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1. Introduction. The well-known Perron-Frobenius Theorem states that for an
elementwise nonnegative matrix, the spectral radius, i.e., the largest modulus of an
eigenvalue is itself an eigenvalue and has a nonnegative eigenvector. This result has
many applications in all areas of science and engineering, in particular in economics
and population dynamics see e.g. [2]. If the dynamics of the system, however, is
described by an implicit differential or difference equation, usually called differential-
algebraic equation (DAE) or descriptor system such as

Eẋ = Ax + f, x(t0) = x0,

or as a discrete time system

Exk+1 = Axk + fk, x0 given,

where E, A are real n×n matrices, then the dynamics is described by the eigenvalues
and eigenvectors associated with the matrix pencil λE − A, or just the matrix pair
(E, A).

Due to the many applications, several approaches have been presented in the
literature to generalise the classical Perron-Frobenius theory to matrix pencils or
further to matrix polynomials. In [11] a direct generalisation of the nonnegativity
condition for A, y ≥ 0 ⇒ Ay ≥ 0, is given as a sufficient condition, ET y ≥ 0 ⇒
AT y ≥ 0, for the existence of a positive eigenvalue and a corresponding nonnegative
eigenvector. In [1] a sufficient condition, (E − A)−1A ≥ 0, for the existence of a
positive eigenvalue in (0, 1) and a corresponding positive eigenvector if (E −A)−1A is
irreducible, is proved. The relationship of the two ideas from [1] and [11] is studied in
[15]. In [14], the condition from [1] is imposed by requiring E−A to be a nonsingular
M -matrix and A ≥ 0. Here, the structure of nonnegative eigenvectors is studied from
the combinatorial point of view. In [16] the Perron-Frobenius theory was extended to
matrix polynomials, where the coefficient matrices are entrywise nonnegative. Other
extensions concerning matrix polynomials are given in [6].
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The main drawbacks of the generalisation in [1] is that on the one hand it is a
restrictive condition, since E −A is not necessarily invertible, and on the other hand
it does not have the classical Perron-Frobenius theory as a special case, where E = I.
Furthermore, only the existence of a nonnegative real eigenvalue is guaranteed instead
of the spectral radius being an eigenvalue. The condition in [11] has the classical
Perron-Frobenius as a special case but the condition is not easy to verify.

In this paper we propose a new approach to extend the classical Perron-Frobenius
theory to matrix pairs (E, A), where a sufficient condition guarantees that the finite
spectral radius of (E, A) is an eigenvalue with a corresponding nonnegative eigenvec-
tor. As mentioned before, our approach is motivated by the study of positive systems
of differential-algebraic equations, see, e.g., [3],[9]. It is based on the construction of
projector chains as they were introduced in the context in [8]. For the special case
E = I our new approach reduces to the classical Perron-Frobenius theorem for ma-
trices. We present several examples where the new condition holds, whereas previous
conditions in the literature are not satisfied.

2. Preliminaries.

2.1. The generalised eigenvalue problem. Let E, A ∈ Rn×m. A matrix pair
(E, A), or matrix pencil λE −A, is called regular if E and A are square (n = m) and
det(λE − A) 6= 0 for some λ ∈ R. It is called singular otherwise. In this paper we
only consider square and regular pencils.

A scalar λ ∈ C is said to be a (generalised) eigenvalue of the matrix pair (E, A) if
det(λE−A) = 0. A vector x ∈ Cn\{0} such that (λE−A)x = 0 is called (generalised)
eigenvector of (E, A) corresponding to λ.

If E is singular and v ∈ Cn \ {0}, such that Ev = 0 holds, then v is called
eigenvector of (E, A) corresponding to the eigenvalue ∞. The equation

λEv = Av, (2.1)

is called generalised eigenvalue problem. The set of all finite eigenvalues is called finite
spectrum of (E, A) and is denoted by σf (E, A). The set of all eigenvalues is called
spectrum of (E, A) and is defined by

σ(E, A) :=

{

σf (E, A), if E is invertible,
σf (E, A) ∪ {∞}, if E is singular.

In the case that E is invertible, we denote by ρ(E, A) the spectral radius of (E, A)
defined by

ρ(E, A) = max
λ∈σ(E,A)

|λ|.

If E is singular, then we denote by ρf(E, A) = maxλ∈σf (E,A) |λ| the finite spectral
radius of (E, A). Vectors v1, . . . , vk form a Jordan chain of the matrix pair (E, A)
corresponding to an eigenvalue λ if (λE − A)vi = −Evi−1 for all 1 ≤ i ≤ k and

v0 = 0. A k-dimensional subspace S
def
λ ⊂ Cn is called right deflating subspace of

(E, A) corresponding to λ, if there exists a k-dimensional subspace W ⊂ Cn such that

ES
def
λ ⊂ W and AS

def
λ ⊂ W . Let λ1, . . . , λp be the pairwise distinct finite eigenvalues

of (E, A) and let S
def
λi

, i = 1, . . . , p be the corresponding deflating subspaces associated
with these eigenvalues. We call the subspace defined by

S
def
f := S

def
λ1

⊕ . . . ⊕ S
def
λp

(2.2)
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the right finite deflating subspace of (E, A).

Two matrix pairs (E, A) and (Ẽ, Ã) are called equivalent if there exist regular
matrices W, T such that

E = WẼT, A = WÃT. (2.3)

In this case we write (E, A) ∼ (Ẽ, Ã).

Theorem 2.1 (Weierstraß canonical form). Let (E, A) be a regular matrix pair.
Then, we have

(E, A) ∼

([

I 0
0 N

]

,

[

J 0
0 I

])

, (2.4)

where J is a matrix in Jordan canonical form and N is a nilpotent matrix also in
Jordan canonical form.

Proof. See, e.g., [7].

Lemma 2.2. Let (E, A) be a regular matrix pair. Let λ̂ be chosen such that

λ̂E − A is non-singular. Then, the matrices

Ê = (λ̂E − A)−1E and Â = (λ̂E − A)−1A

commute.

Proof. See, e.g., [5], [10].

2.2. Projectors and index of (E, A). A matrix Q is called projector if Q2 = Q.
A projector Q is called projector onto a subspace S ⊆ Rn if imQ = S. It is called
projector along a subspace S ⊆ Rn if kerQ = S. We will make use of the following
well-known property of projectors.

Lemma 2.3.

1. P1, P2 are two projectors onto a subspace S if and only if P1 = P2P1 and
P2 = P1P2.

2. P1, P2 are two projectors along a subspace S if and only if P1 = P1P2 and
P2 = P2P1.

Proof.

