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Abstract
Mixed-integer two-stage stochastic programs with fixed recourse matrix, ran-
dom recourse costs, technology matrix, and right-hand sides are considered.
Quantitative continuity properties of its optimal value and solution set are de-
rived when the underlying probability distribution is perturbed with respect to
an appropriate probability metric.
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1 Introduction

Mixed-integer two-stage stochastic programs model a variety of practical decision prob-
lems under stochastic uncertainty, e.g., in chemical engineering, power production, and
trading planning |7, 12, 13|. The probability distribution of the stochastic programming
model reflects the available knowledge on the randomness at the modeling stage. When
solving such stochastic programming models, the probability distribution is approxi-
mately replaced in most cases by a discrete probability measure with finite support.
Hence, perturbing or approximating the probability distribution of such models is an
important issue for modeling, theory, and numerical methods in stochastic integer pro-
gramming. While much is known on the structure and algorithms of mixed-integer
two-stage stochastic programs (cf. the surveys [10, 11, 20, 21]), the available (quanti-
tative) stability or statistical estimation results do not cover situations with stochastic
costs (or prices) (cf. [6, 18] and the surveys [17, 20]).

Mixed-integer two-stage stochastic programs are of the form

min {/: Folw, E)AP(E) : z € X} , (1.1)

where the (first-stage) feasible set X C R™ is closed, = is a closed subset of R®, the
function fy from R™ x = to the extended reals R is a random lower semicontinuous



function, and P belongs to the set of all Borel probability measures P(Z) on =. Recall
that fy is a random lower semicontinuous function if its epigraphical mapping & —
epi fo(+,&) == {(z,r) € R™ x R : fo(x,&) < r} is closed-valued and measurable. In
(1.1), the function f; is of the form

Jolw, &) = (e, x) + @(q(&), (&) = T(§)x) ((2,§) € R™ x E), (1.2)

where ®(u,t) denotes the optimal value of the (second-stage) mixed-integer program
(with cost u and right-hand side t), and ¢(§), T'(§) and h(&) are the stochastic cost,
technology matrix and right-hand side.

Throughout, let v(P) and S(P) denote the optimal value and solution set of (1.1),
respectively. Our aim is to extend the quantitative continuity properties of v(-) and
S(-) in [15, 17, 19] to cover situations with stochastic costs. To this end, we first recall
properties of optimal value functions and solution sets of mixed-integer linear programs
with parametric right-hand side. Then we derive novel continuity and growth results
for optimal value functions of mixed-integer linear programs with parameters in right-
hand sides and costs (Theorem 2.2). These results are used in Section 3 to obtain
the desired quantitative stability result (Theorem 3.3) for fully random mixed-integer
two-stage stochastic programs with fixed recourse. The relevant probability metric
(3.4) on subsets of P(=Z) and its relations to Fortet-Mourier metrics and polyhedral
discrepancies are also discussed (Remark 3.5). The latter metrics may be used for
designing moderately sized discrete approximations to P by optimal scenario reduction
of discrete probability measures [8, 9.

2 Infima of mixed-integer linear programs

Consider the parametric mixed-integer linear program
min{(c,, z) + (¢, y) : Ay + Ayy < bz € Z",y e R™" "} (2.1)

with ¢ = (¢;,¢,) € R™ and b € R” playing the role of the parameters and A =
(Az, Ay) € Q™. Let M(b), ¥(b,c), and X(b, c) denote the feasible set, optimal value,
and solution set of (2.1), i.e.,

M@®) = {(z,y) € Z" xR™ " : A(z,y) < b}
d(b,c) = inf{{c,(x,y)): (z,y) € M(b)}
N(bc) = {lw,y) € M) : (¢, (2,9)) = I(b, c)}.
Let K denote the polyhedral cone {(z,y) € R™ : A,z + A,y < 0} and K* its polar

cone. Observe that ¥(b, ¢) is finite for b € B := dom M and ¢ € —K*. Further, denote
by Pr, M (b) the projection of M (b) onto the z-space, and, for b° € B, let

