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Abstract. Let Hd(n, p) signify a random d-uniform hypergraph with n vertices in which each of the(
n
d

)
possible edges is present with probability p = p(n) independently, and let Hd(n, m) denote a uni-

formly distributed d-uniform hypergraph with n vertices and m edges. We derive local limit theorems
for the joint distribution of the number of vertices and the number of edges in the largest component of
Hd(n, p) and Hd(n, m) for the regime

(
n−1
d−1

)
p, dm/n > (d− 1)−1 + ε. As an application, we obtain

an asymptotic formula for the probability that Hd(n, p) is connected, and a corresponding formula for
Hd(n, m). In addition, we infer a local limit theorem for the conditional distribution of the number of
edges in Hd(n, p) given that Hd(n, p) is connected. While most prior work on this subject relies on
techniques from enumerative combinatorics, we present a new, purely probabilistic approach.
Key words: random discrete structures, giant component, local limit theorems, connected hypergraphs.

1 Introduction and Results

This paper deals with the connected components of random graphs and hypergraphs. Recall that a d-
uniform hypergraph H is a set V (H) of vertices together with a set E(H) of edges e ⊂ V (H) of size
|e| = d. The order of H is the number |V (H)| of vertices of H , and the size of H is the number |E(H)| of
edges. Moreover, a 2-uniform hypergraph is called a graph.

Further, we say that a vertex v ∈ V (H) is reachable from w ∈ V (H) if there exist edges e1, . . . , ek ∈
E(H) such that v ∈ e1, w ∈ ek and ei ∩ ei+1 6= ∅ for all 1 ≤ i < k. Then reachability is an equivalence
relation, and the equivalence classes are called the components of H . If H has only a single component,
then H is connected.

We letN (H) signify the maximum order of a component of H . Furthermore, for all hypergraphs H the
vertex set V (H) will consist of integers. Therefore, the subsets of V (H) can be ordered lexicographically,
and we call the lexicographically first component of H that has order N (H) the largest component of H .
In addition, we denote by M(H) the size of the largest component.

We will consider two models of random d-uniform hypergraphs. The random hypergraph Hd(n, p)
has the vertex set V = {1, . . . , n}, and each of the

(
n
d

)
possible edges is present with probability p inde-

pendently of all others. Moreover, Hd(n, m) is a uniformly distributed d-uniform hypergraph with vertex
set V = {1, . . . , n} and with exactly m edges. In the case d = 2, the notation G(n, p) = H2(n, p),
G(n, m) = H2(n, m) is common. Finally, we say that the random hypergraph Hd(n, p) enjoys a certain
property P with high probability (“w.h.p.”) if the probability that P holds in Hd(n, p) tends to 1 as n →∞;
a similar terminology is used for Hd(n, m).

1.1 The Phase Transition and the Giant Component

In the pioneering papers [10, 11] on the theory of random graphs, Erdős and Rényi studied the component
structure of the random graph G(n, m). Since [10, 11], the component structure of random discrete objects
(e.g., graphs, hypergraphs, digraphs, . . . ) has been among the main subjects of discrete probability theory.
One reason for this is the connection to statistical physics and percolation (as “mean field models”); another
reason is the impact of these considerations on computer science (e.g., due to relations to computational
problems such as MAX CUT or MAX 2-SAT [9]).

In [10] Erdős and Rényi showed that if t remains fixed as n → ∞ and m = n
2 (lnn + t), then the

probability that G(n, m) is connected is asymptotically exp(− exp(−t)) as n → ∞. Since G(n, m) is a
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uniformly distributed graph, this result immediately yields the asymptotic number of connected graphs of
order n and size m. The relevance of this result, possibly the most important contribution of [10] is that
Erdős and Rényi solved this enumerative problem (“how many connected graphs of order n and size m
exist?”) via probabilistic methods (namely, the method of moments for proving convergence to a Poisson
distribution).