1. “⇒”For all x ∈ Rn we have P2x ∈ imP2 = S = imP1 and, hence, P2x =
P1P2x. Analogously, we show P1 = P2P1.
“⇐”From P1 = P2P1, we have im P1 ⊂ imP2 and from P2 = P1P2, we have
imP2 ⊂ imP1 and, hence, P1, P2 project onto the same subspace.

2. “⇒”Let Q1 = I − P1 and Q2 = I − P2. Then,

P1P2 = (I − Q1)(I − Q2) = I − Q1 − Q2 + Q1Q2 = I − Q1 = P1,

since, by 1. we have Q1Q2 = Q2. Analogously, we show P2 = P2P1.
“⇐”Let Q1 = I − P1 and Q2 = I − P2. Then, from P1 = P1P2, we have
Q2 = Q1Q2 and from P2 = P2P1, we have Q1 = Q2Q1. By 1. we have
imQ1 = imQ2 and, hence, kerP1 = kerP2.

Let (E, A) be a regular matrix pair. As introduced in [8] we define a matrix chain
by setting

E0 := E, A0 := A and (2.5a)

Ei+1 := Ei − AiQ̃i, Ai+1 := AiP̃i, for i ≥ 0, (2.5b)
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where Q̃i are projectors onto kerEi and P̃i = I−Q̃i. Since we have assumed (E, A) to
be regular, there exists an index ν such that Eν is nonsingular and all Ei are singular
for i < ν, [12]. Note, that ν is independent of a special choice of the projectors
Qi. We say that the matrix pair (E, A) has (tractability) index ν and denote it by
ind(E, A) = ν. It is well known that for regular pairs (E, A) the tractability index is
equal to the differentiation index, see, e.g., [4], and it can be determined as the size
of the largest Jordan block associated with the eigenvalue infinity in the Weierstraß
canonical form of the pair (E, A), see [10, 12]. In the following we, therefore, only
speak of the index of the pair (E, A).

Lemma 2.4 ([12]). Let (E, A) be a matrix pair and define a matrix chain as in
(2.5). Furthermore, define sets Si by

Si := {y ∈ Rn : Aiy ∈ imEi}. (2.6)

Then, if Ei+1 is nonsingular, we have that

Qi = −Q̃iE
−1
i+1Ai

is a projector onto kerE along Si.

Proof. The matrix −Q̃iE
−1
i+1Ai is a projector since

(−Q̃iE
−1
i+1Ai)

2 = Q̃iE
−1
i+1(AiQ̃i)Q̃iE

−1
i+1Ai = Q̃iE

−1
i+1(Ei − Ei+1)Q̃iE

−1
i+1Ai =

= −Q̃iE
−1
i+1Ai.

For any z ∈ Rn the decomposition

z = (I + Q̃iE
−1
i+1Ai)z − Q̃iE

−1
i+1Aiz =: z1 + z2

is unique and we have that z2 ∈ kerEi, since Q̃i is a projector onto kerEi and for z1

we obtain

Aiz1 = (I + AiQ̃iE
−1
i+1)Aiz = (I + (Ei − Ei+1)E

−1
i+1)Aiz = EiE

−1
i+1Aiz ∈ imEi,

i.e. z1 ∈ Si. Hence, Qi := −Q̃iE
−1
i+1Ai is a projector onto kerE along Si.

For the construction of special projectors in the higher index cases in Section 3.3,
we will need the following properties.

Lemma 2.5. Let (E, A) be a regular matrix pair of ind(E, A) = ν and define
a matrix chain as in (2.5), where the projectors Q̃i are chosen such that Q̃jQ̃i = 0
holds for all 0 ≤ i < j ≤ ν − 1. For 0 ≤ i ≤ ν − 1 we define projectors Qi onto
kerEi by setting Qi = −Q̃iE

−1
ν Ai and Pi = I − Qi. Then, QjQi = 0 holds for all

0 ≤ i < j ≤ ν − 1.

Proof. The matrix −Q̃iE
−1
ν Ai is a projector for all 0 ≤ i ≤ ν − 1, since

(−Q̃iE
−1
ν Ai)

2 = Q̃iE
−1
ν (Ei − Ei+1)Q̃iE

−1
ν Ai =

= −Q̃iE
−1
ν Ei+1Q̃iE

−1
ν Ai = −QiE

−1
ν Ai,

where we have used that EνQ̃i = (Ei+1 −Ai+1Q̃i+1 − . . .−Aν−1Qν−1)Q̃i = Ei+1Q̃i.

To show that QjQi = 0 holds for all 0 ≤ i < j ≤ ν − 1, let i, j be arbitrarily
chosen fixed indeces 0 ≤ i < j ≤ ν − 1. Then, we have that

QjQi = Q̃jE
−1
ν AjQ̃iE

−1
ν Ai = Q̃jE

−1
ν AiP̃i · · · P̃j−1Q̃iE

−1
ν Ai =

= Q̃jE
−1
ν Ai(I − Q̃i) · · · (I − Q̃j−1)Q̃iE

−1
ν Ai = Q̃jE

−1
ν Ai(Q̃i − Q̃i) =

= 0.
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Note that by definition and Lemma 2.4, we have that Qν−1 is a projector onto
kerEν−1 along Sν−1. This projector Qν−1 is called canonical in [13].

2.3. Nonnegative matrices. A matrix T ∈ Rn×n, T = [tij ]
n
i,j=1 is called non-

negative and we write T ≥ 0 if all entries tij are nonnegative. The classical Perron-
Frobenius Theorem, see, e.g., [2, pp. 26/27], states as follows.

Theorem 2.6 (Perron-Frobenius Theorem). Let T ≥ 0 have the spectral radius
ρ(T ). Then ρ(T ) is an eigenvalue of T and T has a nonnegative eigenvector v corre-
sponding to ρ(T ). If, in addition, T is irreducible, then ρ(T ) is simple and T has a
positive eigenvector v corresponding to ρ(T ). Furthermore, if w > 0 is an eigenvector
of T , then w = αv, α ∈ R+.

3. Perron-Frobenius theory for matrix pencils. Several generalisations of
the classical Perron-Frobenius Theorem 2.6 have been presented in the literature. In
[1] the condition (E − A)−1A ≥ 0 is shown to be sufficient for the existence of an
eigenvalue λ ∈ (0, 1) and a corresponding nonnegative eigenvector. In [11] a direct
generalisation of the nonnegativity condition y ≥ 0 ⇒ Ay ≥ 0 of A is given as a
sufficient condition ET y ≥ 0 ⇒ AT y ≥ 0 for the existence of a positive eigenvalue
and a corresponding nonnegative eigenvector.

