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Abstract

Lagrangian invariant subspaces for symplectic matrices play an important role
in the numerical solution of discrete time, robust and optimal control problems.
The sensitivity (perturbation) analysis of these subspaces, however, is a difficult
problem, in particular, when the eigenvalues are on or close to some critical
regions in the complex plane, such as the unit circle.

We present a detailed perturbation analysis for several different cases of real
and complex symplectic matrices. We analyze stability and conditional stability
as well as the index of stability for these subspaces.
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1 Introduction

Let F denote either the field of complex numbers C or the field of real numbers R and
let In denote the n × n identity matrix. Setting

J =

[
0 In

−In 0

]
, (1.1)
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a matrix S ∈ F
2n×2n is called symplectic if ST JS = J , where the superscript T denotes

the transposed matrix or vector. In the case F = C, in many sources also matrices
S ∈ C2n×2n satisfying S∗JS = J are called symplectic, where the superscript ∗ denotes
the conjugate transposed matrix or vector.

In this paper, we consider more general matrices. If J ∈ F
2n×2n is a skew-symmetric

invertible matrix, then a matrix S ∈ F2n×2n is called J-symplectic if ST JS = J . In the
case F = C, it makes no difference whether we consider skew-Hermitian or Hermitian
invertible matrices J ∈ C2n×2n, since the equality S∗JS = J remains true if we replace
J by iJ . When referring to invertible Hermitian matrices J ∈ C

m×m, where m is
allowed to be odd, matrices S ∈ Cm×m are called J-unitary if S∗JS = J . We will
adapt this terminology in this paper, but, having in mind applications where J is as
in (1.1), we will always assume that m = 2n is even.

We make use of the standard bilinear and (in the case F = C) sesquilinear forms on
F

2n:

〈x, y〉 =
2n∑

j=1

xjyj, x = [x1, . . . , x2n]T , y = [y1, . . . , y2n]T ∈ F
2n,

〈x, y〉∗ =
2n∑

j=1

xjyj, x = [x1, . . . , x2n]T , y = [y1, . . . , y2n]T ∈ C
2n.

Definition 1.1 Let J ∈ F2n×2n be either skew-symmetric and invertible (or in the
complex case only, Hermitian and invertible, respectively).

1. A subspace M ⊆ F
2n is called J-Lagrangian if dimM = n and

〈Jx, y〉 = 0 for all x, y ∈ M
or in the case of Hermitian J if 〈Jx, y〉∗ = 0 for all x, y ∈ M.

2. For a J-symplectic (or J-unitary, in the case of Hermitian J) matrix S ∈ F2n×2n,
we denote by IL(S, J) the set of all S-invariant J-Lagrangian subspaces.

We will always assume in this paper that if J is Hermitian and invertible (complex
case), then J has n positive and n negative eigenvalues (counted with multiplicities).
This assumption guarantees that the set of J-Lagrangian subspaces is not empty.

It is well known that J-symplectic matrices, and in particular their invariant La-
grangian subspaces, play a key role in many applied problems. In the next subsections
we present several such problems.

1.1 Discrete time optimal control

The classical application, where symplectic matrices and invariant Lagrangian sub-
spaces arise, is the discrete time optimal control problem to minimize

∞∑

j=0

(x∗
jQxj + u∗

jRuj) (1.2)
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subject to the discrete time control problem

xk+1 = Axk + Buk,

with x0 given. Here the coefficients are assumed to satisfy Q = Q∗ ∈ F
n×n, B ∈ F

n×m,
and R = R∗ ∈ Fm×m. In classical linear quadratic optimal control, the matrix Q
in (1.2) is real symmetric (or Hermitian) positive semidefinite, with R being positive
definite [33, 24].

Applying discrete time variational calculus (the discrete time version of the Pontrya-
gin maximum principle) [33], this problem yields as a necessary condition the discrete
boundary value problem




I 0 0
0 −A∗ 0
0 −B∗ 0







xk+1

µk+1

uk+1


 =




A 0 B
Q −I S
S∗ 0 R







xk

µk

uk


 , (1.3)

with boundary values
x0 = x0, lim

k→∞
µk = 0.

Here µk represents a sequence of Lagrange multipliers. Inserting the equation for uk

leads to the reduced boundary value problem

[
I BR−1B∗

0 −(A − BR−1S∗)∗

] [
xk+1

µk+1

]
=

[
A − BR−1S∗ 0
Q − SR−1S∗ −I

] [
xk

µk

]
,

and if, furthermore, Ã := A − BR−1S∗ is invertible, then the problem can be written
as [

xk+1

µk+1

]
= S

[
xk

µk

]
,

where the matrix

S =

[
Ã + BR−1B∗(Ã−1)∗(Q − SR−1S∗) −BR−1B∗(Ã−1)∗

−(Ã−1)∗(Q − SR−1S∗) +(Ã−1)∗

]

satisfies ST JS = J in the real case and S∗JS = J in the complex case and J is as in
(1.1).

The solution of the boundary value problem can be achieved by computing a La-
grangian invariant subspace of S that allows to decouple the state sequence {xk} from
the Lagrange multiplier sequence {µk}. In general, from the numerical point of view it
is better to solve the generalized eigenvalue problem for the matrix pencil associated
with the original boundary value problem, but in many applications the problem is
solved by computing an appropriate J-Lagrangian subspace of S, see e.g. [24, 33].
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1.2 High speed trains

A project of the company SFE GmbH in Berlin investigates rail traffic noise caused
by high speed trains [18, 19]. The vibration of an infinite rail track is simulated and
analyzed to obtain information on the development of noise between wheel and rail.
Discretizing the problem using classical finite element techniques and using the period-
icity of the rail leads to the complex eigenvalue problem

P (κ)y =
1

κ
(AT

1 + κA0 + κ2A1)y = 0,

where A0 is complex symmetric. Such eigenvalue problems are called palindromic in
[30], since (except for transposition) the coefficients are the same if the order is reversed.
It should be noted that A1 is highly rank deficient and due to the underlying physical
properties this problem has no eigenvalues 1,−1. However, eigenvalues close to 1 and −1
occur in practice, see [19] for more details. With these properties, structure preserving
linearization as introduced in [30] leads to a generalized palindromic eigenvalue problem
(λBT +B)z = 0 or equivalently Tz = λz with T = (B−1)T B, which according to [20, 51]
is similar to a symplectic matrix. A similar palindromic eigenvalue problem is derived
in the context of discrete time optimal control, and is studied in [49].

1.3 Discrete time H∞-control

Another important application of symplectic matrices is the design of suboptimal H∞-
controllers, based on the solution of discrete-time algebraic Riccati equations (see [9, 17]
for the continuous time case). The discrete H∞-control problem was first considered in
[53].

Consider a linear discrete-time system, described by the equations

xk+1 = Axk + B1wk + B2uk,

zk = C1xk + D11wk + D12uk, (1.4)

yk = C2xk + D21wk + D22uk,

where xk ∈ R
n is the state vector, wk ∈ R

m1 is an exogenous input vector (the dis-
turbance), uk ∈ Rm2 is the control input vector, zk ∈ Rp1 is a controlled vector, and
yk ∈ Rp2 is a measurement vector. The transfer function matrix of the system is denoted
by

P (z) =

[
P11(z) P12(z)
P21(z) P22(z)

]
=̂




A B1 B2

C1 D11 D12

C2 D21 D22


 .

The H∞-suboptimal discrete-time control problem is to find an internally stabilizing
controller K(z) such that, for a pre-specified positive value of γ, the inequality

‖Tzw(z)‖∞ < γ
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is satisfied, where Tzw(z) is the transfer function from w to z, given by

Tzw(z) = P11 + P12K(I − P22K)−1P21.

In the H∞-optimization control problem one tries to find the infimum for γ. This
infimum is usually computed numerically by a root-finding procedure involving the
computation of the solution of two discrete-time Riccati equations. Since often the
norm of these Riccati solutions approaches ∞ when γ approaches the optimal value, it
is preferable to compute Lagrangian J-invariant subspaces of the associated symplectic
matrices, see [35]. It is important to note that close to the optimal value of γ typically
eigenvalues of the symplectic matrices approach the unit circle and hence a detailed
perturbation theory is necessary to determine whether the Lagrangian invariant sub-
spaces have been computed in a sufficiently accurate manner. A similar approach is
carried out in the continuous time case where the computation of the optimal γ is
improved by computing J-Lagrangian invariant subspaces of Hamiltonian matrices [55]
or, what is even better, structured matrix pencils, see [3, 4].

1.4 Notation

In the following we denote by Jm(λ) an upper triangular m × m Jordan block with
eigenvalue λ. By Jm(a ± ib) we denote a quasi-upper triangular m × m real Jordan
block with nonreal complex conjugate eigenvalues λ, λ, i.e. m is even and the 2 × 2
blocks on the main block diagonal of Jm(a ± ib) have the form

[
a b
−b a

]
,

where λ = a+ib, a, b ∈ R, b 6= 0. The transpose and the conjugate transpose of a matrix
A will be denoted AT and A∗, respectively, and we use the shorthand A−T := (A−1)T ,
A−∗ := (A−1)∗.

The spectrum of a matrix A ∈ F
2n×2n, i.e., the set of eigenvalues including possibly

nonreal eigenvalues of real matrices, is denoted by σ(A). We use a fixed matrix norm
‖ · ‖ throughout, namely, the spectral norm ‖ · ‖2, i.e., the largest singular value.

We let
R(A;λ) := Ker (A − λI)2n ⊆ F

2n

stand for the root subspace of a real matrix A ∈ F2n×2n corresponding to an eigenvalue
λ ∈ F. If A is a real matrix, we also let

R(A; a ± ib) := Ker
(
A2 − 2aA + (a2 + b2)I

)2n ⊆ R
2n

stand for the root subspace of A corresponding to a pair of nonreal complex conjugate
eigenvalues a ± ib of A (here a, b ∈ R, b 6= 0).

A block diagonal matrix with diagonal blocks X1, . . . , Xq (in that order) is denoted
by X1 ⊕ X2 ⊕ · · · ⊕ Xq.
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If M ⊆ F
m is a subspace, we denote by M⊥ the orthogonal complement of M

with respect to the standard Euclidean metric in Fm. N stands for the set of positive
integers.

For most of the paper, we consider the following three cases separately.

F = R, and J ∈ R
2n×2n is skew-symmetric and invertible; (I)

F = C, and J ∈ C
2n×2n is skew-symmetric and invertible; (II)

F = C, and J ∈ C
2n×2n is Hermitian with n positive (III)

and n negative eigenvalues (counted with multiplicities).

1.5 Overview of the paper

We study various stability properties of S-invariant, J-Lagrangian subspaces under
small perturbations of S and of both S and J , and some applications of these stability
properties.

We start in Section 2 with a review of various stability concepts of invariant sub-
spaces of matrices without symmetries. In Section 3 we begin our analysis of Lagrangian
invariant subspaces by adapting the general concepts of stable invariant subspaces to
the case of structured perturbations relevant to symplectic matrices and Lagrangian
subspaces. The subsequent sections 4, 5, and 6 represent the core of the paper. Here,
we provide detailed analysis, and in many cases also characterizations, of invariant
Lagrangian subspaces with various stability properties. In Section 4 we study real
J-symplectic matrices (case (I)), in Section 5 we study the case (II) of complex J-
symplectic matrices, whereas Section 6 is devoted to complex J-unitary matrices (case
(III)). We bring out much of the necessary background, including canonical forms, to
make the presentation reasonably self-contained. Each of the sections 4, 5, and 6 is
concluded with examples that illustrate the results of the respective section, as well
as similarities and differences between the three situations. Particular cases of sta-
ble invariant Lagrangian subspaces with certain spectral properties, namely, such that
the spectrum of the restriction to the subspace lies entirely inside the closed unit disk
or entirely outside the open unit disk, are highlighted in Section 7. Such invariant
Lagrangian subspaces play a key role in many applications.

For the readers’ convenience and ease of reference, many sections are divided into
subsections.

2 Stability of invariant subspaces

In this section we recall some general concepts of stability (introduced and first studied
in [1, 8]) and α-stability (introduced and studied in [44, 46]), for invariant subspaces
of general matrices. Many other notions of stability of invariant subspaces of matrices,
as well as of linear bounded operators in infinite dimensional Banach spaces have been
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studied since; we mention here only a representative sample of books where this material
is treated in some way and where further references can be found, [1, 15, 13, 22, 48],
and papers which are most relevant to the present paper [38, 40, 42, 44, 46, 47], see
also [23] for the related analysis of the Hamiltonian Schur form.

To study the stability properties of invariant subspaces, we make use of the gap
between two subspaces M ⊆ Fm and N ⊆ Fm, which is defined by

gap (M,N ) := ‖PM − PN‖,

where PM is the orthogonal (with respect to the standard Euclidean inner product
in Fm) projection onto M, and where ‖ · ‖ stands for the operator norm (the largest
singular value). This notion is well-known in the literature, see, for example, [15, 52]
for basic properties of the gap in the context of finite dimensional vector spaces. The
following fact will be especially useful.

Lemma 2.1 If Q ∈ F
m×m is invertible and M,N ⊆ F

m are two subspaces, then

1

κ
· gap (QM, QN ) ≤ gap (M,N ) ≤ κ · gap (QM, QN ),

where κ := ‖Q‖ · ‖Q−1‖ is the condition number of Q.

For the proof, observe that QPMQ−1, resp. QPNQ−1, is a (not necessarily orthog-
onal) projection onto QM, resp. QN , and therefore (see for example [15, Theorem
13.1.1])

gap (QM, QN ) ≤ ‖QPMQ−1 − QPNQ−1‖,
which leads to

gap (QM, QN ) ≤ ‖Q‖ · ‖PM − PN‖ · ‖Q−1‖ = κ · gap (M,N ),

as required.

