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Abstract. In 1973 R. Thomas introduced a logical approach to model-
ing and analysis of bioregulatory networks. Given a set of Boolean func-
tions describing the regulatory interactions, a state transition graph is
constructed that captures the dynamics of the system. In the late eight-
ies, Snoussi and Thomas extended the original framework by including
singular values corresponding to interaction thresholds. They showed
that these are needed for a refined understanding of the network dynam-
ics. In this paper, we study systematically singular steady states, which
are characteristic of feedback circuits in the interaction graph, and relate
them to the type, number and cardinality of attractors in the state tran-
sition graph. In particular, we derive sufficient conditions for regulatory
networks to exhibit multistationarity or oscillatory behavior, thus giving
a partial converse to the well-known Thomas conjectures.

1 Introduction

Suggested more than 30 years ago, the logical approach to modeling bioregula-
tory networks has become increasingly popular in the recent past. In the Boolean
setting, components of the networks correspond to variables, which can take the
values 0 and 1. Interactions between the components are described by logical
equations capturing the evolution of the system. R. Thomas contributed a num-
ber of papers on the logical analysis of biological networks, starting with [8].
The distinctive feature of his method is the way he derives a representation of
the dynamics from the given Boolean functions. Rather than executing all indi-
cated changes in the components at the same time, an asynchronous updating
rule is employed to obtain a non-deterministic state transition graph. It has been
shown that this approach captures essential qualitative features of the dynamical
behavior of complex biological networks, see [9] and [10] for an overview.

In the following years the framework was extended to allow not only for
Boolean but multi-valued variables that describe different activity levels of the
regulatory components in the network. Each interaction in the network was
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associated with a unique threshold value, which determines when the interaction
becomes effective. Snoussi and Thomas realized that a closer inspection of the
impact of the threshold values, which they called singular values, would further
improve the understanding of the system’s dynamics. In [6] they introduced
the notion of singular steady states and linked them to feedback circuits in
the interaction graph describing the structure of the network. The importance
of feedback circuits for the analysis of the dynamical behavior has long been
recognized. Thomas conjectured in 1981 that the existence of a positive circuit,
resp. a negative circuit, in the interaction graph is a necessary condition for
the existence of two distinct attractors, resp. an attractor with cycle structure,
in the state transition graph. The conjectures have been proven in different
settings (see e.g. [7], [3] and [4]). In the framework of Thomas and Snoussi it
is possible to specify the parameters of a given bioregulatory system such that
the existence of the appropriate circuit is not only necessary but sufficient to
cause the corresponding behavior in the state transition graph. However, those
specifications may essentially amount to deleting certain interactions from the
network, which is not always desirable.

When trying to incorporate Snoussi’s and Thomas’ idea of singular states
in a Boolean framework, we are faced with several difficulties. On this level
of abstraction, every interaction is associated with the same threshold value,
a symbolic value between 0 and 1. Thus when crossing the threshold we do
not have the advantage of knowing that one and only one interaction becomes
effective. As a result we cannot link singular states to circuits in the interaction
graph in a non-ambiguous way, while still preserving some essential features
known from the multi-valued setting. Despite those complications and the high
level of abstraction, this paper shows that the introduction of singular states is a
useful tool for refining our understanding of the relation between structure and
dynamics of bioregulatory networks.

The organization of the paper is as follows. In Section 2 we give a short
overview of the Boolean description of biological networks and introduce the
notion of an attractor of a state transition graph. In Section 3 we extend the
framework by establishing the concept of singular states. We give different char-
acterizations of singular steady states using the notion of circuit characteristic
states and regular adjacent states. In the main section of this paper, we prove
several statements that allow us to derive information on the attractors of the
state transition graph from the existence of singular steady states. Conversely,
we can deduce the existence of a singular steady state if we have specific knowl-
edge about the attractors of the state transition graph. We conclude by outlining
ideas for future work.

2 Structure and Dynamics of Regulatory Networks

In the following we introduce the Boolean formalism of R. Thomas for modeling
regulatory networks (see for example [9]). We mainly use the notation introduced
in [1] and [5]. Throughout the text B will denote the set {0, 1}.
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Definition 1. An interaction graph (or bioregulatory graph) I is a labeled di-
rected graph with vertex set V := {α1, . . . , αn}, n ∈ IN, and edge set E. Each
edge αj → αi is labeled with a sign εij ∈ {+,−}.

The only information on a regulatory component we incorporate in the model
for now is whether or not it is active. A vertex αi can be seen as a variable that
adopts values in B, where the value 1 indicates that the component is active. By
abuse of notation, we identify each vertex αi with its index i in order to simplify
notation.

An edge αj → αi signifies that αj influences αi in a positive or negative
way depending on the sign εij . For each αi we denote by Pred(αi) the set of
predecessors of αi, i. e., the set of vertices αj such that αj → αi is an edge in E.

We will be mainly interested in the following structures of the interaction
graph. A tuple (αi1 , . . . , αik

) of distinct vertices of I is called a circuit if I
contains an edge from αij

to αij+1 for all j ∈ {1, . . . , k − 1} as well as an edge
from αik

to αi1 . The sign of a circuit is the product of the sign of its edges.
Definition 1 captures structural aspects of the network. In the following we

consider the corresponding dynamical behavior.

Definition 2. Let I be an interaction graph comprising n vertices. A state of
the system described by I is a tuple s ∈ Bn. The set of (regular) resources
Ri(s) = RI

i (s) of αi in state s is the set

{αj ∈ Pred(αi) ; (εij = + ∧ sj = 1) ∨ (εij = − ∧ sj = 0)}.

Given a set
K(I) := {Ki,ω ; i ∈ {1, . . . , n}, ω ⊂ Pred(αi)}

of (logical) parameters, which adopt values in B, we define the Boolean function
f = fK(I) : Bn → Bn, s 7→ (K1,R1(s), . . . ,Kn,Rn(s)). The pair N := (I, f) is
called bioregulatory network.

