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Abstract

In this paper we consider the rational interpolation problem consisting in finding a rational
matrix-valued function that interpolates a given set of parameters. We briefly describe two
different numerical methods for solving this problem. These are the vector fitting and the
frequency domain subspace identification method. Several numerical examples are given
that compare the properties of these methods. Furthermore, we discuss the computation of
a (minimal) state space realization of a rational function. Model order reduction methods
such as modal approximation and balanced truncation are also presented. These methods
can be used to compute a reduced-order approximation of the realized dynamical system.

1 Introduction

Consider the rational interpolation problem: Given a set of parameters

iω1 iω2 · · · iωq

G1 G2 · · · Gq
(1.1)

where ωj ∈ R, ωj 6= ωk for j 6= k and Gj ∈ C
p,m, find matrices E, A ∈ R

n,n, B ∈ R
n,m,

C ∈ R
p,n and D ∈ R

p,m such that the rational matrix-valued function

G(s) = C(sE −A)−1B + D (1.2)

interpolates these parameters, i.e., G(iωj) = Gj for j = 1, . . . , q. Such a rational function
G(s) gives an external description of a system to be modelled. In the time domain, this
system can be written in the generalized state space (or descriptor) form

Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(1.3)

where x(t) ∈ R
n is a state vector, u(t) ∈ R

m is an input and y(t) ∈ R
p is an output. Then G(s)

as in (1.2) is known as the transfer function of system (1.3). It describes the input-output
relation of (1.3) in the frequency domain.

For any rational matrix-valued function G(s), there exist matrices E, A, B, C and D
such that G(s) = C(sE −A)−1B + D, see [31]. Such a matrix set [ E, A, B, C, D ] is called
a realization of G(s). Note that the realization of G is, in general, not unique. A realization
of the smallest possible state space dimension n is called minimal realization. One can show,
see [27, 31], that the realization G = [ E, A, B, C, D ] is minimal if and only if
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• system (1.3) is completely controllable, i.e., rank[λE − A, B ] = n for all λ ∈ C and
rank[E, B ] = n;

• system (1.3) is completely observable, i.e., rank[ λET −AT , CT ] = n for all λ ∈ C and
rank[ET , CT ] = n;

• the nilpotent block in E in the Weierstrass canonical form [8] of the pencil λE−A does
not have any 1× 1 Jordan blocks, i.e., A ker(E) ⊆ im(E).

We are interested in parameterizing all solutions of the rational interpolation problem
such that the state space dimension n of system (1.3) is as small as possible and the finite
eigenvalues of the pencil λE − A belong to the open left half-plane. The latter is equivalent
to the asymptotic stability of the descriptor system (1.3), e.g., [5].

Notation. We will denote by R
n,m and C

n,m the space of n × m real and complex
matrices, respectively. The real and imaginary parts of s ∈ C are denoted by ℜe(s) and ℑm(s),
respectively, and i =

√
−1. The open left half-plane is denoted by C

−={ s ∈ C : ℜe(s) < 0 }.
The matrices AT and AH stand, respectively, for the transpose and the complex conjugate
transpose of A ∈ C

n,m. The matrix A+ denotes the Moore-Penrose inverse of A ∈ C
n,m.

An identity matrix of order n is denoted by In or simply by I. We denote by en a vector of
all ones of length n. The vector formed by stacking the columns of the matrix A is denoted
by vec(A), and A⊗B denotes the Kronecker product of the matrices A and B. The rank and
the image of A ∈ C

n,m are denoted by rank(A) and im(A), respectively.

2 Rational approximation

A survey on rational interpolation can be found in [1, 4]. Here we briefly consider only two
methods that can be used for solving the rational interpolation problem. These are the vector
fitting technique [12, 13, 14] and the frequency domain subspace identification method [6, 30].

2.1 Vector fitting

The fitting technique [12, 13, 14] aims at interpolating the parameters (1.1) by a rational
function G(s) of the form

G(s) =

d∑

k=1

Rk

s− ak
+ R0 + sR−1, (2.1)

were ak ∈ C and Rk ∈ C
p,m are finite poles and residues of G(s), respectively. Starting with

an initial guess of the poles ak, the function G(s) is computed by the iterative relocation of
the poles followed by the identification of the residues Rk. The fitting can be done matrix-
wise, column-wise and element-wise. In the matrix-wise fitting, all components of G(s) have
the same poles. The fitting of columns results in G(s) whose components in one column have
a common set of poles. In the element-wise fitting, the different sets of poles can be obtained
for each single entry of G(s).

Next, we present the vector fitting algorithm for computing a rational vector-valued func-
tion G(s) ∈ C

p as in (2.1) that approximately interpolates the given samples Gj ∈ C
p at the

frequencies iωj , i.e., G(iωj) ≈ Gj for j = 1, . . . , q, see [14] for details.
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Algorithm 2.1. Vector fitting.
Input: ω1, . . . , ωq ∈ R, G1, . . . , Gq ∈ C

p and an initial guess of poles a1, . . . , ad ∈ C
−.

Output: the identified poles a1, . . . , ad ∈ C and residues R−1, R0, R1, . . . , Rd ∈ C
p.

