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Abstract. Being one of the key tools in conformation dynamics, the identification of meta-stable
states of Markov chains has been subject to extensive research in recent years, especially when the
Markov chains represent energy states of biomolecules. Some previous work on this topic involved the
computation of the eigenvalue cluster close to one, as well as the corresponding eigenvectors and the
stationary probability distribution of the associated stochastic matrix. Later, since the eigenvalue
cluster algorithm turned out to be non-robust, an optimisation approach was developed. As a
possible less costly alternative, we present an SVD approach to identifying meta-stable states of a
stochastic matrix, where we only need the second largest singular vector. We outline some theoretical
background and discuss the advantages of this strategy. Some simulated and real numerical examples
illustrate the effectiveness of the proposed algorithm.
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1. Introduction. The research for this paper has been motivated by the work
on conformation dynamics, or more specifically, on the identification of meta-stable
conformations of biomolecules done by Deuflhard, Schütte et al., see, e.g., [5], [6] and
the references therein. This problem arises for instance in drug design, where it is
important to study different conformations of the drug molecule in order to optimise
its shape for best possible binding properties with respect to the target molecule [15].
Different conformations, also called aggregates or meta-stable states of a molecule are
sets of states such that the transition within the set is very probable whereas the
transition between these sets only rarely occurs.

The approach to identify meta-stable conformations of biomolecules presented
in [5] involves the computation of the eigenvalue cluster close to one, the so-called
Perron cluster, as well as the corresponding eigenvectors. The number of eigenvalues
in the cluster, then, represents the number of different meta-stable states. Since
this algorithm turned out to be non-robust, an optimasation approach was developed
in [6]. In both approaches the Markov chain is assumed to be reversible in order
to exploit the fact that the transition matrix is then symmetric with respect to an
inner product, which uses the stationary distribution of the Markov chain. The main
drawbacks of these approaches are firstly, that the identification of the Perron cluster
may be difficult or even impossible if the transition matrix of the Markov chain has no
significant spectral gaps; and secondly, the calculation of the stationary distribution,
although usually well conditioned [8], [19], may be costly and badly conditioned if the
Perron cluster contains many eigenvalues very close to 1; see, e.g., [18].

In this paper, we present a different approach to identifying meta-stable states
of a Markov chain: we find a permutation of a given stochastic transition matrix of
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a Markov chain, such that the resulting matrix is block diagonally dominant. The
diagonal blocks, then, represent the different meta-stable states. In our method we
do not need to know the number of meta-stable states in advance but instead it is
calculated in the process. Hence, the functionality of the algorithm does not depend
on a significant gap in the spectrum of the transition matrix of the Markov chain.
Furthermore, instead of calculating many eigenvectors or employing costly optimisa-
tion procedures, we calculate only two singular vectors that correspond to the two
largest singular values. This allows us to use iterative procedures such as Lanczos
or Arnoldi iteration for computations [3]. Since we are dealing with singular vectors
instead of eigenvectors, we do not need the stationary distribution to symmetrise the
problem, since singular vectors are orthogonal.

The basic idea of our algorithm is to calculate the singular vector that corresponds
to the second largest singular value, sort its entries and apply the permutation thus
obtained to the transition matrix. This idea is based on an observation due to I. Slap-
nicar [16]. Our strategy partly reflects well studied ideas from the computer science
literature. In graph partitioning, the Fiedler vector, which is the eigenvector corre-
sponding to the second smallest eigenvalue of a Laplacian matrix plays an important
role, see, e.g., [9], [14] for the basics and [1], [17] for further reading. Ideas of using
the singular value decomposition for graph clustering can be found, e.g., in [7], [20]
or in the case of the seriation and the consecutive ones problem, e.g., in [2].

Our paper is organised as follows. In Section 2 we introduce the notation and some
well-known definitions and theorems that we will use throughout the paper. In Section
3, we formulate some theoretical results for uncoupled Markov chains followed by
Section 4, where we translate these results to the nearly uncoupled case. In Section 5,
we describe our algorithm in detail. Finally, in Section 6, we present some constructed
and some real numerical examples that illustrate the functionality of our method.

2. Preliminaries. We call a vector v ∈ Rn positive and we write v > 0 if all
entries vi are positive. A matrix T ∈ Rn×n, T = [tij ]i,j=1,...,n is called positive (non-
negative) and we write T > 0 (T ≥ 0) if all entries tij are positive (non-negative). The
matrix T is called reducible if there exists a permutation matrix P ∈ Rn×n, such that

PTPT =

[
T11 0
T21 T22

]

, where T11, T22 are square. Otherwise it is called irreducible. We

call the matrix T (strictly) diagonally dominant if |tii| >
∑n

j=1
j 6=i

|tij | for all i = 1, . . . , n.

We denote by 1 the vector of all ones (1, . . . , 1)T .

A scalar λ ∈ R is called an eigenvalue of the matrix T ∈ Rn×n if a vector v ∈Rn, v 6= 0 exists, such that Tv = λv. The vector v is called a (right) eigenvector of T

associated with λ. Accordingly, a vector w ∈ Rn, w 6= 0 with wT T = λwT is called a
(left) eigenvector of T . Let T ∈ Rn×n have the eigenvalues λi, i = 1, . . . , n. We call
ρ(T ) = max1≤i≤n |λi| the spectral radius of T .

A process is called finite homogeneous Markov chain if it has n states s1, . . . , sn

and the transition probability P [si ; sj ] =: tij is time-independent. The matrix
T = [tij ]i,j=1,...,n satisfies tij ≥ 0 and

∑n

j=1 tij = 1 for i, j = 1, . . . , n, i.e., it is
(row) stochastic and it is called the transition matrix of a Markov chain. We denote
by xk = [xk

i ] the probability distribution vector, where xk
i is the probability that the

system is in state si after k steps. We have, xk
i ≥ 0 and

∑n

i=1 xk
i = 1 for each k. A

distribution vector x is said to be stationary if xT T = xT . A matrix A is called block
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stochastic if A is block-diagonal, i.e.,

A = diag(A1, . . . , Am), (2.1)

and the matrices Ai ∈ Rni×ni , i = 1, . . . , m, are (row) stochastic matrices. For every
block Ai, we define sets Si of ni indices corresponding to the bock Ai. We have
⋃n

i=1 Si = {1, . . . , n} and Si ∩ Sj = ∅ for i 6= j. We define by A(Si, Sj) the subblock
of A that contains entries aij , where i ∈ Si, j ∈ Sj .

The (adjacency) graph of a matrix A = (aij)i,j=1,...,n is defined by letting the
vertices represent the unknowns. There is an edge from node vi to node vj whenever
aij 6= 0. We call a graph and, hence, the corresponding matrix simply connected if
for all i, j ∈ {1, . . . , n} there exists a path from node i to node j or from node j to
node i.

The well-known Perron-Frobenius Theorem, see, e.g., [4, p. 27], guarantees the
existence and uniqueness of a stationary distribution.

Theorem 2.1 (Perron-Frobenius Theorem). Let T ≥ 0 be irreducible with spec-
tral radius ρ(T ). Then ρ(T ) is a simple eigenvalue and T has a positive left and right
eigenvector corresponding to ρ(T ). A positive eigenvector x of a non-negative matrix
T corresponds to ρ(T ).

In this paper we apply the singular value decomposition to identify metastable
states of a Markov chain. The following well-known theorem, see, e.g., [11, p. 70],
states the existence of a singular value decomposition.

Theorem 2.2 (SVD). Let A ∈ Rn×n. Then, there exist orthogonal matrices
U = [u1, . . . , un] ∈ Rn×n and V = [v1, . . . , vn] ∈ Rn×n such that

A = UΣV T , (2.2)

where Σ = diag(σ1, . . . , σn) and σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0. We call σ1, . . . , σn

singular values, u1, . . . , un left singular vectors and v1, . . . , vn right singular vectors of
A. Singular values with multiplicity one are called simple.