B*(t°) := {b € B: Pr,M(b) = Pr,M(°)}

be the set of right-hand sides on which the projection of M(b) onto the z-space is
constant. It is well known (see |1, Chapter 5.6]) that the sets B*(°) are continuity
regions of the function b — ¥(b,c). These regions are further characterized by the
following result (Lemma 5.6.1 and 5.6.2 in [1]).
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Lemma 2.1. B is a connected set equal to the union of a countable family of convex
polyhedral cones each of which is obtained by a translation of the r-dimensional cone
T :={teR" :3y e R™™ such that t > A,y}.

For each b° € B, there exists t° € B and a finite set N C Z" \ Pr, M(0°) such that

B (1) = (t°+T)\ [ (Aez +T).

If Prp, M(V°) = Z", then N =0 and B*(8°) = ° + T for some t° € B.

In the following we assume that the projection (b, ¢) of the solution set intersects
with a ball of some radius K for all (b,c) € B x —K*. This allows us to extend
Lemma 2.3 in [19] and show local Lipschitz-continuity of the optimal value of (2.1) with
respect to simultaneous perturbations of the right-hand side and the objective function
coefficients where the right-hand side perturbation does not leave the continuity region
B*(b). Otherwise, for arbitrary right-hand sides, a quasi-Lipschitz property of the value
function ¥(b, ¢) can be shown. For the proof of our next result we refer to the appendix.

Theorem 2.2. 1. Let b € B, I/ € B*(b), and ¢, € —K*. Assume that for some
constant k > 1, Pr, 2(b',¢) NB(0, K) # 0 and Pr, X(0,d) NB(0, K) # 0. Then

[9(b, ¢) = O, )| < Ly max{{lel], [|¢'l[}]b = || + Lo max{|[b], 1]}, K7 [|e = ¢l

where the constants L and Lo depend on A only.
2. Let b,b/ € B and ¢, € —K*. Then

[9(b, ) = (', )| < max{[lel], [|¢|[}(L]Ib = ¥'|| +2€) + Lmax{|lp]], ]|} e = ¢,
where the constants L and ¢ depend on A only.

Remark 2.3. Observe that for mixed-integer linear programs with bounded integer
variables (e.g., mixed-binary programs), the integer part of the feasible points is uni-
formly bounded. This bound yields a suitable constant K.

The following Lemma is [4, Theorem 2.1| and can be found in similar form also in
[2]. Together with Theorem 2.2 it is needed to prove Lemma 3.1.

Lemma 2.4. Let c € —K*. The mapping b — Y(b, ¢) is quasi-Lipschitz continuous on
B with positive constants L, and Lo not depending on b and c, i.e.,

dH(E(b7 C)7 Z(b/v C)) < I/1||b - bl” + I’Qa

where dy denotes the Hausdorff distance on subsets of R™.

3 Quantitative stability of mixed-integer two-stage
stochastic programs

Let us consider the stochastic program

min {<c, 7+ [ 2ale).hO) - TEDP(E)  w e X} , (3.1)
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where @ is the infimum function of a mixed-integer linear program given by
O(u,t) :=inf {{u,y) + (w2, §) : Wy + Wy < t,y € Z™,j € R™} (3.2)

for all pairs (u,t) € R™™ xR", and ¢ € R™, X is a closed subset of R™, = a polyhedron
in R*, W and W are (r,7)- and (r, m)-matrices, respectively, ¢(¢) € R™™, h(£) € R",
and the (r, m)-matrix 7'(§) are affine functions of £ € R®, and P € P(Z).

We need the following conditions to have the model (3.1) well-defined:

(B1) The matrices W and W have only rational elements.

(B2) For each pair (z,£) € X x Z it holds that h(§) — T'({)x € T, where

T .= {t cR": 3(y,7) € Z™ x R™ such that Wy + Wy < t}.
(B3) For each £ € = the recourse cost ¢(&) belongs to the dual feasible set
U= {u = (uy,us) € R+ . 3, € R’ such that Whz=u, WHz= uz} )

(B4) The integer part of all second-stage feasible solutions is uniformly bounded for
all (u,t) €U x T (e.g., in case of mixed-binary programs).