1. FOR l = 1, 2, . . .

(a) Compute the least squares solution of the linear system

Mρ l = g, (2.2)

where ρ l =[ rT
1 , . . . , rT

d , r̃1, . . . , r̃d, rT
0 , rT

−1]
T ∈C

d(p+1)+2p, g=[GT
1 , . . . , GT

q ]T ∈C
qp

and the j-th block row of M = [Mj ]
q
j=1 is given by

Mj =

[
Ip

sj − a1
, . . . ,

Ip

sj − ad
,
−Gj

sj − a1
, . . . ,

−Gj

sj − ad
, Ip, sjIp

]
∈ C

p,d(p+1)+2p.

(b) Compute the eigenvalues λ1, . . . , λd of the matrix diag(a1, . . . ad) − ed[ r̃1, . . . , r̃d ]
and update a1 ← λ1, . . . , ad ← λd.

END FOR

2. Compute the least squares solution of the linear system

M̂ρ = g, (2.3)

where ρ = [ RT
1 , . . . , RT

d RT
0 , RT

−1 ]T and the j-th block row of M̂ = [M̂j ]
q
j=1 has the form

M̂j =

[
Ip

sj − a1
, . . . ,

Ip

sj − ad
, Ip, sjIp

]
.

Algorithm 2.1 usually yields complex residues Rk. To ensure that the complex poles and
the corresponding residues appear in complex conjugate pairs ak = αk + iβk, ak+1 = āk =
αk − iβk and rk = δk + iγk, rk+1 = r̄k = δk − iγk, we replace the elements Ip/(sj − ak) and
Ip/(sj − ak+1) of the matrices M and M̂ corresponding to the complex conjugate poles by

Ip

sj − ak
+

Ip

sj − āk
and

iIp

sj − ak
+

iIp

sj − āk
,

respectively, and also substitute the subvectors rk,rk+1, r̃k, r̃k+1 in ρ l and Rk, Rk+1 in and
ρ with ℜe(rk), ℑm(rk), ℜe(r̃k), ℑm(r̃k) and ℜe(Rk), ℑm(Rk), respectively. In order to
guarantee for the solutions of systems (2.2) and (2.3) to be real, we solve the real linear
systems [

ℜe(M)
ℑm(M)

]
ρ l =

[
ℜe(g)
ℑm(g)

]
,

[
ℜe(M̂)

ℑm(M̂)

]
ρ =

[
ℜe(g)
ℑm(g)

]
.

As numerical experiments show, the approximation properties of the fitted rational func-
tion G(s) depend strongly on the choice of starting poles. The optimal choice of these poles
remains an open problem, see [14] for some heuristics. Furthermore, so far, there is no con-
vergence analysis for the pole relocation. Efficient algorithms for computing the eigenvalues
of the matrix Λ = diag(a1, . . . ad) − ed [ r̃1, . . . , r̃d ] should be used, exploiting the diagonal
plus rank-one structure. Note that even all ak lie in the open left half-plane, the eigenvalues
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of Λ do not necessarily have negative real part. This may result in a rational function G(s)
with poles in the right half-plane. To avoid the instability of G(s), it was proposed in [14] to
remove the unstable poles or to flip them into the left half-plane. Here further investigations
are required.

Matrix-wise fitting (MF)

Matrix-wise fitting is performed by stacking the columns of the matrix-valued function G(s) ∈
C

p,m in a column vector vec(G(s)) of length pm and fitting this vector with respect to the
samples vec(Gj) ∈ C

pm. The obtained residues [ rT
k1, . . . , rT

km ]T are then partitioned into
m vectors of length p and the required rational function G(s) is computed as in (2.1) with
Rk = [ rk1, . . . , rkm ] for k = −1, 0, 1, . . . , d. This function can be realized, for example, as

E =




Im

. . .

Im

0 −Im

0 0



, A =




a1Im

. . .

adIm

Im 0
0 Im



, B =




Im
...

Im

0
Im



,

C = [ R1, . . . , Rd | R−1, 0 ], D = R0.

Such a realization is minimal if and only if the matrices R1, . . . , Rd and R−1 have full column
rank. If this condition is not satisfied, then the minimal realization of G(s) takes the form

E =




In1

. . .

Ind

0 −In−1

0 0



, A=




a1In1

. . .

adInd

In−1
0

0 In−1



, B=




B1
...

Bd

0
B−1



,

C = [ C1, . . . , Cd | C−1, 0 ], D = R0,

where Cj ∈ C
p,nj and Bj ∈ C

nj ,m are full rank factors of Rj satisfying Rj = CjBj for
j = −1, 1, . . . , d.

Column-wise fitting (CF)

In column-wise fitting, the columns gl(s) of G(s) are fitted separately with respect to the
sample vectors Gk(:, l) for l = 1, . . . , m, where Gk(:, l) denotes the l-th column of the matrix
Gk. Let ak,l and Rk,l be the determined poles and residues of gl(s). Then the realization of
the resulting rational function G(s) = [ g1(s), . . . , gm(s) ] is given by

E =




Id1

. . .

Idm

0 −Id0

0 0



, A=




A1

. . .