Lemma 2.1 will allow us in many cases to use various canonical forms for J-
symplectic matrices in proofs of our main results (Sections 4, 5, 6).

Definition 2.2 Let X ∈ F
m×m and let M ⊆ F

m be an X-invariant subspace.

1) M is said to be stable if for every ε > 0 there exists δ > 0 such that if

X ′ ∈ F
m×m and ‖X − X ′‖ < δ, (2.1)

then there exists an X ′-invariant subspace M′ ∈ F
m such that gap (M,M′) < ε.

2) M is said to be α-stable if there exist constants δ,K > 0 (depending on X only)
such that if (2.1) holds, then there exists an X ′-invariant subspace M′ ∈ Fm such
that

gap (M,M′) ≤ K
(
‖X − X ′‖

) 1

α .
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3) We say that α ≥ 1 is the index of stability of M if M is α-stable and is not
β-stable for any β such that 1 ≤ β < α.

The following theorem is basic in the study of stable invariant subspaces. It was
proved in [1, 8] in the complex case, and in [2] in the real case.

Theorem 2.3 Let X ∈ F
m×m and let M ⊆ F

m be an X-invariant subspace.

(a) If F = C, then M is stable if and only if for every eigenvalue λ of X such that
dim Ker (X − λI) > 1, we have either

M∩R(X;λ) = {0} or M ⊇ R(X;λ);

(b) If F = R, then M is stable if and only if

(1) for every pair of nonreal complex conjugate eigenvalues λ ± iµ of X such
that

dim Ker (X2 − 2λX + (λ2 + µ2)I) > 2

we have either

M∩R(X;λ ± iµ) = {0} or M ⊇ R(X;λ ± iµ);

(2) for every real eigenvalue λ of X such that dim Ker (X − λI) > 1, we have
either

M∩R(X;λ) = {0} or M ⊇ R(X;λ);

(3) for every real eigenvalue λ of X such that dim Ker (X − λI) = 1 and
dimR(X;λ) is even, the dimension of M∩R(X;λ) is also even.

Given integers k, m, where 0 ≤ k ≤ m, m > 0, we define

αC(m, k) :=





1 if k = 0 or k = m;

m − 1 if 1 ≤ k ≤ m − 1 and there exist k distinct m-th
roots of unity that sum up to 0;

m in all other cases.

(2.2)

Note that αC(m, k) = αC(m,m − k). The following results on α-stability of invariant
subspaces for complex matrices were proved in [46].

Theorem 2.4 Let Jm(λ) be an m × m Jordan block with an eigenvalue λ ∈ C. Then
the (unique) k-dimensional Jm(λ)-invariant subspace is stable and its index of stability
is αC(m, k).
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Theorem 2.5 Let X ∈ C
m×m, let λ1, . . . , λp be the pairwise distinct eigenvalues of X,

and let M ⊆ Cm be a stable X-invariant subspace. Then the index of stability of M is
equal to

max
j=1,2,...,p

{
αC

(
dimR(X;λj), dim

(
R(X;λj) ∩M

))}
.

We need some additional notation to state the analogue of Theorem 2.5 for the
real case. A finite set of complex numbers {ζ1, · · · , ζm} will be called zero sum self
conjugate if ζ1 + · · · + ζm = 0, and if the non-real elements of the set can be arranged
in pairs of complex conjugate numbers. For two integers k and m, with 0 ≤ k ≤ m,
m > 0, we define

αR(m, k) :=





1 if k = 0 or k = m;

m if one of the following three cases holds:
(i) 0 < k < m, m is odd and there is no zero sum

self conjugate set of k distinct m-th roots of 1;
(ii) m is even and k is odd;
(iii) m is even and divisible by 4, k is also even but not

divisible by 4, and there is no zero sum self
conjugate set of k distinct m-th roots of −1;

m − 1 in all other cases.
(2.3)

For the real case, then in [43] the following result was proved.

Theorem 2.6 Let X ∈ R
m×m and let M ⊆ R

m be a stable X-invariant subspace. Let
λ1, . . . , λp denote the pairwise distinct real eigenvalues of X, and µ1 ± iν1, . . . , µq ± iνq,
µj, νj ∈ R, νj 6= 0, the pairwise distinct pairs of nonreal complex conjugate eigenvalues
of X. Then the index of stability of M is equal to the largest of the two numbers

max
j=1,2,...,p

{
αR

(
dimR(X;λj), dim

(
R(X;λj) ∩M

))}

and

max
j=1,2,...,q

{
αC

(
dimR(X;µj ± iνj)

2
,

dim (R(X;µj ± iνj) ∩M)

2

)}
.

(The maximum of an empty set of numbers is here taken to be equal to 1.)

After recalling the stability results for general matrices, in the next section we
present some basic results on the stability of J-Lagrangian subspaces.

3 Stability of J-Lagrangian invariant subspaces

We begin our analysis of Lagrangian invariant subspaces by adapting Definition 2.2 to
the case of structured perturbations relevant to symplectic matrices and Lagrangian
subspaces.
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Definition 3.1 Consider the cases (I) or (II) with S ∈ F
2n×2n being J-symplectic

(resp., the case (III) with S ∈ C2n×2n being J-unitary). Moreover, let M ∈ IL(S, J).

1. The subspace M is called stable, if for every ε > 0 there exists δ > 0 so that if J ′

is skew-symmetric (resp., Hermitian with n positive and n negative eigenvalues)
and if S ′ is J ′-symplectic (resp., J ′-unitary) satisfying

‖S − S ′‖ + ‖J − J ′‖ < δ,

then there exists M′ ∈ IL(S ′, J ′) with the property that gap (M,M′) < ε.

2. The subspace M is called J-stable, if for every ε > 0 there exists δ > 0 so that if
S ′ is J-symplectic (resp., J-unitary) satisfying

‖S − S ′‖ < δ,

then there exists M′ ∈ IL(S ′, J) with the property that gap (M,M′) < ε.

3. M is called conditionally stable, if for every ε > 0 there exists δ > 0 so that if J ′

is skew-symmetric (resp., Hermitian with n positive and n negative eigenvalues)
and S ′ is J ′-symplectic (resp., J ′-unitary) satisfying

‖S − S ′‖ + ‖J − J ′‖ < δ,

then either IL(S ′, J ′) = ∅ or there exists M′ ∈ IL(S ′, J ′) with the property that
gap (M,M′) < ε.

4. M is called conditionally J-stable, if for every ε > 0 there exists δ > 0 so that if
S ′ is J-symplectic (resp., J-unitary) satisfying

‖S − S ′‖ < δ,

then either IL(S ′, J) = ∅ or there exists M′ ∈ IL(S ′, J) with the property that
gap (M,M′) < ε.

5. For a fixed α ≥ 1, the subspace M is called α-stable, if there exists δ,K > 0 such
that if J ′ is skew-symmetric (resp., Hermitian with n positive and n negative
eigenvalues) and S ′ is J ′-symplectic (resp., J ′-unitary) satisfying

‖S − S ′‖ + ‖J − J ′‖ < δ,

then there exists M′ ∈ IL(S ′, J ′) such that

gap (M,M′) ≤ K
(
‖S − S ′‖ + ‖J − J ′‖

) 1

α .

The concepts of J-α-stability, conditional α-stability, and conditional J-α-stability
are defined in the obvious way.

Remark 3.2 The following obvious implications hold for subspaces M ∈ IL(S, J):

α−stability
α≤β⇒ β−stability ⇒ stability ⇒ conditional stability.
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3.1 Stability and J-stability

In this subsection, we will relate stability (in any sense) with J-stability (in the same
sense). We start with the following lemma.

Lemma 3.3 (a) Let J ∈ F
2n×2n be an invertible skew-symmetric matrix.

Then there exist positive constants δ and K such that the implication

J ′ ∈ F
2n×2n skew-symmetric, ‖J ′ − J‖ < δ =⇒ J ′ = XTJX

holds for some invertible X ∈ F2n×2n satisfying the inequality ‖X − I‖ ≤ K‖J ′ − J‖.
(b) Let F = C, and let J ∈ C2n×2n be an invertible Hermitian matrix. Then there

exist positive constants δ and K such that the implication

J ′ ∈ C
2n×2n Hermitian, ‖J ′ − J‖ < δ =⇒ J ′ = XT JX

holds for some invertible X ∈ C2n×2n satisfying the inequality ‖X − I‖ ≤ K‖J ′ − J‖.

Proof. The proof of part (b) follows easily by using the Lagrange algorithm for reduc-
tion of a sesquilinear form to a sum of squares (see [27], for example), or use a more
direct approach of [36]. For part (a) use a standard reduction of a skew-symmetric
form to a canonical structure (see, for example, [21, Section V.10]).

It should be noted that we do not need Lemma 3.3 (b) in its full generality but
we will apply it only to the case that J has an equal number of negative and positive
eigenvalues.

Theorem 3.4 Consider cases (I) or (II) and let S ∈ F2n×2n be J-symplectic (or con-
sider case (III) and let S ∈ C

2n×2n be J-unitary, respectively). Then the subspace
M ∈ IL(S, J) is J-stable in any sense if and only if M is stable in the same sense.

Proof. We give the proof for α-stability and for J-symplectic matrices, i.e., for the case
that (I) or (II) holds. In all other cases the proof is similar. The ’if’-part is obvious.
So let M ∈ IL(S, J) be J-α-stable, where J ∈ F

2n×2n is an invertible skew-symmetric
matrix. By assumption, there exist constants δ′,K ′ > 0 such that if S0 is J-symplectic
and

‖S − S0‖ < δ′,

then there exists M0 ∈ IL(S0, J) such that

gap (M,M0) ≤ K ′
(
‖S − S0‖

) 1

α . (3.1)

Now assume that the matrix S ′ ∈ F
2n×2n is J ′-symplectic, where J ′ ∈ F

2n×2n is skew-
symmetric and invertible, and where

δ0 := ‖J ′ − J‖ + ‖S ′ − S‖.
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Here, δ0 has to satisfy several restrictions in terms of inequalities. The first restriction
is that δ0 ≤ δ, where δ is taken from Lemma 3.3. Then, by Lemma 3.3, there exists an
invertible matrix X such that J ′ = XT JX and the inequality ‖X − I‖ ≤ K‖J ′ − J‖
holds. Moreover, the matrix S0 := XS ′X−1 is J-symplectic and satisfies

‖S0 − S‖ = ‖XS ′X−1− S‖ ≤ ‖X‖ · ‖S ′‖ · ‖X−1− I‖ + ‖X− I‖ · ‖S ′‖ + ‖S ′ − S‖.

Using the inequalities

‖X − I‖ ≤ Kδ0, ‖X‖ ≤ 1 + Kδ0, ‖I − X−1‖ ≤ Kδ0

(1 − Kδ0)
,

where K is taken from Lemma 3.3, we obtain that

‖S0 −S‖ < (1 + Kδ0)
(
‖S‖+ δ0

) Kδ0

(1 − Kδ0)
+ Kδ0

(
‖S‖+ δ0

)
+ δ0 ≤ K1δ0, (3.2)

where the positive constant K1 depends only on ‖S‖ and K.
Suppose now that δ0 has been chosen so that the right hand side of (3.2) is less than

δ′. Then (3.1) holds for some M0 ∈ IL(S0, J). So we obtain

gap (M,M0) ≤ K ′K
1

α

1 δ
1

α

0 = K ′K
1

α

1

(
‖J ′ − J‖ + ‖S ′ − S‖

) 1

α . (3.3)

Let M′ := X−1(M0). Then M′ ∈ IL(S ′, J ′) and

gap (M′,M0) ≤ ‖X−1PX − P‖,

where P is the orthogonal projection on M0 (this is a standard property of the gap
metric, see [15, Theorem 13.1]). Arguing as in the proof of inequality (3.2), we see that

gap (M′,M0) < K2δ0 = K2 (‖J ′ − J‖ + ‖S ′ − S‖) , (3.4)

for some constant K2 which depends on K only. Combining (3.3) and (3.4), we obtain

gap (M′,M) ≤ K3

(
‖J ′ − J‖ + ‖S ′ − S‖

) 1

α ,

as required.

With Theorem 3.4 in hands, there is no need to distinguish between stability and
J-stability. In the following, we will only mention stability results, since it is clear that
corresponding results for J-stability can always be stated. On the other hand, we will
often use the equivalence of stability and J-stability in proofs without further notice.
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3.2 Localization principle and index of stability

An important tool in the stability analysis of invariant subspaces is the so-called lo-
calization principle. It will often allow us to reduce the proofs to the case when the
matrices S have minimal (by inclusion) spectra.

Before stating the theorem, we make a useful remark concerning J-orthogonality of
root subspaces. Two subspaces M1,M2 ⊆ F2n are said to be J-orthogonal if 〈Jx, y〉 = 0
(in cases (I) and (II)), or 〈Jx, y〉∗ = 0 (in case (III)), for all x ∈ M1 and all y ∈ M2.

Remark 3.5 For J-symplectic matrices (in cases (I) and (II)) or J-unitary matrices
(in case (III)), there are certain J-orthogonality relations between root subspaces of
such matrices. We have in mind the following statement, for instance:

If S ∈ C2n×2n is J-unitary, and if σ1, σ2 are nonempty parts of the spectrum of S
such that σ1∩σ2 = ∅ and the sum, denoted Nj, of the root subspaces of S corresponding
to σj is J-nondegenerate in the sense that zero is the only vector in cNj which is J-
orthogonal to every vector in Nj, for j = 1, 2, then the subspaces N1 and N2 are
J-orthogonal.