Corollary 2.3. For any orthogonal matrices U, V , the matrices B and UBV

have the same singular values.

3. Uncoupled Markov chains and SVD. In this section we formulate the
theoretical basis for the sign structure approach that we use in our algorithm. In
Lemma 3.1 we show how permutations of a block-stochastic matrix affect the SVD.
In Theorem 3.2, following the lines of [5, Lemma 2.5], we show an important sign
structure property for singular vectors. Subsequently, we explain how we use this
property in our approach and state the advantages of this strategy.

Lemma 3.1. Let A be a block-stochastic matrix of the form (2.1) and let B =
PAPT , where P is any permutation matrix. Let

B = UΣV T

be a singular value decomposition of A as in (2.2). Then,

A = ŨΣṼ T , (3.1)

where Ũ = PT U and Ṽ T = V T P , is a singular value decomposition of A. The
matrices A and B have the same singular values.



4 D. Fritzsche, V. Mehrmann, D.B. Szyld and E. Virnik

Proof. Since PPT = I for any permutation matrix P , the matrices Ũ = PT U

and Ṽ T = V T P are orthogonal.

In the following we present an approach to obtain a permutation matrix P̃ that
yields Ã = P̃T BP̃ where Ã is block-diagonal and reveals the hidden block-structure
of B. We will determine such a P̃ by means of the singular value decomposition.

Theorem 3.2. Let A be a block-stochastic matrix of the form (2.1) with m

diagonal blocks denoted by A1, . . . , Am. Let

A = ŨΣṼ T

be a singular value decomposition of A as in (2.2) and let ũ1, . . . , ũm be the m

left singular vectors corresponding to the largest singular value of each of the blocks
A1, . . . , Am, respectively. Associate with every state si its sign structure

sign(si) :=
[
sgn(ũ1)i, . . . , sgn(ũm)i

]
, (3.2)

where

sgn : R −→ {−1, 0, 1}

x 7−→







1, x > 0
0, x = 0
−1 x < 0

.

Then,

i) states that belong to the same block of A exhibit the same sign structure, i.e.,
for any Aj and all k, l ∈ Sj, we have sign(sk) = sign(sl);

ii) states that belong to different blocks of A exhibit different sign structure, i.e.,
for any Ai, Aj with i 6= j and all k ∈ Si, l ∈ Sj we have sign(sk) 6= sign(sl).

Proof. i) Left singular vectors of a matrix A can be obtained by finding the
eigenvectors of AAT , since from (2.2) we get AAT = ŨΣ2ŨT , see, e.g., [11]. Note
that the singular values of A are the square roots of the eigenvalues of AAT .

Since we have assumed A to have m blocks, the graph of each Ai is simply
connected. Therefore, the matrix product AiA

T
i is irreducible and we have AiA

T
i ≥

0. Hence, by the Perron-Frobenius Theorem 2.1 we have that ρ(AiA
T
i ) is a simple

eigenvalue and the corresponding right eigenvector ûi is strictly positive. Thus, the
vector

ũi = [0, . . . , 0, ûT
i , 0, . . . , 0]T (3.3)

is an eigenvector of AAT corresponding to the largest eigenvalue of the block AiA
T
i ,

i.e., it is a left singular vector corresponding to the largest singular value of the block
Ai. This implies that states that belong to the same block exhibit the same sign
structure.

ii) Since by part i) all states that belong to the same block have the same sign
structure, without loss of generality, we can assume that every block consists of only
one state. Then, since Ũ = [ũ1, . . . , ũm] ∈ Rm×m is orthogonal, the rows of Ũ are also
orthogonal and, hence, no two vectors can have the same sign structure.

Note, that the same results can be obtained for the right singular vectors by
considering the matrix AT A instead of AAT .
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To illustrate the sign structure property established in Theorem 3.2 we consider
the following example.

Example 3.3. Consider a block diagonal transition matrix of a Markov chain
with three blocks of sizes 2, 3, 2. Then, the three largest singular vectors v1, v2, v3

corresponding to each of the blocks are linear combinations of the vectors ũi in (3.3).
We have that the vectors ũi

s1

s2

s3

s4

s5

s6

s7

ũ1











+
+
0
0
0
0
0













ũ2











0
0
+
+
+
0
0













ũ3











0
0
0
0
0
+
+













are non-negative on the block they correspond to and zero elsewhere. A possible linear
combination for the orthogonal vectors vi could lead to the following sign structure.

s1

s2

s3

s4

s5

s6

s7

v1











+
+
+
+
+
+
+













v2











+
+
−
−
−
−
−













v3











−
−
−
−
−
+
+













.

Here, the states s1, s2 belong to the first block and have the sign structure (+, +,−),
the states s3, s4, s5 belong to the second block and have the sign structure (+,−,−)
and the states s6, s7 belong to the third block and have the sign structure (+,−, +).

The idea to sort the singular vector corresponding to the second largest singular
value and to apply the resulting permutation to the matrix is due to an observation
by Slapnicar [16]. This method always works for matrices with only two blocks, see
Section 5 for an Example, and usually works for matrices with a few more blocks. For
larger matrices having more blocks, however, this simple approach is not sufficient to
reveal the block structure.

By using the sign structure properties established in Theorems 3.1 and 3.2 we
modify this idea into a recursive bisectioning algorithm that is suitable for large
matrices with any number of blocks. The main strategy is to identify two blocks
in each step and apply the sorting procedure recursively to each of the blocks. The
details of the algorithm are presented in Section 5.

The advantages of this approach as opposed to the eigenvalue approach presented
in [5] are the following:

• instead of computing all eigenvectors corresponding to the eigenvalue 1, we
only calculate two singular vectors;

• singular vectors are orthogonal, hence we do not need the stationary distri-
bution for the transition matrix to be symmetric in an inner product;

• we do not need to know the number of blocks in advance. Instead, we only set
a tolerance threshold for the size of the entries in the off-diagonal blocks. The
number of identified blocks, then, reflects the given tolerance, see Section 4;
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• the approach makes use of combinatorial aspects of the problem.
• it is less costly than an optimisation approach.

4. Nearly uncoupled Markov chains. In the previous section we have con-
sidered uncoupled Markov chains. In applications, due to perturbations, noise and
actual weak couplings between aggregates, the Markov chains are nearly uncoupled.
Such a matrix B, consisting of m nearly uncoupled blocks, can be transformed by a
permutation matrix P to

PBPT = A + E =









A11 E12 . . . E1m

E21 A22 . . . E2m

...
...

...

Em1 Em2

... Amm









, (4.1)

where the elements of each Eij are small. In this case, we are looking for some

permutation matrix P̃ , possibly different from the matrix P in 4.1, that permutes B

into a block diagonally-dominant matrix of the form 4.1. In order to define diagonal
dominance for blocks, we need to introduce a measure for the smallness of the off-
diagonal blocks or, equivalently, a measure for the largeness of the diagonal blocks.

For this purpose, following [5, Definitions 2.3, 2.4], we first define a norm that is
more general and then use special cases of it.

Let Sk, Sl ⊆ {1, . . . , n} be sets of indices. In the following, we denote by Bkl =
B(Sk, Sl) the sub-block of B corresponding to the index sets Sk, Sl. For simplicity,
for any k, we write Bk for the diagonal block Bkk.