In the following two subsections we present a different, projector-based extension
of the Perron-Frobenius theory to regular matrix pairs (E, A) that has a number of
advantages over the existing conditions in the literature. In Section 3.1, for the case
of index one pencils, we prove an easily computable sufficient condition in Theorem
3.1 that guarantees that the finite spectral radius of (E, A) is an eigenvalue with a
corresponding nonnegative eigenvector. We present several examples where the new
condition holds, whereas the conditions in [1] and [11] are not satisfied. In the general
case (where the index may be arbitrary) presented in Section 3.2, we have to impose an
additional condition on the projectors, see Lemma 3.5, that is satisfied naturally in the
index one case. The general sufficient condition that we then prove in Theorem 3.6
is in the index one case the same as in Theorem 3.1 and also guarantees that the
finite spectral radius of (E, A) is an eigenvalue with a corresponding nonnegative
eigenvector. In Corollary 3.7, we prove two further conditions that are equivalent
to the condition in Theorem 3.6. All conditions have the classical Perron-Frobenius
theory as a special case when E = I.

3.1. Regular matrix pairs of index at most one. In this subsection we
study regular pairs (E, A) of index at most one.

Theorem 3.1. Let (E, A), with E, A ∈ Rn×n, be a regular matrix pair with
ind(E, A) ≤ 1. Let Q0 be a projector onto kerE along the subspace S0 defined as in
(2.6) for i = 0, i.e.,

S0 := {y ∈ Rn : Ay ∈ imE}, (3.1)

let P0 = I − Q0, and A1 = AP0. Then E1 := E − AQ0 is nonsingular and if we have
that

E−1
1 A1 ≥ 0, (3.2)

then the finite spectral radius ρf (E, A) is an eigenvalue of the matrix pair (E, A) and
there exists a nonnegative eigenvector v corresponding to ρf (E, A). If E−1

1 A1, in
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addition, is irreducible, then ρf (E, A) is simple and v > 0 is unique up to a scalar
multiple.

Note, that if ind(E, A) = 0, meaning that E is regular, then we have that Q0 = 0
and E1 = E and the condition in Theorem 3.1 reduces to the one of the classical
Perron-Frobenius theorem for E−1A.

Proof. Consider the generalised eigenvalue problem (2.1). Since (E, A) is regular
of ind(E, A) ≤ 1, we have that E1 as defined in (2.5) is nonsingular, see [12], and we
can premultiply equation (2.1) by E−1

1 . By also using that P0 + Q0 = I, we obtain

E−1
1 (λE − A)(P0 + Q0)v = 0

⇔ (λE−1
1 E − E−1

1 AP0 − E−1
1 AQ0)v = 0.

Furthermore, we have E−1
1 E = P0 since E1P0 = (E −AQ0)P0 = E and −E−1

1 AQ0 =
−Q0 since E1Q0 = (E − AQ0)Q0 = −AQ0. Hence, we obtain

[(λI − E−1
1 A)P0 + Q0]v = 0,

which after multiplication by P0 and Q0 from the left is equivalent to the system of
two equations

{

P0[(λI − E−1
1 A)P0 + Q0]v = 0,

Q0[(λI − E−1
1 A)P0 + Q0]v = 0.

We have that Q0 is a projector onto kerE along S0 and by Lemma 2.4 we conclude
that −Q0E

−1
1 A is also a projector onto kerE along S0. Hence, by part 2. of Lemma

2.3 or by Lemma 2.4, we have that (−Q0E
−1
1 A)P0 = Q0P0 = 0. Therefore, by writing

P0 = I − Q0 in the first equation, the two equations reduce to
{

(λI − E−1
1 A)P0v = 0,

Q0v = 0.

Since P0 = P0P0, this is equivalent to
{

(λI − E−1
1 AP0)P0v = 0,

Q0v = 0.
(3.3)

Setting x = P0v, y = Q0v and v = P0v+Q0v = x+y, we obtain a standard eigenvalue
problem in the first equation and a linear system in the second equation. ¿From the
first equation we know from the Perron-Frobenius Theorem that if E−1

1 AP0 ≥ 0, then
the spectral radius of E−1

1 AP0 is an eigenvalue with a corresponding nonnegative
eigenvector. If E−1

1 AP0 is in addition irreducible, we have that ρ(E−1
1 AP0) is a

simple eigenvalue and there is a corresponding positive eigenvector that is unique up
to a multiple. Set λ̂ := ρ(E−1

1 AP0) and let x̂ = P0v be the corresponding nonnegative
(positive) eigenvector. Then, we obtain

E−1
1 AP0x̂ = λ̂x

⇔ AP0x̂ = λ̂E1x̂

⇔ AP0x̂ = λ̂(E − AQ0)x̂

⇔ AP0P0v = λ̂EP0v − AQ0P0v

⇔ A(P0v + Q0v) = λ̂Ev

⇔ Av = λ̂Ev,
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which is the generalised eigenvalue problem (2.1). Hence, ρ(E−1
1 AP0) = ρf (E, A) and

the proof is complete.

Remark 3.2.

1. Considering the case E = I in Theorem 3.1, we have P0 = I, and the condition
E−1

1 A1 ≥ 0 reduces to the condition A ≥ 0 of the classical Perron-Frobenius theorem.
2. Condition E−1

1 A1 ≥ 0, written out, reads as

(E − A(I − P0))
−1AP0 ≥ 0,

which, without the projectors, would be the condition in [1]:

(E − A)−1A ≥ 0.

Yet, whereas (E −A(I −P0)) is nonsingular by construction, the matrix E −A is not
necessarily invertible. Hence, the new condition finds a much broader applicability.

Example 3.3. Consider the pair (E, A) given by

E =

[

2 2
0 0

]

and A =

[

1 0
0 1

]

.

We have ind(E, A) = 1 and the pair has only one finite eigenvalue λ = 0.5 with

eigenvector v =

[

v1

0

]

, where we may normalise the eigenvector so that v1 > 0.

To check the sufficient condition (3.2) of Theorem 3.1, we choose a projector Q̃0

onto kerE0, e.g.,

Q̃0 =

[

1 0
−1 0

]

,

and get

Ẽ1 = E0 − A0Q̃0 =

[

1 2
1 0

]

.