Am

Id0
0

0 Id0



, B=




ed1

. . .

edm

0
B−1



, (2.4)

C = [ C1, . . . , Cm | C−1, 0 ], D = [ R0,1, . . . , R0,m ], (2.5)
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where

Al = diag(a1,l, . . . , adl,l), Cl = [ R1,l, . . . , Rdl,l ], l = 1, . . . , m,

and C−1 ∈ C
p,d0 , B−1 ∈ C

d0,m are full rank factors of [R−1,1, . . . , R−1,m ] = C−1B−1. This
realization is completely controllable but not necessary completely observable. The minimal
realization can be computed as above by reordering the columns and rows of C and B such
that the new blocks Cj and Bj correspond to the same finite eigenvalues of λE −A and then
computing the full rank factors of CjBj .

Element-wise fitting (EF)

In element-wise fitting, every element gjl(s) of G(s) is fitted separately. We obtain

gjl(s) =

djl∑

k=1

rk,jl

s− ak,jl
+ r0,jl + sr−1,jl,

where rk,jl 6= 0 for k = 1, . . . , djl. Then G(s) can be realized as in (2.4) and (2.5), where
dl = d1l + . . . + dpl, R0,l = [ r0,1l, . . . , r0,pl ]

T and

Al = diag(A1l, . . . , Apl), Ajl = diag(a1,jl, . . . , adjl,jl),

Cl = diag(C1l, . . . , Cpl), Cjl = [ r1,jl, . . . , rdjl,jl ],

for l = 1, . . . , m, j = 1, . . . , p, and C−1 ∈ C
p,d0 and B−1 ∈ C

d0,m are full rank factors
of [r−1,jl]

p,m
j,l=1 = C−1B−1. This realization is minimal and has the state space dimension

n =
∑p

j=1

∑m
l=1 djl + 2d0.

Note that the considered above realizations of G(s) have, in general, complex system
matrices. Using the fact that the residues Rk and the poles ak appear in complex conjugate
pairs, one can find a block diagonal transformation matrix S such that the transformed
realization G = [ T−1ET, T−1AT, T−1B, CT, D ] is real and has the form

T−1ET =

[
I

E∞

]
, T−1AT =

[
Af

I

]
, T−1B =

[
Bf

B∞

]
, CT = [ Cf , C∞ ], (2.6)

where Af is block diagonal with block of size 1× 1 and 2× 2 corresponding, respectively, to
the real and complex eigenvalues of λE − A, and Bf has elements 0, 1 and 2, see [14] for
details.

Table 1 shows the number and the size of linear systems of the form (2.2) and (2.3) that
should be solved in the matrix-wise, column-wise and element-wise fitting. If m = p and
the same number d of poles is used in all three types of vector fitting, i.e., dl = d in the
CF and djl = d in the EF, then the matrix-wise, column-wise and element-wise fitting have,
respectively, O(qd2m6), O(qd2m4) and O(qd2m2) complexity and provide, in general, systems
of the state space dimension (d+2)m, d(m+2) and d(m2 +2), respectively. One can see that
for multi-input multi-output systems, the element-wise fitting is less expensive but it results
in systems of larger dimension.
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# systems size

MF 1 2qpm× (dpm + 2pm + d)

CF m 2qp× (dlp + 2p + dl)

EF pm 2q × 2djl + 2

Table 1: Comparison of the matrix-wise, column-wise and element-wise fitting.

2.2 Frequency domain subspace identification

The frequency domain subspace identification method [6, 30] is based on the extraction of
the state space system (1.3) from the frequency response data-matrices

Ĝ =




G1 · · · Gq

iω1G1 · · · iωqGq
...

...
(iω1)

k−1G1 · · · (iωq)
k−1Gq


 , Ĥ =




Im · · · Im

iω1Im · · · iωqIm
...

...
(iω1)

k−1Im · · · (iωq)
k−1Im


 ,

G = [ℜe(Ĝ), ℑm(Ĝ) ] ∈ R
pk,2mq, H = [ℜe(Ĥ), ℑm(Ĥ) ] ∈ R

mk,2mq.

Assume that E = I in (1.3). Consider the extended observability matrix Ok and the block
Toeplitz matrix Tk associated with (1.3) that are given by

Ok =




C
CA
...

CAk−1


 , Tk =




D 0 · · · 0
CB D · · · 0
...

...
. . .

...
CAk−2B CAk−3B · · · D




for n < k ≤ 2q, respectively. Let G\H⊥ denote the projection of the row space of G onto the
kernel of H, i.e., G\H⊥ = G(I −HT (HHT )−1H). One can show [30] that

im(G\H⊥) = im(Ok), rank(G\H⊥) = n.

These relations allow to determine the state space dimension n of (1.3) and the image of Ok.
Then the matrices A, B, C and D can be computed from the singular value decomposition of
G\H⊥. Note that for large k the matrices G and H become ill-conditioned which may lead
to the poor performance of the subspace identification algorithm. To improve the condition
numbers of the data-matrices involved, it was proposed in [30] to replace G and H by the
matrices

GF = [ℜe(ĜF ), ℑm(ĜF ) ], HF = [ℜe(ĤF ), ℑm(ĤF ) ], (2.7)

where

ĜF =




Y
−1/2
0 R0

...

Y
−1/2
k−1 Rk−1


 , ĤF =




Z
−1/2
0 S0

...

Z
−1/2
k−1 Sk−1


 .

