = σj(RT
p MTLv) and ξvp

j =
σj(RT

v Lp). Let

RT
p Lp = UpΣpV

T
p , RT

v MTLv = UvΣvV T
v ,

RT
p MTLv = UpvΣpvV T

pv, RT
v Lp = UvpΣvpV

T
vp

(2.5)

be singular value decompositions of RT
p Lp, RT

v MTLv, RT
p MTLv and RT

v Lp, where Up,
Vp, Uv, Vv, Upv, Vpv, Uvp and Vvp are orthogonal, and

Σp = diag(ξp
1 , . . . , ξp

n), Σv = diag(ξv
1 , . . . , ξv

n),

Σpv = diag(ξpv
1 , . . . , ξpv

n ), Σvp = diag(ξvp
1 , . . . , ξvp

n )

are nonsingular. Using (2.5) we can determine the required balancing transformation
matrices Tl and Tr. These matrices are collected in Table 2.1.

P̂p = Q̂p = Σp Tr = RpUpΣ
−1/2
p , Tl arbitrary

P̂v = Q̂v = Σv Tr = RvUvΣ−1/2
v , Tl = Σ−1/2

v V T
v LT

v

P̂p = Q̂v = Σpv Tr = RpUpvΣ−1/2
pv , Tl = Σ−1/2

pv V T
pvLT

v

P̂v = Q̂p = Σvp Tr = RvUvpΣ
−1/2
vp , Tl arbitrary

Table 2.1
The balancing transformations.

Note that the velocity and position-velocity balanced systems have the normalized
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mass matrix M̂ = TlMTr = I. Furthermore, for the position and velocity-position
balancing, the left transformation matrix Tl can be chosen arbitrarily. We can use
this freedom to impose additional conditions on the transformed system. For instance,
computing the position balanced realization one could take Tl = Σ−1/2

p V T
p LT

p M−1 to
normalize the mass matrix M̂ to the identity or Tl = Σ−1/2V T

v LT
v to balance the

velocity observability Gramian Q̂v = T−T
l Qv T−1

l = Σ with Σ being Σp or Σv.
Remark 2.3. As noted in [6], it is impossible to balance two pairs of the Gramians

(Pp,Qp) and (Pv,Qv) simultaneously using only a second-order system equivalence
transformation. However, it can be done in the state space context working with the
first-order system (1.3). If we allow for the diagonal blocks of the transformation
matrices

Tl =
[

Tl1 0
0 Tl2

]
, Tr =

[
Tr1 0
0 Tr2

]

to be different, then choosing

Tl1 = Σ−1/2
1 V T

p LT
p , Tl2 = Σ−1/2

2 V T
v LT

v ,

Tr1 = RpUpΣ
−1/2
1 , Tr2 = RvUvΣ−1/2

2

with some diagonal positive definite matrices Σ1 and Σ2, we obtain

P̂p = T−1
r1 Pp T−T

r1 = Σ1 = T−T
l1 QpT

−1
l1 = Q̂p,

P̂v = T−1
r2 Pv T−T

r2 = Σ2 = T−T
l2 QvT−1

l2 = Q̂v.

For Σ1 = Σp and Σ2 = Σv, the balancing transformation is as in [6]. Taking Σ1 = Σ2,
we balance all four Gramians at the same time.

3. Second-order balanced truncation. Similarly to balanced truncation model
reduction of first-order systems [12, 17], the approximate second-order model (1.2) can
be computed by the transformation of system (1.1) into one of the balanced forms
and truncation of the position and velocity components corresponding to the small
singular values. Such components are less involved in the energy transfer from inputs
to outputs, see [6, 16] for details. In practice, balancing and truncation can be com-
bined by performing the projection onto the subspaces corresponding to the dominant
singular values.
In the following we present only two algorithms related to the position and position-
velocity balancing which are obvious generalizations of the square root balanced trun-
cation method [14, 24] for the second-order system (1.1). Other algorithms can be
stated in a similar way.