Definition 4.1 (Conditional transition probability). Let B = [bij ] ∈ Rn×n be
a stochastic matrix. Let v = [v1, . . . , vn]T be a positive vector with

∑n

i=1 vi = 1. Let
Sk, Sl ⊆ {1, . . . , n} be sets of indices with Sk ∩ Sl = ∅ and let Bk = B(Sk, Sk), Bl =
B(Sl, Sl) be the corresponding blocks. Then, the conditional transition probability from
Bk to Bl is given by

ωv(Bk, Bl) =

∑

i∈Sk,j∈Sl
vibij

∑

i∈Sk
vi

.

Definition 4.2 (v-Norm). For any vector v > 0, we define the v-norm of a
non-negative matrix (block) Bkl by

‖Bkl‖v := ωv(Bk, Bl).

Definition 4.3 (Coupling matrix). Let S1, . . . , Sm ⊆ {1, . . . , n} be sets of indices
such that

⋃n

i=1 Si = {1, . . . , n} and Si ∩ Sj = ∅, for all i 6= j. Let Bk = B(Sk, Sk),
k = 1, . . . , m, be the diagonal blocks of the corresponding block decomposition of B.
The coupling matrix of the decomposition is given by the stochastic matrix Wv defined
by

(Wv)kl = ωv(Bk, Bl),

for k, l = 1, . . . , m. In [5] and [6] the vector v is taken to be the stationary distribution
of the Markov chain, i.e., v = π, where πT B = πT and πT1 = 1. Hence, the norm
used in [5] and [6] is called the π-norm.
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Definition 4.4 (1-norm). We set v = [1, . . . , 1]T =: 1T and obtain for the norm
of a matrix (block) Bkl

‖Bkl‖1 =
1

nk

∑

i∈Sk,j∈Sl

bij . (4.2)

We call this norm the 1-norm. Note that the 1-norm is simply the average row sum
of a matrix (block).

We discuss the difference of the 1-norm to the norm used in [5] and [6] in Sec-
tion 6. The advantage of our choice is clearly that we avoid calculating the stationary
distribution of the Markov chain, which, although usually well conditioned [8], [19],
may be costly and badly conditioned if the Perron cluster contains many eigenvalues
very close to 1, see, e.g., [18]. We claim to obtain the same blocks with both norms
only with different coupling matrices. The following lemma gives the equivalence
factors of the two norms.

Lemma 4.5. Let B = [bij ] ∈ Rn×n be a stochastic matrix. Let Sk ⊆ {1, . . . , n}
be a set of nk indices and Bk = B(Sk, Sk) the corresponding principal sub-block.
Furthermore, let v = [v1, . . . , vn]T be a positive vector and vmin, vmax the minimum
and maximum values of the entries in v(Sk). Then, we have

‖Bk‖v ≤
vmax

vmin
‖Bk‖1 ≤

v2
max

v2
min

‖Bk‖v.

Proof. We have

‖Bk‖v =

∑

i,j∈Sk
vibij

∑

i∈Sk
vi

, ‖Bk‖1 =
1

nk

∑

i,j∈Sk

bij .

Since vmin ≤ vi ≤ vmax for all i ∈ Sk, we have that

‖Bk‖v ≤

∑

i,j∈Sk
vmaxbij

∑

i∈Sk
vmin

=
vmax

vmin
.

1

nk

∑

i,j∈Sk

bij =
vmax

vmin
‖Bk‖1.

Similarly,

‖Bk‖v ≥

∑

i,j∈Sk
vminbij

∑

i∈Sk
vmax

=
vmin

vmax
‖Bk‖1,

giving us the two constants of the equivalence of the norms.

In the numerical examples in Section 6, we can see that for the diagonal blocks
the π-norm is usually larger than the 1-norm. Yet, this is not always the case as the
following example demonstrates.

Example 4.6. Consider the stochastic matrix

B =





0.1 0.9 0
0.1 0.8 0.1
0.3 0.1 0.6



 .

The stationary distribution of B is given by π =
[
0.1346 0.6923 0.1731

]
. For the

first two by two block B1 we get ‖B1‖π = 0.9163 < 0.95 = ‖B1‖1.
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We now use the 1-norm to introduce a measure for the largeness of diagonal
blocks.

Definition 4.7 (Nearly uncoupled). We call two blocks nearly uncoupled if the1-norm of each of the blocks is larger than a given threshold thr = 1 − δ for some
small δ > 0. We call a matrix B̃ nearly uncoupled if it consists of m diagonal blocks
and the corresponding coupling matrix, see Definition 4.3, is diagonally dominant.

Our algorithm determines the maximal number of blocks such that the coupling
matrix is diagonally dominant.

In the previous section we have shown that singular vectors that correspond to
the largest singular values of each of the blocks have a specific sign structure. States
that belong to the same block exhibit the same sign structure and states that belong
to different blocks exhibit different sign structures. Since our identification algorithm
is based on this sign structure, we need to show that under certain conditions the
assertions of Theorem 3.2 are still true under perturbations.

4.1. Perturbation theory. Consider the perturbed stochastic matrix
B = Â + ǫR for some ǫ > 0. For sufficiently small real ǫ the matrix T (ǫ) = BBT is a
linear symmetric operator that can be written by [12, pp.63,120] as

T (ǫ) = T + ǫT (1) + O(ǫ2), (4.3)

where T (0) = T = ÂÂT is the unperturbed operator and T (1) = ÂRT + RÂT is
a Lyapunov perturbation operator. The matrix-valued function T (ǫ) is for all real
ǫ > 0 a product of a stochastic matrix with its transpose, that is symmetric and non-
negative. Note, that the perturbations here are also symmetric. According to [12,
Section 6.2] for such a T (ǫ) there exists an orthonormal basis of eigenvectors ϕk(ǫ)
that are analytic functions of ǫ. In particular, the eigenvectors ϕk(ǫ) depend smoothly
on ǫ and admit a Taylor expansion

ϕk(ǫ) = ϕk + ǫϕ
(1)
k + O(ǫ2), (4.4)

where ϕk are the orthonormal eigenvectors of the unperturbed operator T , i.e., linear
combinations of the vectors ũi in (3.3). The following is a generalisation of [5, Theorem
3.1] and [6, Lemma 2.1] from eigenvectors to singular vectors.

Theorem 4.8. Let T (ǫ) as in (4.3) have the two largest eigenvalues λ1(ǫ), λ2(ǫ).
Let T = T (0) as in (4.3) be the corresponding unperturbed operator with eigenval-
ues λ1 ≥ λ2 ≥ . . . ≥ λn. Then the perturbed orthonormal eigenvectors ϕ1(ǫ), ϕ2(ǫ)
corresponding to the perturbed singular values λ1(ǫ), λ2(ǫ) are of the form

ϕk(ǫ) =
2∑

j=1

(αij + ǫβij)ũj + ǫ

n∑

j=3

〈

ϕj , ϕ
(1)
k

〉

ϕj + O(ǫ2), (4.5)

for k = 1, 2, where ũj are the eigenvectors in (3.3) and αij , βij are suitable coeffi-
cients.

Proof. Let us consider the more general case of m eigenvectors. Let T have a
permutation PTPT that has m uncoupled irreducible blocks and let λ1, . . . , λm be
the largest eigenvalues corresponding to each of the blocks, i.e., the corresponding
eigenvectors ϕk are linear combinations of the vectors in (3.3). For k = 1, . . . , m let
Pk be the orthogonal projection onto the eigenspace of the eigenvalue λk. Then, by



An SVD approach to identifying meta-stable states of Markov chains 9

[12, Sec. II.2.1], the perturbed projection Pk(ǫ) is analytic in ǫ and admits a Taylor
expansion

Pk(ǫ) = Pk + ǫP
(1)
k + O(ǫ2), k = 1, . . . , m,

By [12, Sec. II.2.1(2.14)], we obtain

Pk(ǫ) = Pk + ǫ
∑

j∈{1,...,n}
j 6=k

1

λk − λj

(PkT (1)Pj + PjT
(1)Pk) + O(ǫ2), k = 1, . . . , m.