The set of resources Ri(s) provides information about the presence of activators
and the absence of inhibitors for some regulatory component αi in state s. The
value of the parameter Ki,Ri(s) indicates how the level of activity αi will evolve.
It will increase (decrease) if the parameter value is greater (smaller) than si.
The activity level stays the same if both values are equal. Thus, the function f
maps a state s to the state the system tends to evolve to.

The choice of parameters specifies the model given by the graph I. Depending
on their values, edges in the graph may or may not be functional in the following
sense. Clearly, if there is an edge αj → αi and Ki,M = Ki,M\{αj} for all M ⊂
Pred(αi), then the edge αj → αi has no influence on the dynamics of the system.
Eliminating this edge from the interaction graph does not change the function
f . Thus we may assume for every N := (I, f) that whenever there is an edge
αj → αi in I, there exists a set M ⊂ Pred(αi) such that Ki,M 6= Ki,M\{αj}.

To derive the dynamics of the system from the function f we take the fol-
lowing consideration into account. In a biological system, the time delays corre-
sponding to changes in the activity level of distinct components will most likely
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Fig. 1. Two interaction graphs consisting of a positive resp. a negative circuit. In both
cases we choose K1,{2} = K2,{1} = 1 and K1,∅ = K2,∅ = 0. The state transition graph
corresponding to the positive circuit is in the middle, the one corresponding to the
negative circuit is on the right. Attractors are indicated by colored, fat lines.

differ. Thus we may assume that in each state transition at most one component
is modified. This procedure is called asynchronous update in Thomas’ framework.
We obtain the following definition.

Definition 3. The state transition graph SN describing the dynamics of the
network N is a directed graph with vertex set Bn. There is an edge s → s′ if and
only if s′ = f(s) = s or s′i = fi(s) for some i ∈ {1, . . . , n} satisfying si 6= fi(s)
and s′j = sj for all j 6= i.

In the following we introduce some basic structures in this graph that are of
biological interest. In addition we use standard terminology from graph theory,
such as paths and cycles.

Definition 4. Let SN be a state transition graph. An infinite path (s0, s1, s2, . . . )
in SN is called trajectory. A nonempty set of states A is called attractor if for
any s1, s2 ∈ A there is a path from s1 to s2 in SN and if every trajectory
starting in a state in A never leaves A. A state s0 is called steady state, if
s0 is a fixed point of f , that is, if there is an edge from s0 to itself. A cycle
C := (s1, . . . , sr, s1), r ≥ 2, is called a trap cycle if every sj, j ∈ {1, . . . , r}, has
only one outgoing edge in SN , that is, the trajectory starting in s1 is unique.

It is easy to see that steady states and trap cycles are attractors. In Figure 1
we show two simple interaction graphs. The positive circuit generates a state
transition graph with two steady states. The graph derived from the negative
circuit consists of a trap cycle, that is, we find an attractor of cardinality greater
than one.

Attractors represent regions of predictability and stability in the behavior of
the system. It is not surprising that an attractor can often be associated with
a meaningful aspect of the system’s role in biological processes. A fixed point
in a gene regulatory network associated with cell differentiation, for example,
may represent the stable state reached at the end of a developmental process.
Attractors of cardinality greater than one imply cyclic behavior, and thus can
often be identified with homeostasis of sustained oscillatory activity, as can be
found in the cell cycle or circadian rhythm.

The following proposition is an easy observation concerning attractors.

Proposition 1. In every state transition graph SN there is at least one attrac-
tor.
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Proof. Since SN consists of finitely many states, there exists for every trajectory
T = (s0, s1, . . . ) some mT ∈ IN such that the set {s0, s1, . . . , smT } is the set of
all states traversed by T . Moreover, for any state s0 we can find a trajectory
T0 = (s0, s1, . . . ) such that for every trajectory T that coincides with T0 in the
first m := mT0 states the set of states traversed by T is contained in M :=
{s0, s1, . . . , sm}, that is T0 is maximal in that sense. Let B :=

⋂
k∈IN{si ; i ≥ k}

be the set of states that T0 visits infinitely many times. Then B is not empty
since SN is finite. Let C be the set of states s such that there exists a path from
a state in B to s as well as a path from s to a state in B.

Let A := B∪C. It is easy to see that for every x1, x2 ∈ B there exists a path
from x1 to x2 such that every state on the path is also contained in B. It follows
that there exists a path from x1 to x2 in SN for all x1, x2 ∈ A. Since we chose T0

maximal w. r. t. the set of states visited by T0, we can deduce that C is a subset
of M . If there was a trajectory that starts in a state in A and leaves A at some
point we could easily construct a trajectory that violates the maximality of T0.
Thus the set A is an attractor. ut

Note that the above proof shows that for every state in the state transition graph
there is a trajectory leading to an attractor.

The number of states in the state transition graph grows exponentially with
the number of regulatory components in N . Thus our aim is to infer from N =
(I, f) as much information on the structure of SN as possible, without having
to calculate SN explicitly. We pursue this endeavor in the remaining sections.

3 Singular States

In the following, we incorporate threshold values of interactions into the formal-
ism. We mainly use the framework introduced in [5].

Definition 5. Set Bθ := {0, θ, 1}, where θ is a symbolic representation of the
threshold value and satisfies the order 0 < θ < 1. We allow each regulatory
component αi to take values in Bθ. The values 0 and 1 are called regular values
and θ is called singular value. The elements of Bn

θ are called states. If a state
comprises only regular components it is called regular state. Otherwise it is called
singular state. For every state s we define J(s) := {i ∈ {1, . . . , n} ; si = θ}.

To describe the dynamics of the system we have to augment the definition of
resources.