For the inverse we obtain

Ẽ−1
1 =

[

0 1
1
2 − 1

2

]

,

and a projector Q0 onto kerE along S0 is given by

Q0 = −Q̃0Ẽ
−1
1 A0 =

[

0 −1
0 1

]

.

We then have

E1 = E0 − A0Q0 =

[

2 3
0 −1

]

, E−1
1 =

[

1
2

3
2

0 −1

]

,

and we set P0 = I − Q0. Condition (3.2) then reads

E−1
1 A1 = E−1

1 AP0 =

[

1
2

3
2

0 −1

] [

1 0
0 1

] [

1 1
0 0

]

=

[

1
2

1
2

0 0

]

≥ 0,
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and we can apply Theorem 3.1.

For this example, the theories in [1] and [11] cannot be applied, since (E−A)−1A =
[

1 2
0 −1

]

� 0 and there exists a vector, e.g., y =

[

1
−1

]

such that ET y ≥ 0 but

AT y � 0.

Example 3.4. Consider a pair (E, A) with ind(E, A) = 1 and E =

[

E11 0
0 0

]

,

where E11 is nonsingular and A =

[

A11 A12

A21 A22

]

is partitioned accordingly. For a pencil

in this form, ind(E, A) = 1 is equivalent to A22 being nonsingular, see, e.g., [10]. We
choose any projector Q̃0 onto kerE, e.g.

Q̃0 =

[

0 0
0 I

]

,

and compute Ẽ1 and Ẽ−1
1 . We obtain

Ẽ1 = E − AQ̃0 =

[

E11 −A12

0 −A22

]

, Ẽ−1
1 =

[

E−1
11 −E−1

11 A12A
−1
22

0 −A−1
22

]

.

Then, we determine a projector Q0 onto kerE along S0 = {y ∈ Rn : Ay ∈ imE} as

Q0 = −Q̃0E
−1
1 A =

[

0 0
0 I

] [

E−1
11 −E−1

11 A12A
−1
22

0 −A−1
22

] [

A11 A12

A21 A22

]

=

[

0 0
A−1

22 A21 I

]

.

Furthermore, we get P0 =

[

I 0
−A−1

22 A21 0

]

and then compute E1 and E−1
1 . We obtain

E1 = E − AQ0 =

[

E11 − A12A
−1
22 A21 −A12

−A21 −A22

]

,

E−1
1 =

[

E−1
11 −E−1

11 A12A
−1
22

−A−1
22 A21E

−1
11 A−1

22 A21E
−1
11 A12A

−1
22 − A−1

22

]

.

Condition (3.2) then reads as

E−1
1 AP0 =

[

E−1
11 −E−1

11 A12A
−1
22

−A−1
22 A21E

−1
11 A−1

22 A21E
−1
11 A12A

−1
22 − A−1

22

] [

A11 A12

A21 A22

] [

I 0
−A−1

22 A21 0

]

=

=

[

E−1
11 AS 0

−A−1
22 A21E

−1
11 AS 0

]

≥ 0,

where AS = A11 − A12A
−1
22 A21.

Consider again the eigenvalue problem

(λE − A)v = 0.

In our case we obtain
[

λE11 − A11 −A12

−A21 −A22

] [

v1

v2

]

= 0.
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Since E11 is nonsingular, we can rewrite this system as
{

(λI − E−1
11 A11)v1 − E−1

11 A12v2 = 0,

−A21v1 − A22v2 = 0,

which is equivalent to
{

(λI − E−1
11 AS)v1 = 0,

v2 = −A−1
22 A21v1,

(3.4)

where AS = A11 −A12A
−1
22 A21. Condition (3.2) gives E−1

11 AS ≥ 0 and, by the Perron-

Frobenius Theorem, we obtain from the first equation of (3.4) that ρ(E−1
11 AS) =: λ̂

is an eigenvalue and with a corresponding eigenvector v1 ≥ 0. Using this, from the
second equation of (3.4) we obtain

v2 = −A−1
22 A21v1 = −λ−1A−1

22 A21λv1 = −λ−1A−1
22 A21E

−1
11 ASv1 ≥ 0,

since −A−1
22 A21E

−1
11 AS ≥ 0 by (3.2) and we have λ̂ ≥ 0 and v1 ≥ 0 from the first

equation of (3.4).

3.2. Regular matrix pairs of general index. In this section we consider
a regular matrix pair (E, A) of ind(E, A) = ν. For ν > 1 we need to define the
matrix chain in (2.5) with special projectors. The following Lemma 3.5 guarantees
the existence of projectors with the required property. The canonical projectors as
defined in [13] fulfil the condition of Lemma 3.5. An alternative way to construct
these projectors along with some examples is presented in Section 3.3.

Lemma 3.5. Let (E, A), with E, A ∈ Rn×n, be a regular matrix pair of ind(E, A) =
ν. Then, a matrix chain as in (2.5) can be constructed with special projectors Qi, Pi

such that Qiv = 0 holds for all v ∈ S
def
f and for all 0 ≤ i < ν.

Proof. From [12] we know that for a regular matrix pair (E, A), we have that

kerEi ∩ kerAi = {0} (3.5)

holds for all 0 ≤ i < ν. Furthermore, from (3.5) or from [12] we obtain that

kerEi ∩ kerEi+1 = {0} (3.6)

for all 0 ≤ i < ν − 1. We now show by induction that we can construct projectors Qi

such that Qiv = 0 holds for all v ∈ S
def
f and for all 0 ≤ i < ν. For the existence of

such a Q0, we have to show that kerE0∩S
def
f = {0}. Suppose that x ∈ kerE0∩S

def
f .

Then from E0x = 0 we obtain that x = 0, since otherwise, by definition, x would
be an eigenvector of (E, A) corresponding to the eigenvalue ∞. Thus, we can choose

the projector Q0 onto kerE0 along some subspace M0 that completely contains S
def
f .

This ensures Q0v = 0 for all v ∈ S
def
f . Now, suppose that Qiv = 0 holds for all

v ∈ S
def
f and for all 0 ≤ i ≤ k for some k < ν − 1. Note that for the complementary

projectors Pi = I − Qi, this implies that Piv = v for all v ∈ S
def
f . To construct a

projector Qk+1 onto kerEk+1 such that Qk+1v = 0 holds for all v ∈ S
def
f , we have to

show that kerEk+1 ∩ S
def
f = {0}. For this, suppose that 0 6= x ∈ kerEk+1 ∩ S

def
f .