This statement can be found in, e.g., [5, 16] and follows, as well as analogous state-
ments for the cases (I) and (II), from the respective canonical forms, to be presented
later in the paper. These statements could also be proved independently, but we refrain
from doing so.

Theorem 3.6 (Localization principle) Consider one of the cases (I)–(III) and let
S ∈ F

2n×2n. Suppose that

J = J1 ⊕ J2 ⊕ · · · ⊕ Jk and S = S1 ⊕ S2 ⊕ · · · ⊕ Sk, (3.5)

where Ji, Si ∈ F
ni×ni,

∑k
i=1 ni = 2n, and where

σ(Si) ∩ σ(Sj) = ∅ for i 6= j, i, j = 1 . . . , k. (3.6)

Assume that a given subspace M is S-invariant and J-Lagrangian. Then ni is even for
i = 1, . . . , k and

M = M̃1+̇M̃2+̇ · · · +̇M̃k, (3.7)

where M̃i =








x1

...
xk


 : xj ∈ F

nj , j = 1, . . . , k; xj = 0 if j 6= i; xi ∈ Mi





,

and where the subspace Mi is Si-invariant and Ji-Lagrangian, for i = 1, 2, . . . , k.
Moreover, in case S is J-symplectic (if (I)) or (II) holds), or in case S is J-unitary

(if (III) holds), then M is stable in any of the senses defined in Definition 3.1 if and
only if Mi is stable in the same sense for i = 1, 2, . . . , k.
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Proof. For notational simplicity, we assume k = 2 in the proof. Clearly, since S1

and S2 have no common eigenvalues, M is of the form (3.7) as in the assertion, where

Mi is Si-invariant. Evidently, the subspaces M̃1 and M̃2 are J-orthogonal. From the
fact that M is J-Lagrangian it follows that M̃i is Ji-Lagrangian for both i = 1, 2. In
particular, this implies that ni is even for i = 1, 2. (Notice that the decomposition (3.5)
of J and the standing hypothesis that J is invertible already guarantees that the size
of each Ji is even in cases (I) and (II).)

For the remainder of the proof, we only consider the symplectic case, i.e., the case
that (I) or (II) holds. (In the case that (III) holds, the proof is virtually the same).

The “only if” part. Let S be J-symplectic, and assume that M is stable (in one of
the senses given in Definition 3.1). Let S ′

i be J ′
i-symplectic and suppose these matrices

are small perturbations of Si and Ji (with the additional condition that there exists an
S ′

i-invariant J ′
i-Lagrangian subspace if we are in the conditional case, or with the extra

assumption that Ji = J ′
i if needs be). Form S ′ = S ′

1 ⊕S ′
2 and J ′ = J ′

1 ⊕ J ′
2. Then these

matrices are small perturbations of S and J , respectively. Since M is stable, there is
an S ′-invariant J-Lagrangian subspace M′ close to M (in the sense indicated). Now
S1 and S2 have no common eigenvalues, and hence, provided the perturbation is small
enough, neither have S ′

1 and S ′
2. Then M′ decomposes as the direct sum of subspaces

in the same way as M does. Moreover, it is easy to see that the inequality

sup
i=1,2

gap(Mi,M′
i) ≤ gap(M,M′)

holds. From this inequality, we obtain that each Mi is stable in the same sense as M
is.

The “if” part. We will give the proof for the case of stability, the other cases may
be done similarly (for α-stability and its variations, one uses the perturbation theory
for invariant subspaces, see for example [52, Theorem V.2.7]). Thus, let each of the
Mi’s be stable, and we have to prove that M is stable. By Theorem 3.4 it suffices to
prove that M is J-stable. We consider a J-symplectic (or J-unitary as the case may
be) matrix S ′ such that ‖S ′ − S‖ < δ, where δ > 0 is chosen sufficiently small.

Now let γ be a simple closed rectifiable contour such that σ(S1) is inside γ and
σ(S2) is outside γ. For δ sufficiently small, γ will split the spectrum of S ′ as well. Let
P ′ be the projection onto the sum of root subspaces of S ′ inside γ (the range of P ′)
along the sum of root subspaces of S outside γ (the kernel of P ′). Because of Remark
3.5, RangeP ′ and Ker P ′ are J-orthogonal to each other. From now on argue as in the
proof of [37, Theorem 3.1].

To obtain more precise statements concerning α-stability, we recall the concept of
index of stability, introduced and first studied in [41, 46].

Definition 3.7 Consider the cases (I) or (II) and let S ∈ F2n×2n be J-symplectic
(resp., consider the case (III) and let S ∈ C2n×2n be J-unitary). Suppose that the
subspace M ∈ IL(S, J) is α-stable for some α ≥ 1. We say that α0 ≥ 1 is the index
of stability of M if M is α0-stable but is not α-stable for any α with 1 ≤ α < α0.
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Analogously, the index of conditional stability, the index of J-stability, and the index
of conditional J-stability are defined. By Theorem 3.4 the indices of stability and of J-
stability coincide, and the indices of conditional stability and of conditional J-stability
coincide as well.

We do not know whether (or not) the index of stability, or the index of conditional
stability, always exists (provided the S-invariant J-Lagrangian subspace is α-stable, or
conditionally α-stable, to start with). In all our statements, when a value of an index is
given, it will be understood that the existence of the index is implied by the hypotheses
of a statement. Note that α-stability with α = 1 is often termed Lipschitz stability in
the literature. We relate now the index of stability to the localization principle.

Theorem 3.8 Under the hypotheses and notation of Theorem 3.6, suppose the sub-
space Mi is α-stable, resp., conditionally α-stable, with the index of stability, resp., of
conditional stability, equal to κi, for i = 1, 2, . . . , k. Then the index of stability of M is
equal to max{κ1, . . . , κk}.

Proof. Theorem 3.8 follows from the proof of Theorem 3.6.

In this section we have studied some general concepts for stability of J-Lagrangian
invariant subspaces. We will now study the three cases (I)–(III) separately.

4 Case (I): real J-symplectic matrices

In this section we study the case (I), i.e., J ∈ R2n×2n is a fixed invertible and skew-
symmetric matrix, and S ∈ R

2n×2n is J-symplectic. All matrices in this section are
assumed to be real. For the proofs of the main results of this section, it will be con-
venient first to formulate and prove corresponding results for J-Hamiltonian matrices
that will be introduced in Subsection 4.1, where we also relate J-Hamiltonian and
J-symplectic matrices via the Cayley transform and present canonical forms. Then
Subsection 4.2 is dedicated to the analysis of Lagrangian subspaces for J-Hamiltonian
matrices and Subsection 4.3 to the corresponding analysis in the J-symplectic case. Fi-
nally, we illustrate the main results with the help of a few examples in Subsection 4.4.

4.1 Canonical forms

A matrix A ∈ R2n×2n is called J-Hamiltonian if AT J + JA = 0. We first present the
canonical form of real J-Hamiltonian matrices which is available in many sources, see,
e.g., [24, 29], or [26, 54] in the framework of pairs of symmetric and skew-symmetric
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matrices. The following special notation is used:

Σk =




0 · · · 0 (−1)0

... . .
.

(−1)1 0

0 . .
. ...

(−1)k−1 0 · · · 0




=




0 1
−1

1
−1

. .
.

0




= (−1)k−1ΣT
k , (4.1)

Thus, Σk is symmetric if k is odd, and skew-symmetric if k is even. Moreover, we use
the skew-symmetric matrices Σk ⊗Σk

2. Here, ⊗ denotes the Kronecker (tensor) product
[aij ] ⊗ B = [aijB]. For example, for k = 1, 2, 3, we have

Σ1 ⊗ Σ1
2 =

[
0 1

−1 0

]
, Σ2 ⊗ Σ2

2 =

[
0 −I2

I2 0

]
, Σ3 ⊗ Σ3

2 =




0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0




.

Theorem 4.1 Let A be real J-Hamiltonian. Then there exists a real, invertible matrix
P such that P−1AP and P T JP are block diagonal matrices

P−1AP = A1 ⊕ · · · ⊕ As, P TJP = J1 ⊕ · · · ⊕ Js, (4.2)

where each diagonal block (Aj, Jj) is of one of the following five types:

(i) Aj = J2n1
(0) ⊕ · · · ⊕ J2np

(0), Jj = κ1Σ2n1
⊕ · · · ⊕ κpΣ2np

,

where κ1, . . . , κp ∈ {+1,−1};

(ii) Aj =

[
J2m1+1(0) 0

0 −J2m1+1(0)T

]
⊕ · · · ⊕

[
J2mq+1(0) 0

0 −J2mq+1(0)T

]
,

Jj =

[
0 I2m1+1

−I2m1+1 0

]
⊕ · · · ⊕

[
0 I2mq+1

−I2mq+1 0

]
;

(iii) Aj =

[
Jℓ1(a) 0

0 −Jℓ1(a)T

]
⊕ · · · ⊕

[
Jℓr

(a) 0
0 −Jℓr

(a)T

]
,

Jj =

[
0 Iℓ1

−Iℓ1 0

]
⊕ · · · ⊕

[
0 Iℓr

−Iℓr
0

]
,

where a > 0, and the number a, the total number 2r of Jordan blocks, and the
sizes ℓ1, . . . , ℓr depend on the particular diagonal block (Aj, Jj);
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(iv) Aj =

[
J2k1

(a ± ib) 0
0 −J2k1

(a ± ib)T

]
⊕· · ·⊕

[
J2ks

(a ± ib) 0
0 −J2ks

(a ± ib)T

]
,

Jj =

[
0 I2k1

−I2k1
0

]
⊕ · · · ⊕

[
0 I2ks

−I2ks
0

]
,

where a, b > 0, and again the numbers a and b, the total number 2s of Jordan
blocks, and the sizes 2k1, . . . , 2ks depend on (Aj, Jj);

(v) Aj = J2h1
(±ib) ⊕ · · · ⊕ J2ht

(±ib), Jj = η1(Σh1
⊗ Σh1

2 ) ⊕ · · · ⊕ ηt(Σht
⊗ Σht

2 ),

where b > 0 and η1, . . . , ηt are signs ±1. Again, the parameters b, t, h1, . . . , ht,
and η1, . . . , ηt depend on the particular diagonal block (Aj, Jj).

There is at most one block each of type (i) and (ii). Furthermore, two blocks Ai and Aj

of one of the types (iii)–(v) have nonintersecting spectra if i 6= j. Moreover, the form
(4.2) is uniquely determined by the pair (A, J), up to a simultaneous permutation of
diagonal blocks in the right hand sides of (4.2).

We see from Theorem 4.1 that there are signs κi, ηj ∈ {+1,−1} associated with
each even partial multiplicity of the zero eigenvalue and with each partial multiplicity
corresponding to purely imaginary eigenvalues ib of A with b > 0. These signs are said
to form the sign characteristic of the pair (A, J). This terminology was introduced in
[12] in the context of selfadjoint matrices with respect to complex sesquilinear indefinite
inner products, see also [11, 29].

It is well-known that J-Hamiltonian and J-symplectic matrices as well as their sign
characteristics are closely related via the Cayley transform. If M,N ∈ Rm×m, if 1 is
not an eigenvalue of M , and −1 is not an eigenvalue of N , then we set

C1(M) := (I − M)−1(I + M), C−1(N) := (I + N)−1(I − N).

The following lemma is well known. Its proof can be found in many sources, see, e.g.,
[16, 24, 34].

Lemma 4.2 (Cayley transform) Let S ∈ R2n×2n be J-symplectic.

(a) If 1 is not an eigenvalue of S, then the matrix A1 := C1(S) = (I −S)−1(I + S) is
J-Hamiltonian and +1,−1 are not eigenvalues of A1. Moreover, we have

S = C−1
1 (A1) = (A1 − I)(A1 + I)−1.

(b) If −1 is not an eigenvalue of S, then the matrix A2 := C−1(S) = (I +S)−1(I −S)
is J-Hamiltonian and +1,−1 are not eigenvalues of A2. Moreover, we have

S = C−1
−1(A2) = (I − A2)(A2 + I)−1.
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Using Theorem 4.1 and the Cayley transform, we obtain a canonical form for real J-
symplectic matrices. Again, such canonical forms (in various presentations) are known,
see [10, 28, 29, 31, 50]. Nevertheless, we provide an independent presentation, because
we need a special version that allows us to easily relate the sign characteristics of
J-Hamiltonian and J-symplectic matrices via the Cayley transform.

We need additional notation that we adopt from [50]. For ε ∈ {+1,−1} let

Tk(ε) := C−1
−ε

(
Jk(0)

)
:= ε




1 (−1)2 (−1)22 . . . (−1)k−12

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . (−1)22
...

. . .
. . . (−1)2

0 . . . . . . 0 1




(4.3)

and for ω ∈ C, |ω| = 1, Im(ω) > 0, let b = i(ω + 1)/(ω − 1) and

Q1 =
1

b2 + 1

[
b2 − 1 2b
−2b b2 − 1

]
, Qk = 2

( −1

b2 + 1

[
1 −b
b 1

])k

, k ≥ 2,

and T2k(ω, ω) =




Q1 Q2 . . . Qk−1

0
. . .

. . .
...

...
. . .

. . . Q2

0 . . . 0 Q1




, k ≥ 1. (4.4)

Clearly, Tk(ε) is similar to one Jordan block of size k associated with the eigenvalue ε
and the real matrix T2k(ω, ω) is similar (over the complex field) to a matrix with two
Jordan blocks of size k associated with the unimodular eigenvalues ω and ω.