Definition 6. Let s ∈ Bn
θ . In addition to the set Ri(s) of regular resources

introduced in Definition 2, we define the set Rθ
i (s) of singular resources of αi in

s as the set
Rθ

i (s) := {αj ∈ Pred(αi) ; sj = θ}.

The definition of a set of logical parameters K(I) remains the same as in Def-
inition 2. In particular, the logical parameters can only adopt regular values.
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However, we need further restrictions for the choice of parameters. In the fol-
lowing every set of logical parameters satisfies

ω ⊂ ω′ ⇒ Ki,ω ≤ Ki,ω′ (1)

for all i ∈ {1, . . . , n}. The condition signifies that an effective activator or a non-
effective inhibitor cannot induce the decrease of the activity level of αi. These
constraints are needed to define a function fθ describing the dynamics of the
network.

We call |a, b| a qualitative value if a, b ∈ B and a ≤ b. The qualitative value
|0, 0| is identified with the regular value 0, |1, 1| with the regular value 1, and
|0, 1| with the singular value θ. The relations <, >, and = are used with respect
to this identification.

Definition 7. Let K(I) be a set of parameters. We define

fθ = fK(I),θ : Bn
θ → Bn

θ by fθ
i (s) = |Ki,Ri(s),Ki,Ri(s)∪Rθ

i (s)|

for all i ∈ {1, . . . , n}.
Note that whenever s is a regular state, then fθ(s) is regular, too, since any
set of singular resources in a regular state is empty. We have fθ(s) = f(s) for
all s ∈ Bn. Thus the state transition graph corresponding to N = (I, f) is
consistent with fθ. Extending the definition in the previous section, we call s
a steady state if fθ(s) = s. The notion of functionality of an edge remains the
same as in Section 2. We consider only those edges that effectively influence the
dynamical evolution of the system.

We may relate a singular state s to structures in the interaction graph I by
considering the subgraphs of I induced by the vertices αj with singular values,
that is j ∈ J(s). The following definition proves useful and was first introduced
by E. H. Snoussi in [6], albeit in a different framework. The remainder of this
section adapts ideas presented in [6].

Definition 8. Let C = (αi1 , . . . , αir ) be a circuit in I. A state s ∈ Bn
θ is called

characteristic state of C if sil
= θ for all l ∈ {1, . . . , r}.

A characteristic state of a circuit is not unique unless all the regulatory compo-
nents of the network are contained in the circuit. In this case the state (θ, . . . , θ)
is the unique characteristic state. Obviously, the state (θ, . . . , θ) is characteristic
of each circuit in I.

Another simple observation is the following. Whenever Rθ
j (s) 6= ∅ holds for

all singular components j ∈ J(s), the state s is characteristic of some circuit in
I. This is due to the fact that every resource of some regulatory component αi

is a predecessor of αi and that there are only finitely many components in the
network. With that in mind we can easily prove the next statement.

Theorem 1. Every singular steady state is characteristic of some circuit in I.

Proof. Let s be a singular state that is not characteristic of any circuit in I.
Then there is i ∈ {1, . . . , n} such that si = θ and Rθ

i (s) = ∅. It follows that
fθ

i (s) = |Ki,Ri(s),Ki,Ri(s)| = Ki,Ri(s) 6= θ = si, since the parameters take only
regular values. Thus s is not a steady state. ut

6



It is possible to give a characterization of the singular steady states using only
regular states and the function f .

Definition 9. Let s ∈ Bn
θ and k ∈ {1, . . . , n}. Let sk,+ and sk,− be states that

satisfy sk,+
i := sk,−

i := si for all i /∈ J(s) and

sk,+
i :=

{
1 , εki = +
0 , εki = − and sk,−

i :=
{

1 , εki = −
0 , εki = + (2)

for all i ∈ J(s) satisfying αi ∈ Rθ
k(s). Then sk,+ and sk,− are called a maximal

resp. minimal adjacent state of s with respect to k.

There are generally many states sk,+, sk,− that satisfy the above conditions.
If the sets Rθ

k(s), k ∈ {1, . . . , n}, are disjoint, then we can define states s+

and s− which are maximal resp. minimal adjacent states of s with respect to
every k ∈ {1, . . . , n}. If, in addition, the union of all sets Rθ

k(s) is equal to the
set {αj ; j ∈ J}, then s+ and s− are unique and are called the maximal resp.
minimal adjacent state of s.

Theorem 2. A state s ∈ Bn
θ is steady if and only if fk(sk,+) = sk,+

k = sk,−
k =

fk(sk,−) for all k /∈ J(s), and fk(sk,−) < θ < fk(sk,+) for all k ∈ J(s).

Proof. We show that Rk(sk,+) = Rk(s) ∪ Rθ
k(s) and Rk(sk,−) = Rk(s) for all

k ∈ {1, . . . , n}.
First, let αi ∈ Rk(sk,+). Then αi is a predecessor of αk. If i /∈ J := J(s), then

si = sk,+
i , and thus αi ∈ Rk(s). If i ∈ J , we have si = θ, and thus αi ∈ Rθ

k(s).
Now, let αi ∈ Rk(s)∪Rθ

k(s). Again αi ∈ Pred(αk). If αi ∈ Rk(s), then i /∈ J . It
follows that si = sk,+

i , and thus αi ∈ Rk(sk,+). If αi ∈ Rθ
k(s), then αi ∈ Rk(sk,+)

according to (2). Analogous reasoning provides the second statement.
Now, suppose that the last condition of the theorem is true. Then fθ

k (s) =
|Kk,Rk(s),Kk,Rk(s)∪Rθ

k(s)| = |Kk,Rk(sk,−),Kk,Rk(sk,+)| = |fk(sk,−), fk(sk,+)| for
all k ∈ {1, . . . , n}. According to the assumption we have |fk(sk,−), fk(sk,+)| =
sk,+

k = sk for k /∈ J , and |fk(sk,−), fk(sk,+)| = |0, 1| = sk for all k ∈ J . Thus s is
a steady state. Similar reasoning can be employed to show the inverse statement.

ut

The theorem and the definition of sk,+ and sk,− imply that whenever every reg-
ulatory component in the network can be influenced in its behavior by some
other regulatory components, the state containing only singular entries is a
steady state. In other words, if for every αk there exists ω ⊂ Pred(αk) such
that Kαk,∅ = 0 and 1 = Kαk,ω ≤ Kαk,Pred(αk), then the state (θ, . . . , θ) is a
steady state.