Consider now the eigenvalues λ1, . . . , λm, where λk 6= λj for k 6= j, j, k = 1, . . . , m. Let
P1,...,m be the orthogonal projection onto the eigenspace corresponding to λ1, . . . , λm.
Then,

P1,...,m(ǫ) =

m∑

i=1

Pi(ǫ) =

=

m∑

i=1

Pi + ǫ

m∑

i=1

∑

j∈{1,...,n}
j 6=i

1

λi − λj

(PiT
(1)Pj + PjT

(1)Pi) + O(ǫ2) =

= P1,...,m + ǫ

m∑

i=1

n∑

j=m+1

1

λi − λj

(PiT
(1)Pj + PjT

(1)Pi) + O(ǫ2), (4.6)

since the terms for j ≤ m cancel out. For the corresponding eigenvectors ϕ1(ǫ), . . . , ϕm(ǫ),
we have that

ϕk(ǫ) = P1,...,m(ǫ)ϕk(ǫ), k = 1, . . . , m. (4.7)

By plugging in (4.4) and (4.6) into the right hand side of (4.7), we obtain

ϕk(ǫ) = ϕk + ǫϕ
(1)
k + O(ǫ2) =

= P1,...,mϕk + ǫ(
n∑

j=m+1

1

λk − λj

PjT
(1)ϕk + P1,...,mϕ

(1)
k ) + O(ǫ2).

Comparing the coefficients corresponding to ǫ, we get

(I − P1,...,m)ϕ
(1)
k =

n∑

j=m+1

1

λk − λj

PjT
(1)ϕk.

Since (I − P1,...,m) is the orthogonal projection complementary to P1,...,m, which is
the projection onto the eigenspace corresponding to the eigenvectors ϕ1 . . . , ϕm we
obtain

ϕ
(1)
k =

m∑

j=1

β̃ijϕk +

n∑

j=m+1

1

λk − λj

PjT
(1)ϕk. (4.8)

with some coefficients β̃ij ∈ R. By inserting (4.8) into (4.4), we obtain

ϕk(ǫ) = ϕk + ǫϕ
(1)
k + O(ǫ2) =

=

m∑

j=1

(αij + ǫβij)ũj + ǫ

n∑

j=m+1

1

λk − λj

PjT
(1)ϕk + O(ǫ2), (4.9)
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with some coefficients αij , βij ∈ R since the eigenvectors ϕk are linear combinations
of the vectors ũj in (3.3).

Following now the lines of the proof of [6, Lemma 2.1] we can rewrite the second
summand in (4.9) as follows. First, for k = 1, . . . , m, we expand the perturbed
eigenvalues

λk(ǫ) = λk + ǫλ
(1)
k + O(ǫ2), (4.10)

and rewrite the second summand as a projection in terms of the Euclidean scalar
product 〈, 〉

n∑

j=m+1

1

λk − λj

PjT
(1)ϕk =

n∑

j=m+1

1

λk − λj

〈

ϕj , T
(1)ϕk

〉

ϕj .

Now we need an expression for T (1). For k = 1, . . . , m we have

T (ǫ)ϕk(ǫ) = λk(ǫ)ϕk(ǫ).

We insert all expansions and obtain

(T + ǫT (1) + O(ǫ2))(ϕk + ǫϕ
(1)
k + O(ǫ2)) = (λk + ǫλ

(1)
k + O(ǫ2))(ϕk + ǫϕ

(1)
k + O(ǫ2)).

The zero order coefficient comparison of the above equation yields

Tϕk = λkϕk.

The first order coefficient comparison yields

Tϕ
(1)
k + T (1)ϕk = λkϕ

(1)
k + λ

(1)
k ϕk,

which transforms to

T (1)ϕk = (λkI − T )ϕ
(1)
k + λ

(1)
k ϕk.

Finally, we can rewrite the scalar product expression.

〈

ϕj , T
(1)ϕk

〉

=
〈

ϕj , (λkI − T ))ϕ
(1)
k + λ

(1)
k ϕk

〉

=

=
〈

ϕj , (λkI − T )ϕ
(1)
k

〉

+ λ
(1)
k 〈ϕj , ϕk〉

︸ ︷︷ ︸

=0

.

The last term vanishes due to orthogonality of the unperturbed eigenvectors of a
symmetric operator. For the first term, since T is symmetric, we obtain

〈

ϕj , (λkI − T )ϕ
(1)
k

〉

=
〈

(λkI − T )ϕj , ϕ
(1)
k

〉

=

= (λk − λj)
〈

ϕj , ϕ
(1)
k

〉

.

Now, we can rewrite (4.9) as

ϕk(ǫ) =

m∑

j=1

(αij + ǫβij)ũj + ǫ

n∑

j=m+1

〈

ϕj , ϕ
(1)
k

〉

ϕj + O(ǫ2),
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which for m = 2 is the result in (4.5).

Theorem 4.8 that the second singular vector has the following representation

ϕ2(ǫ) = (α21 + ǫβ21)ũ1 + (α22 + ǫβ22)ũ2 + ǫ

n∑

j=m+1

〈

ϕj , ϕ
(1)
2

〉

ϕj + O(ǫ2)

The first two terms do not spoil the sign structure as long as αij , βij have the same sign
or in case of different sign ǫ is small enough such that |αi,j | > ǫ|βij | holds, respectively.
The third term depends on the orthogonality of the first order perturbation of the

second singular vector ϕ
(1)
2 with respect to the rest of the singular vectors. If it is

close to orthogonal, this term will be close to zero.

5. The algorithm. In this section we propose an algorithm that finds a permu-
tation of a stochastic matrix that permutes it into block diagonally dominant form
4.1 by recursively identifying diagonally dominant blocks. We first present an iden-
tification procedure in the case of two blocks. Then, we imbed this procedure into a
recursive method that works for any number of blocks.

Consider the case of two nearly uncoupled blocks. Let PBPT = A + E be a
matrix of the form (4.1) that consists of two blocks (m = 2), where P is not known.

Since B is not uncoupled, BBT is irreducible and from the Perron-Frobenius The-
orem 2.1 we know that B has a simple largest singular value σ1 and a corresponding
positive left singular vector u1. Consider now the second largest singular value σ2 and
the corresponding left singular vector u2.

Since singular vectors are orthogonal (or by the Perron-Frobenius theorem), u2

must have a change in sign, i.e., there exist two indeces i and j such that (u2)i(u2)j <

0. From Theorem 3.2 we know that states with different sign must belong to different
blocks. We sort the second singular vector, e.g., in increasing order and use this
permutation to permute the matrix B. Then, we split the permuted matrix B̃ =
P̃BP̃T such that the first block B̃1 is of size equal to the number of negative values in
u2 and the second block B̃2 is of size equal to the number of positive values in u2. By
the proof to [10, Theorem 2.3], we know that in our case the second singular value σ2

is smaller or equal to the largest singular values of B̃1 and B̃2, respectively. Hence,
the results of Theorem 3.2 and Section 4 on sign structure apply to the vector u2.
We obtain a matrix B̃ that reveals the hidden block structure of B, i.e., B̃ has the
same diagonal block structure as A up to a permutation of the blocks and the entries
within a block.

The following example demonstrates what we described above.

Example 5.1. Consider the row stochastic matrix

A =









0.2000 0.8000 0 0 0
0.4000 0.6000 0 0 0

0 0 0.3000 0.3000 0.4000
0 0 0.2000 0.2000 0.6000
0 0 0.1000 0.1000 0.8000









.
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The singular vectors of A are given by

U =









0 −0.7555 0 −0.6552 0
0 −0.6552 0 0.7555 0

−0.4590 0 0.7891 0 0.4082
−0.5702 0 0.0908 0 −0.8165
−0.6813 0 −0.6076 0 0.4082









.