Theorem 4.3 Let S ∈ R
2n×2n be J-symplectic. Then there exists a nonsingular matrix

P such that P−1SP and P T JP are block diagonal matrices

P−1SP = S1 ⊕ · · · ⊕ Ss, P T JP = J1 ⊕ · · · ⊕ Js, (4.5)

where each diagonal block (Sj, Jj) is of one of the following five types:

(i) Sj = T2n1
(ε) ⊕ · · · ⊕ T2np

(ε), Jj = κ1Σ2n1
⊕ · · · ⊕ κpΣ2np

,

where ε, κ1, . . . , κp ∈{+1,−1}, and the number ε and the parameters 2n1, . . . , 2np,
and κ1, . . . , κp depend on the particular block (Sj, Jj);

(ii) Sj =

[ T2m1+1(ε) 0

0
(
T2m1+1(ε)

)−T

]
⊕ · · · ⊕

[ T2mq+1(ε) 0

0
(
T2mq+1(ε)

)−T

]
,

Jj =

[
0 I2m1+1

−I2m1+1 0

]
⊕ · · · ⊕

[
0 I2mq+1

−I2mq+1 0

]
,

where ε ∈ {+1,−1} and, again, the number ε and the sizes 2m1 + 1, . . . , 2mq + 1
depend on the particular diagonal block (Sj, Jj);
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(iii) Sj =

[ Jℓ1(λ) 0

0
(
Jℓ1(λ)

)−T

]
⊕ · · · ⊕

[ Jℓr
(λ) 0

0
(
Jℓr

(λ)
)−T

]
,

Jj =

[
0 Iℓ1

−Iℓ1 0

]
⊕ · · · ⊕

[
0 Iℓr

−Iℓr
0

]
,

where |λ| < 1, and the number λ, the total number 2r of Jordan blocks, and the
sizes ℓ1, . . . , ℓr depend on the particular diagonal block (Sj, Jj);

(iv) Sj =

[J2k1
(λ ± iµ) 0

0
(
J2k1

(λ ± iµ)
)−T

]
⊕ · · · ⊕

[J2ks
(λ ± iµ) 0

0
(
J2ks

(λ ± iµ)
)−T

]
,

Jj =

[
0 I2k1

−I2k1
0

]
⊕ · · · ⊕

[
0 I2ks

−I2ks
0

]
,

where |λ| < 1, µ > 0, and again, the numbers λ and µ, the total number 2s of
Jordan blocks, and the sizes 2k1, . . . , 2ks depend on (Sj, Jj);

(v) Sj = T2h1
(ω, ω) ⊕ · · · ⊕ T2ht

(ω, ω), Jj = η1(Σh1
⊗ Σh1

2 ) ⊕ · · · ⊕ ηt(Σht
⊗ Σht

2 ),

where ω ∈ C, |ω| = 1, Im(ω) > 0, and η1, . . . , ηt ∈ {+1,−1}. Again, the numbers
ω, t, h1, . . . , ht, and η1, . . . , ηt depend on the particular diagonal block (Sj, Jj).

There is at most one block of type (i) (and at most one block of type (ii), respectively)
associated with the same eigenvalue. Furthermore, two blocks Si and Sj of one of the
types (iii)–(v) have nonintersecting spectra if i 6= j. Moreover, the form (4.5) is uniquely
determined by the pair (S, J), up to a simultaneous permutation of diagonal blocks in
the right hand sides of (4.5).

Proof. If 1 is an eigenvalue of S, then without loss of generality we may assume that
S = S11⊕S22 , where S11 ∈ Rm×m, σ(S11) = {1}, and σ(S11)∩σ(S22) = ∅. (Otherwise,
apply a transformation (S, J) 7→ (P−1SP, P T JP ).) Partition J conformably, i.e.,

J =

[
J11 J12

−JT
12 J22

]
, J11 ∈ R

m×m.

Then the equality STJS = J implies, in particular, that ST
11J12S22 = J12, or, equiva-

lently, J12S22 = S−T
11 J12. This is a Sylvester equation that only has the trivial solution

J12 = 0, because the spectra of S11 and S22 do not intersect, a well-known fact, see,
e.g., [27]. Then, since J is invertible and skew-symmetric, so must be J11 and J22,
i.e., m is necessarily even. For the remainder of the proof, we may consider the blocks
(Sii, Jii), i = 1, 2 separately, i.e., we may assume that either σ(S) = {1} or that S does
not have the eigenvalue 1.

Case (1): Suppose that 1 6∈ σ(S). Then A = C1(S) = (I −S)−1(I +S) is J-Hamil-
tonian by Lemma 4.2. Let P be invertible such that P−1AP is in the canonical form
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of Theorem 4.1. Since with P−1AP also P−1SP = C−1
1 (P−1AP ) is block diagonal, it is

sufficient to consider the blocks of different types in the canonical form of Theorem 4.1
separately. Thus, without loss of generality assume that A = Ai, where Ai is of one of
the types (i)–(v) of Theorem 4.1.

(i) If A is a block of type (i), then a straightforward computation reveals that S is a
block of type (i), where ε = −1 and where the parameters 2n1, . . . , 2np and κ1, . . . , κp

coincide with those in Theorem 4.1.
(ii) If A is a block of type (ii), then a straightforward computation shows that

S =

[ T2m1+1(−1) 0

0
(
T2m1+1(−1)

)−T

]
⊕ · · · ⊕

[ T2mq+1(−1) 0

0
(
T2mq+1(−1)

)−T

]
.

Let P2mi+1 be invertible such that P−1
2mi+1T2mi+1(−1)P2mi+1 = J2mi+1(−1) and set

P =

[
P2m1+1 0

0 P−T
2m1+1

]
⊕ · · · ⊕

[
P2mq+1 0

0 P−T
2mq+1

]
.

Then P T JP = J and we obtain that (P−1SP, P T JP ) is a block of type (ii) with
ε = −1.

(iii) If A is the block of type (iii), then S consists of diagonal blocks of the form

C1

(
Jℓi

(a)
)
⊕ C1

(
− Jℓi

(a)T
)
, a > 0.

It is straightforward to verify that C1(Jℓi
(a)) is similar to a Jordan block Jℓi

(λ), where
λ = (1−a)/(1+a) < 1. Thus, as in the previous case, we find a transformation matrix
P such that (P−1SP, P T JP ) is a block of type (iii), where λ = (1− a)/(1 + a) < 1 and
the other parameters coincide with those in Theorem 4.1.

(iv) If A is the block of type (iv), then analogous to the previous case, we find that
there is a transformation matrix P such that (P−1SP, P T JP ) is a block of type (iv)
associated with the eigenvalues λ ± iµ, where

λ = Re

(
a + ib − 1

a + ib + 1

)
=

a2 + b2 − 1

a2 + b2 + 2a + 1
, µ = Im

(
a + ib − 1

a + ib + 1

)
=

2b

a2 + b2 + 2a + 1
,

and the other parameters coincide with those in Theorem 4.1.
(v) If A is the block of type (v), then a straightforward but tedious computation

(see [50] for complete details) reveals that (S, J) is a block of type (v) associated with
the eigenvalues ω, ω, where

ω =
b2 − 1 + 2bi

b2 + 1

and the other parameters coincide with those in Theorem 4.1.

Case (2): σ(S) = {1}. Then, A = (I+S)−1(I−S) is J-Hamiltonian by Lemma 4.2,
and analogous to Case (1), we may assume that A is either a block of type (i) or of
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type (ii). Then S = C−1(A) and we obtain that S is either a block of type (i) or (after an
appropriate transformation (S, J) 7→ (P−1SP, P T JP )) a block of type (ii) with ε = 1
and where the other parameters coincide with those in Theorem 4.1.

We see from Theorem 4.3 that there are signs ±1 associated with each even partial
multiplicity corresponding to the eigenvalues +1 and −1 of S in the real Jordan form
of S, as well as to each partial multiplicity corresponding to the real Jordan of complex
conjugate pairs of nonreal unimodular eigenvalues of S. As for J-Hamiltonian matrices,
these signs are said to form the sign characteristic of the pair (S, J). As a by-product
from the proof of Theorem 4.1, we obtain that the sign characteristics of a symplectic
matrix S and its Cayley transform are related in a simple way.

Lemma 4.4 If 1 (resp. −1) is not an eigenvalue of S, then the sign characteristics of
S as a J-symplectic matrix and of A = C1(S) (resp. A = C−1(S)) as a J-Hamiltonian
matrix are related as follows:

(a) If 2n1, . . . , 2np are the even partial multiplicities of the eigenvalue −1 (resp. 1)
of S with corresponding signs κ1, . . . , κp and if 2ñ1, . . . , 2ñp̃ are the even partial
multiplicities of the eigenvalue 0 of A with corresponding signs κ̃1, . . . , κ̃p̃, then
p = p̃ and there exists a permutation π on {1, 2, . . . , p} such that

2ni = 2ñπ(i) and κi = κ̃π(i), i = 1, . . . , p.

(b) If h1, . . . , ht are the partial multiplicities of the unimodular eigenvalue ω of S,
where Im(ω) > 0, with corresponding signs η1, . . . , ηt and if h̃1, . . . , h̃t̃ are the
partial multiplicities of the purely imaginary eigenvalue (1+ω)/(1−ω) of A with
corresponding signs η̃1, . . . , η̃t̃ then t = t̃ and there exists a permutation π such
that

hi = h̃π(i) and ηi = η̃π(i), i = 1, . . . , t.

4.2 J-Hamiltonian matrices: Stability of Lagrangian subspaces

In this subsection, we present results on stability of invariant Lagrangian subspaces of
Hamiltonian matrices. The main part of these results was proved already in [40]. We
start with a criterion for existence of invariant Lagrangian subspaces (Theorem 3.1 in
[40]).

Theorem 4.5 Let A be a real J-Hamiltonian matrix. Then there exists a (real) A-
invariant J-Lagrangian subspace if and only if for every nonzero purely imaginary
eigenvalue ib, b > 0, of A, the number of odd partial multiplicities corresponding to
ib is even, and the signs in the sign characteristic of A that correspond to these odd
partial multiplicities sum up to zero.

We also recall a result on the uniqueness of invariant J-Lagrangian subspaces (Theorem
3.2 in [40]).
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Theorem 4.6 Let A be a real J-Hamiltonian matrix. Then there exists a unique (real)
A-invariant J-Lagrangian subspace M with σ(S|M) contained in the closed left half
plane if and only if the following conditions are satisfied:

(a) the eigenvalue zero of A only has even partial multiplicities, say 2n1, . . . , 2np, and
if κ1, . . . , κp are the corresponding signs, then

(−1)n1κ1 = (−1)n2κ2 = · · · = (−1)npκp.

(b) for every eigenvalue ib, b > 0, of A, all partial multiplicities are even and the
signs in the sign characteristic of A corresponding to ib are equal (however, for
b1 6= b2, b1, b2 > 0, the signs corresponding to ib1 and ib2 need not be the same);

In this case, the subspace M is conditionally stable.

The definitions of various types of stability of invariant Lagrangian subspaces of real
J-Hamiltonian matrices are completely analogous to the definitions given in Section 3
for invariant Lagrangian subspaces for real J-symplectic matrices (one just substitutes
“Hamiltonian” for “symplectic”).

Let A be a real J-Hamiltonian matrix, and let λ1, . . . , λp be are all pairwise distinct
positive eigenvalues of A, and let µ1 ± iν1, . . . , µq ± iνq (µj, νj > 0) be are all distinct
pairs of nonreal complex conjugate eigenvalues of A with positive real parts.

If M ⊆ R2n is a subspace then we introduce

ΓM(A) = max

{
max

j=1,2,...,p

{
αR

(
dimR(A;λj), dim (R(A;λj) ∩M)

)}
, (4.6)

max
j=1,2,...,q

{
αC

(
dimR(A;µj ± iνj)

2
,
dim (R(A;µj ± iνj) ∩M)

2

)} }

with the understanding that the maximum of the empty set is taken to be equal 1.

Theorem 4.7 Let A be a real J-Hamiltonian matrix.

(i) There exists a conditionally stable A-invariant J-Lagrangian subspace if and only if
the statements (a) and (b) of Theorem 4.6 are satisfied.

(ii) There exists a stable A-invariant J-Lagrangian subspace if and only if A has no
purely imaginary or zero eigenvalues.

(iii) If the conditions in (i), resp. in (ii), are satisfied, then an A-invariant J-Lagrangian
subspace M is conditionally stable, resp. stable, if and only if the following properties
are satisfied:
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(c) For every nonzero real eigenvalue λ of A with geometric multiplicity greater than
one, either M∩R(A;λ) = {0} or M ⊇ R(A;λ) holds. In this case

M∩R(A;λ) = {0} if and only if M ⊇ R(A;−λ).

(d) For every nonzero real eigenvalue λ of A with geometric multiplicity one and even
algebraic multiplicity, the subspace M∩R(A;λ) is even dimensional. In this case,

M∩R(A;−λ) =
(
J
(
M∩R(A;λ)

))⊥

∩R(A;−λ).

(e) For every pair of nonreal complex conjugate eigenvalues a± ib of A with nonzero
real part a such that the geometric multiplicity of a+ ib is greater than one, either
M∩R(A; a ± ib) = {0} or M ⊇ R(A; a ± ib) holds. In this case

M∩R(A; a ± ib) = {0} if and only if M ⊇ R(A;−a ± ib).

(iv) Suppose that A has no purely imaginary or zero eigenvalues and let M be a stable
A-invariant J-Lagrangian subspace. Then the index of stability of M is equal to ΓM(A),
where ΓM(A) is given in (4.6).