4 Relating Singular Steady States and Attractors

We have seen that singular steady states can be characterized by regular states
and that they are closely related to circuits in the interaction graph. In the
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following we show what kind of information on the state transition graph we can
infer from the existence of a singular steady state. First, we need some additional
notations.

Let s ∈ Bn
θ be a singular state. Recall that J(s) is the set of components

corresponding to the singular values of s. With Iθ(s) we denote the graph with
vertex set V θ(s) := J(s) and edge set Eθ(s) consisting of those {αi, αj} with
i, j ∈ J(s) such that αi → αj or αj → αi is an edge in I. The graph Iθ(s) is
undirected. It represents the existence of a dependency between singular com-
ponents, without specifying the type of interaction. A (connected) component
of Iθ(s) is a maximal connected subgraph of Iθ(s). Vertices of different compo-
nents of Iθ(s) represent regulatory components in I that do not influence each
other directly. Figure 2 illustrates the concept on a small example.

Let C be a circuit composed of vertices in J(s). Then there is a component
of Iθ(s) which contains C. We denote that component by JC(s).

The following lemma shows that value changes in one component of Iθ(s) do
not influence the image fθ(s) outside that component, if s is a singular steady
state.

Lemma 1. Let s be a singular steady state, and let Z1, . . . , Zm be the compo-
nents of the graph Iθ(s). Choose k ∈ IN and s̃ ∈ Bθ satisfying s̃i = si for all
i /∈ Zk. Then fθ

i (s̃) = s̃i for all i /∈ Zk.

Proof. For i ∈ J(s)\Zk we know that Ri(s) = Ri(s̃) and Rθ
i (s) = Rθ

i (s̃), since no
element of Zk is a predecessor of αi. Thus fθ

i (s̃) = fθ
i (s) = si for all i ∈ J(s)\Zk.

For i /∈ J(s) we have Ri(s) ⊂ Ri(s̃), since a singular resource of αi may have
turned into a regular resource. In addition, Ri(s̃)∪Rθ

i (s̃) ⊂ Ri(s)∪Rθ
i (s), since

a singular resource of αi might have been eliminated by turning its value to
a regular value not contributing to activation. In summary we obtain Ri(s) ⊂
Ri(s̃) ⊂ Ri(s̃) ∪Rθ

i (s̃) ⊂ Ri(s) ∪Rθ
i (s) and with condition (1) we derive

Ki,Ri(s) ≤ Ki,Ri(s̃) ≤ Ki,Ri(s̃)∪Rθ
i (s̃) ≤ KRi(s)∪Rθ

i (s).

Moreover, we know that Ki,Ri(s) = Ki,Ri(s)∪Rθ
i (s) since fθ

i (s) = si. Thus the
above inequality becomes an equality and yields fθ

i (s̃) = Ki,Ri(s) = si = s̃i for
all i /∈ J(s). ut

The above lemma allows us to focus on the possible dynamical behavior in
the isolated parts of the biological network corresponding to the components
Z1, . . . , Zm and leads us to the following theorem.

Theorem 3. For every singular steady state s there is an attractor A in SN

such that ui = si holds for all u ∈ A and i /∈ J(s).

Proof. Let Z1, . . . , Zk again be the components of the graph Iθ(s). Without
loss of generality we may assume that α1, . . . , αn are ordered as follows. The
set Z1 contains α1, . . . , α|Z1|, Z2 contains α|Z1|+1, . . . , α|Z1|+|Z2| etc., where |Zi|
denotes the cardinality of the set Zi. The regular components of s are associ-
ated with αp, . . . , αn, with p := 1 +

∑k
i=1 |Zi|. According to Proposition 1 we

8



find an attractor Ai in the state transition graph corresponding to the func-
tion f (Zi) for all i ∈ {1, . . . , k}. Here f (Zi) : B|Zi| → B|Zi|, where f

(Zi)
j (x) :=

fq+j(s1, . . . , sq, x1, . . . , x|Zi|, sq+|Zi|+1, . . . , sn) with q =
∑i−1

l=0 |Zl| and |Z0| = 0.
Next we show that the set A := A1×· · ·×Ak×{(sp, . . . , sn)} is an attractor in

SN . We use the fact that each attractor Ai arises from the dynamics induced by
the projection of the function f to the components of Zi. Recall that, as shown
above, changes in the values of elements belonging to some Zi do not influence the
values of the other components of s when applying f . Since f determines SN via
the asynchronous update rule, we obtain the following statement. There is a path
from ai to bi for states ai, bi ∈ Ai in the state transition graph corresponding to
f (Zi) if and only if there is a path from (x1, . . . , xi−1, ai, xi+1, . . . , xk, sp, . . . , sn)
to (x1, . . . , xi−1, bi, xi+1, . . . , xk, sp, . . . , sn) in SN for some states xj ∈ Aj . It
follows easily from this observation that A is an attractor in SN . ut

To illustrate the above theorem and its proof we examine the example given in
Figure 2. The components of Iθ(s) given there are Z1 = {α1} and Z2 = {α2}.
The function f (Z1) : B → B, x 7→ fθ

1 (x, θ, 1) generates a state transition graph
that consists of a cycle comprising the states 0 and 1. Thus it has a single
attractor A1 = {0, 1}. The state transition graph corresponding to f (Z2) consists
of the two attractors A1

2 = {0} and A2
2 = {1}. Thus we can derive two attractors

in SN , namely A1 = {(0, 0, 1), (1, 0, 1)} and A2 = {(0, 1, 1), (1, 1, 1)}.