Algorithm 3.1. Second-order balanced truncation model reduction method with
position balancing (SOBTp).

Given G = [ M, D, K, B2, C1, C2 ] such that λ2M + λD + K is stable, compute
a reduced system G̃ = [ M̃, D̃, K̃, B̃2, C̃1, C̃2 ].

1. Compute the Cholesky factors Rp, Rv, Lp and Lv of the position and velocity
Gramians by solving the Lyapunov equations (2.3) with E, A, B and C as in
(1.4).
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2. Compute the singular value decompositions

RT
p Lp = [Up1, Up2 ]

[
Σp1 0
0 Σp2

]
[ Vp1, Vp2 ]T ,

RT
v MTLv = [Uv1, Uv2 ]

[
Σv1 0
0 Σv2

]
[Vv1, Vv2 ]T ,

where [Up1, Up2 ], [ Vp1, Vp2 ], [Uv1, Uv2 ] and [ Vv1, Vv2 ] are orthogonal and

Σp1 = diag(ξp
1 , . . . , ξp

` ), Σp2 = diag(ξp
`+1, . . . , ξ

p
n),

Σv1 = diag(ξv
1 , . . . , ξv

` ), Σv2 = diag(ξv
`+1, . . . , ξ

v
n).

3. Compute the reduced system

M̃ = WT MT, D̃ = WT DT, K̃ = WT KT,

B̃2 = WT B2, C̃1 = C1T, C̃2 = C2T

with the projection matrices W = LvVv1Σ
−1/2
p1 and T = RpUp1Σ

−1/2
p1 .

Note that in this algorithm we choose the left projection matrix W such that the
Gramians of the reduced model G̃ satisfy

P̃p = Q̃p = Q̃v = diag(ξp
1 , . . . , ξp

` ). (3.1)

Thereby the velocity controllability Gramian takes the form

P̃v = Σ−1/2
p1 V T

p1L
T
p RvRT

v LpVp1Σ
−1/2
p1 = Σ−1/2

p1 V T
p1VvpΣ

2
vpV

T
vpVp1Σ

−1/2
p1 .

The balanced truncation method with position-velocity balancing is summarized in
the following algorithm.

Algorithm 3.2. Second-order balanced truncation model reduction method with
position-velocity balancing (SOBTpv).

Given G = [ M, D, K, B2, C1, C2 ] such that λ2M + λD + K is stable, compute
a reduced system G̃ = [ M̃, D̃, K̃, B̃2, C̃1, C̃2 ].

1. Compute the Cholesky factors Rp and Lv of the Gramians Pp and Qv by
solving the Lyapunov equations (2.3) with E, A, B and C as in (1.4).

2. Compute the singular value decomposition

RT
p MT Lv = [ Upv,1, Upv,2 ]

[
Σpv,1 0

0 Σpv,2

]
[ Vpv,1, Vpv,2 ]T , (3.2)

where [Upv,1, Upv,2 ] and [ Vpv,1, Vpv,2 ] are orthogonal and

Σpv,1 = diag(ξpv
1 , . . . , ξpv

` ), Σpv,2 = diag(ξpv
`+1, . . . , ξ

pv
n ).