(B5) P € Py(2), i.e., [ [I€|IPP(dE) < 4o0.

The conditions (B2) and (B3) mean relatively complete recourse and dual feasibility,
respectively. We note that (B2) and (B3) imply ®(u, t) to be finite for all (u,t) € UXT.
The following additional properties of the value function ® on i/ x 7 are important in
the context of this paper.

Lemma 3.1. Assume (B1)-(B4). Then there exists a countable partition of T into
Borel subsets B;, i.e., T =,y Bi such that

(i) each of the sets has a representation B; = (b;+T) \ U;»V:()l(bi,j +T), where b;,b; ; €
R" fori e Nand j=1,...,Ny, and T := {t € R" : Jy > 0 such that t > Wy}.
Moreover there exists an Ny € N such that for any t € T the ball B(t,1) in R" is
intersected by at most Ny different subsets B;.

(i1) the restriction @|yxp, of © to U x B; has the property that there exists a constant
L > 0 which does not depend on 1, such that

| (u, t) — (@, )] < L(max{L, [[¢]}, [[t]l Hlw — all +max{1, [lull, ]}t — ).

Furthermore, the function ® is lower semicontinuous and piecewise polyhedral on U x T
and there exist constants D,d > 0 such that it holds for all pairs (u,t), (u,t) e U x T :

| (u, ) — (a1, £)] < D(max{L, [, [} (v — all + d) + max{L, [Jull, |}t — ).

The first part of Part 1 is Lemma 2.1. The second part is an extension of [19, Lemma
2.5] to the function ®(u,t) since the relevant constants in its proof do not depend on
the objective function as shown in Lemma 2.4. Part 2 and the quasi-Lipschitz property
of ® is Theorem 2.2.

The representation of ® is given on countably many (possibly unbounded) Borel
sets. This requires to incorporate the tail behavior of P and leads to the following
representation of the function f.



Proposition 3.2. Assume (B1)-(B4) and X be bounded. For each R > 1 and x € X
there exist disjoint Borel subsets Efm of =, j =1,...,v, whose closures are polyhedra
with a uniformly bounded number of faces such that the function

v

fo(x,€) =Y _((e.a) + D(g(€), h(E) = T(E)x))xzr (€)  ((x,6) € X x E)

7T
J=0

15 Lipschitz continuous with respect to & on each Efx, g =1,... v, with some uniform
Lipschitz constant. Here, Zff, := 2\ U/_E is contained in {& € R* : ||£]| > R} and
v is bounded by a multiple of R".

Proof: Since ¢(-), h(-) and T'() are affine linear functions and X is bounded, there
exists a constant C' > 0 such that the estimate

max{[|g(&)lsc, [1A(§) = T(€)x[loc} < Cmax{l, [|¢]loc} (3-3)
holds for each pair in X x =Z. Let R > 1 and 7p := 7 N CRB,,, where B, is the unit
ball w.r.t. || - |- As in |17, Proposition 34| there exist a number v € N and disjoint

Borel subsets {B;}7_; of CRB,, such that their closures are polyhedra, their union
contains 7y, and v is bounded above by kR", where the constant x > 0 is independent
of R. Now, let z € X and consider the following disjoint Borel subsets of =:

= = LT Tz eB;, [fle <R (G=1,...,v),

14
2, = E\N(JEF c{¢€E |l¢]lw > R}
j=1

Let © € X and &,&' € 27, for some j € {1,...,v}. From Lemma 3.1 we obtain

[fole, &) = folz, &) = [®(q(&), h(&) = T(E)x) — (q(), (&) — T(&))]
< L(max{L, [¢()llse; 14(€)loc}(1A(E) — A(E) oo