α1 α2

α3

+

−
fθ((θ, θ, 1)) = (θ, θ, 1) =: s

K1,{1} = K2,{2} = 1
K3,{1} = K3,{2} = K3,{3} = 1

+

++

I

α1 α2

Iθ(s)

Fig. 2. Given is an interaction graph I and a specification of the parameters. We
listed only the non-zero parameters. The graph Iθ(s) for the singular steady state
s := (θ, θ, 1) has two components.

We have seen above that we can link a singular steady state to a regular
attractor. However, different singular steady states s1 and s2 may give rise to the
same regular attractor. The above proof shows that this possibility is precluded
if s1 and s2 differ in a component i /∈ J(s1) ∪ J(s2). The same line of thinking
shows that the resulting attractors are different, if there exists a component Z1

l

of Iθ(s1) disjoint of J(s2) that gives rise to an attractor Al of the state transition
graph corresponding to f (Z1

l ) with |A| > 1.
A more precise analysis of the correspondence of attractors and singular

steady states is possible if we take into account structural information on the
underlying interaction graph I. In the preceding section we have seen that every
singular steady state s is characteristic of some circuit C of the interaction graph
I. If we know in addition that s is not characteristic of any other circuit in the
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connected component JC(s) of Iθ(s), we can derive information on the singular
valued predecessors of vertices belonging to C. This is shown in the next lemma.

Lemma 2. Let C = (αi1 , . . . , αim
) be a circuit in I and let s be a characteristic

state of C which is steady. Assume that C is the only circuit in JC(s). Then
Rθ

ij
(s) = {αij−1} for all j ∈ {1, . . . ,m} with indices taken modulo m.

Proof. Set J := J(s) and JC := JC(s). Clearly, αij−1 ∈ Rθ
ij

(s) for all j ∈
{1, . . . ,m}. Assume that there is k ∈ {1, . . . ,m} such that there exists l ∈ J
satisfying αl 6= αik−1 and αl ∈ Rθ

ik
(s). Then αl ∈ Pred(αik

) and thus l ∈ JC . If
l = ij for some j 6= k − 1, then (αij

, αik
, . . . , αij−1) is a circuit other than C in

JC . This contradicts the hypothesis. Thus αl is not a vertex of C.
Since s is a steady state, we know that Rθ

j (s) 6= ∅ for all j ∈ J . Furthermore,
Rθ

j (s) ⊂ JC for all j ∈ JC . Thus for every j ∈ JC we find i ∈ JC , such that
αi → αj is an edge in I. Since there are only finitely many vertices in JC , there
is a circuit in {αj ∈ JC ; ∃ path from αj to αl in I} that differs from C. Again,
this leads to a contradiction. ut

Lemma 2 allows us to represent JC(s) by a chain of nested sets.

Lemma 3. Assume the same hypothesis as in Lemma 2. Then there exist sets
M1, . . . ,Ml ⊂ JC(s) such that M1 = C, Ml = JC(s), Mi ( Mi+1 and Rθ

j (s) ⊂
Mi for all j ∈ Mi+1 and i ∈ {1, . . . , l − 1}.

Proof. Set M1 := {i1, . . . , im}. If JC(s) \M1 6= ∅, then there exists at least one
element j ∈ JC(s)\M1 such that Rθ

j (s) ⊂ M1. Otherwise for every j ∈ JC(s)\M1

there is kj ∈ JC(s) \M1 such that αkj
is a predecessor of αj in I. That would

imply the existence of a circuit other than C in JC(s), since JC(s) \M1 is finite.
Thus by defining M2 := {j ∈ JC(s) ; Rθ

j (s) ⊂ M1} we obtain a set strictly
contained in M1. Since JC(s) is finite, we can repeat the procedure until we get
Ml := {j ∈ JC(s) ; Rθ

j (s) ⊂ Ml−1} = JC(s). ut

In the following we make use of the information on the sign of the circuit C.

Theorem 4. Let C be a positive circuit in I and let s be a characteristic state
of C which is steady. Assume that C is the only circuit in JC(s). Then fθ has
at least three fixed points.

Proof. Set J := J(s) and JC := JC(s). Without loss of generality we may assume
that C = (α1, . . . , αr) for some r ∈ {1, . . . , n}. We define states s0, s1 ∈ Bn

θ such
that s, s0 and s1 are fixed points of fθ. First, we set s0

i = s1
i = si for all

i /∈ JC and, for now, choose the other components of s0 and s1 arbitrary. We
will determine the values for all components step by step. By abuse of notation,
we denote the resulting states again by s0 and s1.

From Lemma 1 it follows that fθ
i (s0) = s0

i and fθ
i (s1) = s1

i for all i /∈ JC .
Next, we define the values s0

i and s1
i for i ∈ {1, . . . , r}. We set s0

1 := 0, s1
1 := 1,

and for l ∈ {0, 1}

sl
i+1 :=

{
0 , (sl

i = 0 ∧ εi+1,i = +) ∨ (sl
i = 1 ∧ εi+1,i = −)

1 , (sl
i = 1 ∧ εi+1,i = +) ∨ (sl

i = 0 ∧ εi+1,i = −)
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for all i ∈ {1, . . . , r − 1}. This definition amounts to setting sl
i+1 = 1 iff the value

of sl
i characterizes αi as regular resource of αi+1. Since C is a positive circuit, the

value of sl
1 is consistent with the value we obtain by using the above definition

for i = r, that is we do not contradict the definition of sl if we use the above
iterative formula modulo r. Note that s0

1, s1
1 and s1 are distinct.