Here the matrices Rj , Yj and Sj , Zj are determined from the Forsythe recursions

R0 = [ G1, . . . , Gq ], Y0 = diag(diag(R0R
H
0 )),

R1 = R0Dω, Y1 = diag(diag(R1R
H
1 )),

Rj = Rj−1Dω + Yj−1Y
−1
j−2Rj−2, Yj = diag(diag(RjR

H
j )), j = 2, . . . , k − 1,

(2.8)
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with Dω = diag(iω1Im, . . . , iωqIm) and

S0 = [ Im, . . . , Im ], Z0 = diag(diag(S0S
H
0 )),

S1 = S0Dω, Z1 = diag(diag(S1S
H
1 )),

Sj = Sj−1Dω + Zj−1Z
−1
j−2Sj−2, Zj = diag(diag(SjS

H
j )), j = 2, . . . , k − 1.

Using GF and HF , the system matrices A, B, C and D can be computed by the following
algorithm, see [6, 30] for details.

Algorithm 2.2. Frequency domain subspace identification method
Input: ω1, . . . , ωq ∈ R, G1, . . . , Gq ∈ C

p,m, the weighting matrices W1 and W2.
Output: A ∈ R

n,n, B ∈ R
n,m, C ∈ R

p,n, D ∈ R
p,m.

1. Compute the matrices GF , HF and Y0, . . . , Yk−1 as in (2.7) and (2.8), respectively.

2. Compute the thin singular value decomposition

W1GF (I −HT
F HF ) = UΣV T ,

where U and V have orthonormal columns and Σ ∈ R
n,n is nonsingular.

3. Compute the matrix M = W−1
1 UΣ−1/2.

4. Compute the matrices C and A as C = Y
1/2
0 M(1 : p, :) and

A =
(
D1M(p + 1 : p(k − 1), :)

)+(
M(2p + 1 : pk, :)−D2M(1 : p(k − 1), :)

)
,

D1 = diag(Y
1/2
1 Y

−1/2
2 , . . . , Y

1/2
k−2Y

−1/2
k−1 ),

D2 = diag(Y1(Y0Y2)
−1/2, . . . , Yk−2(Yk−3Yk−1)

−1/2).

5. Compute the matrices B and D from the least squares solution of the linear system

W2

[
Im ⊗ ℜe(M1)
Im ⊗ℑm(M1)

] [
vec(B)
vec(D)

]
= W2

[
vec(ℜe(M2) )
vec(ℑm(M2))

]
,

where

M1 =




C(iω1I −A)−1 Ip
...

...
C(iωqI −A)−1 Ip


 , M2 =




G1
...

Gq


 .

3 Model reduction

The model reduction problem for the descriptor system (1.3) consists in the approximation
of (1.3) by a reduced-order model

Ẽ ˙̃x(t) = Ã x̃(t) + B̃ u(t),

ỹ(t) = C̃ x̃(t) + D̃ u(t),
(3.1)

where Ẽ, Ã ∈ R
ℓ,ℓ, B̃ ∈ R

ℓ,m, C̃ ∈ R
m,ℓ, D̃ ∈ R

m,m and ℓ≪ n. The transfer function of (3.1)
is given by G̃(s) = C̃(sẼ − Ã)−1B̃ + D̃. Note that systems (1.3) and (3.1) have the same
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input u(t). We require for the approximate model (3.1) to preserve important properties of
the original system (1.3) like regularity, stability and passivity. It is also desirable that the
approximation error measured by ‖ỹ − y‖ or ‖G̃ −G‖ is small. Moreover, the computation
of the reduced-order system should be numerically reliable and efficient.

There exist many different model reduction approaches for linear time-invariant systems,
see [1, 3] for recent books on this topic. Here we consider only two methods which are more
appropriate for our structured systems computed by the vector fitting method. These are
modal truncation and balanced truncation.

3.1 Modal truncation

A general idea of modal truncation is the projection of the system (1.3) onto the invariant
subspace of the pencil λE − A corresponding to some subset of eigenvalues. Usually, one
chooses the non-dominant eigenvalues, i.e., the eigenvalues with smallest real part. Using the
special structure of the transfer function G(s) in (2.1) computed by the vector fitting method,
we compute the reduced-order system (3.1) by the projection of (1.3) onto the subspace
corresponding to the infinite eigenvalues together with the finite eigenvalues ak of λE − A
that satisfy the condition ‖Rk‖/|ℜe(ak)| > tol for small enough tolerance tol. Without loss of
generality we may assume that the first ℓ finite eigenvalues of λE −A satisfy this condition.
Then the transfer function of the reduced-order system has the form

G̃(s) =
ℓ∑

k=1

Rk

s− ak
+ R0 + sR−1,

and we obtain the following H∞-norm error bound

‖G̃−G‖H∞
= sup

ω∈R

‖G̃(iω)−G(iω)‖ ≤
n∑

k=ℓ+1

‖Rk‖
|ℜe(ak)|

≤ (n− ℓ)tol,

where ‖ · ‖ denotes the spectral matrix norm and ak, k = ℓ+1, . . . , n, are the truncated finite
eigenvalues of λE −A.