HI(T(E) = T(€))lloo) + max{L, [[2(§) = T(£)]loe,

1A(€") = T (€)oo Mg () = a(€)]loc)

LCR([|A(€) = h(&)lloo + I(T(§) = T(§))2 ]l

+lg(§) — a(€)ll)

< LiR[[€ = o,

IA

where we used (3.3) for £,¢' € ZF, the affine linearity of ¢(-), h(-) and T'(-), and the

boundedness of X. We note that the constant L; does not depend on R. O

In order to state quantitative stability results for model (3.1), we consider the
following probability metric on Py(Z) for some k € N:

Qéﬂ@@—QW@:fGBGLBG&mGﬁ- (3.4

CZ,phk(P7 Q) ‘= sup {



Here, By, () denotes the set of all polyhedra being subsets of Z and having at most
k faces. The set F»(Z) contains all functions f from = to R such that

£ (€) = F(E)] < max{L, [ €]J. IE]I}I€ — €I

holds for all £, ¢ € . Next we state the main result of our paper.

Theorem 3.3. Let the conditions (B1)—(B5) be satisfied and X be compact.
Then there exist constants L > 0 and k € N such that

[v(P) —v(Q)] < Lop(Copn, (P Q)) (3.5)
C

0#5(Q) S(P) + Up(Lop(Gapn, (P, Q)))B,
for each Q € Py(Z). The function ¢p on Ry is defined by ¢p(0) =0 and
t) = inf § R"'t gopd} t>0), 3.6
oty =t {moee [ pag} os0. @

and the conditioning function Vp s given by

Up(n) :=n+vp'(2n) (neRy), (3.7)

where the growth function Vp on Ry is
Yp(T) := min {/_ fo(z,&)P(d€) —v(P) : d(x,S(P)) > 7,z € X} (3.8)

with inverse Y5 (t) := sup{T € R, : ¢p(7) < t}. If P € P,(Z) for p > 2, the estimate
p—2
¢p(t) < Ctrr=1 holds for t > 0 and some constant C' > 0.

Proof: Since the function ® is lower semicontinuous on Y x 7 (Lemma 3.1), fj is
lower semicontinuous on X X = and, hence, a random lower semicontinuous function
[16, Example 14.31]. Using Lemma 3.1 we obtain the estimate

[fo(z, ) < lelllle]l + Dimax{1, [|AE)]] + 1T E)I[llz ]I} (g ()] + d)
+max{1, [lg(€) [ HIAEI + T E)H|[)]
< Crmax{1, [|€]|}[|¢]]

for each pair (z,£) € X x = and some constant C;. Hence, the objective function
(¢, 2)+ [z P(q(§), h(§) — T(§)x)Q(dE) is finite (if Q € P»(Z)) and lower semicontinuous
(due to Fatou’s lemma). Since X is compact, the solution set S(Q) is nonempty.

From Proposition 3.2 we know that, for each R > 1 and z € X, there exist Borel
subsets ZF,, j = 1,...,v, of Z such that the function f(-) := fo(z, ')|E§?z is Lipschitz
continuous on =¥ with constant L; R. We extend each function f(-) to the whole of =
by preserving the Lipschitz constant. Then we have ﬁ (-) € F2(E). Furthermore,

Proposition 3.2 implies that the closures of Efx are contained in By, (Z) for some

k € N, that the number v is bounded above by xR", where the constant x > 0 is

6



independent on R, and that =, := 2\ Ui EF, is a subset of {£ € 2 : ||£]|c > R}.
For each ) € P»(Z) and = € X we obtain

v

DN A3 Q)(df)‘

/5 folw, &)(P - Q)(dg)' _

7=0 Eﬁ
<y / (P - Q)(de)| + IH(P.Q)
<vI4R sup (P — Q)(df)'JFIR(P Q),
f€.7:2(

-----

where the last summand on the right-hand side is given by

IHP Q) =

/ fol, ) (P — Q)(de)|

Using v < kR" and arguing as in [17, Theorem 35| we continue

'/Efo(ﬂfaf)(P - Q)(df)' < KL R o (P, Q) + IF(P, Q).