According to Lemma2 we have Rθ
i (s) = {αi−1} for all i ∈ {1, . . . , r}, indices

again taken modulo r. Thus Rθ
i (s

l) = ∅ for all i ∈ {1, . . . , r}. Moreover, we have

Ri(sl) =
{

Ri(s) , (sl
i−1 = 0 ∧ εi,i−1 = +) ∨ (sl

i−1 = 1 ∧ εi,i−1 = −)
Ri(s) ∪Rθ

i (s) , (sl
i−1 = 1 ∧ εi,i−1 = +) ∨ (sl

i−1 = 0 ∧ εi,i−1 = −)

for all i ∈ {1, . . . , r}. Since fθ
i (s) = |Ki,Ri(s),Ki,Ri(s)∪Rθ

i (s)| = |0, 1|, it follows
from the definition of sl

i and condition (1) that

fθ
i (sl) = Ki,Ri(sl) =

{
Ki,Ri(s) = 0 , sl

i = 0
Ki,Ri(s)∪Rθ

i (s) = 1 , sl
i = 1 .

Thus, we have fθ
i (s0) = s0

i and fθ
i (s1) = s1

i for all i ∈ {1, . . . , r}, not depending
on the values of the components in JC \ {1, . . . , r}.

Finally, we have to specify sl
i for all i ∈ JC \ {1, . . . , r} and l ∈ {0, 1}.

According to Lemma3 we find sets M1, . . . ,Mk ⊂ JC satisfying M1 = C, Mk =
JC , Mj ( Mj+1 and Rθ

i (s) ⊂ Mj for all i ∈ Mj+1 and j ∈ {1, . . . , k − 1}.
Thus, for every i ∈ M2 we have Rθ

i (s
l) = ∅ since all components of M1 = C

have regular values. Moreover, it follows that Ri(sl) ∩ JC \ C = ∅. Therefore
we can determine the new values of all components of sl contained in M2 by
sl

i := Ki,Rl
i(s)

. Note that this parameter depends only on components previously
specified. Since αi does not have singular resources in state sl for all i ∈ M2,
we have fθ

i (sl) = Ki,Ri(sl) = sl
i for all i ∈ M2. Because the sets Mj are nested,

we can repeat the above procedure for consecutive sets without encountering
contradictions. Thus we are able to specify all components sl

i for i ∈ JC \ C,
such that fθ

i (sl) = sl
i.

We have shown that the resulting states s0 and s1 are fixed points of fθ.
Since s, s0, and s1 are distinct, fθ has at least three fixed points. ut

The proof shows that at least two fixed points of fθ differ in a regular com-
ponent. Applying Theorem 3 and the subsequent observations we immediately
obtain the following statement.

Corollary 1. If the conditions in Theorem4 hold, then there are at least two
distinct attractors in the corresponding state transition graph.

The corollary is illustrated in Figure 3 (a) and (c). The singular steady state
(1, θ, 0) is characteristic of the positive circuit comprising α2 and of no other
circuit. The resulting state transition graph shows two distinct attractors. The
importance of the condition concerning the circuit C and the component JC(s)
is demonstrated in Figure 3 (b). The state (θ, θ, θ) is steady and characteristic
of the positive circuit comprising α2. Moreover, the state (θ, 0, θ) is steady and
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α1

α2 α3

+

−

−

−
−

−

(0, 1, 0) (1, 1, 0)

(0, 0, 0) (1, 0, 0)

(0, 1, 1) (1, 1, 1)

(0, 0, 1) (1, 0, 1)

(0, 1, 0) (1, 1, 0)

(0, 0, 0) (1, 0, 0)

(0, 1, 1) (1, 1, 1)

(0, 0, 1) (1, 0, 1)

(0, 1, 0) (1, 1, 0)

(0, 0, 0) (1, 0, 0)

(0, 1, 1) (1, 1, 1)

(0, 0, 1) (1, 0, 1)

K1,{1,3} = K2,{1,2} = K3,{1,2} = 1

fθ((θ, 0, θ)) = (θ, 0, θ)

fθ((1, θ, 0)) = (1, θ, 0)

K1,{1} = K1,{3} = K1,{1,3} = 1
K2,{1} = K2,{2} = K2,{1,2} = 1
K3,{1,2} = 1

K1,{1,3} = 1
K2,{1} = K2,{2} = K2,{1,2} = 1
K3,{1,2} = 1

fθ((θ, 1, 0)) = (θ, 1, 0)

(a) (b)

(c) (d)

Fig. 3. An interaction graph comprising three components is given in (a). Figures (b)-
(d) show the state transition graphs corresponding to the chosen parameter values. We
only listed the non-zero parameters. Attractors are indicated by colored, fat lines. For
each choice of parameters one singular steady state other than (θ, θ, θ) is given.

characteristic of the positive circuit comprising α1 and α3. In both cases the
states are characteristic of further circuits in the same component, and the state
transition graph has only one attractor. Similar examples can be given to show
the importance of this condition for the validity of Theorem 4.

The next theorem clarifies the impact of a negative circuit.

Theorem 5. Let C be a negative circuit in I and let s be a characteristic state
of C which is steady. Assume that C is the only circuit in JC(s). Then there
exists an attractor with cardinality greater than one.

Proof. Again we set J := J(s) and JC := JC(s) and assume that C = (α1, . . . , αr)
for some r ∈ {1, . . . , n}. First, we examine the dynamical behavior of the system
restricted to the first r components.