Then, by using the assumption, we obtain

0 = Ek+1x = (E0 − A0Q0 − . . . − AkQk)x = E0x,
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from which we again conclude that x = 0, since otherwise, by definition, x would be
an eigenvector of (E, A) corresponding to the eigenvalue ∞. Thus, we can choose the
projector Qk+1 onto kerEk+1 along some subspace Mk+1 that completely contains
S

def
f . This ensures Qk+1v = 0 for all v ∈ S

def
f and completes the proof.

Note that for ν = 1, condition Q0v = 0 holds naturally for all v ∈ S
def
f and in

particular for all eigenvectors, see (3.3).

The following theorem states the main result of the present work. We prove a
new, broadly applicable Perron-Frobenius-type condition for matrix pairs (E, A) in
the general index case.

Theorem 3.6. Let (E, A), with E, A ∈ Rn×n, be a regular matrix pair of
ind(E, A) = ν. Let a matrix chain as in (2.5) be constructed with projectors Qi, Pi as
in Lemma 3.5. If

E−1
ν Aν ≥ 0, (3.7)

holds, then the finite spectral radius ρf (E, A) is an eigenvalue and there exists a
corresponding nonnegative eigenvector v ≥ 0. If E−1

ν Aν is, in addition, irreducible,
then we have that ρf (E, A) is simple and v > 0 is unique up to a scalar multiple.

Proof. Consider the generalised eigenvalue problem (2.1)

(λE − A)v = 0.

If v is an eigenvector corresponding to a finite eigenvalue, i.e., v ∈ S
def
f , then we have

Qiv = 0 for all 0 ≤ i < ν and we can equivalently express (2.1) as

(λ(E − A0Q0 − A1Q1 − . . . − Aν−1Qν−1) − A)v = 0

⇔ (λEν − A)v = 0

⇔ (λI − E−1
ν A)v = 0. (3.8)

By construction, we have that v̂ = P0 · · ·Pν−1v̂ and we obtain that (3.8) is equiv-
alent to

(λ̂I − E−1
ν A)P0 · · ·Pν−1v̂ = 0

⇔ (λ̂I − E−1
ν AP0 · · ·Pν−1)P0 · · ·Pν−1v̂ = 0

⇔ (λ̂I − E−1
ν Aν)v̂ = 0.

By the Perron-Frobenius Theorem, we obtain that λ̂ := ρ(E−1
ν Aν) is an eigenvalue

and there exists a corresponding eigenvector v̂ ≥ 0. Hence,

E−1
ν Aν v̂ = λ̂v̂

⇔ AP0 · · ·Pν−1v̂ = λ̂Eν v̂

⇔ Av̂ = λ̂(E − A0Q0 − A1Q1 − . . . − Aν−1Qν−1)v̂

⇔ Av̂ = λ̂Ev̂,

which is the generalised eigenvalue problem (2.1). Hence, we have that ρ(E−1
ν Aν) =

ρf (E, A) is an eigenvalue and v̂ ≥ 0 is a corresponding eigenvector. If, in addition,
E−1

ν Aν is irreducible, then we have that ρf (E, A) is simple and v > 0 is unique up to
a scalar multiple.
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Corollary 3.7. Let Pr be a projector onto the right finite deflating subspace
S

def
f , let Ê be defined as in Lemma 2.2 and let ÊD denote the Drazin inverse of Ê.

Under the assumptions of Theorem 3.6 the conditions

E−1
ν APr ≥ 0, (3.9)

E−1
ν AÊDÊ ≥ 0 (3.10)

are equivalent to condition (3.7).

Proof. See [13] or Appendix A.

Remark 3.8. Condition

E−1
ν A ≥ 0, (3.11)

can also be proved to be sufficient in Theorem 3.6, see Equation (3.8), yet there is no
evidence for it to ever hold.

3.3. Construction of projectors. In Section 3.2, Lemma 3.5, we have proved
the existence of special projectors for constructing the matrix chain in (2.5) in order to
establish a sufficient condition in Theorem 3.6 for ρf (E, A) to be an eigenvalue with a
corresponding nonnegative eigenvector. In this section we show how these projectors
can be constructed. A different way to construct (canonical) projectors that fulfil the
condition of Lemma 3.5 is given in [13].

Consider a regular matrix pair (E, A) of ind(E, A) = ν. We make the following
observations:

1. For fixed projectors Q0, . . . , Qν−2, the projector Qν−1 is uniquely defined by
being a projector onto kerEν−1 along Sν−1, since if there were two projec-
tors Qν−1, Q̃ν−1 with these two properties, by Lemma 2.3, we would obtain
Qν−1 = Qν−1Q̃ν−1 = Q̃ν−1.

2. Consider the sets Si as defined in (2.6). We have that S
def
f ⊆ S0, since for any

v ∈ S
def
f there exists a w ∈ S

def
f such that Av = Ew, and hence, Av ∈ imE,

i.e., v ∈ S0. Furthermore, we have that S0 ⊆ S1 ⊆ . . . ⊆ Sν−1, see [12], and

therefore, S
def
f ⊆ Sν−1. ¿From this we conclude that Qν−1v = 0 holds for all

v ∈ S
def
f .

In the following, recursive constructions of matrix and projector chains, we denote by

E
(i)
j , A

(i)
j , Q

(i)
j , P

(i)
j the i-th iterate of Ej , Aj , Qj, Pj in the recursive construction.

With the chain constructed in (2.5), we set E
(1)
j = Ej , A

(1)
j = Aj , Q

(1)
j = Qj ,

and P
(1)
j = Pj .

If the index is ind(E, A) = ν = 1, then we take any projector Q
(1)
0 onto kerE and

having computed E
(1)
1 we set Q

(2)
0 = −Q

(1)
0 (E

(1)
1 )−1A. By using Q

(2)
0 , we compute

E
(2)
1 and its inverse and use it to check the sufficient condition in Theorems 3.1 (or

Theorem 3.6) that now reads (E
(2)
1 )−1AP

(2)
0 ≥ 0.