For the term I%(P,Q) we use the estimate |fo(z,&)| < C1|[¢]|* for any pair (x,€) €
X x{£ €=Z:]|£|lo > R} and the norming constant C5 such that ||£]| < C5]|¢]|s holds
for all £ € R*. We get

I'(P.Q) < C\C2 / IEIR.(P + Q)(de).
{€E:]|¢|lco >R}

Since the set {¢ € = : |||l > R} can be covered by 2° intersections of = with open
halfspaces (whose closures belong to By, (Z)), we have the estimate

/ J€2,Q(dE) < 2o, (P. )+ [ €% P(de).
{e€E]|€lloo >R} {6€2:[|€lloo> R}
Hence, combining the last three estimates we get

sup
zeX

[ e Q)(dﬁ)' < KL Ry (P.Q) +20,C3 /{ g ]2, P(de)

€E:[[¢]I> R}

for any R > 1. Taking the infimum with respect to R > 1 we obtain

sup
reX

[ At P = QUa8)| < Corlapm, ()

with some constant C' > 0. Now, the result is a consequence of the Theorems 5 and 9
in [17]. If [ [|€][PdP(€) < oo for some p > 2, it holds that [, oo [I€l15dP(E) <
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R?7P [_||€][5,P(d€) by Markov’s inequality. The desired estimate follows by inserting

R =t 75 for small ¢ > 0 into the function whose infinum w.r.t. B > 1 is op(t):

- T+i1+1 17*31 P p731
op(t) <ttt [ e Plde) < o, O

The boundedness condition on X may be relaxed if localized optimal values and
solution sets are considered (see [17]). In case that the underlying distribution P and
its perturbations () have supports in some bounded subset = of R*, the stability result
improves slightly.

Corollary 3.4. Let the conditions (B1)-(B/4) be satisfied, P € P(Z), X and = be
bounded. Then there exist constants L > 0 and k € N such that

[0(P) = v(Q)] < Liapm, (P,Q)
0#5(@Q) S S(P)+Vp(Lpn, (P, Q))B,
holds for each QQ € P(Z).

Proof: Since = is bounded, we have Py(Z) = P(=Z). Moreover, the function ¢p(t)
(see (3.6)) can be estimated by R" "'t for some sufficiently large R > 0. Hence, Theorem
3.3 implies the assertion. O

Remark 3.5. Since = € By, (2) for some k& € N, we obtain from (3.4) by choosing
B :== and f = 1, respectively,

max{G(P, @), aph, (P, @)} < Copn, (P, Q) (3.9)

for all P,@Q € P,(Z). Here, (; and oy, denote the second order Fortet-Mourier metric
|14, Section 5.1] and the polyhedral discrepancy

G(PQ) = s |[ f6)PLe) - / f(é)Q(dQ'
fEF2(E) = =
aph, (P, Q) = Bezup(:)lP(B)—Q@)I,

respectively. Hence, convergence with respect to (,pn, implies weak convergence (see
[3]), convergence of second order absolute moments, and convergence with respect to
the polyhedral discrepancy oy, . For bounded = C R® the estimate

C2,phk <P7 Q) S Csaphk (P7 Q) sl (P7 Q S P(E>> (310)
(with some constant Cy > 0) can be derived by using the technique in the proof of
[19, Proposition 3.1]. In view of (3.9), (3.10) the metric (s py, is stronger than apy, in
general, but in case of bounded = both distances metrize the same topology on P(=).



For more specific models (3.1), improvements of the above results may be obtained
by exploiting specific recourse structures, i.e., by using additional information on the
shape of the sets B; in Lemma 3.1 and on the behavior of the (value) function ¢ on
these sets. This may lead to stability results with respect to probability metrics that
are (much) weaker than (5, . For example, if the recourse costs and the technology
matrix are fixed and h(-) is of the form h(&) := £ (i.e., 7 = s), the relevant class By, (Z)
is completely characterized in [19, Section 3|. If, in addition, the model has pure integer
recourse, the stability result is valid with respect to the Kolmogorov metric

dx (P, Q) := sup |P((—00, z]) — Q((—00, 2])|

z€RS

on P(Z) if = is bounded (see also [19, Proposition 3.4]).