Proof. Parts (i) - (iii) follow from [40, Theorem 3.4] combined with [40, Proposition
3.3]. For the proof of (iv), by Theorem 3.6 (applied to a J-Hamiltonian rather than
J-symplectic matrices), we may assume that either

(1) σ(A) = {λ,−λ}, where λ ∈ R \ {0}, or

(2) σ(A) = {a ± ib,−a ± ib}, where a, b > 0.

In either of these two cases, the canonical form of Theorem 4.1 shows that without loss
of generality we may further assume that

A =

[
A0 0
0 −AT

0

]
, J =

[
0 Im

−Im 0

]
,

where σ(A0) = {λ} or σ(A0) = {a ± ib}, as the case may be. Clearly, any A-invariant
J-Lagrangian subspace M has the form

M =

[
M0

(M0)
⊥

]
,

where M0 is an arbitrary A0-invariant subspace. It is easy to see that the index
of stability of the A-invariant J-Lagrangian subspace M coincides with the index of
stability of M0 as an A0-invariant subspace. It remains to apply Theorem 2.6 to finish
the proof.
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Determination of the index of conditional stability of a conditionally stable A-
invariant J-Lagrangian subspace is a challenging problem, and we do not have a com-
plete solution. We present one result in this direction in a particular (but generic) case
when the geometric multiplicity of every purely imaginary or zero eigenvalue of A is
equal to one, see also [6, 7]. For the proof we need the following lemma.

Lemma 4.8 Let A ∈ R
2n×2n be a J-Hamiltonian matrix such that σ(A) ⊆ iR and the

geometric multiplicity of every eigenvalue of A is equal to 1. Then for every ε > 0 there
exists δ > 0 such that for every J-Hamiltonian matrix B that satisfies ‖B − A‖ < δ
and has an invariant J-Lagrangian subspace, there is also a B-invariant J-Lagrangian
subspace N with the property that gap (N ,M) < ε.

Proof. To give a proof by contradiction, assume that there exists ε0 > 0 such that for
some sequence of J-Hamiltonian matrices Bm → A, as m → ∞, we have that the set
of Bm-invariant J-Lagrangian subspaces is nonempty, and the inequality

gap (Nm,M) ≥ ε0 (4.7)

holds for every Bm-invariant J-Lagrangian subspace Nm. Selecting one such Nm for
every m, and passing to a subsequence if necessary, we may assume that

lim
m→∞

gap (Nm,N ) = 0.

(Here the compactness of the set of subspaces of a finite dimensional real vector space
in the gap metric was used.) The subspace N is easily seen to be J-Lagrangian and
(in view of Bm → A) A-invariant; however, in view of (4.7), we have also N 6= M. But
given the assumption σ(A) ⊆ iR on the spectrum of A, it follows from Theorem 4.6
that M is unique as an A-invariant J-Lagrangian subspace, a contradiction.

Using this lemma we can prove the following result.

Theorem 4.9 Let A ∈ R2n×2n be a J-Hamiltonian matrix. Assume that the geometric
multiplicity of every purely imaginary or zero eigenvalue of A is equal to one. Denote
by κ the largest partial multiplicity of any purely imaginary or zero eigenvalue of A, and
let κ = 1 if σ(A) ∩ iR = ∅. Let M be a conditionally stable A-invariant J-Lagrangian
subspace (in particular, the partial multiplicity corresponding to every purely imaginary
or zero eigenvalue is even, by Theorem 4.7). Then:

(i) The index of conditional stability of M does not exceed max{ΓM(A), κ}.
(ii) If κ = 2, then the index of conditional stability of M is equal to max{ΓM(A), 2}.

Proof. We first consider part (i). By Theorem 3.6, applied to J-Hamiltonian matrices,
we may assume without loss of generality that one of the following cases occurs:

(1) σ(A) ⊆ iR;

(2) σ(A) = {λ,−λ}, where λ ∈ R \ {0};
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(3) σ(A) = {a ± ib,−a ± ib}, where a, b > 0.

In the cases (2) and (3), by Theorem 4.7 conditional stability of M coincides with
(unconditional) stability, and we are done by Theorem 4.7 (iv).

In case (1), observe that by Theorem 4.6 the A-invariant J-Lagrangian subspace is
unique, and therefore must coincide with M.

On the other hand, it has been shown in [44, Theorem 2.4] that the subspace M
is strongly κ-stable as a real invariant subspace of the real matrix A (see [39, 44, 47]
for the concept and properties of strong stability and strong κ-stability). In view of
Lemma 4.8, this means that for every J-Hamiltonian B which is sufficiently close to
A and has a B-invariant J-Lagrangian subspace, there also exists a B-invariant J-
Lagrangian subspace N with the property that

gap (M,N ) ≤ K‖B − A‖ 1

κ ,

where K is a constant. This proves that the index of conditional stability of M does
not exceed κ.

For the proof of part (ii), we may assume that either

(a) A is in real Jordan form with σ(A) = {±ib}, where b > 0, or

(b) A is a nilpotent Jordan block.

In case (b) we may assume that

A =

[
0 1
0 0

]
, J =

[
0 1
−1 0

]
, M = span

[
1
0

]
.

For ε > 0 consider

A(ε) =

[
0 1
ε 0

]
, M±(ε) = span

[
1
±ε

]

Then there are two A(ε)-invariant J-Lagrangian subspaces, they are both real and

coincide with M±(ε). We see that gap
(
M,M±(ε)

)
∼ √

ε = ‖A − A(ε)‖ 1

2 and thus,
the index of conditional stability is larger than or equal to 2 and hence it is actually
equal to 2.

For the case (a) we may assume that

A =




0 b 1 0
−b 0 0 1
0 0 0 b
0 0 −b 0


 , J =




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


 , M = span {e1, e2}.

Consider the perturbation A(ε) of A obtained by putting ε > 0 in the entries (3,1) and
(4,2). Then A(ε) is J-Hamiltonian, and the eigenvalues of A(ε) are ±√

ε+bi,±√
ε−bi,
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with eigenvectors of the form
[

1 i ±√
ε ±√

εi
]T

, and
[

1 −i ±√
ε ∓√

εi
]T

.
There are just two real A(ε)-invariant subspaces of dimension two, and they happen to
be Lagrangian as well, namely

M+(ε) = span








1
0√
ε

0


 ,




0
1
0√
ε








, M−(ε) = span








1
0

−√
ε

0


 ,




0
1
0

−√
ε








.

Again, we observe that gap (M,M±(ε)) ∼ √
ε = ‖A − A(ε)‖ 1

2 . So the index of condi-
tional stability is again larger than or equal to two. As it was already shown to be less
than or equal to two, it must be equal to two.

Having presented stability results for J-Lagrangian subspaces of J-Hamiltonian ma-
trices, in the next subsection we easily obtain corresponding results for J-symplectic
matrices.

4.3 Stability of Lagrangian subspaces of J-symplectic matrices

In this subsection, we present conditions for existence of invariant Lagrangian sub-
spaces of a symplectic matrix S ∈ R2n×2n. The results are direct consequences of
the corresponding results in Section 4.2. Indeed, applying Theorem 3.6, we may as-
sume that either −1 6∈ σ(S) or σ(S) = {−1}. Then applying the Cayley transform
from Lemma 4.2 to S and keeping in mind the relations for the sign characteristics
of S and of C±1(S) given in Lemma 4.4, we obtain the following results as immediate
consequences of Theorems 4.5, 4.6, 4.7, and 4.9.

Theorem 4.10 Let S be a real J-symplectic matrix. Then there exists a (real) S-
invariant J-Lagrangian subspace if and only if for every eigenvalue ω ∈ C \R, |ω| = 1,
Im(ω) > 0 of S, the number of odd partial multiplicities corresponding to ω is even, and
the signs in the sign characteristic of S that correspond to these odd partial multiplicities
sum up to zero.

Theorem 4.11 Let S be a real J-symplectic matrix. Then there exists a unique (real)
S-invariant J-Lagrangian subspace M with σ(S|M) contained in the closed unit disc if
and only if the following conditions are satisfied:

(a) the eigenvalue 1 of S only has even partial multiplicities, say 2n1, . . . , 2np, and if
κ1, . . . , κp are the corresponding signs, then

(−1)n1κ1 = (−1)n2κ2 = · · · = (−1)npκp.

(b) the eigenvalue −1 of S only has even partial multiplicities, say 2n′
1, . . . , 2n

′
p′, and

if κ′
1, . . . , κ

′
p′ are the corresponding signs, then

(−1)n′

1κ′
1 = (−1)n′

2κ′
2 = · · · = (−1)

n′

p′κ′
p′ .
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(c) for every eigenvalue ω ∈ C \R, |ω| = 1, Im(ω) > 0 of S, all partial multiplicities
are even and the signs in the sign characteristic of S corresponding to ω are equal
(however, for ω1 6= ω2 with |ω1| = |ω2| = 1, Im(ω1) > 0, Im(ω2) > 0, the signs
corresponding to ω1 and ω2 need not be the same);

In this case, the subspace M is conditionally stable.

We need additional notation for the next result that provides complete description of
stable and conditionally stable S-invariant J-Lagrangian matrices, for real J-symplectic
matrices S. In analogy to (4.6), if λ1, . . . , λp are all distinct real eigenvalues of S with
modulus greater than 1, and if µ1 ± iν1, . . . , µq ± iνq (µj, νj > 0) are all distinct pairs
of nonreal complex conjugate eigenvalues of S with modulus greater than 1, then we
introduce

ΓM(S) = max

{
max

j=1,2,...,p

{
αR

(
dimR(S;λj), dim (R(S;λj) ∩M)

)}
, (4.8)

max
j=1,2,...,q

{
αC

(
dimR(S;µj ± iνj)

2
,
dim (R(S;µj ± iνj) ∩M)

2

)} }

with the understanding that the maximum of the empty set is taken to be equal 1.

Theorem 4.12 Let S be a real J-symplectic matrix.

(i) There exists a conditionally stable S-invariant J-Lagrangian subspace if and only if
the conditions (a), (b), and (c) of Theorem 4.11 are satisfied.

(ii) There exists a stable S-invariant J-Lagrangian subspace if and only if S has no
unimodular eigenvalues.

(iii) If the conditions of (i), resp. of (ii), are satisfied, then an S-invariant J-Lagrangian
subspace M is conditionally stable, resp. stable, if and only if the following properties
are satisfied:

(d) For every real eigenvalue λ 6= ±1 of S with geometric multiplicity greater than
one, either M∩R(S;λ) = {0} or M ⊇ R(S;λ) holds; in this case

M∩R(S;λ) = {0} if and only if M ⊇ R(S;−λ).

(e) For every real eigenvalue λ 6= ±1 of S with geometric multiplicity one and even
algebraic multiplicity, the subspace M∩R(S;λ) is even dimensional. In this case,

M∩R(S;−λ) =
(
J
(
M∩R(S;λ)

))⊥

∩R(S;−λ).
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(f) For every pair of complex conjugate eigenvalues a ± ib of A with |a + ib| 6= 1,
b 6= 0 such that the geometric multiplicity of a + ib is greater than one, either
M∩R(S; a ± ib) = {0} or M ⊇ R(S; a ± ib) holds. In this case

M∩R(S; a ± ib) = {0} if and only if M ⊇ R(S;−a ± ib).

(iv) Assume that S has no unimodular eigenvalues. Let M be a stable S-invariant J-
Lagrangian subspace. Then the index of stability of M is equal to ΓM(S), where ΓM(S)
is given in (4.8).

Finally, we present a result on the index of conditional stability.

Theorem 4.13 Let S ∈ R2n×2n be a J-symplectic matrix. Assume that the geometric
multiplicity of every unimodular eigenvalue of S is equal to one. Denote by κ the largest
partial multiplicity of any unimodular eigenvalue of S, and let κ = 1 if S has no unimod-
ular eigenvalues. Let M be a conditionally stable S-invariant J-Lagrangian subspace
(in particular, the partial multiplicity corresponding to every unimodular eigenvalue is
even, by Theorem 4.12). Then:

(i) The index of conditional stability of M does not exceed max{ΓM(S), κ}.
(ii) If κ = 2, then the index of conditional stability of M is equal to max{ΓM(S), 2}.

4.4 Examples

We illustrate the results of this section with some examples.

Example 4.14 Consider the real matrices

J =

[
0 1

−1 0

]
, S =

[
1 0
0 1

]
, S̃ =

[
c b
a d

]
, Sε =

[
1 ε
0 1

]
, Sδ =

[
1 0
δ 1

]
,

where c, d are close to one, a, b, δ, ε are close to zero, and dc− ab = 1. Every real 2× 2
matrix is J-symplectic if and only if its determinant equals one, so S, S̃, Sε, and Sδ

are all J-symplectic. Moreover, every one-dimensional subspace of R2 is S-invariant
J-Lagrangian. For c + d < 2 the matrix S̃ has a pair of complex conjugate nonreal
eigenvalues and therefore, there are no real S̃-invariant J-Lagrangian subspaces. Con-
sequently, there are no (unconditionally) stable S-invariant J-Lagrangian subspaces.
On the other hand, there exists a unique Sε-invariant J-Lagrangian subspace Mε and
a unique Sδ-invariant J-Lagrangian subspace Mδ, where

Mε = Span

[
1
0

]
and Mδ = Span

[
0
1

]
.

It follows that S does not have any conditionally stable invariant J-Lagrangian sub-
spaces, as it also follows from Theorem 4.12.
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Example 4.15 Consider the real matrices

J =

[
0 1

−1 0

]
, S =

[
−1 0

1 −1

]
, S̃ =

[
−c b

a −d

]
,

where a, c, d are close to one, b is close to zero, and dc − ab = 1. Then S and S̃ are
J-symplectic. The only S-invariant J-Lagrangian subspace is

M = Span

[
0
1

]
.