For ν = 2 we already have to construct the projectors recursively. We choose

any projectors Q
(1)
0 , Q

(1)
1 onto kerE

(1)
0 , kerE

(1)
1 , respectively. We then determine E

(1)
2

and set Q
(2)
1 = −Q

(1)
1 (E

(1)
2 )−1A

(1)
1 . Then we have Q

(2)
1 v = 0 for all v ∈ S

def
f . By

using Q
(2)
1 compute E

(2)
2 . We proceed by setting Q

(2)
0 = −Q

(1)
0 (E

(2)
2 )−1A

(1)
0 , which is
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a projector by Lemma 2.5. For any v ∈ S
def
f we have w ∈ S

def
f such that

Q
(2)
0 v = −Q

(1)
0 (E

(2)
2 )−1Av = −Q

(1)
0 (E

(2)
2 )−1Ew = −Q

(1)
0 (I − Q

(1)
0 − Q

(2)
1 )w = 0,

since Q
(2)
1 w = 0. Here we have used the properties (E

(2)
2 )−1A

(1)
i Q

(1)
i = −Q

(1)
i for

i = 0, 1 and

E
(2)
2 = E

(1)
0 − A

(1)
0 Q

(1)
0 − A

(1)
1 Q

(2)
1

⇔ I = (E
(2)
2 )−1E

(1)
0 − (E

(2)
2 )−1A

(1)
0 Q

(1)
0 − (E

(2)
2 )−1A

(1)
1 Q

(2)
1

⇔ I = (E
(2)
2 )−1E

(1)
0 + Q

(1)
0 + Q

(2)
1 .

By using Q
(2)
0 we compute E

(2)
1 and A

(2)
1 . Now, we proceed as in the case ν = 1

to define Q
(3)
1 as a projector onto kerE

(2)
1 . To ensure that it projects along S1 we

again compute E
(3)
2 , set Q

(4)
1 = −Q

(3)
1 (E

(3)
2 )−1A

(2)
1 and obtain that Q

(4)
1 v = 0 for all

v ∈ S
def
f . Finally, we compute E

(4)
2 . The sufficient condition of Theorem 3.6 is then

checked with E
(4)
2 instead of E2 and reads E

(4)
2 AP

(2)
0 P

(4)
1 ≥ 0. For an illustration of

the recursive construction of the projectors in the index 2 case with the properties
required in Theorem 3.6, see Figure 3.1.

Q
(1)
0 , P

(1)
0

Q
(1)
1 , A

(1)
1 , E

(1)
1

E
(1)
2

Q
(2)
1

E
(2)
2

Q
(2)
0 , P

(2)
0

E
(3)
2

Q
(4)
1 , P

(4)
1

E
(4)
2

Q
(3)
1 , A

(2)
1 , E

(2)
1

Figure 3.1. Illustration of the recursive construction of projectors in the index 2 case. Top

down, we have the chain matrices in increasing order. From left to right, we have the successive

calculation of these.

Before proceeding to the calculation of projectors in the general index case, we
present two index 2 examples, where condition (3.7) of Theorem 3.6 holds, whereas
the conditions in [1] and [11] do not hold.

Example 3.9. Consider the matrix pair (E, A) with

E =





0 1 0
0 0 0
0 0 1



 and A =





1 0 0
0 1 0
0 0 2



 .

We have that (E, A) is regular with ind(E, A) = 2 and there is one finite eigenvalue

ρf (E, A) = 2 and a corresponding eigenvector
[

0 0 v3

]T
, which can be chosen so

that v3 > 0.

We compute the matrix chain by setting, e.g.,

Q
(1)
0 =





1 0 0
0 0 0
0 0 0



 , E
(1)
1 = E − AQ

(1)
0 =





−1 1 0
0 0 0
0 0 1



 , A
(1)
1 = A0P

(1)
0 =





0 0 0
0 1 0
0 0 2



 .
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We choose, e.g.,

Q
(1)
1 =





1 0 0
1 0 0
0 0 0



 , and P
(1)
1 =





0 0 0
−1 1 0
0 0 1



 ,

and compute

E
(1)
2 = E

(1)
1 − A

(1)
1 Q

(1)
1 =





−1 1 0
−1 0 0
0 0 1



 and (E
(1)
2 )−1 =





0 −1 0
1 −1 0
0 0 1



 .

Then, we compute the projector onto kerE
(1)
1 along S1 by setting

Q
(2)
1 = −Q

(1)
1 (E

(1)
2 )−1A

(1)
1 =





0 1 0
0 1 0
0 0 0



 .

and determine

E
(2)
2 = E

(1)
1 − A

(1)
1 Q

(2)
1 =





−1 1 0
0 −1 0
0 0 1



 and (E
(2)
2 )−1 =





−1 −1 0
0 −1 0
0 0 1



 .

We set

Q
(2)
0 = −Q

(1)
0 (E

(2)
2 )−1A0 =





1 1 0
0 0 0
0 0 0



 and P
(2)
0 =





0 −1 0
0 1 0
0 0 1



 ,

and compute

E
(2)
1 = E0 − A0Q

(2)
0 =





−1 0 0
0 0 0
0 0 1



 and A
(2)
1 = A0P

(2)
0 =





0 −1 0
0 1 0
0 0 2



 .

Choosing Q
(3)
1 =





0 0 0
0 1 0
0 0 0



, we determine

E
(3)
2 = E

(2)
1 − A

(2)
1 Q

(3)
1 =





−1 1 0
0 −1 0
0 0 1



 = E
(2)
2 and (E

(3)
2 )−1 = (E

(2)
2 )−1,

and verify that Q
(4)
1 = −Q

(3)
1 (E

(3)
2 )−1A

(2)
1 = Q

(3)
1 . We finally set P (4) = I − Q

(4)
1 .

The sufficient condition (3.7) of Theorem 3.6 then holds, since

(E
(4)
2 )−1AP

(2)
0 P

(4)
1 =





−1 1 0
0 −1 0
0 0 2









0 0 0
0 0 0
0 0 1



 =





0 0 0
0 0 0
0 0 2



 ≥ 0.

The condition in [1], however, is not satisfied, since

(E − A)−1A =





−1 −1 0
0 −1 0
0 0 1









1 0 0
0 1 0
0 0 2



 =





−1 −1 0
0 −1 0
0 0 2



 � 0.
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Also the condition in [11] does not hold, since, e.g., for y =
[

−1 1 1
]T

we have

Ey ≥ 0 but Ay � 0. Note, that we have Pr = P
(2)
0 P

(4)
1 , yet, condition (3.11) does not

hold, since (E
(4)
2 )−1A � 0.

Example 3.10. Consider the regular matrix pair (E, A) of ind(E, A) = 2, where

E =









E11 E12 0 0
E21 E22 0 0
0 0 0 0
0 0 0 0









and A =









0 0 0 A14

0 A22 0 0
0 0 A33 0

A41 0 0 0









.