Furthermore, in [11] Erdős and Rényi went on to study (among others) the component structure of
sparse random graphs with O(n) edges. The main result is that the order N (G(n, m)) of the largest
component undergoes a phase transition as 2m/n ∼ 1. Let us state a more general version from [22],
which covers d-uniform hypergraphs: let either H = Hd(n, m) and c = dm/n, or H = Hd(n, p) and
c =

(
n−1
d−1

)
p; we refer to c as the average degree of H . Then the result is that

(1) if c < (d− 1)−1 − ε for an arbitrarily small but fixed ε > 0, then N (H) = O(lnn) w.h.p.
(2) By contrast, if c > (d− 1)−1 + ε, then H features a unique component of order Ω(n) w.h.p., which is

called the giant component. More precisely, N (H) = (1 − ρ)n + o(n) w.h.p. where ρ is the unique
solution to the transcendental equation

ρ = exp(c(ρd−1 − 1)) (1)

that lies strictly between 0 and 1. Furthermore, the second largest component has order O(lnn).

In this paper we present a new, purely probabilistic approach for investigating the component structure
of sparse random graphs and, more generally, hypergraphs in greater detail. More precisely, we obtain
local limit theorems for the joint distribution of the order and size of the largest component in a random
graph or hypergraph H = Hd(n, p) or H = Hd(n, m) (Theorems 1 and 3). Thus, we determine the
joint limiting distribution of N (H) and M(H) precisely. Furthermore, from these local limit theorems
we derive a number of interesting consequences. For instance, we compute the asymptotic probability
that H is connected (Theorems 5and 6), which yields an asymptotic formula for the number of connected
hypergraphs of given order and size. Thus, as in [10], we solve a (highly non-trivial) enumerative problem
via probabilistic techniques. In addition, we infer a local limit theorem for the distribution of the number
of edges of Hd(n, p), given the (exponentially unlikely) event that Hd(n, p) is connected (Theorem 7).

While in the case of graphs (i.e., d = 2) these results are either known or can be derived from prior
work (in particular, [5]), all our results are new for d-uniform hypergraphs with d > 2. Besides, we believe
that our probabilistic approach is interesting in the case of graphs as well, because we completely avoid
the use of involved enumerative methods, which are the basis of most of the previous papers on our subject
(including [5]). In effect, our techniques are fairly generic and may apply to further problems of a related
nature.

1.2 Results

The local limit theorems. Our first result is the local limit theorem for the joint distribution ofN (Hd(n, p))
and M(Hd(n, p)).

Theorem 1. Let d ≥ 2 be a fixed integer. For any two compact sets I ⊂ R2, J ⊂ ((d − 1)−1,∞), and
for any δ > 0 there exists n0 > 0 such that the following holds. Let p = p(n) be a sequence such that
c = c(n) =

(
n−1
d−1

)
p ∈ J for all n and let 0 < ρ = ρ(n) < 1 be the unique solution to (1). Further, let

σ2
N =

ρ
(
1− ρ + c(d− 1)(ρ− ρd−1)

)
(1− c(d− 1)ρd−1)2

n, (2)

σ2
M = c2ρd 2 + c(d− 1)(ρ2d−2 − 2ρd−1 + ρd)− ρd−1 − ρd

(1− c(d− 1)ρd−1)2
n + (1− ρd)

cn

d
,

σNM = cρ
1− ρd − c(d− 1)ρd−1(1− ρ)

(1− c(d− 1)ρd−1)2
n.
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Suppose that n ≥ n0 and that ν, µ are integers such that x = ν − (1 − ρ)n and y = µ − (1 − ρd)
(
n
d

)
p

satisfy n−
1
2
(
x
y

)
∈ I. Then letting

P (x, y) =
1

2π
√

σ2
Nσ2

M − σ2
NM

exp
[
− σ2

Nσ2
M

2(σ2
Nσ2

M − σ2
NM)

(
x2

σ2
N
− 2σNMxy

σ2
Nσ2

M
+

y2

σ2
M

)]
we have (1− δ)P (x, y) ≤ P [N (Hd(n, p)) = ν ∧M(Hd(n, p)) = µ] ≤ (1 + δ)P (x, y).