A Proof of Theorem 2.2

Let b € B, b’ € B*(b), and ¢, € —K* be given. To show local Lipschitz continuity of
(b, c), we estimate

19(b, ¢) — I, )] < [9(b, ¢) — DY, c)| + |9, ) — I(H, ).

For the first difference we can proceed as for the proof of Lemma 2.3 in [19]. It is
repeated here to keep the paper self-contained. We write (2.1) as

min{(c,, z) + ¥(c,,b — Ayx) : x € Pr,M(b)}

where ¥(c,, b) := min{(c,, y) : A,y < b}. Since ¥(c,, b) is the optimal value function of
a linear program and finite for b € B, ¢’ € —K*, there exist a finite number of matrices
C}, which depend on A, only, such that ¥(c,,b) = max;(b, C;c,) (cf. [22]). Hence, for
¢y fixed, ) 3 o

W B) = (e D)) < max |Gl 16— B

Let now (x,y) € X(b,¢) and (2/,y') € X(V', ¢). Since Pr, M(b) = Pr, M ('), we obtain
P(b,c) =, ¢) < (cp ) + U (cy, b— Aya’) — (cp, 2"y — U(ey, b — Ayx”) < Ly||e|[ |-V,

where L; := max; ||C}]|. Due to symmetry the same estimate holds for J(V', ¢) — (b, c).
To estimate |J(V,c) — IV, )| we take (z,y) € X(V,c) and (2/,y") € (b, ') such
that z,2’ € B(0, K), y = C;(b/ — A,x), and y' = Cj (V' — A,a’) for some indices j and
j'. Since V' is fixed, it is 9(V',c) < (¢, @) + (¢, 9) and IV, ) < (¢}, ) + (c}, ).
Hence,
9, ¢) — 9, )] < maxc{]|(z, )], 11 )1} le — €]

Using ||y[| < Lo ([[0'[] + [ A[[[lz])), [l < La([[6]| + | Az ([ll2']]), and ||z]], [|2"]] < K, we
obtain
[0V, ) =, )| < (K + Li([6]] + | A ) [le = €

and let L2 =1+ L1||A$|| + Ll.



To proof the second part of Theorem 2.2, we use the property that the distance of
the optimal set of (2.1) to optimal points of its linear relaxation

min{(c,, ) + (¢, y) : Agz + Ayy < b, (z,y) € R™} (A.1)

can be bounded with a constant that is independent from the choice of b and ¢. This
is stated in the following Lemma, which is Theorem 1.2 in [5].

Lemma A.1. Let b € B, c € —K*. Let (z,9) be an optimal point of (A.1). Then there
exists a solution point (x,y) € X(b, c), such that

for some constant ¢ depending on A only.

We are now ready to proof the quasi-Lipschitz continuity of the optimal value func-
tion (b, ¢). Since the optimal value function of a linear program is locally Lipschitz-
continuous in its right-hand side and objective function coefficients, there exists a
constant L which depends on A only and optimal points (Z,7) and (Z',7') of the linear
program (A.1) with right-hand sides b and b’ and objective function coefficients ¢ and
c, respectively, such that

(e, (2,9)) = (¢, (@, 9))] < Llelllo = ¥'l| + LI [[lle — €I

Next, by Lemma A.1, there exist points (z,y) € X(b,c) and (2/,y’) € (¥, ) with
distance at most ¢ to (Z,7) and (Z’, 7). Hence,

0(b,c) =¥, ) < e, (9)) — (e, @ D)+ (e, (5.9) — (¢ (@ 7))
He @) - @
< 20max{llel, ¢} + Zlelllo = ¥l + L{¥lle — ||
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