Note, that every regular matrix pair of index 2 can be equivalently transformed into
such a form, where A14, A41, A33, E22 are square regular matrices, see [10]. We choose

Q
(1)
0 =









0 0 0 0
0 0 0 0
0 0 I 0
0 0 0 I









and compute

P
(1)
0 =









I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0









and E
(1)
1 =









E11 E12 0 −A14

E21 E22 0 0
0 0 −A33 0
0 0 0 0









.

Choosing

Q
(1)
1 =









I 0 0 0
−E−1

22 E21 0 0 0
0 0 0 0

A−1
14 Ẽ11 0 0 0









,

where Ẽ11 = E11 − E12E
−1
22 E21, we obtain

P
(1)
1 =









0 0 0 0
E−1

22 E21 I 0 0
0 0 I 0

−A−1
14 Ẽ11 0 0 I









, A
(1)
1 =









0 0 0 0
0 A22 0 0
0 0 0 0

A41 0 0 0









, and

E
(1)
2 =









E11 E12 0 −A14

E21 + A22E
−1
22 E21 E22 0 0

0 0 −A33 0
−A41 0 0 0









,

(E
(1)
2 )−1 =









0 0 0 −A−1
41

0 E−1
22 0 E−1

22 (E21 + A22E
−1
22 E21)A

−1
41

0 0 −A−1
33 0

−A−1
14 A−1

14 E12E
−1
22 0 −A−1

14 (Ẽ11 − E12E
−1
22 A22E

−1
22 E21)A

−1
41









.

We verify that Q
(2)
1 = −Q

(1)
1 (E

(1)
2 )−1A

(1)
1 = Q

(1)
1 and, hence, P

(2)
1 = P

(1)
1 , A

(2)
1 =

A
(1)
1 , E

(2)
2 = E

(1)
2 and (E

(2)
2 )−1 = (E

(1)
2 )−1. Setting

Q
(2)
0 = −Q

(1)
0 (E

(2)
2 )−1A0 =









0 0 0 0
0 0 0 0
0 0 I 0

A14(Ẽ11 − E12E
−1
22 A22E

−1
22 E21) −A14E12E

−1
22 A22 0 I









,
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we compute

P
(2)
0 =









I 0 0 0
0 I 0 0
0 0 0 0

−A14(Ẽ11 − E12E
−1
22 A22E

−1
22 E21) A14E12E

−1
22 A22 0 0









,

E
(2)
1 = E − AQ

(2)
0 =









E12(I + E−1
22 A22)E

−1
22 E21 E12(I + E−1

22 A22) 0 −A14

E21 E22 0 0
0 0 −A33 0
0 0 0 0









,

A
(2)
1 = AP

(2)
0 =









−E11 + E12(I + E−1
22 A22)E

−1
22 E21 E12E

−1
22 A22 0 0

0 A22 0 0
0 0 0 0

A41 0 0 0









.

Choosing

Q
(3)
1 =









I 0 0 0
−E−1

22 E21 0 0 0
0 0 0 0
0 0 0 0









,

we determine

P
(3)
1 =









0 0 0 0
E−1

22 E21 I 0 0
0 0 I 0
0 0 0 I









,

E
(3)
2 =









E11 + E12E
−1
22 A22E

−1
22 E21 E12 + E12E

−1
22 A22 0 −A14

E21 + A22E
−1
22 E21 E22 0 0

0 0 −A33 0
−A41 0 0 0









,

(E
(3)
2 )−1 =









0 0 0 −A−1
41

0 E−1
22 0 E−1

22 (E21 + A22E
−1
22 E21)A

−1
41

0 0 −A−1
33 0

−A−1
14 A−1

14 E12(I + E−1
22 A22)E

−1
22 0 −A−1

14 (Ẽ11 − E12E
−1
22 A22(I + E−1

22 A22)E
−1
22 E21)A

−1
41









.

We verify that Q
(4)
1 = −Q

(3)
1 (E

(3)
2 )−1A

(2)
1 = Q

(3)
1 and, hence, P

(4)
1 = P

(3)
1 , E

(4)
2 =

E
(3)
2 and (E

(4)
2 )−1 = (E

(3)
2 )−1. The sufficient condition (3.7) of Theorem 3.6 then

reads as

(E
(4)
2 )−1

A
(2)
1 P

(4)
1 =

2

6

6

4

0 0 0 0
E

−1
22 A22E

−1
22 E21 E

−1
22 A22 0 0

0 0 0 0
A

−1
14 E12E

−1
22 A22E

−1
22 A22E

−1
22 E21 A

−1
14 E12E

−1
22 A22E

−1
22 A22 0 0

3

7

7

5

≥ 0.

Consider again the eigenvalue problem

(λE − A)v = 0.
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For the given E and A, we obtain









λE11 λE12 0 −A14

λE21 λE22 − A22 0 0
0 0 −A33 0

−A14 0 0 0

















v1

v2

v3

v4









= 0.

Since A41 and A33 are nonsingular, we obtain v1 = v3 = 0 and the following system
of equations

{

λE12v2 − A14v4 = 0,

(λE22 − A22)v2 = 0,

which is equivalent to

{

(λI − E−1
22 A22)v2 = 0,

v4 = λA−1
14 E12v2.

Condition (3.7) gives E−1
22 A22 ≥ 0 and, hence, we obtain from the first equation that

ρ(E−1
22 A22) =: λ is an eigenvalue and there exists a corresponding eigenvector v2 ≥ 0.

By using this, we obtain from the second equation that

v4 = λA−1
14 E12v2 = A−1

14 E12E
−1
22 A22v2 = −λ−1A−1

14 E12E
−1
22 A22E

−1
22 A22v2 ≥ 0,

since A−1
14 E12E

−1
22 A22E

−1
22 A22 ≥ 0 by (3.7) and λ ≥ 0, v2 ≥ 0 from the first equation.

The condition in [1], however, is not necessarily applicable, since E − A may not
be invertible if E22−A22 is not. Also the condition in [11] will not hold in most cases,

since we may choose y1, y2 in y =
[

y1 y2 y3 y4

]T
such that Ey ≥ 0 and choose

y3, y4 such that Ay � 0.

We proceed with the construction of the special projectors as required in Theo-

rem 3.6 in the case that ν > 2. To begin with, we choose the projectors Q
(1)
0 , . . . , Q

(1)
ν−1

as in [12] such that Q
(1)
j Q

(1)
i = 0 for all j > i. Then, we define the projector Q

(2)
ν−1

onto kerE
(1)
ν−1 along Sν−1 by setting Q

(2)
ν−1 = −Q

(1)
ν−1(E

(1)
ν )−1A

(1)
ν−1 as in Lemma 2.4

and setting P
(2)
ν−1 = I − Q

(2)
ν−1 and E

(2)
ν = E

(1)
ν−1 − A

(1)
ν−1Q

(2)
ν−1.