Theorem 1 characterizes the joint limiting distribution of N (Hd(n, p)) and M(Hd(n, p)) precisely, be-
cause it actually yields the asymptotic probability that N and M attain any two values ν = (1− ρ)n + x,
µ = (1− ρd)

(
n
d

)
p + y; namely, the theorem shows that

P [N (Hd(n, p)) = ν ∧M(Hd(n, p)) = µ] ∼ P (x, y),

and it guarantees some uniformity of convergence. We emphasize that P (x, y) is as small as O(n−1) as
n → ∞. Since P (x, y) is just the density function of a bivariate normal distribution, Theorem 1 readily
yields the following central limit theorem for the joint distribution of N ,M(Hd(n, p)).

Corollary 2. Keep the notation from Theorem 1. Then σ−1
N (N (Hd(n, p))−(1−ρ)n), σ−1

M (M(Hd(n, p))−

(1− ρd)
(
n
d

)
p) converge to the normal distribution with mean 0 and covariance matrix

(
1 σNM

σNσM
σNM

σNσM
1

)
.

Nonetheless, we stress that Theorem 1 is considerably more precise than Corollary 2. For the latter result
just yields the asymptotic probability that x ≤ σ−1

N (N (Hd(n, p)) − (1 − ρ)n ≤ x′ and simultaneously
y ≤ σ−1

M (M(Hd(n, p))−(1−ρd)n) ≤ y′ for any fixed x, x′, y, y′ ∈ R. Hence, Corollary 2 just determines
N ,M(Hd(n, p)) up to errors of o(σN ) and o(σM), while Theorem 1 actually yields the probability of
hitting exactly specific values ν, µ.

The second main result of this paper is a local limit theorem for the joint distribution of N (Hd(n, m))
and M(Hd(n, m)).

Theorem 3. Let d ≥ 2 be a fixed integer. For any two compact sets I ⊂ R2, J ⊂ ((d− 1)−1,∞), and for
any δ > 0 there exists n0 > 0 such that the following holds. Let m = m(n) be a sequence of integers such
that c = c(n) = dm/n ∈ J for all n and let 0 < ρ = ρ(n) < 1 be the unique solution to (1). Further, let

τ2
N = ρ

1− (c + 1)ρ− c(d− 1)ρd−1 + 2cdρd − cdρ2d−1

(1− c(d− 1)ρd−1)2
n,

τ2
M = cρd 1− c(d− 2)ρd−1 − (c2d− cd + 1)ρd − c2(d− 1)ρ2d−2 + 2c(cd− 1)ρ2d−1 − c2ρ3d−2

d(1− c(d− 1)ρd−1)2
n,

τNM = cρd 1− cρ− c(d− 1)ρd−1 + (c + cd− 1)ρd − cρ2d−1

(1− c(d− 1)ρd−1)2
n.

Suppose that n ≥ n0 and that ν, µ are integers such that x = ν − (1− ρ)n and y = µ− (1− ρd)m satisfy
n−

1
2
(
x
y

)
∈ I. Then letting

Q(x, y) =
1

2π
√

τ2
N τ2

M − τ2
NM

exp
[
− τ2

N τ2
M

2(τ2
N τ2

M − τ2
NM)

(
x2

τ2
N
− 2τNMxy

τ2
N τ2

M
+

y2

τ2
M

)]
we have (1− δ)Q(x, y) ≤ P [N (Hd(n, m)) = ν ∧M(Hd(n, m)) = µ] ≤ (1 + δ)Q(x, y).

Similarly as Theorem 1, Theorem 3 characterizes the joint limiting distribution of N ,M(Hd(n, m)) pre-
cisely. Once more the limit resembles a bivariate normal distribution, so that we can infer the following
central limit theorem.