3. Compute the reduced system

M̃ = I`, D̃ = WTDT, K̃ = WTKT,

B̃2 = WTB2, C̃1 = C1T, C̃2 = C2T

with the projection matrices W = LvVpv,1Σ
−1/2
pv,1 and T = RpUpv,1Σ

−1/2
pv,1 .
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Next we compare our second-order balanced truncation methods with the meth-
ods presented in [6, 16].
First of all note that unlike [6, 16] our methods are applied to the second-order system
(1.1) with a general nonsingular mass matrix M and do not require its inverse. If M
is ill-conditioned, then the inversion of M may lead to the loss of accuracy. The case
of singular M requires further investigation.
Comparing the SOBTp method with the (free velocity) second-order balanced trun-
cation method (SOBTfv) proposed in [16], we see that the right projection matrices
T are the same in both methods, but the left projection matrices W are, in general,
different. We take W such that the Gramians of the reduced model satisfy the bal-
ancing condition (3.1), whereas in [16] it is chosen to be W = T . The latter makes
sense for symmetric systems since the symmetry is preserved in the reduced model.
But for general systems, it usually results in less accurate approximations.
If we compare the SOBTp method with the second-order balanced truncation method
(SOBT) presented in [6], we find out that although the same products PpQp and
PvMTQvM are used to compute the reduced systems in both methods, the reduction
results differ from each other. In our method, the matrices M , D and K are multiplied
by the same right projection matrix that determines the right subspace corresponding
to the dominant position singular values. The reduced system in [6] has the form

M̃ = I, D̃ = (S Y T
2 )D (X2S

−1), K̃ = (S Y T
2 )K X1,

B̃2 = (S Y T
2 )B2, C̃1 = C1X1, C̃2 = C2(X2S

−1),

where S = Y T
1 X2, the columns of X1, Y1 ∈ Rn,` span, respectively, the right and left

subspaces corresponding to the dominant position singular values and the columns
of X2, Y2 ∈ Rn,` form, respectively, the right and left subspaces corresponding to the
dominant velocity singular values. The motivation of using the different projection
matrices for D and K is to balance both pairs (Pp,Qp) and (Pv,Qv) at the same time.
However, it is unclear, whether it makes sense from physical point of view to handle
the position and velocity vectors independently. A second drawback of this method is
that the inversion of S = Y T

1 X2 is required. For ill-conditioned S, the accuracy may
get lost due to numerical round-off errors.

3.1. Symmetric case. In this subsection we consider the symmetric second-
order system (1.1) with M = MT , K = KT , D = DT , B2 = CT

1 and C2 = 0. These
assumptions on the system matrices imply that G(s) is a symmetric matrix for all
s ∈ C for which P (s) is invertible. We show that the SOBTpv method described in
Algorithm 3.2 preserves the symmetry in a reduced model.
The following theorem establishes some special structure of the Gramians of a sym-
metric system.

Theorem 3.1. The position controllability Gramian Pp and the velocity obser-
vability Gramian Qv of the symmetric system (1.1) satisfy Pp = Qv.

Proof. Consider the first-order system (1.3) with

E =
[

I 0
0 M

]
, A =

[
0 I

−K −D

]
, B =

[
0

B2

]
, C = [ BT

2 , 0 ]. (3.3)

Applying the transformations

Tl =
[

D I
M 0

]
, Tr =

[
0 I

M−1 −M−1D

]
,

9



we obtain the transposed system, i.e.

Tl E Tr = ET , TlATr = AT , Tl B = CT , C Tr = BT .

From (2.3) we get that the controllability Gramian of a system equals the observability
Gramian of its transposed. Hence,

P =

[
Pp P12

PT
12 Pv

]
= Tr QT T

r =

[
Qv Q̂12

Q̂T
12 Q̂22

]

with Q̂12 = (QT
12 − QvD)M−1, Q̂22 = M−1(Qp − Q12D − DQT

12 + DQvD)M−1.
Especially, we have Pp = Qv.

As a consequence of this theorem we obtain the following result.
Corollary 3.2. Consider the symmetric system (1.1) with the positive definite

M . Then the reduced model (1.2) obtained by the SOBTpv method is symmetric and
has the positive definite mass matrix M̃ . If, in addition, D and K are positive definite,
then D̃ and K̃ are also positive definite.

Proof. It follows from Pp = Qv that Rp = Lv, where Rp are Lv are the Cholesky
factors of Pp and Qv as in (2.4). Since M is symmetric and positive definite, we
have Upv,1 = Vpv,1 in (3.2), and, hence, W = T = RpUpv,1Σ

−1/2
pv,1 . Then we obtain

the reduced model (1.2) with

M̃ = TTMT, D̃ = TTDT, K̃ = TTMT, B̃2 = TTB2, C̃1 = C1T.