We can see that the singular vectors are only non-zero on the one block they correspond
to.

Now consider the perturbed matrix A + E, where

E =









−0.0345 −0.1128 0.0887 0.0393 0.0192
−0.0592 −0.1041 0.0667 0.0421 0.0544

0.0428 0.0015 −0.0473 0.0154 −0.0125
0.0252 0.0636 −0.0212 −0.0112 −0.0564
0.0720 0.0799 0.0252 −0.0656 −0.1116









.

such that the matrix

Ã = A + E =









0.1655 0.6872 0.0887 0.0393 0.0192
0.3408 0.4959 0.0667 0.0421 0.0544
0.0428 0.0015 0.2527 0.3154 0.3875
0.0252 0.0636 0.1788 0.1888 0.5436
0.0720 0.0799 0.1252 0.0344 0.6884









,

is row stochastic again. Here, the error matrix E has been obtained as follows. We
choose a random matrix R of same size as E, where the entries that correspond to the
diagonal blocks are uniformly distributed in (−1, 1) and the entries that correspond
to the off-diagonal blocks are uniformly distributed in (0, 1). Then, we compute the
matrix A + ǫR, where ǫ := 10−2, which is not stochastic any longer. Now, we scale
each row by dividing each of its elements by the row sum and obtain the stochastic
matrix Ã. We have E = Ã − A and E has row sums zero.

Furthermore, consider a permuted matrix B = PÃPT , where P is a random
symmetric permutation matrix. We obtain

B =









0.1655 0.0393 0.0887 0.0192 0.6872
0.0252 0.1888 0.1788 0.5436 0.0636
0.0428 0.3154 0.2527 0.3875 0.0015
0.0720 0.0344 0.1252 0.6884 0.0799
0.3408 0.0421 0.0667 0.0544 0.4959









.

The matrix B is of a form in which we usually would get these matrices from appli-
cations. The left singular vectors of B are given by









−0.3558 0.6822 0.0367 −0.6258 −0.1220
−0.5048 −0.2770 0.0711 −0.1661 0.7973
−0.4216 −0.2631 0.7608 0.0775 −0.4100
−0.5738 −0.3030 −0.6440 0.0368 −0.4035
−0.3339 0.5448 −0.0006 0.7572 0.1357









.
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We now sort the second singular vector and obtain the permutation (4, 2, 3, 5, 1), which
corresponds to the permutation matrix

P̃ =









0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0









.

We apply the permutation to the matrix B and obtain

B̃ = P̃BP̃T =









0.6884 0.0344 0.1252 0.0799 0.0720
0.5436 0.1888 0.1788 0.0636 0.0252
0.3875 0.3154 0.2527 0.0015 0.0428
0.0544 0.0421 0.0667 0.4959 0.3408
0.0192 0.0393 0.0887 0.6872 0.1655









,

which exhibits the original block structure of Ã.

Once we know how to permute one large block that contains at least two subblocks
into two blocks, we can employ this procedure recursively. We compute the second
left singular vector, sort it and apply the permutation. Then, we check if the norm
(1-norm, see Definition 4.4) of the potential blocks is above a given threshold, see
Definition 4.7. In this case, we have found two blocks and proceed recursively with
each of the two blocks. Note that since we measure the size of the entries in the
diagonal blocks and not in the off-diagonal blocks, the threshold can stay the same
for all recursive calls. If the norm of the potential blocks is not above a given threshold,
we cannot split the block any further and stop.

Algorithm 1: Identification of nearly decoupled blocks

Input: Matrix B, threshold thr(= 1 − δ)
Output: Number m and sizes ni, i = 1, . . . , m of identified blocks in B, a

permutation matrix P such that PBPT = A + E.

Compute the second left singular vector u2 of B.1

Sort it and use the resulting permutation P to permute the matrix B.2

Identify two potential blocks B1 and B2 by using the change in sign in u2.3

The size of the first block is the number of negative values in u2, the size of4

the second block the number of positive values in u2.
if the norm of the diagonal blocks is larger than thr then5

We have found two blocks and separate them.6

Proceed recursively with step 1. applied to each of the blocks7

else8

The current block cannot be reduced any further.9

Increase the counter of blocks by one. Stop.10

6. Numerical tests. In this section, we present some numerical examples sub-
divided into three categories. First we discuss a constructed example, where we know
the hidden structure and can see it fully recovered by our method. In the second
subsection, we show results for a the molecule n-pentane, that was also used as ex-
ample in [5], and in this case we obtain the same results. In the last subsection, we
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present two slightly more challenging examples, where the algorithms in [5] and [6]
have difficulties identifying the meta-stable states. With our algorithm, we are able
to identify the maximal number of diagonal blocks such that the coupling matrix is
diagonally dominant.

For numerical tests, Algorithm 1, was implemented in MATLAB R© Version 7.0 and
run on a PC with an Intel(R) Pentium(R) 4 CPU 3.20GHz processor. The relative
machine precision was eps = 2.2204 × 10−16. In all example figures, we denote by n

the number of unknowns and by nz the number of non-zero elements in the matrix.

6.1. A constructed example. The first example illustrates the ability of our
method to recover a hidden block structure. It is constructed in the same manner as
Example 5.1 in Section 5, is of size n = 338 and has nz = 113906 non-zero entries.
In Figure 6.1, the upper left matrix is the original block diagonally dominant matrix,
where we clearly can distinguish the diagonal blocks. The corresponding coupling
matrix is diagonally dominant with values slightly larger than 0.5 on the diagonal.
Hence, the order of the perturbation is 10−1. The upper right matrix is a random
symmetric permutation of the first matrix. Here, no structure can be seen. The lower
left matrix depicts the recovered blocks after the calculation of one singular vector
and the application of the corresponding permutation. One can see, that the block
structure is to a large extent recovered but some parts are not fully restored yet. The
lower right matrix now depicts the recovered structure after recursive application of
the algorithm. We can see, that we have obtained the same blocks as in the original
matrix up to permutation of the blocks and entries within a block. For some examples
with such a large perturbation as in the previous example, the algorithm may fail as
we can see in the next random example. Here, the structure can not be recovered as
is depicted in Figure 6.2.

In general, one can say that the smaller the perturbation the better the algo-
rithm recovers the hidden structure. We have tested 3 types of randomly generated
examples. In the first type the diagonal entries of the coupling matrix are slightly
larger than 0.5, in the second they are between 0.6 and 0.7, and in the third type the
diagonal entries of the coupling matrix are about 0.9. We have run 1000 examples of
each type. The structure could be recovered in the first case in 57,6%, in the second
case in 85% and in the third case in 98,1% of all cases.

For comparison reasons, we have also run our algorithm using the right singular
vectors instead of the left singular vectors. For the same 3 types of examples as in
the previous paragraph, the optimal solution was found in the first case in 61,3%, in
the second case in 84,9% and in the third case in 98,1% of all cases. However, as for
some other problems, see, e.g., [13] and the references therein, the choice of left versus
right singular vector might be important, see Sections 6.2 and 6.3.

The performance could be slightly enhanced by running the algorithm a second
time using the right (left) singular vectors in case that it failed to find the optimal
solution in the first run using left (right) singular vectors. In this case we obtained
the optimal solution in the first case in 65,2%, in the second case in 87,8% and in the
third case in 99,5% of all cases.