Corollary 4. Keep the notation from Theorem 3. Then τ−1
N (N (Hd(n, m))−(1−ρ)n), τ−1

M (M(Hd(n, m))−

(1− ρd)m) converge to the normal distribution with mean 0 and covariance matrix
(

1 τNM
τN τM

τNM
τN τM

1

)
.
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The probability of connectedness. As an application of the local limit theorem for Hd(n, p) (Theorem 1),
we obtain the following formula for the asymptotic probability that a random hypergraph Hd(ν, µ) is
connected.

Theorem 5. Let d ≥ 2 be a fixed integer. For any compact set J ⊂ (d(d − 1)−1,∞), and for any δ > 0
there exists ν0 > 0 such that the following holds. Let µ = µ(ν) be a sequence of integers such that
ζ = ζ(ν) = dµ/ν ∈ J for all ν. Then the there exists a unique number 0 < r = r(ν) < 1 such that

r = exp
(
−ζ · (1− r)(1− rd−1)

1− rd

)
. (3)

Let Φ(ζ) = r
r

1−r (1− r)1−ζ(1− rd)
ζ
d . Furthermore, let

R2(ν, µ) =
1 + r − ζr√

(1 + r)2 − 2ζr
exp

(
2ζr + ζ2r

2(1 + r)

)
· Φ(ζ)ν , and set

Rd(ν, µ) =
1− rd − (1− r)ζ(d− 1)rd−1√

(1− rd + ζ(d− 1)(r − rd−1))(1− rd)− ζdr(1− rd−1)2

× exp
(

ζ(d− 1)(r − 2rd + rd−1)
2(1− rd)

)
· Φ(ζ)ν if d > 2.

Finally, let cd(ν, µ) signify the probability that Hd(ν, µ) is connected. Then for all ν > ν0 we have (1 −
δ)Rd(ν, µ) < cd(ν, µ) < (1 + δ)Rd(ν, µ).

This implies an asymptotic formula for the number Cd(ν, µ) of connected d-uniform hypergraphs of given
order ν and size µ, since Cd(ν, µ) =

((ν
d)
µ

)
cd(ν, µ). To prove Theorem 5 we shall consider a “larger”

hypergraph Hd(n, p) such that the expected order and size of the largest component of Hd(n, p) are ν
and µ. Then, we will infer the probability that Hd(ν, µ) is conncected from the local limit theorem for
N (Hd(n, p)) and M(Hd(n, p)). Indeed, this proof needs the full strength of Theorem 1; i.e., the central
limit theorem provided by Corollary 2 is insufficient to obtain Theorem 5.

Furthermore, we have the following theorem on the asymptotic probability that Hd(ν, p) is connected.

Theorem 6. Let d ≥ 2 be a fixed integer. For any compact set J ⊂ (0,∞), and for any δ > 0 there exists
ν0 > 0 such that the following holds. Let p = p(ν) be a sequence such that ζ = ζ(ν) =

(
ν−1
d−1

)
p ∈ J for

all ν. Then there is a unique 0 < % = %(ν) < 1 such that

% = exp
[
ζ

%d−1 − 1
(1− %)d−1

]
. (4)

Set S2(ν, p) = exp
(

2ζe−ζ+2ζ+ζ2

2(eζ−1)

)
(1− ζ

eζ−1
)(1− e−ζ)ν , resp. let

Ψ(ζ) = %
%

1−% (1− %) exp
(

ζ

d

1− %d − (1− %)d

(1− %)d

)
and

Sd(ν, p) = exp

(
ζ%

1− %d − (1− %)d

d(1− %)d
+

ζ(d− 1)%
2

((
%

1− %

)d−2

+ 1

))

×
1− ζ(d− 1)

(
%

1−%

)d−1

√
1 + ζ(d− 1)%−%d−1

(1−%)d

· Ψ(ζ)ν if d > 2.