3.2 Balanced truncation

Balanced truncation is one of the well studied model reduction approaches proposed first
for standard state space systems [7, 9, 21] and then extended to descriptor systems in
[20, 25, 28]. An important property of this approach is that the asymptotic stability is
preserved in the reduced-order system. Moreover, the existence of an a priori error bound
[7, 9] allows an adaptive choice of the state space dimension of the approximate model. A dis-
advantage of balanced truncation is that (generalized) matrix Lyapunov equations have to
be solved. However, recent results on low rank approximations to the solutions of Lyapunov
equations [18, 22, 29] make the balanced truncation model reduction approach attractive for
large-scale systems.

In balanced truncation model reduction of descriptor systems, a special attention must
be paid to the approximation of the systems with an improper transfer function G(s). Such
a function can be additively decomposed as

G(s) = Gsp(s) + P (s), (3.2)
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where Gsp(s) is the strictly proper part with lims→∞ Gsp(s) = 0 and P (s) is the polynomial
part of G(s). Then the reduced-order system can be obtained by the approximation of the
strictly proper part Gsp(s), while the polynomial part P (s) is kept unmodified. Note that
the polynomial part of G(s) corresponds to the constraints in the descriptor system (1.3) that
define a manifold in which the solution dynamics take place. Any approximation of this part
may lead to physically meaningless results, see [20] for details.

The additive decomposition (3.2) can be performed via the transformation of the system
matrices into the following form

WET =

[
Ef

E∞

]
, WAT =

[
Af

A∞

]
, WB =

[
Bf

B∞

]
, CT = [ Cf , C∞ ], (3.3)

where W and T are the nonsingular transformation matrices, the pencil λEf−Af has the finite
eigenvalues and the pencil λE∞−A∞ has the eigenvalue at infinity only. This can be done, for
example, via the reduction of the pencil λE − A to the Weierstrass-like form, see [16]. Then
the strictly proper and polynomial parts of G(s) have the form Gsp(s) = Cf (sEf −Af )−1Bf

and P (s) = C∞(sE∞ − A∞)−1B∞ + D. In this case, the reduced-order system (3.1) can be
computed as

Ẽ =

[
Ẽf

Ẽ∞

]
, Ã =

[
Ãf

Ã∞

]
, B̃ =

[
B̃f

B̃∞

]
, C̃ = [ C̃f , C̃∞ ], D̃,

where G̃sp = [ Ẽf , Ãf , B̃f , C̃f , 0 ] is an approximation to Gsp = [ Ef , Af , Bf , Cf , 0 ] and
P̃ = [ Ẽ∞, Ã∞, B̃∞, C̃∞, D̃ ] is a minimal realization of P (s).

Note that the system matrices (2.4), (2.5) computed by the vector fitting are already
in the form (3.3) with Ef = I, (bi)diagonal Af and minimal P = [ E∞, A∞, B∞, C∞, D ].
Therefore, in the following we will consider model reduction of the standard state space system
Gsp = [ I, Af , Bf , Cf , 0 ] only. For sake of simplicity, we will omit the index f .

Assume that the dynamical system

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t)

(3.4)

is asymptotically stable, i.e., all the eigenvalues of A have negative real part. The balanced
truncation method for such a system is closely related to the controllability and observability
Gramians P andQ that are unique symmetric, positive semidefinite solutions of the Lyapunov
equations

AP + PAT = −BBT , (3.5)

ATQ+ AQ = −CTC. (3.6)

Using these Gramians, we can define the Hankel singular values of system (3.4) which cha-
racterize the ‘importance’ of state variables in (3.4). The Hankel singular values σj of system
(3.4) are defined as the square roots of the eigenvalues of the matrix PQ, i.e., σj =

√
λj(PQ).

We will assume that the Hankel singular values are ordered decreasingly. A reduced-order
system can be computed by the truncation of the states corresponding to the small Hankel
singular values using the following algorithm, see [17, 21] for details.
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Algorithm 3.1. Square root balanced truncation method.
Input: System G(s) = C(sI −A)−1B with A ∈ R

n,n, B ∈ R
n,m, C ∈ R

p,n.
Output: Reduced-order system G̃(s) = C̃(sI − Ã)−1B̃ with Ã ∈ R

ℓ,ℓ, B̃ ∈ R
ℓ,m, C̃ ∈ R

p,ℓ.

1. Compute the Cholesky factors R and L of the Gramians P = RRT and Q = LTL, that
satisfy the Lyapunov equations (3.5) and (3.6), respectively.

2. Compute the singular value decomposition

LR = [ U1, U2 ]

[
Σ1 0
0 Σ2

]
[ V1, V2 ]T ,

where the matrices [ U1, U2 ] and [ V1, V2 ] are orthogonal, Σ1 = diag(σ1, . . . , σℓ) and
Σ2 = diag(σℓ+1, . . . , σn).

3. Compute the reduced-order system Ã = W TAT , B̃ = W TB and C̃ = CT with the

projection matrices W = LT U1Σ
−1/2
1 and T = RV1Σ

−1/2
1 .