Next, we set Q
(2)
ν−2 = −Q

(1)
ν−2(E

(2)
ν )−1A

(1)
ν−2. This is a projector by Lemma 2.5 and

we obtain Q
(2)
ν−2v = 0 for all v ∈ S

def
f . This follows, since for all v ∈ S

def
f there exists

w ∈ S
def
f with Av = Ew and thus

Q
(2)
ν−2v = −Q

(1)
ν−2(E

(2)
ν )−1A

(1)
ν−2v = −Q

(1)
ν−2(E

(2)
ν )−1A

(1)
ν−3P

(1)
ν−3v =

= −Q
(1)
ν−2(E

(2)
ν )−1A

(1)
ν−3(I − Q

(1)
ν−3)v = −Q

(1)
ν−2(E

(2)
ν )−1A

(1)
ν−3v − Q

(1)
ν−2Q

(1)
ν−3v =

= −Q
(1)
ν−2(E

(2)
ν )−1A

(1)
ν−4P

(1)
ν−4v = . . . = −Q

(1)
ν−2(E

(2)
ν )−1A0v =

= −Q
(1)
ν−2(E

(2)
ν )−1E0w = −Q

(1)
ν−2(I − Q

(1)
0 − Q

(1)
1 − . . . − Q

(1)
ν−2 − Q

(2)
ν−1)w =

= Q
(1)
ν−2Q

(2)
ν−1w = 0.

By using the new projector Q
(2)
ν−2 we redefine the last part of the chain by setting

P
(2)
ν−2 = I −Q

(2)
ν−2, E

(2)
ν−1 = E

(1)
ν−2 −A

(1)
ν−2Q

(2)
ν−2, A

(2)
ν−1 = A

(1)
ν−2P

(2)
ν−2 and E

(3)
ν = E

(2)
ν−1 −
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A
(2)
ν−1Q

(2)
ν−1. Since we have a new E

(2)
ν−1 we may need to redefine Q

(3)
ν−1 and Q

(4)
ν−1 as in

the index 2 case.

Then we proceed by setting Q
(2)
ν−3 = −Q

(1)
ν−3(E

(3)
ν )−1A

(1)
ν−3 and show in the same

manner that Q
(2)
ν−3v = 0 for all v ∈ S

def
f . With the same procedure we redefine

all projectors down to Q
(2)
0 . We redefine the matrix chain using the final projector

Q
(2)
0 and proceed by applying the same proceedure as if we had a chain of length

ν − 1. Eventually, we obtain a matrix chain with projectors that satisfy the condition

Q
(2i+1)
i v = 0 for all v ∈ S

def
f and for all i = 0, . . . , ν − 1. In total, we have to make

∑ν
i=1 2i = 2ν − 1 updates of the projectors Qi. The sufficient condition of Theorem

3.6 is then checked with E
(2ν)
ν−1 instead of Eν−1 and reads

E
(2ν)
ν−1AP

(2)
0 P

(4)
1 · · ·P

(2ν)
ν−1 ≥ 0

⇔ E
(2ν)
ν−1A

(2ν−1)
ν−1 P 2ν

ν−1 ≥ 0.

4. Conclusions. We have presented a new generalisation of the Perron-Frobenius
Theorem to regular matrix pairs (E, A) of arbitrary index. We have constructed pro-
jector chains that allow to derive a new sufficient condition. The new generalisation
reduces to the classical Perron-Frobenius Theorem if E = I and is different from
previous such generalisations. We have demonstrated the broad applicability of the
new generalisation by several examples.

Appendix A. Proof of Corollary 3.7.

Proof. In [13], the canonical projectors P̃0 · · · P̃ν−1 are constructed such that the
condition Q̃i = −Q̃iP̃i+1 · · · P̃ν−1Ẽ

−1
ν−1Ãi holds for all i. For the canonical projectors,

conditions (3.7), (3.9), (3.10) are equivalent, since P̃0 · · · P̃ν−1 = Pr = ÊDÊ, see [13].
Now, we show that for projectors P0, . . . , Pν−1 as constructed in Section 3.3, we have
P0 · · ·Pν−1 = P̃0 · · · P̃ν−1, where P̃0, . . . , P̃ν−1 are canonical projectors as introduced
in [13]. For a matrix pair of ind(E, A) = ν, we have the projector decomposition
I = P0 · · ·Pν−1 + P0 · · ·Pν−2Qν−1 + . . . + P0Q1 + Q0. Furthermore, we have the
property, see [13],

im(P0 · · ·Pν−2Qν−1 + . . . + P0Q1 + Q0) = im Q0 + . . . + imQν−1.

For the canonical projectors Q̃i as constructed in [13] and for the projectors Qi as
constructed in Section 3.3, we have imQi = im Q̃i for all i. Hence,

im(P0 · · ·Pν−2Qν−1 + . . . + P0Q1 + Q0) = im(P̃0 · · · P̃ν−2Q̃ν−1 + . . . + P̃0Q̃1 + Q̃0).

Therefore, we conclude that kerP0 · · ·Pν−1 = ker P̃0 · · · P̃ν−1 since P0 · · ·Pν−2Qν−1 +
. . . + P0Q1 + Q0 = I − P0 · · ·Pν−1 is a projector and

dim(imP0 · · ·Pν−1) = dim(im P̃0 · · · P̃ν−1) = n − dim(kerP0 · · ·Pν−1).

On the other hand, we know that imPr ⊂ imP0 · · ·Pν−1, since for any x ∈ Rn we get
Prx ∈ S

def
f and P0 · · ·Pν−1Prx = Prx. This together with the dimension argument

gives us Pr = P̃0 · · · P̃ν−1 = P0 · · ·Pν−1.
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Condition (3.10) is sufficient, since ÊDÊ = Pr. This can be verified by trans-
forming ÊDÊ into Weierstraß canonical form. If

Ê = (sE − A)−1E =

(

sW

[

I 0
0 N

]

T − W

[

J 0
0 I

]

T

)−1

W

[

I 0
0 N

]

T =

= T−1

[

(sI − J)−1 0
0 (sN − I)−1N

]

T,

then

ÊD = T−1

[

sI − J 0
0 0

]

T,

and

ÊDÊ = T−1

[

sI − J 0
0 0

] [

(sI − J)−1 0
0 (sN − I)−1N

]

T =

= T−1

[

I 0
0 0

]

T = Pr.
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