For c + d > 2 the matrix S̃ has a pair of complex conjugate nonreal eigenvalues and
therefore there is no real invariant Lagrangian subspace. If c + d < 2, then S̃ has two
distinct real eigenvalues. Here, M is 2-conditionally stable by Theorem 4.13.

Theorem 4.12 shows that the signs corresponding to the partial multiplicities of
the eigenvalues 1 and −1 of S have an important effect on the stability of invariant
J-Lagrangian subspaces. We illustrate this with the following example.

Example 4.16 Consider the real matrices

Sε =




−1 0 ε 0
0 −1 0 −1
0 0 −1 0
0 0 0 −1


 , J =




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


 .

Here, Sε has two Jordan blocks of size two with opposite signs in the sign characteristic
if ε = 1, and with equal signs if ε = −1. Two corresponding Jordan chains are




1
0
0
0


 ,




0
0
−ε
0


 and




0
1
0
0


 ,




0
0
0
−1




We consider two types of perturbations that will both depend on parameters. Set

Ŝε(µ) :=




−1 0 ε 0
0 −(1 − µ)−1/2 0 −(1 − µ)−1/2

0 0 −1 0
0 −µ(1 + µ)−1/2 0 −(1 − µ)−1/2


 , where 0 < µ < 1. (4.9)

The eigenvalues of Ŝε(µ) are −1 and −
√

1
1+µ

±
√

µ
1+µ

. The corresponding eigenvectors
are 



1
0
0
0


 ,




0
1
0

±√
µ


 .
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Corresponding to the eigenvalue −1, there is a Jordan block of order two. This means
that there are two invariant J-Lagrangian subspaces for Ŝε(µ), namely

M± = Span








1
0
0
0


 ,




0
1
0

±√
µ








.

Let µ → 0 to see that the only candidate for a conditionally stable invariant J-
Lagrangian subspace for Sε is the space

M0 := Range

[
I2

0

]
.

Let 2 > β > 0 and set

Sε(β) =




−1 0 ε 0
0 −1 0 −1
β −β −1 − εβ −β
−β β εβ −1 + β


 .

Then Sε(β) is symplectic. If ε = 1 then the Jordan canonical form consists of only one
Jordan block of size four with eigenvalue −1 (if β 6= 0), and the only two-dimensional
invariant subspace of Sε(β) is given by

M1 = Span








1
1
0
0


 ,




0
0
1
−1








and this subspace is J-Lagrangian. Observe that M1 is also invariant for Sε = Sε(0).
Letting β → 0, we see that the only possible candidate for a stable Sε-invariant J-
Lagrangian subspace would be this subspace. However, M1 is not equal to M0 and
hence we conclude that there is no stable Sε-invariant J-Lagrangian subspace in this
case.

On the other hand, if ε = −1, then Sε(β) has two simple unimodular eigenvalues
β − 1 ± i

√
2β − β2 and the eigenvalue −1 with algebraic multiplicity two, i.e., there

does not exist an Sε(β)-invariant J-Lagrangian subspace. So M0 is still a candidate
for a conditionally stable invariant J-Lagrangian subspace, and Theorem 4.12 confirms
that, indeed, this is the case.

In this section we have presented stability results for real J-Hamiltonian and J-
symplectic matrices. In the next section we discuss complex J-symplectic matrices.

30



5 Case (II): Complex J-symplectic matrices

In this section we assume F = C, and J will stand for an invertible complex skew-
symmetric 2n × 2n matrix. For the proof of the main results on stability of invariant
Lagrangian subspaces, we need a canonical form for J-symplectic matrices as presented
in [32]. We need additional notation again, so for ε ∈ {+1,−1} let

T̃k(ε) =




ε 1 r2 . . . rk−1

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . r2

...
. . .

. . . 1
0 . . . . . . 0 ε




, (5.1)

where rk = 0 for odd k and the parameters rk for even k are real and uniquely deter-
mined by the recursive formula

r2 =
1

2
ε, rk = −1

2
ε




k
2
−1∑

ν=1

r2·νr2·( k
2
−ν)


 , 4 ≤ k ≤ nj ; (5.2)

Also recall that Σk denotes the k×k matrix with alternating signs on the anti-diagonal
as in (4.1).

Theorem 5.1 Let J ∈ C2n×2n be invertible and skew-symmetric and let S ∈ C2n×2n be
J-symplectic. Then there exists a nonsingular matrix Q such that Q−1SQ and QTJQ
are block diagonal matrices

Q−1SQ = S1 ⊕ · · · ⊕ Sp, QT JQ = J1 ⊕ · · · ⊕ Jp, (5.3)

where each diagonal block (Sj, Jj) is of one of the following three types:

(i) Sj = T̃2n1
(ε) ⊕ · · · ⊕ T̃2np

(ε), Jj = Σ2n1
⊕ · · · ⊕ Σ2np

,

where the number ε ∈ {−1,+1} and the parameters 2n1, . . . , 2np depend on the
particular block (Sj, Jj);

(ii) Sj =

[ J2m1+1(ε) 0

0
(
J2m1+1(ε)

)−T

]
⊕ · · · ⊕

[ J2mq+1(ε) 0

0
(
J2mq+1(ε)

)−T

]
,

Jj =

[
0 I2m1+1

−I2m1+1 0

]
⊕ · · · ⊕

[
0 I2mq+1

−I2mq+1 0

]
,

where ε = ±1, and the number ε, the total number 2q of Jordan blocks, and the
sizes 2m1 + 1, . . . , 2mr + 1 depend on the particular diagonal block (Sj, Jj);
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(iii) Sj =

[ Jℓ1(λ) 0

0
(
Jℓ1(λ)

)−T

]
⊕ · · · ⊕

[ Jℓr
(λ) 0

0
(
Jℓr

(λ)
)−T

]
,

Jj =

[
0 Iℓ1

−Iℓ1 0

]
⊕ · · · ⊕

[
0 Iℓr

−Iℓr
0

]
,

where λ satisfies the conditions |λ| ≤ 1 and the imaginary part of λ is positive if
|λ| = 1, and the number λ, the total number 2r of Jordan blocks, and the sizes
ℓ1, . . . , ℓr depend on the particular diagonal block (Sj, Jj);

There is at most one block of type (i) (and at most one block of type (ii), respectively)
associated with the same eigenvalue. Furthermore, two blocks Si and Sj of type (iii)
have nonintersecting spectra if i 6= j. Moreover, the form (5.3) is uniquely determined
by the pair (S, J), up to a simultaneous permutation of diagonal blocks in the right hand
sides of (5.3).

5.1 Existence and stability of invariant Lagrangian subspaces

Theorem 5.1 has an immediate consequence concerning the existence of invariant La-
grangian subspaces which is very different from the real J-symplectic case.

Corollary 5.2 Let S ∈ C
2n×2n be J-symplectic. Then there exists an S-invariant

J-Lagrangian subspace with σ(S|M) contained in the closed unit disc. In particular,
conditional stability of S-invariant J-Lagrangian subspaces coincides with their (un-
conditional) stability.

We then obtain the following result on the stability of J-invariant subspaces.

Theorem 5.3 Let S ∈ C
2n×2n be a J-symplectic matrix. Then the following assertions

are equivalent:

(1) there exist a stable S-invariant J-Lagrangian subspace;

(2) there exists a conditionally stable S-invariant J-Lagrangian subspace;

(3) dim Ker (S − I) ≤ 1 and dim Ker (S + I) ≤ 1.

In case one (or every) of the assertions (1)– (3) holds, the following statements are
equivalent for an S-invariant J-Lagrangian subspace M:

(4) M is stable;

(5) M is conditionally stable;

(6) M∩R(S;λj) = R(S;λj) or M∩R(S;λj) = {0}, whenever
dim Ker (S − λjI) > 1.
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Proof. The equivalence of (4), (5), and (6) (under the hypothesis that (1)–(3) hold),
as well as the equivalence of (1), (2), and (3), follows from Corollary 5.2.

We show next, that each of (1), (2) implies (3). If neither 1 nor −1 is an eigenvalue of
S, then there is nothing to show. Otherwise, by Theorems 3.6 and 5.1, we may assume
without loss of generality that σ(S) = {1} or σ(S) = {−1}. We will only consider the
case σ(S) = {1}, the other case follows analogously or by passing to −S. Now assume
that dim Ker (S − I) > 1 and let M be a stable S-invariant J-Lagrangian subspace.
Then M is, in particular, stable as an invariant subspace of S and, by Theorem 2.3,
we either have M = {0} or M = C

2n, because the fact that 1 is the only eigenvalue of
S implies that R(S; 1) = C2n. In both cases, M is not J-Lagrangian which contradicts
the assumption. Thus, we must have dim Ker (S − I) ≤ 1.

Conversely, assume that (3) holds. Divide the set of eigenvalues of S different from
±1 into two disjoint sets σ1(S) and σ2(S) so that

λ ∈ σ1(S) if and only if λ−1 ∈ σ2(S).

The canonical form of Theorem 5.1 shows that this is possible. Let M1 be the unique
S-invariant subspace such that σ(S|M1

) ⊆ {1} and

dimM1 =
1

2
· dimR(S; 1),

and let M−1 be the unique S-invariant subspace such that σ(S|M−1
) ⊆ {−1} and

dimM−1 =
1

2
· dimR(S;−1).

Then the canonical form of Theorem 5.1 shows that the subspace

M := M1+̇M−1+̇
∑

λ∈σ1(S)

R(S;λ)

is an S-invariant J-Lagrangian subspace. Moreover, by Theorem 2.3, M is stable
as an S-invariant subspace, and a fortiori also stable as an S-invariant J-Lagrangian
subspace. (Indeed, the canonical form (4.5) together with the spectral properties of S

imply that if S̃ is a J-symplectic matrix sufficiently close to S and M̃ is the perturbed
S̃-invariant subspace corresponding to M, then M̃ is J-Lagrangian.) Thus, (1) and
consequently also (2) holds.

A similar argument shows that if (3) holds, then (6) implies each of (4) and (5),
and if one of (4), (5) holds then by Theorem 2.3 part (a) we obtain that also (6) is
satisfied.

An interesting consequence of Theorem 5.3 is that existence of stable invariant La-
grangian subspaces persists under small perturbations: If S ∈ C

2n×2n is a J-symplectic
matrix with a stable S-invariant J-Lagrangian subspace, then there exists δ > 0 with
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the property that there exists a stable S ′-invariant J ′-Lagrangian subspace for every J ′-
symplectic matrix S ′ ∈ C2n×2n and every complex skew-symmetric matrix J ′ satisfying
the inequalities

‖S ′ − S‖ + ‖J ′ − J‖ < δ.

5.2 α-stability

Next, we study α-stability of S-invariant J-Lagrangian subspaces M. Once again, we
need additional notation. If λ1, λ2, . . . , λt denote all pairwise distinct eigenvalues of S
different from ±1, then we introduce

ΓC

M(S) := max
j=1,...,t

αC

(
dimR(S;λj), dim

(
R(S;λj) ∩M

))
, (5.4)

where αC(·, ·) is as in (2.2).

Theorem 5.4 Let S ∈ C2n×2n be J-symplectic, let n+ and n− be the algebraic multi-
plicities of the eigenvalues 1 and −1 of S, respectively (where we allow n+ = 0 and/or
n− = 0), and let λ1, λ2, . . . , λt denote all pairwise distinct eigenvalues of S different
from ±1. Moreover, let M be a stable S-invariant J-Lagrangian subspace.

(i) If 1,−1 6∈ σ(S), then the index of stability of M is ΓC

M(S).

(ii) If 1 and/or −1 are eigenvalues of S and

α− := max
{
2, n+− 1, n−− 1, ΓC

M(S)
}

, (5.5)

α+ := max
{
n+, n−, ΓC

M(S)
}

, (5.6)

then M is not β-stable for any β < α−, and M is β-stable for any β ≥ α+.

Proof. By Theorems 5.3 and 5.1, the geometric multiplicity of eigenvalues ±1 (if
indeed they are eigenvalues) of S is equal to one, and n± are even. From the canonical
form of Theorem 5.1 it is easy to see that

dim (M∩R(S;±1)) =
1

2
n±.

By the main result of [47], M is strongly α+-stable as an S-invariant subspace (where
α+ is defined as in (5.6) even if ±1 are not eigenvalues of S); see [39, 44, 47]. Namely,
every matrix S ′ (irrespective of its symplectic properties) and every of its invariant
subspaces N satisfy the inequality

gap (M,N ) ≤ K‖S ′ − S‖
1

α+ ,

provided S ′ is sufficiently close to S and the obvious necessary condition is fulfilled
concerning dimensions of intersection of N with spectral invariant subspaces of S ′,
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where the positive constant K is independent on S ′ and N . Hence M is a fortiori
α+-stable as an S-invariant J-Lagrangian subspace.

It remains to show that M is not β-stable as an S-invariant J-Lagrangian subspace
for any 1 ≤ β < ΓC

M(S) if the assumption of (i) holds, or for any 1 ≤ β < α− if the
assumption of (ii) holds. First, we consider the case (i), that is, ±1 6∈ S, and denote
for brevity γ := ΓC

M(S). If γ = 1 then there is nothing to show, so assume γ ≥ 2 and
let λ be an eigenvalue of S such that

γ = αC

(
dimR(S;λ), dim

(
R(S;λ) ∩M

))
.