One can show that the reduced-order system computed by this method is asymptotically
stable and the H∞-norm error bound

‖G̃−G‖H∞
≤ 2(σℓ+1 + . . . + σn)

holds, where σℓ+1, . . . , σn are the truncated Hankel singular values of system (3.4), see [7, 9].
To solve the Lyapunov equations (3.5) and (3.6) for the Cholesky factors without forming

the Gramians explicitly, we can use the Hammarling method [15] for problems of moder-
ate size and the ADI or Smith method [19, 26, 32] for large-scale systems. To reduce the
computation time we can use the special structure of the matrices A, B and C obtained
from the column-wise or element-wise fitting. Recall that the matrices A = diag(A1, . . . , Am)
and B = diag(B1, . . . , Bm) are block diagonal, where Aj ∈ R

dj ,dj and Bj ∈ R
dj . Then

the matrix BBT is also block diagonal, and, hence, the solution of the Lyapunov equa-
tion (3.5) and its Cholesky factor have also block diagonal form P = diag(P1, . . . ,Pm) and
R = diag(R1, . . . , Rm), where Rj is the Cholesky factor of the solution Pj = RjR

T
j of the

Lyapunov equation
AjPj + PjA

T
j = −BjB

T
j . (3.7)

In the element-wise fitting, the matrix C has also some special block structure. We can find
the block permutation matrix Π such that

ΠAΠ = diag(Â1, . . . , Âm), CΠ = diag(Ĉ1, . . . , Ĉm)

with Âm ∈ R
d̂j ,d̂j , Cj ∈ R

1,d̂j and d̂j = dj1 + . . . + djm. Then the Cholesky factor L of the
solution of the Lyapunov equation (3.6) has the form L = diag(L1, . . . , Lm)Π, where Lj is
the Cholesky factor of the solution Qj = LT

j Lj of the Lyapunov equation

ÂT
j Qj +QjÂj = −ĈT

j Ĉj . (3.8)

Unfortunately, the matrix LR = diag(L1, . . . , Lm)Π diag(R1, . . . , Rm) is not block diagonal
any more, and we have to compute the singular values decomposition of the full matrix LR.
Note that the Lyapunov equations (3.7) and (3.8) have the right-hand side of rank 1. It was
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observed in [2, 10, 23] that the solution of the Lyapunov equation with low-rank right-hand
side can often be approximated by the matrices of low rank. The low-rank Cholesky factors
R̃j and L̃j of the solutions Pj ≈ R̃jR̃

T
j and Qj ≈ L̃jL̃

T
j of the Lyapunov equations (3.7) and

(3.8) can be computed from the Cholesky factors using the rank-revealing QR factorizations

RT
j = Q1j

[
R1j R2j

0 R3j

]
Π1, LT

j = Q2j

[
L1j L2j

0 L3j

]
Π2,

where Q1j and Q2j are orthogonal matrices, Π1 and Π2 are permutation matrices, R1j and
L1j are nonsingular, and ‖R3j‖ and ‖L3j‖ are small. Then R̃j = Π1[ R

T
1j, RT

2j ]T and

L̃j = Π2[ L
T
1j, LT

2j ]T . In this case, in the second step of Algorithm 3.1 we have to com-

pute the singular value decomposition of the matrix diag(L̃T
1 , . . . , L̃T

m)Π diag(R̃1, . . . , R̃m)
that is smaller than LT R. Note that the low-rank Cholesky factors R̃j and L̃j can also be
computed directly using the low-rank ADI or Smith method [11, 18, 22, 24].

4 Numerical examples

4.1 Comparison of vector fitting and subspace identification

Numerous numerical tests have been performed with the data provided by CST GmbH. The
examples were given in the form of complex matrices, representing the transfer function at
various frequencies. The usually 1001 samples were taken at frequencies ranging from 0 to
1 GHz minimum and 22 GHz maximum.

We have tested the column-wise and the element-wise vector fitting as well as the frequency
domain subspace identification method described above. For the latter, it turned out that
computation time was extremely large. Thus, as computation time for subspace identification
heavily depends on the number of samples, tests have also been carried out with only one
out of 10 samples. This led to greatly reduced time consumption, often comparable to vector
fitting computation times.

In order to produce comparable and reproducible results, all tests with the same method
were carried out with the same set of input parameters, i.e., the number of starting poles for
the vector fitting methods and truncation tolerances for the subspace identification methods.
For the vector fitting methods 100 pairs of starting poles ak have been used. Following the
advice given in [14] these were initialized as ak = αk ± iβk, with αk = −10−2βk and βk

logarithmically spaced between fmin and 103fmax, where fmin and fmax were the lowest and
the highest frequencies of the sample, respectively. These 100 pairs of poles have been used
for both the fitting of each column of the transfer function and the fitting of each single
component. Thus, for the element-wise fitting, the resulting system is, in general, larger
than for the column-wise fitting. The vector fitting algorithm was used with pole-flipping to
enforce stability of the state space model. For comparability reasons, only the matrices A,
B, C, D were generated and E was assumed to be the identity.