This proves the desired result.

As it was noted above, due to a special choice of the left projection matrix in the
SOBTfv method of [16], this method also preserves symmetry in a reduced model.
However, for other second-order balanced truncation methods (including the SOBT
method of [6]), this property is not necessarily fulfilled even if we start with a sym-
metric first-order system

Es ẋ(t) = As x(t) + Bs u(t),
y(t) = Cs x(t), (3.4)

where x(t) = [ q(t)T , q̇(t)T ]T and

Es =
[

D M
M 0

]
, As =

[ −K 0
0 M

]
, Bs =

[
B2

0

]
, Cs = [ C1, 0 ]. (3.5)

The controllability and observability Gramians Ps and Qs of this system are equal and
coincide with the controllability Gramian P of (1.3), (3.3). The latter immediately
follows from the fact that systems (1.3), (3.3) and (3.4), (3.5) are system restricted
equivalent with the transformation matrices

Tl =
[

0 M−1

I −DM−1

]
, Tr = I2n.

This implies that Ps = T−1
r PT −T

r = P. The position, velocity, position-velocity and
velocity-position singular values of the symmetric system (1.1) are then defined from
the corresponding combination of the diagonal blocks of the matrices

Ps =

[
Pp P12

PT
12 Pv

]
, EsPsEs =

[
P̂11 P̂12

PT
12 MPpM

]
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with P̂11 = DPpD +MPT
12D +DP12M +MPvM and P̂12 = DPpM +MPT

12M . The
different balanced realizations and balanced truncation methods can be obtained in
a similar way as above. Again, one can show that only position-velocity balancing
will guarantee the preservation of symmetry in the reduced model.

3.2. Stability issues. It is well known that for first-order systems, the classical
balanced truncation model reduction method guarantees stability in reduced models
[18, 12]. It rises the question whether the second-order balanced truncation methods
preserve stability as well.
Note that the symmetric second-order systems with positive definite matrices M , D
and K are obviously asymptotically stable. Then from it follows from the previ-
ous subsection that the SOBTpv and the SOBTfv methods are stability-preserving.
However, for general systems, neither the second-order balanced truncation methods
presented in this paper nor the methods in [6, 16] guarantee the preservation of sta-
bility in reduced second-order systems. This can be demonstrated by the following
simple counterexamples.

Example 3.3. Consider the second-order systems with

(a) M = I2, D =
[

5 2
2 1

]
, K =

[
1 2
2 5

]
, B2 = CT

1 =
[

1
1

]
, C2 = 0;

(b) M = I2, D =
[

3 0
3 4

]
, K =

[
2 5
1 3

]
, B2 =

[
1
1

]
, C1 = [2, 1], C2 = 0;

(c) M = I2, D =
[

4 4
1 3

]
, K =

[
3 2
2 3

]
, B2 =

[
2
2

]
, C1 = [2, 1], C2 = 0;

(d) M = I2, D =
[

3 4
3 4

]
, K =

[
5 2
1 4

]
, B2 =

[
1
0

]
, C1 = [1, 1], C2 = 0.

These systems are asymptotically stable, controllable and observable. They have been
approximated by the reduced second-order models of dimension ` = 1 computed by
the SOBT, the SOBTfv, the SOBTp and the SOBTpv methods as well as by the
balanced truncation methods with velocity balancing (SOBTv) and velocity-position
balancing (SOBTvp). Note that in the SOBTvp method we choose the left projection
matrix W such that the Gramians of the reduced model satisfy P̃v = Q̃p = Q̃v =
diag(ξvp

1 , . . . , ξvp
` ). In Table 3.1 we present the singular values of all four systems.

Table 3.3 shows whether the stability is preserved in the reduced models. The sign ’+’
indicates that the reduced system is asymptotically stable, whereas ’−’ means that the
reduced system is unstable.