Then for all ν > ν0 the probability cd(ν, p) = P [Hd(ν, p) is connected] satisfies (1 − δ)Sd(ν, p) <
cd(ν, p) < (1 + δ)Sd(ν, p).
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Interestingly, if we choose p = p(ν) and µ = µ(ν) in such a way that
(
ν
d

)
p = µ for all ν and set

ζ =
(
ν−1
d−1

)
p = dµ/ν, then the function Ψ(ζ) from Theorem 6 is strictly bigger than Φ(ζ) from Theo-

rem 5. Consequently, the probability that Hd(n, p) is connected exceeds the probability that Hd(n, m) is
connected by an exponential factor. The reason is that in Hd(n, p) the total number of edges is a (bionmi-
ally distributed) random variable. Roughly speaking, Hd(n, p) “boosts” its probability of connectivity by
including a number of edges that exceeds

(
n
d

)
p considerably. That is, the total number of edges given that

Hd(n, p) is connected is significantly bigger than
(
n
d

)
p.

The distribution of M(Hd(n, p)) given connectivity. The following local limit theorem for the total
number of edges in Hd(n, p) given that Hd(n, p) is connected quantifies this observation.

Theorem 7. Let d ≥ 2 be a fixed integer. For any two compact sets I ⊂ R, J ⊂ (0,∞), and for any
δ > 0 there exists ν0 > 0 such that the following holds. Suppose that 0 < p = p(ν) < 1 is sequence such
that ζ = ζ(ν) =

(
ν−1
d−1

)
p ∈ J for all ν. Moreover, let 0 < % = %(ν) < 1 be the unique solution to (4), and

set

µ̂ =
⌈

ζν

d
· 1− %d

(1− %)d

⌉
, σ̂2 =

ζν

d(1− %)d

[
1− ζd%(1− %d−1)2

(1− %)d + ζ(d− 1)(%− %d−1)
− %d

]
.

Then for all ν ≥ ν0 and all integers y such that yν−
1
2 ∈ I we have

1− δ√
2πσ̂

exp
(
− y2

2σ̂2

)
≤ P [|E(Hd(ν, p))| = µ̂ + y | Hd(ν, p) is connected] ≤ 1 + δ√

2πσ̂
exp

(
− y2

2σ̂2

)
.

In the case d = 2 the unique solution to (4) is % = exp(−ζ), whence the formulas from Theorem 7 simplify
to µ̂ =

⌈
ζν
2 coth(ζ/2)

⌉
and σ̂2 = ζν

2 · 1−2ζ exp(−ζ)−exp(−2ζ)
(1−exp(−ζ))2 .

1.3 Related Work

Graphs. Bender, Canfield, and McKay [5] were the first to compute the asymptotic probability that a
random graph G(n, m) is connected for any ratio m/n. Although they employ a probabilistic result from
Łuczak [16] to simplify their arguments, their proof is based on enumerative methods. Additionally, using
their formula for the connectivity probability of G(n, m), Bender, Canfield, and McKay [6] inferred the
probability that G(n, p) is connected as well as a central limit theorem for the number of edges of G(n, p)
given connectivity. Moreover, it is possible (though somewhat technical) to derive local limit theorems
for N ,M(G(n, m)) and N ,M(G(n, p)) from the main result of [5]. In fact, Pittel and Wormald [19,
20] recently used enumerative arguments to derive an improved version of the main result of [5] and to
obtain a local limit theorem that in addition to N and M also includes the order and size of the 2-core. In
summary, in [5, 6, 19, 20] enumerative results on the number of connected graphs of given order and size
were used to infer the distributions of N ,M(G(n, p)) and N ,M(G(n, m)). By contrast, in the present
paper we use the converse approach: employing probabilistic methods, we first determine the distributions
of N ,M(G(n, p)) and N ,M(G(n, m)), and from this we derive the number of connected graphs with
given order and size.

The asymptotic probability that G(n, p) is connected was first computed by Stepanov [23] (this problem
is significantly simpler than computing the probability that G(n, m) is connected). He also obtained a
local limit theorem for N (G(n, p)) (but his methods do not yield the joint distribution of N (G(n, p)) and
M(G(n, p))). Moreover, Pittel [18] derived central limit theorems for N (G(n, p)) and N (G(n, m)) from
his result on the joint distribution of the numbers of trees of given sizes outside the giant component. The
arguments in both [18, 23] are of enumerative and analytic nature.