The subspace identification algorithm has been carried out as described above. Two
parameters have been provided. One of them, order limits the number of iterations performed
to obtain Rj and Sj . The parameter tol serves two purposes. First, the assembly of Rj and
Sj is stopped as soon as the condition number of HF becomes greater than 1 +

√
tol. Note

that in exact arithmetic, the rows of HF are orthogonal. However, it has been observed that
numerically, at some stage, this orthogonality is lost and further computations comprise large
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Example m = p EF CF SysId SysId
1 out of 10 full

3dtransline 2 32 31 - -

branch line coupler improved 4 161 283 83 5537

circular patch antenna 1 5 4 34 3250

coaxdiscontinuity 2 34 33 - -

defected ground 2 17 17 38 -

dr antenna 1 9 9 41 4082

folded patch 1 8 8 41 3897

ic package 14 14 1120 2684 - -

inductor4 4 128 253 59 4181

lowpassfilter 2 18 17 - -

microstrip coupler 4 117 181 55 4064

radial stub 2 18 18 - -

rj45 8 1006 3196 337 -

shaped end radiator 1 9 10 44 3961

single line 2 34 33 48 4428

two lines 4 206 294 82 -

Table 2: Computation time for different methods.

errors. Thus, the iteration for Rj and Sj is stopped as soon as this loss of orthogonality
surpasses the given tolerance. Secondly, tol is used for the numerical determination of the
rank of the matrix Σ. The singular values with σi/σ1 < tol are treated as zeros. The weighting
matrices W1 and W2 were taken as the identity matrices.

In Table 2, the number m of inputs and the computation time for the different system
identification approaches are given. A bar ’-’ indicates that the algorithm did not produce
meaningful results. Those breakdowns only occurred for the experimental subspace identifica-
tion code. The vector fitting methods did not produce any breakdowns. In Table 3, the errors
for the different system identification methods are shown. For the vector fitting methods, the
RMS error, returned by the vector fitting codes is used. In the element-wise fitting, this error
is evaluated more often than for the column-wise fitting. Hence, in the latter case, the error is
scaled by the square root of the system size to make it comparable to the element-wise error.
For the subspace identification methods, the difference between the measured S-parameters
and evaluations of the identified system at the given frequencies is determined and the norms
of all these deviations are summed and averaged to give a quantity comparable to the RMS
error in the vector fitting approach. All errors depicted in the table are given relative to the
maximum absolute entry of all S-parameters for each example.

From Tables 2 and 3, several conclusions can be drawn. Although, the subspace iden-
tification method usually yields more accurate results than the vector fitting approach, it
cannot be guaranteed to work at all. Except for some few examples, notably inductor4 and
rj45, even the test with a reduced number of samples required more computational effort
than vector fitting. Subspace identification with the full number of samples was prohibitively
slow for all considered examples. Two more drawbacks of subspace identification are that the
generated systems lack any structure and they are usually unstable. The systems coming out
of vector fitting are sparse and nicely structured, see (2.4), (2.5). While it took some time
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Example EF CF SysId SysId
1 out of 10 full

3dtransline 9.26E-3 2.02E-2 - -

branch line coupler improved 1.09E-1 1.56E+2 3.13E-3 2.91E-1

circular patch antenna 1.26E-2 1.26E-2 7.67E-3 3.78E-5

coaxdiscontinuity 6.11E-1 2.29E-1 - -

defected ground 7.75E-2 7.43E-2 8.95E-3 -

dr antenna 7.17E-4 7.17E-4 1.58E-3 1.36E-5

folded patch 3.78E-2 3.78E-2 1.64E-4 4.05E-3

ic package 14 6.44E-4 2.14E-2 - -

inductor4 2.56E-1 2.31E+2 1.18E-1 6.68E-2

lowpassfilter 5.09E-2 3.34E-2 - -

microstrip coupler 2.35E-1 9.40E-1 1.73E-3 2.42E-3

radial stub 1.39E-1 3.88E-2 - -

rj45 6.64E-2 5.23E+0 7.15E-2 -

shaped end radiator 4.94E+1 4.94E+1 3.70E-3 3.47E-3

single line 1.44E-2 1.08E-3 2.81E-3 2.52E-2

two lines 9.13E-5 1.51E-2 1.33E-5 -

Table 3: Relative errors for different methods.

finding suitable starting poles for the vector fitting algorithm, the choice of poles given at the
beginning of this section turned out satisfactory. Comparing element-wise and column-wise
vector fitting, it turns out that the element-wise approach is usually faster and more accurate
than the column-wise approach. The gain in computation time is especially notable for larger
dimensions of the S-parameters. For one dimensional fittings, both algorithms are principally
identical and produce identical results. It should be noted, that column-wise fitting failed for
three examples, i.e., it produced relative errors larger than one. With component-wise fitting,
this occurred only once.

4.2 Modal truncation and balanced truncation

In the second set of numerical experiments we have tested the modal and balanced truncation
model reduction methods. Here, we present the numerical results for only four examples:
coaxdiscontinuity, two lines, largefreqDS and smallfreqDS. The state space systems
G = [ A, B, C, D ] computed by the vector fitting method have first been approximated
by the reduced models Gmt = [ Amt, Bmt, Cmt, D ] of order ℓm using the modal truncation
method. Then, we applied the balanced truncation method to these models and obtained the
approximate systems Gbt = [ Abt, Bbt, Cbt, D ]. In modal truncation, we truncated the terms
satisfying the condition ‖Rk‖/ℜe(ak) ≤ tol with tol = min(10−4, err), where

err =

( q∑

j=1

‖G(iωj)−Gj‖2F
)1/2

(4.1)

is the error after vector fitting and ‖ · ‖F denotes the Frobenius matrix norm. The order ℓb

of the approximate systems Gbt has been chosen as a largest index of the Hankel singular
values σj satisfying σℓb