ξp
j ξv

j ξpv
j ξvp

j

(a)
0.969
0.228

0.252
0.127

0.319
0.075

1.004
0.296

(b)
5.477
4.024

1.618
0.370

5.816
0.233

6.734
1.448

(c)
0.702
0.194

0.274
0.134

0.206
0.053

1.766
0.260

(d) 2.201
0.099

2.200
0.032

1.242
0.014

3.901
0.226

Table 3.1
Singular values
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SOBT SOBTfv SOBTp SOBTv SOBTpv SOBTvp
(a) − + − − + −
(b) + − + + + −
(c) + + − + − +
(d) − − − − − −

Table 3.2
Stability properties of the reduced models

Example 3.3(a) demonstrates that the SOBT, the SOBTp, the SOBTv and the
SOBTvp methods do not preserve stability for symmetric systems.

4. Numerical examples. In this section we present numerical examples to com-
pare different balanced truncation model reduction methods for second-order systems.
We consider three models: the building model (B), the International Space Station
model (ISS) and the clamped beam model (CB), see [7] for detailed description. Ev-
ery model has been approximated by a reduced first-order system (1.5) of dimension
2` computed using the balanced truncation (BT) method applied to (1.3), (1.4) and
also by the reduced second-order systems of the form (1.2) of dimension ` computed
using the SOBT, the SOBTfv, the SOBTp, the SOBTv and the SOBTpv methods.
For comparison, we present the absolute errors

‖G̃(iω)−G(iω)‖, ‖G̃(iω)−G(iω)‖

for the frequency range ω ∈ [ ωmin, ωmax ]. Here

G(s) = (sC2 + C1)(s2M + sD + K)−1B2 = C(s E − A)−1B,

G̃(s) = (sC̃2 + C̃1)(s2M̃ + sD̃ + K̃)−1B̃2,

G̃(s) = C̃(s Ẽ − Ã)−1B̃,

and ‖ · ‖ denotes the spectral matrix norm. Table 4.1 shows the relative errors

‖G̃ −G‖H∞/‖G‖H∞ , ‖G̃−G‖H∞/‖G‖H∞ ,

where the H∞-norm is defined by ‖G‖H∞ = supω∈R ‖G(iω)‖.

n ` BT SOBT SOBTfv SOBTp SOBTv SOBTpv
B 24 4 1.43e− 01 3.54e− 01 3.40e− 01 3.48e− 01 3.56e− 01 2.96e− 01

ISS 135 13 5.59e− 03 5.61e− 03 5.61e− 03 5.61e− 03 5.61e− 03 1.07e− 02
CB 174 17 1.75e− 05 1.31e− 04 6.65e− 01 1.63e− 04 1.53e− 04 4.69e− 04

Table 4.1
The relative errors for different balanced truncation methods.

Example 4.1. Building model: n = 24, m = 1, p = 1, ` = 4
Figure 4.1 shows that for low frequencies all three reduced second-order systems have
the better approximate properties than the reduced first-order system, whereas for
higher frequencies, all four approximation errors are about the same. If we compare
the reduced second-order systems, we see that the SOBT and the SOBTp methods pro-
vide almost equal result that is only slightly better than the approximation computed
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by the SOBTpv method.
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Fig. 4.1. Building model: the absolute errors.

Example 4.2. ISS model: n = 135, m = 3, p = 3, ` = 13
Figure 4.2 demonstrates that the reduced first-order system and the reduced second-
order systems computed by the SOBT and the SOBTp methods have almost the same
errors that are smaller for high frequencies than the error for the system computed by
the SOBTpv method. The latter system provides, however, a better approximation for
low frequencies.
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Fig. 4.2. ISS model: the absolute errors.

Example 4.3. Clamped beam model: n = 174, m = 1, p = 1, ` = 17
Figure 4.3 shows that for low frequences, the reduced second-order system computed
by the SOBTfv method has much larger error compared with the systems obtained by
other second-order balanced truncation methods. We also see that the SOBT and the
SOBTp methods behave similarly.
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Fig. 4.3. Clamped beam model: the absolute errors.