6.2. n-Pentane. The example of n-pentane was presented in [5, Section 5.2].
We will use this example to discuss the difference or the equivalence of the π-norm
used in [5] and the 1-norm; see Section 4, Definition 4.4. This example is of size
n = 255 and has nz = 6464 non-zero entries.
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n = 338   nz = 113906

original matrix

100 200 300

100

200

300

n = 338   nz = 113906

after random permutation

100 200 300

100

200

300

n = 338   nz = 113906

after one run

100 200 300

100

200

300

n = 338   nz = 113906

after recursive application

100 200 300

100

200

300

Figure 6.1. Random example revealing 8 blocks

In Figure 6.3 we illustrate the results of our algorithm using the 1-norm. We
obtain 7 blocks of sizes 46, 24, 36, 20, 42, 47, 40 and the 1-norm coupling matrix, see
Definition 4.3, is

W1 =













0.6691 0.0278 0.1543 0.0018 0.0518 0.0517 0.1090
0.0061 0.6590 0.1543 0 0 0.0106 0.0462
0.0497 0.0809 0.8141 0 0.0009 0.0514 0.0003
0.0021 0 0 0.8178 0.0528 0.0283 0
0.0806 0 0.0019 0.0336 0.8478 0.0018 0.0465
0.1006 0.0031 0.0471 0.0885 0.0026 0.8027 0.0250
0.0350 0.1106 0.0084 0 0.0288 0.0092 0.8448













.

We can see that the matrix is diagonally dominant. Now, we calculate the coupling
matrix for our permuted matrix with the π-norm used in [5]. We again obtain a
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n = 338   nz = 113906

original matrix

100 200 300

100

200

300

n = 338   nz = 113906

after random permutation

100 200 300

100

200

300

n = 338   nz = 113906

after one run

100 200 300

100

200

300

n = 338   nz = 113906

after recursive application

100 200 300

100

200

300

Figure 6.2. Random example where the algorithm fails due to a very large error

diagonally dominant matrix

Wπ =













0.9777 0.0001 0.0053 0.0000 0.0044 0.0080 0.0046
0.0018 0.8763 0.0738 0 0 0.0007 0.0474
0.0190 0.0075 0.9727 0 0.0002 0.0005 0.0001
0.0008 0 0 0.9242 0.0365 0.0384 0
0.0169 0 0.0002 0.0033 0.9790 0.0002 0.0004
0.0311 0.0001 0.0006 0.0035 0.0002 0.9615 0.0031
0.0164 0.0048 0.0001 0 0.0004 0.0028 0.9755













,

yet, with larger values on the diagonal.

To compare the norms, we now run our algorithm using the π-norm. The result
that we obtain is depicted in Figure 6.4.
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n = 255   nz = 6464

original matrix

50 100 150 200 250

50

100

150

200

250

n = 255   nz = 6464

recovered block structure

50 100 150 200 250

50

100

150

200

250

Figure 6.3. n-Pentane (Ph300) revealing 7 blocks of sizes 46, 24, 36, 20, 42, 47, 40.

n = 255   nz = 6464

original matrix

50 100 150 200 250

50

100

150

200

250

n = 255   nz = 6464

recovered block structure

50 100 150 200 250

50

100

150

200

250

Figure 6.4. n-Pentane (Ph300) revealing 7 blocks of sizes 20, 42, 47, 46, 24, 36, 40.

The corresponding π-norm coupling matrix is

Wπ =













0.9242 0.0365 0.0384 0.0008 0 0 0
0.0033 0.9790 0.0002 0.0169 0 0.0002 0.0004
0.0035 0.0002 0.9615 0.0311 0.0001 0.0006 0.0031
0.0000 0.0044 0.0080 0.9777 0.0001 0.0053 0.0046

0 0 0.0007 0.0018 0.8763 0.0738 0.0474
0 0.0002 0.0005 0.0190 0.0075 0.9727 0.0001
0 0.0004 0.0028 0.0164 0.0048 0.0001 0.9755













,
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and the coupling matrix in the 1-norm is

W1 =













0.8178 0.0528 0.0283 0.0021 0 0 0
0.0336 0.8478 0.0018 0.0806 0 0.0019 0.0465
0.0885 0.0026 0.8027 0.1006 0.0031 0.0471 0.0250
0.0018 0.0518 0.0517 0.6691 0.0278 0.1543 0.1090

0 0 0.0106 0.0061 0.6590 0.1543 0.0462
0 0.0009 0.0514 0.0497 0.0809 0.8141 0.0003
0 0.0288 0.0092 0.0350 0.1106 0.0084 0.8448













.

We see that we obtain the same matrices up to permutation of the blocks. In this
example it does not make any difference which norm we use for calculations.

Our next example is the same molecule but in a different temperature setting.
This example is of size n = 307 and has nz = 19116 non-zero entries. Again, we first
run the algorithm using the 1-norm. In this case, we obtain only 5 blocks depicted in
Figure 6.5.

n = 307   nz = 19116

original matrix

50 100 150 200 250 300

50

100

150

200

250

300

n = 307   nz = 19116

recovered block structure

50 100 150 200 250 300

50

100

150

200

250

300

Figure 6.5. n-Pentane (Ph500) revealing 5 blocks of sizes 37, 88, 71, 51, 60.

The corresponding 1-norm coupling matrix is

W1 =









0.5523 0.1207 0.0696 0.0166 0.0026
0.2283 0.6250 0.0884 0.2771 0.0691
0.1950 0.1476 0.6150 0.0401 0.0849
0.0047 0.0842 0.0250 0.6725 0.1224
0.0021 0.0894 0.1192 0.0842 0.6549









.

It is diagonally dominant and the corresponding π-norm coupling matrix is

Wπ =









0.5842 0.3024 0.1054 0.0058 0.0021
0.0333 0.8061 0.0682 0.0609 0.0314
0.0265 0.1559 0.7738 0.0274 0.0164
0.0023 0.2184 0.0430 0.6977 0.0386
0.0007 0.0933 0.0213 0.0320 0.8527









.
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We see that it also is diagonally dominant, again, with larger values on the diagonal.

For comparison, we now run the algorithm using the π-norm. We obtain 6 blocks,
one more than with the 1-norm. The result is depicted in Figure 6.6.

n = 307   nz = 19116

original matrix

100 200 300

50

100

150

200

250

300

n = 307   nz = 19116

recovered block structure

100 200 300

50

100

150

200

250

300

Figure 6.6. n-Pentane (Ph500) revealing 6 blocks of sizes 45, 43, 37, 71, 51, 60.

We see that we have the same blocks except that the block of size 88 is subdivided
into two blocks of sizes 45 and 43. If we look at the coupling matrices, we can see the
reason. The π-norm coupling matrix

Wπ =











0.7642 0.0236 0.0036 0.0913 0.0808 0.0365
0.0628 0.7921 0.1123 0.0069 0.0079 0.0180
0.0240 0.2784 0.5842 0.1054 0.0058 0.0021
0.1516 0.0043 0.0265 0.7738 0.0274 0.0164
0.2107 0.0078 0.0023 0.0430 0.6977 0.0386
0.0787 0.0146 0.0007 0.0213 0.0320 0.8527











is diagonally dominant. Yet, the 1-norm coupling matrix

W1 =











0.4897 0.0765 0.0354 0.1191 0.2204 0.0589
0.1576 0.5290 0.1593 0.0213 0.0980 0.0348
0.0365 0.2507 0.5523 0.1336 0.0228 0.0042
0.1585 0.0244 0.1016 0.6150 0.0288 0.0718
0.1329 0.0123 0.0034 0.0348 0.6725 0.1440
0.1105 0.0206 0.0013 0.1411 0.0716 0.6549











has a value smaller than 0.5 on the diagonal. Hence, we obtain the same qualitative
results independently of the norm we use. The norm only affects the number of the
determined blocks and, hence, the error tolerance.