We define states s1, . . . , s2r satisfying sl
i = si for all i > r. Furthermore, we

set s1
1 := 1 and

sl
i+1 :=

{
0 , (sl

i = 0 ∧ εi+1,i = +) ∨ (sl
i = 1 ∧ εi+1,i = −)

1 , (sl
i = 1 ∧ εi+1,i = +) ∨ (sl

i = 0 ∧ εi+1,i = −)
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for all i ∈ {1, . . . , r − 1}. So sl
i+1 = 1 iff the value of sl

i characterizes αi as
regular resource of αi+1. Since C is a negative circuit, the definition above implies
that αr is not a resource of α1 in state s1. According to Lemma 2, the only
singular resource of α1 in s is αr. Taking into account that fθ

1 (s) = θ and thus
K1,R1(s) = 0, it follows that fθ

1 (s1) = K1,R1(s1) = K1,R1(s) = 0. For 1 < i ≤ r
we can repeat the argument employed in the proof of Theorem 4 to obtain

fθ
i (s1) = Ki,Ri(sl) =

{
Ki,Ri(s) = 0 , s1

i = 0
Ki,Ri(s)∪Rθ

i (s) = 1 , s1
i = 1 .

Set s2 := fθ(s1). Then we have s2
1 = 1 − s1

1 and s2
i = s1

i for 1 < i ≤ r.
Furthermore, s2

i = s1
i for all i /∈ JC according to Lemma 1.

We repeat the procedure above and obtain for 1 < j ≤ 2r states sj :=
fθ(sj−1) satisfying sj

i = s1
i for all i /∈ JC . Furthermore, we have

sj
j−1 = 1− sj−1

j−1 and sj
i = sj−1

i for all i ∈ {1, . . . , r} \ {j − 1}, 2 ≤ j ≤ r + 1 ,

and, since C is a negative circuit,

sj+r
j−1 = 1− sj+r−1

j−1 and sj+r
i = sj+r−1

i for all i ∈ {1, . . . , r} \ {j − 1}, 2 ≤ j ≤ r .

The same reasoning shows that fθ
i (s2r) = s1

i for all i /∈ JC \ C.
Now we examine the dynamics in the part of the state space that corresponds

to JC , that is, in B|JC |, where |JC | again describes the cardinality of JC . Choose
x ∈ B|JC | such that xi = s1

i for all i ∈ {1, . . . , r} and xi = 0 for all i ≥ r. We have
seen in the proof of Proposition 1 that there is a trajectory T = (x, x1, x2, . . . )
leading to an attractor A in the projection to the components of JC of the
state transition graph of f . From the definition of the states sj it follows that
(xi

1, . . . , x
i
r) ∈ {(sj

1, . . . , s
j
r) ; 1 ≤ j ≤ 2r} for all i ∈ IN. In particular, there is

a ∈ A such that the first r components of a correspond to the first r components
of one of the vectors sj . Since all trajectories starting in a remain in A we can
deduce that every state (sj

1, . . . , s
j
r, ar+1, . . . , a|JC |), j ∈ {1, . . . , 2r}, belongs to

A. Therefore, the cardinality of A is greater than one. We have shown in the
proof of Theorem 3 that there is at least one attractor of the state transition
graph SN that coincides with A in the components corresponding to JC . Thus,
we find an attractor in SN with cardinality greater than one. ut

Figure 3 illustrates the theorem. In (d) we give a parameter specification that al-
lows for the state (θ, 1, 0) to be steady. This state is characteristic of the negative
circuit comprising α1. The resulting state transition graph contains the attrac-
tor {(0, 1, 0), (1, 1, 0)}. As for Theorem 4, Figure 3 (b) illustrates the importance
of C being the only circuit in JC(s). Although (θ, 0, θ) is characteristic of the
negative circuit comprising α1, and (θ, θ, θ) is characteristic of the negative cir-
cuit comprising α1, α2 and α3, the only attractor in the state transition graph
consists of a single state.

The proofs of Theorems 4 and 5 show that the situation is easy to grasp in
case that the only components with singular values are those of the circuit C. In
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the context of Theorem 4, we then obtain two regular fixed points, that is two
steady states in the state transition graph. Those can be explicitly constructed
as shown in the proof of Theorem 4. If C is a negative circuit, we find a trap cycle
in the state transition graph. It is composed of the states s1, . . . , s2r constructed
in the proof of Theorem 5.

If we detect the above mentioned structures in the state transition graph, we
can conversely derive singular steady states.

Proposition 2. Let x, y ∈ Bn be steady states in the state transition graph SN .
Let I be the set of components i satisfying xi 6= yi. Then there exists a singular
steady state s such that si = θ for all i ∈ I.

Proof. Let s1 ∈ Bθ satisfy s1
i = θ for all i ∈ I and s1

i = xi = yi for all i /∈ I.
Let i ∈ I. For z ∈ {x, y} we have Ri(s1) ⊂ Ri(z) ⊂ Ri(s1) ∪ Rθ

i (s
1). We may

assume that xi = fi(x) = Ki,Ri(x) = 0 and yi = fi(y) = Ki,Ri(y) = 1. From
condition (1) we can deduce that Ki,Ri(s1) = 0 and Ki,Ri(s1)∪Rθ

i (s1) = 1. Thus
fθ

i (s1) = θ = s1
i . For i /∈ I = J(s1) and for z ∈ {x, y} we also have Ri(s1) ⊂

Ri(z) ⊂ Ri(s1) ∪ Rθ
i (s

1), and thus Ki,Ri(s1) ≤ Ki,Ri(z) ≤ Ki,Ri(s1)∪Rθ
i (s1). If

fθ
i (s1) is a regular value, it coincides with xi = yi = s1

i .
The state s1 may not be a fixed point, but we can show that we obtain

a fixed point by iterating the state s1. Consider the sequence s1, s2, . . . with
sj := fθ(sj−1). We show by induction that the sets of singular components
satisfy J(sj) ⊂ J(sj + 1) for all j ∈ IN and sj+1

i = sj
i for all i /∈ J(sj+1). This is

true for j = 1 as shown above, since J(s1) = I.
Let j > 1 and assume the induction hypothesis holds for all i ≤ j − 1. Then