5. Conclusions. In this paper we have considered structure-preserving model
reduction of second-order systems based on balanced truncation. Using the pairs
(Pp,Qp) and (Pv,Qv) of the position and velocity Gramians from [6, 16, 21], we
have introduced the position, velocity, position-velocity and velocity-position singular
values that can be used to characterize the importance of the position and velocity
components. We have presented four new structure-preserving balanced truncation
model reduction methods for second-order systems. It has also been shown that
the method based on position-velocity preserves stability for symmetric second-order
systems with positive definite mass, damping and stiffness matrices. However, in
general, none of the existing balanced truncation techniques for second-order systems
guarantees stability of reduced order models. Nevertheless, the numerical examples
demonstrate that the structure-preserving second-order balanced truncation methods
provide reduced models whose approximation error is comparable with that of the
classical balanced truncation method.
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[11] R.W. Freund. Padé-type model reduction of second-order systems and higher-order linear
dynamical systems. In P. Benner, V. Mehrmann, and D. Sorensen, editors, Dimension
Reduction of Large-Scale Systems, volume 45 of Lecture Notes in Computational Science
and Engineering, pages 193–226. Springer-Verlag, Berlin, Heidelberg, 2005.

[12] K. Glover. All optimal Hankel-norm approximations of linear multivariable systems and their
L∞-error bounds. Internat. J. Control, 39(6):1115–1193, 1984.

[13] A.J. Laub and W.F. Arnold. Controllability and observability criteria for multivariable linear
second-order models. IEEE Trans. Automat. Control, 29(2):163–165, 1984.

[14] A.J. Laub, M.T. Heath, C.C. Paige, and R.C. Ward. Computation of system balancing transfor-
mations and other applications of simultaneous diagonalization algorithms. IEEE Trans.
Automat. Control, AC-32(2):115–122, 1987.

[15] D.S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Vector spaces of linearizations for matrix
polynomials. SIAM J. Matrix Anal. Appl., 28:971–1004, 2006.

[16] D. G. Meyer and S. Srinivasan. Balancing and model reduction for second-order form linear
systems. IEEE Trans. Automat. Control, 41(11):1632–1644, 1996.

[17] B.C. Moore. Principal component analysis in linear systems: controllability, observability, and
model reduction. IEEE Trans. Automat. Control, AC-26(1):17–32, 1981.

[18] L. Pernebo and L.M. Silverman. Model reduction via balanced state space representation.
IEEE Trans. Automat. Control, AC-27:382–387, 1982.

[19] B. Salimbahrami and B. Lohmann. Structure preserving order reduction of large scale second
order systems. In Proceedings of the 10th IFAC Symposium on Large Scale Systems:
Theory and Applications (Osaka, Japan, July 26-28, 2004), pages 245–250, 2004.

[20] B. Salimbahrami and B. Lohmann. Order reduction of large scale second-order systems using
Krylov subspace methods. Linear Algebra Appl., 415:385–405, 2006.

[21] D.C. Sorensen and T. Antoulas. Gramians of structured systems and an error bound for
structure-preserving model reduction. In P. Benner, V. Mehrmann, and D. Sorensen, ed-
itors, Dimension Reduction of Large-Scale Systems, volume 45 of Lecture Notes in Com-
putational Science and Engineering, pages 117–130. Springer-Verlag, Berlin, Heidelberg,
2005.

[22] T.-J. Sun and R.R. Graig Jr. Model reduction and control of flexible structures using Krylov
vectors. J. Guidance, Dynamics and Control, 14:260–267, 1991.

[23] F. Tisseur and K. Meerbergen. The quadratic eigenvalue problem. SIAM Rev., 43(2):235–286,
2001.

[24] M.S. Tombs and I. Postlethweite. Truncated balanced realization of a stable non-minimal
state-space system. Internat. J. Control, 46(4):1319–1330, 1987.

[25] K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall, Upper Saddle
River, NJ, 1996.

15