Using the canonical form of Theorem 5.1, we may assume without loss of generality
that

S =

[
S1 0
0 S−T

1

]
⊕ S2, J =

[
0 Im

−Im 0

]
⊕ J2, (5.7)

where σ(S1) = {λ} and λ, λ−1 6∈ σ(S2). This is achieved by a change of basis via
a nonsingular matrix Q, which will be fixed throughout this part of the proof. The
subspace R(S;λ) ∩ M is nontrivial, because otherwise, we would have γ = 1 which
contradicts γ ≥ 2. Thus, in view of the form (5.7), we have

R(S;λ) ∩M =

{[
x
0

]
: x ∈ M0

}

for some S1-invariant subspace M0. With this notation we have

M = M0 ⊕
(
M⊥

0 ∩R(S;λ−1)
)
⊕M′

for some fixed S2-invariant J2-Lagrangian subspace M′. Moreover, R(S;λ)∩M is not
β-stable by Theorem 2.5. Thus, there exists a sequence {Tp}∞p=1, Tp ∈ C

m×m, such that

lim
p→∞

‖Tp − S1‖ = 0 and lim
p→∞

min{gap (M0,Np)}
‖Tp − S1‖1/β

= ∞, (5.8)

where the minimum is taken over all Tp-invariant subspaces Np. Let

S(p) =

[
Tp 0
0

(
Tp)

−T

]
⊕ S2, p = 1, 2, . . . .

Clearly, S(p) is J-symplectic. Now we consider the invariant Lagrangian subspaces
of S(p). Since λ 6= ±1, we may assume that Tp and (Tp)

−T do not have a common
eigenvalue. Then all S(p)-invariant J-Lagrangian subspaces are of the form

N (p) = Np ⊕
(
N⊥

p ∩R(S;λ−1)
)
⊕N ′,

where Np is Tp invariant and N ′ is S2-invariant and J2-Lagrangian. Because of the fact
that all decompositions are with respect to the same basis (given by the columns of the
nonsingular matrix Q) in view of Lemma 2.1 we have an estimate

gap (M,N (p)) ≥ κ · gap (M0,Np),
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where κ > 0 is a positive constant independent of p. From this and (5.8) one sees that

lim
p→∞

min{gap (M,N (p))}
‖S(p) − S‖1/β

= ∞,

where the minimum is taken over all Tp-invariant subspaces Np, and all S2-invariant
J2-Lagrangian subspaces N ′. Thus, M is not β-stable as an S-invariant J-Lagrangian
subspace.

Next, we assume that we are in case (ii), i.e., either 1 or −1 or both are eigenvalues of
S. If α− = ΓC

M(S), then we argue as in case (i). Thus, assume α− = max{2, n+} .(The
argument in the case α− = max{2, n−} is completely analogous). Then, in particular,
we have n+ ≥ 2. Using the canonical form of Theorem 5.1 and that the geometric
multiplicity of the eigenvalue 1 is necessarily equal to one by Theorem 5.3, we may
assume that

S = T̃n+
⊕ S1, J = Σn+

⊕ J1,

where 1 6∈ σ(S1) and T̃n+
is as in (5.1).

For notational simplicity, we assume further that S = T̃n+
, J = Σn+

(if this is
not the case, argue as in the preceding paragraph). Observe that all parameters in
S, J are real and that M is spanned by e1, . . . , en+/2. Thus, for the moment, let us
consider (S, J) as a real pair, where MR := M∩R2n is a real S-invariant J-Lagrangian
subspace. Clearly, we have 2, n+− 1 ≤ α− ≤ ΣMR

, where ΣMR
is defined as in (4.8).

Hence, Theorem 4.12 (iv) implies that MR is not β-stable for any β < α− as a real
S-invariant J-Lagrangian subspace. But then, M is a fortiori not β-stable as a complex
S-invariant J-Lagrangian subspace.

Obviously, if 1 or −1 or both are eigenvalues of S, then Theorem 5.4 does not
determine the index of stability of M in all cases. Thus, the following open problem is
natural:

Problem 5.5 For every stable S-invariant J-Lagrangian subspace M, where S is a
complex J-symplectic matrix such that 1 or −1 or both are eigenvalues of S, determine
the index of stability of M.

In the following particular case, the result of Theorem 5.4 does give an exact de-
scription of the index of stability:

Corollary 5.6 Let S ∈ C2n×2n be J-symplectic such that 1 or −1 or both are eigenval-
ues of S. Furthermore, assume that if 1 or −1 is an eigenvalue of S then its geometric
multiplicity is 1 and its algebraic multiplicity is 2, and let M be a stable S-invariant
J-Lagrangian subspace. Then the index of stability of M is equal to max{2, ΓC

M(S)}.

5.3 Examples

We present some examples here to illustrate the main results of this section and to
highlight the differences is the results compared to the real case.
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Example 5.7 Consider the matrices

J =

[
0 1

−1 0

]
, S =

[
c b
a d

]
,

where a, b, c, d are complex numbers. The matrix S is J-symplectic if and only if
det S = 1. Unless S = ±I, there exist stable S-invariant J-Lagrangian subspaces,
and moreover every eigenvector x of S spans a one-dimensional stable S-invariant J-
Lagrangian subspace. Furthermore, Span {x} is 1-stable, i.e., Lipschitz stable, if x
corresponds to the eigenvalue of S different from ±1, and the index of stability of
Span {x} is equal 2 if x corresponds to the eigenvalue ±1. In the exceptional case
S = ±I there do not exist stable S-invariant J-Lagrangian subspaces.

Example 5.8 Consider

Sε =




−1 0 ε 0
0 −1 0 −1
0 0 −1 0
0 0 0 −1


 , J =




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


 ,

where ε = ±1. As in Example 4.16, one verifies that for ε = 1, there are no stable S-
invariant J-Lagrangian subspaces. The case ε = −1 is easily reduced over the complex
field to the case ε = 1. Indeed, letting Q = diag (i, 1,−i, 1), the identities

QTJQ = J, Q−1S−1Q = S1

are satisfied. Thus, we conclude that there are no (conditionally) stable S-invariant
J-Lagrangian subspaces also in the case ε = −1, as predicted by Theorem 5.3.

In this section we have studied the case of complex J-symplectic matrices. In the
next section we finally study the complex J-unitary case.

6 Case (III): Complex J-unitary matrices

In this section we study the case (III), i.e., J ∈ C2n×2n is a fixed invertible and Hermitian
matrix with exactly n positive and n negative eigenvalues, and S ∈ C2n×2n is J-unitary.
Most of the results in this section are direct consequences of the corresponding results
for J-selfadjoint matrices. Recall that a matrix A ∈ C

2n×2n is called J-selfadjoint if
A∗J = JA.

6.1 Canonical forms

We start with a canonical form for J-selfadjoint matrices that can be found in many
sources, see, e.g., [16, 24, 25, 29]. Once more, we need additional notation for this form
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and the following canonical form for J-unitary matrices. So, we set

Rk =




0 · · · 0 1
... . .

.
1 0

0 . .
.

. .
. ...

1 0 · · · 0




, T C

k (µ) = µ




1 2i 2i2 · · · 2ik−1

0 1 2i
. . .

...
...

. . .
. . .

. . . 2i2

...
. . .

. . . 2i
0 . . . . . . 0 1




, µ ∈ C.

Theorem 6.1 Let A be J-selfadjoint. Then there exists an invertible matrix P such
that P−1AP and P ∗JP are block diagonal matrices

P−1AP = A1 ⊕ · · · ⊕ As, P ∗JP = J1 ⊕ · · · ⊕ Js, (6.1)

where each diagonal block (Aj, Jj) is of one of the following two types:

(i) Aj = Jn1
(a) ⊕ · · · ⊕ Jnp

(a), Jj = κ1Rn1
⊕ · · · ⊕ κpRnp

,

where a ∈ R and where κ1, . . . , κp ∈ {1,−1}, and the number a, the total number
p of Jordan blocks, the sizes n1, . . . , np, and the signs κ1, . . . , κp depend on the
particular diagonal block (Aj, Jj);

(ii) Aj =

[
Jℓ1(a + ib) 0

0 Jℓ1(a − ib)T

]
⊕ · · · ⊕

[
Jℓr

(a + ib) 0
0 Jℓr

(a − ib)T

]
,

Jj =

[
0 Iℓ1

Iℓ1 0

]
⊕ · · · ⊕

[
0 Iℓr

Iℓr
0

]
,

where a ∈ R, b > 0, and again the numbers a and b, the total number 2r of Jordan
blocks, and the sizes ℓ1, . . . , ℓr depend on (Aj, Jj).

Two blocks Ai and Aj of one of the types (i)–(ii) have nonintersecting spectra if i 6= j.
Moreover, the form (6.1) is uniquely determined by the pair (A, J), up to a simultaneous
permutation of diagonal blocks in the right hand sides of (6.1).

We see from Theorem 4.1 that there are signs κi, ηj ∈ {+1,−1} associated with
each partial multiplicity corresponding to real eigenvalues a of A. Once again, these
signs are said to form the sign characteristic of the pair (A, J). A number of versions
of a canonical form for J-unitary matrices are available in the literature; we present
here the form developed in [14].

Theorem 6.2 Let S ∈ C
2n×2n be J-unitary. Then there exists a nonsingular matrix

P such that P−1SP and P ∗JP are block diagonal matrices

P−1SP = S1 ⊕ · · · ⊕ Ss, P ∗JP = J1 ⊕ · · · ⊕ Js, (6.2)

where each diagonal block (Sj, Jj) is of one of the following two types:
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(i) Sj = T C

n1
(µ) ⊕ · · · ⊕ T C

np
(µ), Jj = κ1Rn1

⊕ · · · ⊕ κpRnp
,

where |µ| = 1 and where κ1, . . . , κp are signs ±1, and the number µ and the
parameters n1, . . . , np, and κ1, . . . , κp depend on the particular block (Sj, Jj);

(ii) Sj =

[ Jℓ1(λ) 0

0
(
Jℓ1(λ)

)−∗

]
⊕ · · · ⊕

[ Jℓr
(λ) 0

0
(
Jℓr

(λ)
)−∗

]
,

Jj =

[
0 Iℓ1

Iℓ1 0

]
⊕ · · · ⊕

[
0 Iℓr

Iℓr
0

]
,

where |λ| < 1, and the number λ, the total number 2r of Jordan blocks, and the
sizes ℓ1, . . . , ℓr depend on the particular diagonal block (Sj, Jj).

Two blocks Si and Sj of one of the types (i)–(ii) have nonintersecting spectra if i 6= j.
Moreover, the form (6.2) is uniquely determined by the pair (S, J), up to a simultaneous
permutation of diagonal blocks in the right hand sides of (6.2).

Once again, the signs κ1, . . . , κp are said to form the sign characteristic of the J-
unitary matrix S. The proof of Theorem 6.2 is based on use of the Cayley transform
(or, more precisely, Möbius transform)

Cη,w(z) =
η(z − w)

z − w
, |η| = 1, w 6∈ R, with C−1

η,w(z) =
wz − wη

z − η
, (6.3)

see [16] for its basic properties. The proof of Theorem 6.2 then follows the same lines
as the proof of Theorem 4.3 and will therefore not be reproduced here. The first part of
the proof can actually be found in slight variation in [16]. The Cayley transform (6.3)
not only relates J-selfadjoint and J-unitary matrices, but also their sign characteristics.

Lemma 6.3 Let S ∈ C2n×2n be J-unitary, let η ∈ C, |η| = 1 be a unimodular number
which is not an eigenvalue of S and let w ∈ C \ R. Then

A = C−1
η,w(S) = (wS − wηI)(S − ηI)−1

is J-selfadjoint and w is not an eigenvalue of A. Moreover,

S = Cη,w(A) = η(A − wI)(A − wI)−1

and the sign characteristics of S as a J-unitary matrix and of A as a J-selfadjoint
matrix are related as follows:

If n1, . . . , np are the partial multiplicities of the unimodular eigenvalue µ of S with
corresponding signs κ1, . . . , κp and if ñ1, . . . , ñp̃ are the partial multiplicities of the real
eigenvalue C−1

η,w(µ) = (wµ−wη)/(µ− η) of A with corresponding signs κ̃1, . . . , κ̃p̃, then
p = p̃ and there exists a permutation π of {1, 2, . . . , p} such that

ni = ñπ(i) and κi = κ̃π(i), i = 1, . . . , p.

For the proof of Lemma 6.3 see the proof of [16, Theorem 5.15.5].
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6.2 Existence and stability of invariant Lagrangian subspaces

We now turn to the question of existence of invariant J-Lagrangian subspaces. The
answer is given in [38, Theorem 5.1] in the context of J-selfadjoint matrices. Applying
Lemma 6.3, we immediately obtain the following corresponding result for J-unitary
matrices.

Theorem 6.4 Let S be a J-unitary matrix. There exists an S-invariant J-Lagrangian
subspace if and only if for every unimodular eigenvalue ω ∈ C, |ω| = 1, the num-
ber of odd partial multiplicities corresponding to ω is even, and the signs in the sign
characteristic of S that correspond to these odd partial multiplicities sum up to zero.

Next, we consider stability results of invariant J-Lagrangian subspaces. Once again,
we need special notation before we are able to state results concerning α-stability of
S-invariant J-Lagrangian subspaces M. So, if λ1, . . . , λr are all distinct nonunimodular
eigenvalues of S, then we denote

ΘM(S) := max
j=1,...,r

αC

(
dimR(S;λj), dim (R(S;λj) ∩M)

)
, (6.4)

where αC(·, ·) is as in (2.2) with the understanding that the maximum of the empty set
is taken to be equal to one.

Theorem 6.5 Let S ∈ C2n×2n be J-unitary. Then there exists a stable S-invariant
J-Lagrangian subspace if and only if S has no unimodular eigenvalues.