we can derive that Ri(sj) ⊂ Ri(sj−1) and Ri(sj−1)∪Rθ
i (s

j−1) ⊂ Ri(sj)∪Rθ
i (s

j)
for all i ∈ {1, . . . , n}. We have Ki,Ri(sj−1) = 0 and Ki,Ri(sj−1)∪Rθ

i (sj−1) = 1 for
all i ∈ J(sj), since sj

i = fθ
i (sj−1) = θ for all i ∈ J(sj). It follows with condition

(1) that Ki,Ri(sj) = 0 and Ki,Ri(sj)∪Rθ
i (sj) = 1. Thus sj+1

i = fθ
i (sj) = θ for all

i ∈ J(sj), and we obtain J(sj) ⊂ J(sj+1). If sj+1
i is a regular value, the same is

true for sj
i = Ki,Ri(sj−1) = sj−1

i . In that case, we can deduce from the relation
Ki,Ri(sj) ≤ Ki,Ri(sj−1) ≤ Ki,Ri(sj)∪Rθ

i (sj) that sj+1
i = Ki,Ri(sj−1) = sj

i .
Since a state has only finitely many components, we can derive from the

condition J(sj) ⊂ J(sj + 1) for all j ∈ IN that there exists a minimal k ∈ IN
such that sj = sk for all j ≥ k, that is, sk is a singular fixed point. ut

A similar argument leads the following statement. We omit the proof.

Proposition 3. Let C := (x1, . . . , xr, x1) be a trap cycle in the state transition
graph SN . Let I be the set of components i such that there exists j1, j2 satisfying
xj1

i 6= xj2
i . Then there is a singular steady state such that si = θ for all i ∈ I.

In the proof of Proposition 2 we have seen that the singular steady state we
derive may be the state (θ, . . . , θ), even when I 6= {1, . . . , n}.
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5 Perspectives

We have seen in this paper that it is possible to relate systematically singular
steady states to attractors in the state transition graph. To do so, we often exploit
knowledge about the structure of the associated interaction graph. The results
obtained illustrate the possibilities of studying the dynamical behavior of the
system without the explicit use of the state transition graph. However, we have
focussed on a coarse description, characterizing state transition graphs by the
number of their attractors, and distinguishing attractors by their cardinality.
In order to tap the full potential of this approach to analyzing the system’s
dynamics, it should be refined further. A promising starting point for future
work is the concept of local interaction graphs introduced in [2]. The authors
associate every state of the system with an interaction graph, the union of which
is the global interaction graph. This approach allows for a better understanding
of what structures in the interaction graph influence the system’s behavior in a
given state. Combining this local view with our understanding of singular steady
states may yield a more detailed description of the resulting dynamical behavior.
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Appendix

A Example

The following example shows that the statement of Theorem 4 is not true, if
JC(s) contains circuits other than C.

α1

α2

−
−

Kα1,{α3} = 1
Kα1,{α4} = 1
Kα1,{α3,α4} = 1
Kα2,{α1} = 1
Kα3,{α2} = 1
Kα4,{α2,α3} = 1

α3

α4

+
+

+ +

s fθ(s)

0000 1000
1000 1100
1100 1110
1110 0110
1111 1110
1010 0101
1001 1100
1011 1101
1101 1110
0001 1000
0010 0001
0011 1001
0100 1010
0101 1010
0110 0010
0111 1010

fθ(s) = s ⇒ s = (θ, θ, θ, θ)

s1 = θ ⇒ fθ
2 (s) = θ

s1 6= θ ⇒ fθ
2 (s) 6= θ

s2 = θ ⇒ fθ
3 (s) = θ, fθ

4 (s) = 0, θ

s2 6= θ ⇒ fθ
3 (s) 6= θ

s3 = θ ⇒ fθ
1 (s) = 0, θ, fθ

4 (s) = 0, θ

s4 = θ ⇒ fθ
1 (s) = 0, θ

Fig. 4. Interaction graph of a network containing a positive circuit with characteristic
state (θ, θ, θ, θ). Given are the logical parameters not equal to zero. The table shows
that fθ has no regular fixed point. With the help of the implications on the right of
the figure it is easy to see that the only singular steady state is (θ, θ, θ, θ).

B Proposition 3 with Proof

Proposition 3. Let C := (x1, . . . , xr, x1) be a trap cycle in the state transition
graph SN . Let I be the set of components i such that there exists j1, j2 satisfying
xj1

i 6= xj2
i . Then there is a singular steady state such that si = θ for all i ∈ I.

Proof. Let s1 ∈ Bθ satisfy s1
i = θ for all i ∈ I and s1

i = x1
i for all i /∈ I.

Let s2 := fθ(s1). For all j ∈ {1, . . . , r} and i ∈ {1, . . . , n}, we have Ri(s1) ⊂
Ri(xj) ⊂ Ri(s1) ∪ Rθ

i (s
1). Let i ∈ I. Since C is a trap cycle, there exist j1, j2

such that fi(xj1) = Ki,Ri(xj1 ) = 0 and fi(xj2) = Ki,Ri(xj2 ) = 1. It follows from
condition (1) that Ki,Ri(s1) = 0 and Ki,Ri(s1)∪Riθ(s1) = 1, and thus fθ

i (s1) = θ
for all i ∈ I = J(s1). If s2

i is a regular value, then the relation between the sets
of resources and condition (1) imply that Ki,Ri(s1) = Ki,Ri(xj) = xj

i = s1
i for all

j ∈ {1, . . . , r}. In that case, s2
i = xj

i = s1
i for all j ∈ {1, . . . , r}.

We can now proceed exactly as shown in the proof of Proposition 2 to obtain
a singular steady state s, which satisfies si = θ for all i ∈ I. ut
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