For this example we also will show the result obtained by using right singular
vectors, since it slightly improves the result obtained with left singular vectors. Here,
we obtain 6 blocks as depicted in Figure 6.7 with both coupling matrices W1 and Wπ
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n = 307   nz = 19116

original matrix

100 200 300

50

100

150

200

250

300

n = 307   nz = 19116

recovered block structure

100 200 300

50

100

150

200

250

300

Figure 6.7. Algorithm run using right singular vectors for n-Pentane (Ph500) revealing 6
blocks of sizes 100, 33, 35, 23, 53, 63.

being diagonally dominant. The coupling matrices are given by

W1 =











0.6227 0.0707 0.1015 0.0196 0.1288 0.0568
0.1454 0.5793 0.0233 0.2065 0.0009 0.0445
0.1636 0.0172 0.5072 0.1274 0.0935 0.0912
0.0323 0.0881 0.1341 0.6769 0.0042 0.0643
0.1019 0.0008 0.0509 0.0019 0.6597 0.1848
0.0598 0.0361 0.0967 0.0992 0.0776 0.6305











,

and

Wπ =











0.6606 0.0234 0.1409 0.0068 0.1024 0.0658
0.1279 0.6557 0.0177 0.1828 0.0006 0.0153
0.1194 0.0027 0.7371 0.0359 0.0296 0.0752
0.0119 0.0584 0.0740 0.8441 0.0011 0.0105
0.1742 0.0002 0.0595 0.0011 0.7248 0.0402
0.0856 0.0036 0.1155 0.0078 0.0308 0.7566











.

6.3. Two more difficult cases. In this section we present two cases where the
algorithms presented in [5] and [6] have difficulties identifying meta-stable conforma-
tions. For the first matrix, that is of size n = 158 and has nz = 24806 non-zero
entries, this is due to the fact that the algorithms in [5] and [6] identify the number
of blocks by looking at spectral gaps. In this example, the spectrum of the matrix
does not have any gaps. Our algorithm, on the opposite, does not need to know the
number of blocks in advance but it is calculated in the process. We obtain the result
depicted in Figure 6.8.
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n = 158   nz = 24806

original matrix

50 100 150
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40
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140

n = 158   nz = 24806

recovered block structure

50 100 150

20

40

60

80

100

120

140

Figure 6.8. A matrix without a spectral gap (Pmatrix2) revealing 6 blocks of sizes 28, 24, 21,
15, 52, 18.

The corresponding 1-norm coupling matrix is

W1 =











0.5823 0.1896 0.0852 0.0091 0.1324 0.0014
0.0892 0.6621 0.0139 0.0703 0.1463 0.0182
0.1115 0.0263 0.6413 0.0796 0.0944 0.0468
0.0133 0.0548 0.1161 0.6437 0.0349 0.1372
0.0507 0.0958 0.0491 0.0156 0.6369 0.1518
0.0007 0.0187 0.0477 0.1025 0.1364 0.6940











.

The π-norm coupling matrix is

Wπ =











0.6465 0.1410 0.0938 0.0066 0.1111 0.0010
0.0713 0.7484 0.0119 0.0346 0.1253 0.0086
0.0444 0.0111 0.8034 0.0489 0.0450 0.0473
0.0034 0.0356 0.0539 0.7828 0.0063 0.1180
0.0563 0.1256 0.0483 0.0062 0.6735 0.0901
0.0005 0.0078 0.0464 0.1052 0.0823 0.7578











.

Now, again, we run the algorithm using the π-norm. We obtain two more blocks than
with the 1-norm.

The π-norm coupling matrix is

Wπ =















0.6465 0.1410 0.0938 0.0031 0.0036 0.0238 0.0872 0.0010
0.0713 0.7484 0.0119 0.0250 0.0096 0.0012 0.1240 0.0086
0.0444 0.0111 0.8034 0.0252 0.0237 0.0422 0.0028 0.0473
0.0032 0.0513 0.0553 0.5565 0.2221 0.0035 0.0037 0.1045
0.0037 0.0198 0.0524 0.2238 0.5632 0.0044 0.0011 0.1317
0.0333 0.0034 0.1248 0.0047 0.0059 0.5652 0.1221 0.1405
0.0694 0.1952 0.0047 0.0028 0.0008 0.0695 0.5962 0.0614
0.0005 0.0078 0.0464 0.0467 0.0585 0.0466 0.0358 0.7578















.
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n = 158   nz = 24806

original matrix

50 100 150

20

40

60

80

100

120

140

n = 158   nz = 24806

recovered block structure
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100
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140

Figure 6.9. A matrix without a spectral gap (Pmatrix2) revealing 8 blocks of sizes 28, 24, 21,
10, 5, 20, 32, 18.

The corresponding 1-norm coupling matrix is given by

W1 =















0.5823 0.1896 0.0852 0.0069 0.0022 0.0247 0.1076 0.0014
0.0892 0.6621 0.0139 0.0486 0.0217 0.0076 0.1387 0.0182
0.1115 0.0263 0.6413 0.0484 0.0312 0.0653 0.0291 0.0468
0.0167 0.0678 0.1302 0.5309 0.0762 0.0290 0.0187 0.1305
0.0066 0.0288 0.0879 0.2542 0.4627 0.0067 0.0026 0.1506
0.0331 0.0218 0.1155 0.0143 0.0083 0.4768 0.1369 0.1934
0.0618 0.1421 0.0075 0.0092 0.0021 0.0806 0.5708 0.1259
0.0007 0.0187 0.0477 0.0485 0.0540 0.0635 0.0729 0.6940















,

where we find exactly two values smaller than 0.5 on the diagonal.

Here, we also show a slightly better result obtained by using right singular vectors.
Here, we obtain 8 blocks as depicted in Figure 6.10 with both coupling matrices W1
and Wπ being diagonally dominant. The coupling matrices are given by

W1 =















0.5823 0.1891 0.0743 0.0151 0.0486 0.0853 0.0043 0.0009
0.0871 0.6620 0.0108 0.0734 0.1395 0.0156 0.0026 0.0090
0.1031 0.0222 0.6761 0.0872 0.0259 0.0207 0.0605 0.0044
0.0162 0.0568 0.1151 0.6496 0.0685 0.0027 0.0355 0.0557
0.0303 0.1738 0.0194 0.0504 0.5201 0.0690 0.0576 0.0793
0.1578 0.0328 0.0274 0.0035 0.1463 0.5093 0.1153 0.0077
0.0135 0.0036 0.1503 0.0392 0.0767 0.0647 0.5027 0.1492
0.0013 0.0181 0.0068 0.1016 0.1721 0.0039 0.1312 0.5649















,



An SVD approach to identifying meta-stable states of Markov chains 23

n = 158   nz = 24806

original matrix
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n = 158   nz = 24806

recovered block structure
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Figure 6.10. Algorithm run using right singular vectors for a matrix without a spectral gap
(Pmatrix2) revealing 8 blocks of sizes 34, 20, 18, 14, 31, 14, 19, 8.

and

Wπ =















0.6399 0.1453 0.0796 0.0071 0.0328 0.0911 0.0037 0.0005
0.0832 0.7368 0.0104 0.0347 0.1148 0.0155 0.0011 0.0035
0.0431 0.0098 0.8053 0.0492 0.0160 0.0044 0.0686 0.0036
0.0041 0.0354 0.0530 0.7824 0.0361 0.0003 0.0281 0.0607
0.0275 0.1682 0.0249 0.0519 0.5115 0.0669 0.0491 0.1001
0.1796 0.0534 0.0161 0.0011 0.1571 0.5097 0.0804 0.0025
0.0042 0.0022 0.1436 0.0546 0.0664 0.0463 0.5157 0.1671
0.0004 0.0057 0.0063 0.0977 0.1120 0.0012 0.1384 0.6384















.