In this case, an S-invariant J-Lagrangian subspace M ⊆ C
2n is stable if and only

if
M∩R(S;λ0) = {0} or R(S;λ0) ⊆ M

for every eigenvalue λ0 of S having geometric multiplicity greater than 1. Moreover,
every stable S-invariant J-Lagrangian subspace M has the index of stability which is
equal to ΘM(S) as in (6.4).

Proof. Assume that λ0 is a unimodular eigenvalue of S. A perturbation theory of
unimodular eigenvalues of J-unitary shows that there is a sequence of J-unitary matri-
ces Sm, m = 1, 2, . . ., such that limm→∞ Sm = S and every Sm has at least one simple
(i.e., of algebraic multiplicity one) unimodular eigenvalue in a vicinity of λ0. Let us
verify this statement in the context of J-selfadjoint matrices X ∈ C2n×2n and their real
eigenvalues µ0. (The statement follows from more general results of [37]; we provide
here a simpler independent proof.) In view of the canonical form (6.1), we need to
consider only the case when µ0 = 0 and

X = Jn1
(0) ⊕ · · · ⊕ Jnp

(0), J = κ1Rn1
⊕ · · · ⊕ κpRnp

.

If Q = eT
1 en1

is the 2n × 2n matrix having 1 in the (n1, 1)-position and zeros in all
other positions, then X + (1/m)Q, for almost all m = 1, 2, . . ., is J-selfadjoint and
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has either one (if p is odd) or two (if p is even) simple real eigenvalues in a vicinity
of zero. Applying the Cayley transform from Lemma 6.3, we obtain the corresponding
statement for J-unitary matrices.

It follows from Theorem 6.4 that Sm has no invariant J-Lagrangian subspaces for
almost all m = 1, 2, . . .. Therefore, S has no stable invariant Lagrangian subspaces.

Suppose now that S has no unimodular eigenvalues. Denote by M+ the sum of root
subspaces of S that correspond to eigenvalues outside of the unit circle. It is easy to
see from the canonical form (6.2) that for every S-invariant subspace M′ ⊆ M+ there
is a unique S-invariant J-Lagrangian subspace M such that M∩M+ = M′. Indeed,
applying a transformation (S, J) 7→ (T−1ST, T ∗JT ) for some invertible T ∈ C2n×2n, we
may assume that

S =

[
S+ 0
0 S−∗

+

]
, J =

[
0 In

In 0

]
,

where the spectrum of S+ is outside of the unit circle. Then

M+ = C
n ⊕ {0} and M = M′ ⊕ (M′)⊥.

It follows that stability of M as an S-invariant J-Lagrangian subspace coincides with
stability of M′ and (M′)⊥ as S-invariant subspaces. Now the result follows easily from
Theorems 2.3 and 2.5.

The problem of conditionally stable S-invariant J-Lagrangian subspaces is more
subtle as the following results shows. It is obtained directly from [38, Theorem 0.2]
using Lemma 6.3.

Theorem 6.6 Let S ∈ C2n×2n be J-unitary. There exists a conditionally stable S-
invariant J-Lagrangian subspace if and only if every unimodular eigenvalue ω of S
has only even partial multiplicities, and all the signs in the sign characteristic of S
corresponding to ω are equal (however, for ω1 6= ω2 with |ω1| = |ω2| = 1, the signs
corresponding to ω1 and ω2 need not be the same).

In this case, an S-invariant J-Lagrangian subspace M is conditionally stable if and
only if for every nonunimodular eigenvalue µ of S with dim

(
Ker (S − µI)

)
> 1, either

M ⊇ R(S;µ) or M∩R(S;µ) = {0} holds.

Our next result considers conditional α-stability.

Theorem 6.7 Let S ∈ C2n×2n be J-unitary, and assume that there exists a condi-
tionally stable S-invariant J-Lagrangian subspace M. Assume furthermore that the
geometric multiplicity of every unimodular eigenvalue of S (if any) is equal to one.

(i) If S has no unimodular eigenvalues, then the index of conditional stability of M
is ΘM(S).
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(ii) If S has unimodular eigenvalues, and if

α− := max {2, n1 − 1, . . . , nr − 1, ΘM(S)} , (6.5)

α+ := max {n1, . . . , nr,ΘM(S)} , (6.6)

where n1, . . . , nr are the algebraic multiplicities of all the unimodular eigenvalues,
then M is not β-stable for any β < α−, and M is β-stable for every β ≥ α+.

Theorem 6.7 follows from a result in [45] in the context of J-selfadjoint matrices.
The passage to J-unitaries as needed for Theorem 6.7 is easily done using Lemma 6.3.

6.3 Examples

As in the previous two sections, we conclude with illustrative examples.

Example 6.8 Consider the matrices

J = i

[
0 1
−1 0

]
, S =

[
a b
c d

]
,

where a, b, c, d are complex numbers such that ac, bd ∈ R and ad − bc = 1. Then
S is J-unitary. Unless S has one (and then, counting multiplicities, necessarily two)
eigenvalue on the unit circle, there exists stable J-Lagrangian subspaces. Moreover,
every eigenvector spans a one-dimensional 1-stable, i.e., Lipschitz stable, J-Lagrangian
subspace.

Example 6.9 Consider the matrices

Sε =




−1 0 ε 0
0 −1 0 −1
0 0 −1 0
0 0 0 −1


 , J =




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


 , ε = ±1

from Examples 4.16 and 5.8. As in the cases (I) and (II), there are no stable S-
invariant J-Lagrangian subspaces for the case ε = 1. However, Theorem 6.6 predicts
that there exists a conditionally stable S-invariant J-Lagrangian subspace for the case
ε = −1. Indeed, the argument used in Example 5.8 does not work in this case, because
S1 and S−1 have different sign characteristics, and consequently, there does not exist
an invertible matrix Q such that Q∗JQ = J and Q−1S−1Q = S1. Considering the
perturbation as in (4.9), we conclude as in Example 4.16 that the only candidate for a
conditionally stable invariant J-Lagrangian subspace for S−1 is the space

M0 := Range

[
I2

0

]
.
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Now let us return to the J-symplectic matrix which was used to show that this space
was not conditionally stable in the real case, i.e., consider

S(β) =




−1 0 −1 0
0 −1 0 −1
β −β −1 + β −β
−β β −β −1 + β


 , 0 < β < 2,

with simple eigenvalues β−1±i
√

2β − β2 and eigenvalue −1 (with algebraic multiplicity
2). In contrast to the real case of Example 4.16, there exist exactly two (complex) S(β)-
invariant J-Lagrangian subspaces, namely,

Span








1
1
0
0


 ,




1
−1

−β ∓ i
√

2β − β2

β ± i
√

2β − β2








.

Letting β → 0, we see that M0 is still a candidate for a conditionally stable subspace
and Theorem 6.6 states that this candidate wins the election.

7 Invariant Lagrangian subspaces with spectrum lo-

cation

In this section we consider stability of S-invariant J-Lagrangian subspaces M with the
special property that the spectrum of the restriction S|M lies either entirely inside or
entirely outside the unit circle. These cases are important in applications, see [22];
for instance, σ(S|M) being inside the unit circle is an indication that the underlying
discrete system is stable.

It will be convenient to introduce the following terminology: An S-invariant J-
Lagrangian subspace M is said to be (S, J)-inner, resp., (S, J)-outer, if |λ| ≤ 1, resp.,
|λ| ≥ 1, for every λ ∈ σ(S|M). As it follows from the well known description of the
gap between subspaces in terms of limits of vectors (see [15, Theorem 13.4.2]), the
sets of (S, J)-inner and of (S, J)-outer subspaces (for fixed J and S) are closed in the
gap metric. Parts of the following result follow from the corresponding result for real
Hamiltonian matrices in [23].

Theorem 7.1 Consider the cases (I) or (II) and let S ∈ F2n×2n be J-symplectic (or
consider the case (III) and let S ∈ C2n×2n be J-unitary, respectively).

(a) If IL(S, J) is not empty, then there exist an (S, J)-outer subspace M+ and an
(S, J)-inner subspace M−.

(b) The (S, J)-outer subspace M+ is unique if and only if the (S, J)-inner subspace
M− is unique.
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(c) If the (S, J)-outer subspace M+, or, equivalently, the (S, J)-inner subspace M−

is unique, then M+ and M− are conditionally stable S-invariant J-Lagrangian
subspaces.

Proof. Parts (a) and (b) follow from the canonical forms (see Theorem 4.3 for the
real symplectic case, Theorem 5.1 for the complex symplectic case, and Theorem 6.2
for the complex unitary case).

For the part (c) we argue by contradiction. Assume M+ is not conditionally stable.
Then there exists ε > 0, a sequence Sm of J-symplectic matrices, and a sequence Mm

of (Sm, J)-outer subspaces such that Sm → S, but

gap (Mm,M+) > ε for m = 1, 2, . . . . (7.1)

By the compactness property of the set of subspaces in a finite dimensional real or
complex vector space (see, e.g., [15, Chapter 13]) the sequence Mm must have a con-
vergent subsequence, say, with limit M′. Then M′ is an (S, J)-outer subspace. By the
uniqueness of M+ we must have M′ = M+ which contradicts (7.1).

Specializing the results of Section 5 yields the following corollary.

Corollary 7.2 Let S ∈ C2n×2n be J-symplectic.

(a) The following statements are equivalent:

(1) There exists a conditionally stable (S, J)-inner subspace.

(2) There exists a conditionally stable (S, J)-outer subspace.

(3) There exists a stable (S, J)-inner subspace.

(4) There exists a stable (S, J)-outer subspace.

(5) dim Ker (S − I) ≤ 1 and dim Ker (S + I) ≤ 1.

(b) Assume that the conditions (1)–(5) hold, or equivalently, any one of these condi-
tions holds. Define α+ = 1 if S ± I are invertible, and α+ = max{n+, n−} if at
least one of the two matrices S ± I is not invertible, where n+, resp. n−, stand
for the algebraic multiplicity of the eigenvalue 1, resp. −1, of S. Then there exist
α+-stable (S, J)-inner subspaces and α+-stable (S, J)-outer subspaces. In fact, if
an (S, J)-inner or (S, J)-inner subspace M is such that either M∩R(S, λ) = {0}
or M ⊇ R(S, λ) holds for every unimodular eigenvalue λ of S different from ±1,
then M is α+-stable.

(c) Assume that the conditions (1)–(5) hold. Define α− = 1 if S ± I are invertible
and α− = max{2, n+ − 1, n− − 1}, where n± are defined as in part (b). Then no
(S, J)-inner subspace nor (S, J)-outer subspace is stable for any β < α−.
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Note that by Theorem 5.1 the integers n+ and n− in Corollary 7.2 are even, and
possibly zero.

We consider now the case (I), i.e, F = R and real J-symplectic matrices, where
J ∈ R

2n×2n is skew-symmetric and invertible. Then the results of Subsection 4.3 lead
to the following corollary regarding outer and inner subspaces.

Corollary 7.3 Let S be a real J-symplectic matrix.

(i) There exists a conditionally stable (S, J)-inner subspace, or, equivalently, there
exists a conditionally stable (S, J)-outer subspace, if and only if the conditions
(a), (b), and (c) of Theorem 4.11 are satisfied.

(ii) There exists a stable (S, J)-inner subspace, or, equivalently, there exists a stable
(S, J)-outer subspace, if and only if S has no unimodular eigenvalues.

(iii) If the conditions of (i), resp. of (ii), are satisfied, then there is a unique (S, J)-
inner subspace, there is a unique (S, J)-outer subspace, and both subspaces are
conditionally stable, resp. Lipschitz stable.

(iv) Assume that the geometric multiplicity of every unimodular eigenvalue of S is
equal to one. Denote by κ the largest partial multiplicity of any unimodular eigen-
value of S, and let κ = 1 if S has no unimodular eigenvalues. Then the indices
of conditional stability of the (S, J)-inner and of the (S, J)-outer subspace do not
exceed κ. If, in addition, κ = 2, then these indices are equal to 2.

Finally, we consider complex J-unitary matrices. The results of Section 6 when
specialized to the case of inner and outer subspaces yield:

Corollary 7.4 Let S ∈ C
2n×2n be a J-unitary matrix. Then:

(a) There exists an (S, J)-inner subspace, equivalently an (S, J)-outer subspace, if and
only if for every unimodular eigenvalue ω ∈ C, |ω| = 1, the number of odd partial
multiplicities corresponding to ω is even, and their signs in the sign characteristic
of S sum up to zero.

(b) An (S, J)-inner subspace, or an (S, J)-outer subspace, is stable if and only if S
has no unimodular eigenvalues, and in this case the subspace is Lipschitz stable.

(c) An (S, J)-inner subspace, or an (S, J)-outer subspace is conditionally stable if and
only if every unimodular eigenvalue ω of S has only even partial multiplicities,
and all the signs in the sign characteristic of S corresponding to ω are equal.

(d) Assume in addition that S has unimodular eigenvalues and that the geomet-
ric multiplicity of every unimodular eigenvalue of S is equal to 1, whereas the
algebraic multiplicities n1, . . . , nr of unimodular eigenvalues of S are all even.
Then the (S, J)-inner subspace, or the (S, J)-outer subspace, is β-stable for every
β ≥ max{n1, . . . , nr}, and is not β-stable for any β < max{2, n1 − 1, . . . , nr − 1}.

45



8 Conclusion

We have studied the perturbation analysis for J-Lagrangian invariant subspaces of
symplectic matrices. We have analyzed different stability concepts in the real and
complex case. The results have been illustrated with several examples.

Determination of the index of (conditional) stability in all cases remains a challeng-
ing open problem.
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