Furthermore, a few authors have applied probabilistic arguments to problems related to the present
work. For instance, O’Connell [17] employed the theory of large deviations in order to estimate the proba-
bility that G(n, p) is connected up to a factor exp(o(n)). While this result is significantly less precise than
Stepanov’s, O’Connell’s proof is simpler. In addition, Barraez, Boucheron, and Fernandez de la Vega [2]
exploited the analogy between the component structure of G(n, p) and branching processes to derive a
central limit theorem for the joint distribution of N (G(n, p)) and the total number of edges in G(n, p);
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however, their techniques do not yield a local limit theorem. Finally, van der Hofstad and Spencer [12]
used a novel perspective on the branching process argument to rederive the formula of Bender, Canfield,
and McKay [5] for the number of connected graphs.

Hypergraphs. In contrast to the case of graphs (d = 2), little is known about the phase transition and
the connectivity probability of random d-uniform hypergraphs with d > 2. In fact, to our knowledge the
arguments used in all of the aforementioned papers do not extend to the case d > 2.

Karoński and Łuczak [14] derived an asymptotic formula for the number of connected d-uniform
hypergraphs of order n and size m = n

d−1 + o(lnn/ ln lnn) via combinatorial techniques. Since the
minimum number of edges necessary for connectivity is n−1

d−1 , this formula addresses sparsely connected
hypergraphs. Using this result, Karoński and Łuczak [15] investigated the phase transition in Hd(n, m)
and Hd(n, p). They obtained local limit theorems for the joint distribution of N ,M(Hd(n, m)) and
N ,M(Hd(n, p)) in the early supercritical phase, i.e., their result apply to the case m =

(
n
d

)
p = n

d(d−1) +
o(n2/3(lnn/ ln lnn)1/3). Furthermore, Andriamampianina and Ravelomanana [1] extended the result from
[14] to the regime m = n

d−1 + o(n1/3) via enumerative techniques. In addition, relying on [1], Ravelo-
manana and Rijamamy [21] extended [15] to m =

(
n
d

)
p = n

d(d−1) + o(n7/9). Note that all of these results
either deal with very sparsely connected hypergraphs (i.e., m = n

d−1 + o(n)), or with the early supercrit-
ical phase (i.e., m =

(
n
d

)
p = n

d(d−1) + o(n)). By contrast, the results of this paper concern connected
hypergraphs with m = n

d−1 + Ω(n) edges and the component structure of random hypergraphs Hd(n, m)
or Hd(n, p) with m =

(
n
d

)
p = n

d(d−1) + Ω(n). Thus, our results and those from [1, 14, 15, 21] are comple-
mentary.

The regime of m and p that we deal with in the present work was previously studied by Coja-Oghlan,
Moore, and Sanwalani [8] using probabilistic arguments. Setting up an analogy between a certain branch-
ing process and the component structure of Hd(n, p), they computed the expected order and size of the
largest component of Hd(n, p) along with the variance of N (Hd(n, p)). Furthermore, they computed the
probability that Hd(n, m) or Hd(n, p) is connected up to a constant factor, and estimated the expected
number of edges of Hd(n, p) given connectivity. Note that Theorems 5, 6, and 7 enhance these results con-
siderably, as they yield tight asymptotics for the connectivity probability, respectively the precise limiting
distribution of the number of edges given conncectivity.

While the arguments of [8] by themselves are not strong enough to yield local limit theorems, combin-
ing the branching process arguments with further probabilistic techniques, in [4] we inferred a local limit
theorem for N (Hd(n, p)). Theorems 1 and 3 extend this result by giving local limit theorems for the joint
distribution of N and M.

1.4 Techniques and Outline

To prove Theorems 1 and 3, we build upon a qualitative result on the connected components of Hd(n, p)
from Coja-Oghlan, Moore, and Sanwalani [8], and a local limit theorem for N (Hd(n, p)) from our pre-
vious paper [4] (Theorems 9 and 10, cf. Section 2). The proofs of both of these ingredients solely rely
on probabilistic reasoning (namely, branching processes and Stein’s method for proving convergence to a
Gaussian).