The second example that is of size n = 1772 and has nz = 289432 non-zero entries
is problematic in a different way. Here, we have a very large cluster of eigenvalues
very close to 1. This makes the matrix very badly conditioned, especially as far as
the calculation of the stationary distribution is concerned. Also, the algorithms in
[5] and [6] have difficulties identifying the right number of blocks. In Figure 6.11, we
depict the results calculated with the 1-norm.

This is the maximum number of blocks that can be identified, such that the
coupling matrix is diagonally dominant. Yet, blocks of very small sizes probably do
not make a lot of sense from the chemical point of view. However, this is not a
problem, since smaller blocks can always be merged into larger blocks. An alternative
strategy could be to restrict the minimal block size in advance. In this case, we would
only split up into blocks if they are of required size.

Since the coupling matrix is too large to be presented here, we only list the
diagonal values in matrix form, to be read row-wise. The first matrix represents the
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n = 1772   nz = 289432

original matrix

500 1000 1500

200

400

600

800

1000

1200

1400

1600

n = 1772   nz = 289432

recovered block structure

500 1000 1500

200

400

600

800

1000

1200

1400

1600

Figure 6.11. A badly conditioned matrix with a large eigenvalue cluster very close to 1, re-
vealing 65 blocks of sizes 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 8, 9, 9,
9, 11, 12, 12, 13, 19, 20, 20, 20, 21, 21, 23, 23, 25, 25, 26, 28, 29, 29, 29, 33, 34, 34, 36, 46, 46,
56, 58, 59, 72, 74, 81, 83, 88, 89, 100, 116, 126 sorted in ascending order.

diagonal entries of the W1 coupling matrix
















0.7321 0.7062 0.7352 0.7638 0.8045 0.6664 0.6626 0.8248
0.6856 0.9896 0.9840 0.9203 0.9333 0.9529 0.9432 0.9292
0.9376 0.8892 0.9025 0.9364 0.8224 0.7813 0.7658 0.6851
0.8295 0.5526 0.7188 0.7615 0.6386 0.7036 0.9307 0.9909
0.9326 0.9197 0.9291 0.8951 0.7879 0.8306 0.7902 0.7644
0.7147 0.7073 0.6533 0.7263 0.7012 0.5946 0.9004 0.7416
0.8077 0.9154 0.9193 0.9036 0.7050 0.7008 0.7753 0.6902
0.5387 0.6347 0.7372 0.6714 0.7143 0.6478 0.7293 0.6636
0.6994

















.

The corresponding π-norm matrix has the following diagonal values
















0.9368 0.9311 0.9563 0.9695 0.9820 0.9876 0.7000 0.9867
0.9927 1.0000 0.9845 0.9723 0.9812 0.9913 0.9945 0.9929
0.9887 0.9939 0.9874 0.9888 0.9940 0.9633 0.9591 0.9721
0.9807 0.9770 0.9823 0.9863 0.9904 0.9934 0.9920 0.9961
0.9741 0.9878 0.9886 0.9842 0.9958 0.9531 0.9579 0.9597
0.9813 0.9863 0.7004 0.9939 0.9964 1.0000 0.9660 0.9827
0.9797 0.9851 0.9903 0.9885 0.9443 0.9462 0.9317 0.9941
0.2636 0.9847 0.9785 0.9784 0.9652 0.9657 0.9659 0.9887
0.9919

















.

The W1 matrix is diagonally dominant. However, the Wπ matrix is not. The diagonal
entry that is second last in the first column is smaller than 0.5. It corresponds to a
block of size two that can be eliminated by merging two blocks or restricting the
minimal block size.

For completeness, we also state in Figure 6.12 the results calculated with the
π-norm. Here we obtain very similar blocks as with the 1-norm with some differences
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in the smaller blocks. These differences are due to the bad condition of the matrix
and hence, the stationary distribution. Yet, the bigger picture that we obtain is
qualitatively the same.

n = 1772   nz = 289432

original matrix

500 1000 1500

200

400

600

800

1000

1200

1400

1600

n = 1772   nz = 289432

recovered block structure

500 1000 1500

200

400

600

800

1000

1200

1400

1600

Figure 6.12. A badly conditioned matrix with a large eigenvalue cluster very close to 1, re-
vealing 64 blocks of sizes 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 8, 9, 9, 9,
11, 12, 12, 13, 19, 20, 20, 21, 21, 23, 23, 23, 25, 26, 27, 27, 28, 29, 29, 33, 34, 34, 36, 46, 46, 56,
58, 59, 72, 74, 81, 81, 88, 91, 100, 116, 126 sorted in ascending order.

The diagonal values of the Wπ matrix are















0.9563 0.9368 0.9311 0.9695 0.9820 0.9876 0.8552 0.9867
0.9927 1.0000 0.9850 0.9812 0.9913 0.9945 0.9929 0.9887
0.9939 0.9888 0.9872 0.9850 0.9940 0.9633 0.9591 0.9721
0.9822 0.9823 0.9863 0.9904 0.9934 0.9660 0.9827 0.9797
0.9885 0.9851 0.9903 0.6813 0.9847 0.9659 0.9657 0.9652
0.9785 0.9784 0.9887 0.9919 0.9325 0.9462 0.9317 0.9941
0.9920 0.9959 0.9741 0.9878 0.9842 0.9886 0.9905 0.9923
0.9813 0.9629 0.9597 0.9863 0.6515 0.9939 0.9964 1.0000















.

The corresponding W1 matrix has the diagonal values















0.7352 0.7321 0.7062 0.7638 0.8045 0.6664 0.6626 0.8248
0.6856 0.9896 0.9316 0.9333 0.9529 0.9432 0.9292 0.9376
0.8892 0.9364 0.9523 0.8946 0.8224 0.7813 0.7658 0.6851
0.5939 0.7188 0.7615 0.6386 0.7036 0.9004 0.7416 0.8077
0.9036 0.9154 0.9193 0.5387 0.6347 0.7293 0.6478 0.7143
0.7372 0.6714 0.6636 0.6994 0.7050 0.7008 0.7753 0.6902
0.9307 0.9909 0.9326 0.9197 0.8951 0.9291 0.9376 0.7819
0.7147 0.7960 0.7644 0.7073 0.6533 0.7263 0.7012 0.5946















.

Here, again, both coupling matrices are diagonally dominant.

From the examples presented in this section we conclude that if the perturbation
is not too large, a block diagonally dominant structure can be recovered or identified
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by the proposed algorithm. Both norms, the 1-norm and the π-norm can be used for
calculations. Qualitatively, one obtains similar results. Since for the real examples
we do not know the “correct” answer we cannot decide, which norm is the “better”
one. However, it is much cheaper to use the 1-norm and for a large eigenvalue cluster
around one the calculation of the stationary distribution may be badly conditioned.
Therefore, we suggest to use the 1-norm.

7. Conclusions. In this paper, we have presented a bisectioning algorithm for
identifying meta-stable states of a Markov chain based on the calculation and sorting
of the singular vector corresponding to the second largest singular value. The algo-
rithm determines the maximum number of blocks such that the coupling matrix is
diagonally dominant. One advantage of our approach is that it does not depend on
a significant spectral gap in the transition matrix of the Markov chain. Thus, also
matrices without a spectral gap or with a very large Perron cluster can be treated.
Another advantage is that we calculate only two singular vectors instead of many
eigenvectors. This allows to use iterative procedures such as Lanczos or Arnoldi it-
eration. Also, we suggest to abstain from using the stationary distribution since its
calculation may be costly and badly conditioned. We show, that the same qualitative
results can be achieved. This is demonstrated by numerical experiments.
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