/σ1 ≤ tol with the same tolerance tol as above.
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For each example, we present

(a) the absolute error ‖G(iωj)−Gj‖, j = 1, . . . , q, where G(s) = C(sI−A)−1B+D is com-
puted by the element-wise vector fitting method and (ωj , Gj) are given S-parameters;

(b) the Hankel singular values σk of the system Gmt = [ Amt, Bmt, Cmt, D ];

(c) the spectral norms ‖G(iω)‖, ‖Gmt(iω)‖ and ‖Gbt(iω)‖ of the frequency responses

G(iω) = C(iωI −A)−1B + D,
Gmt(iω) = Cmt(iωI −Amt)

−1Bmt + D,
Gbt(iω) = Cbt(iωI −Abt)

−1Bbt + D

for the frequency range ω ∈ [ ωmin, ωmax ];

(d) the absolute errors ‖Gmt(iω)−G(iω)‖ and ‖Gbt(iω)−Gmt(iω)‖ for the same frequency
range and the error bounds

‖Gmt −G‖H∞
≤ ζmt, ‖Gbt −Gmt‖H∞

≤ ζ bt, (4.2)

where ζmt =
n∑

k=ℓm+1

‖Rk‖/ℜe(ak) and ζ bt = 2
ℓm∑

k=ℓb+1

σk.

We give also the computation time required for the computation of the systems G, Gmt, Gbt

as well as the values of the vector fitting error err as in (4.1) and the bounds ζmt, ζ bt.
It should be noted that the reduced-order systems computed by modal truncation have

the same sparse structure as the original system, whereas the system matrices provided by
balanced truncation are full.
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Example 1: coaxdiscontinuity

Using the element-wise vector fitting method we obtained a system of order n = 320 with
m = 2 inputs and p = 2 outputs. This system has been approximated by the reduced-order
models Gmt and Gbt of order ℓm = 72 and ℓb = 34, respectively.
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Figure 1: Example 1: (a) the absolute errors of vector fitting; (b) the Hankel singular values;
(c) the frequency responses; (d) the absolute errors and the error bounds.

m = p = 2 VecFit (n = 320) ModTr (ℓm = 72) BalTr (ℓb = 34)

CPU time (s) 8.6 0.25 0.27
Error (error bound) 1.886E-04 ( 1.297E-03 ) ( 7.831E-04 )

Table 4: Example 1: computation time, vector fitting error and model reduction error bounds.
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Example 2: two lines

Using the column-wise vector fitting method we obtained a system of order n = 600 with
m = 4 inputs and p = 4 outputs. This system has been approximated by the reduced-order
models Gmt and Gbt of order ℓm = 36 and ℓb = 30, respectively.
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Figure 2: Example 2: (a) the absolute errors of vector fitting; (b) the Hankel singular values;
(c) the frequency responses; (d) the absolute errors and the error bounds.

m = p = 4 VecFit (n = 600) ModTr (ℓm = 36) BalTr (ℓb = 30)

CPU time (s) 403 0.28 0.28
Error (error bound) 1.481E-04 ( 2.326E-03 ) ( 2.076E-04 )

Table 5: Example 2: computation time, vector fitting error and model reduction error bounds.
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Example 3: smallfreqDS

Using the vector fitting method we obtained a single-input single-output system of order
n = 100. This system has been approximated by the reduced-order models Gmt and Gbt of
order ℓm = 28 and ℓb = 12, respectively.
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Figure 3: Example 3: (a) the absolute errors of vector fitting; (b) the Hankel singular values;
(c) the frequency responses; (d) the absolute errors and the error bounds.

m = p = 1 VecFit (n = 100) ModTr (ℓm = 28) BalTr (ℓb = 12)

CPU time (s) 2.5 0.12 0.24
Error (error bound) 4.214E-04 ( 2.467E-03 ) ( 9.324E-04 )

Table 6: Example 3: computation time, vector fitting error and model reduction error bounds.
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Example 4: largefreqDS

Using the vector fitting method we obtained a single-input single-output system of order
n = 100. This system has been approximated by the reduced-order models Gmt and Gbt of
order ℓm = 26 and ℓb = 11, respectively.
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Figure 4: Example 4: (a) the absolute errors of vector fitting; (b) the Hankel singular values;
(c) the frequency responses; (d) the absolute errors and the error bounds.

m = p = 1 VecFit (n = 100) ModTr (ℓm = 26) BalTr (ℓb = 11)

CPU time (s) 4.6 0.17 0.26
Error (error bound) 5.596E-03 ( 1.725E-03 ) ( 8.179E-04 )

Table 7: Example 4: computation time, vector fitting error and model reduction error bounds.

Examples 1-4 show that using the vector fitting method we can first compute a large state
space system to guarantee small interpolation error. Then we can apply model reduction to
compute an approximate system of lower dimension that has the approximation error of the
same order as the interpolation error. The existence of the error bounds (4.2) for the modal
truncation and the balanced truncation methods allows an adaptive choice of the state space
dimension of the reduced model depending on how accurate the approximation is needed.
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