In Section 3 we show that (somewhat surprisingly) the univariate local limit theorem for N (Hd(n, p))
can be converted into a bivariate local limit theorem forN (Hd(n, m)) andM(Hd(n, m)). To this end, we
observe that the local limit theorem forN (Hd(n, p)) implies a bivariate local limit theorem for the joint dis-
tribution of N (Hd(n, p)) and the number M̄(Hd(n, p)) of edges outside the largest component. Then, we
will set up a relationship between the joint distribution of N ,M̄(Hd(n, p)) and that of N ,M̄(Hd(n, m)).
Since we already know the distribution of N ,M̄(Hd(n, p)), we will be able to infer the joint distribution
of N ,M̄(Hd(n, m)) via Fourier analysis. As in Hd(n, m) the total number of edges is fixed (namely, m),
we have M̄(Hd(n, m)) = m−M(Hd(n, m)). Hence, we obtain a local limit theorem for the joint distri-
bution of N ,M(Hd(n, m)), i.e., Theorem 3. Finally, Theorem 3 easily implies Theorem 1. We consider
this Fourier analytic approach for proving the bivariate local limit theorems the main contribution of the
present work.
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Furthermore, in Section 4 we derive Theorem 5 from Theorem 1. The basic reason why this is possible
is that given that the largest component of Hd(n, p) has order ν and size µ, this component is a uni-
formly distributed random hypergraph with these parameters. Indeed, this observation was also exploited
by Łuczak [16] to estimate the number of connected graphs up to a polynomial factor, and in [8], where
an explicit relation between the numbers Cd(ν, µ) and P [N (Hd(n, p)) = ν ∧M(Hd(n, p)) = µ] was de-
rived (cf. Lemma 28 below). Combining this relation with Theorem 1, we obtain Theorem 5. Moreover, in
Sections 5 and 6 we use similar arguments to establish Theorems 6 and 7.

2 Preliminaries

We shall make repeated use of the following Chernoff bound on the tails of a binomially distributed variable
X = Bin(ν, q) (cf. [13, p. 26] for a proof): for any t > 0 we have

P [|X − E(X)| ≥ t] ≤ 2 exp
(
− t2

2(E(X) + t/3)

)
. (5)

Moreover, we employ the following local limit theorem for the binomial distribution (e.g., [7, Chapter 1]).

Proposition 8. Suppose that 0 ≤ p = p(n) ≤ 1 is a sequence such that np(1 − p) → ∞ as n → ∞. Let
X = Bin(n, p). Then for any sequence x = x(n) of integers such that |x− np| = o(np(1− p))2/3,

P [X = x] ∼ 1√
2πnp(1− p)

exp
(
− (x− np)2

2p(1− p)n

)
as n →∞.

Furthermore, we make use of the following theorem, which summarizes results from [8, Section 6] on
the component structure of Hd(n, p).

Theorem 9. Let p = c
(
n−1
d−1

)−1
and m =

(
n
d

)
p = cn/d. Moreover, let either H = Hd(n, p) or H =

Hd(n, m).

1. If there is a fixed c0 < (d− 1)−1 such that c = c(n) ≤ c0, then

P
[
N (H) ≤ 3(d− 1)2(1− (d− 1)c0)−2 lnn

]
≥ 1− n−100.

2. Suppose that c0 > (d − 1)−1 is a constant, and that c0 ≤ c = c(n) = o(lnn) as n → ∞. Then the
transcendental equation (1) has a unique solution 0 < ρ = ρ(c) < 1, which satisfies

ρd−1c < c′0 < (d− 1)−1. (6)

for some number c′0 > 0 that depends only on c0. Furthermore, with probability ≥ 1 − n−100 there
is precisely one component of order (1 + o(1))(1− ρ)n in H , while all other components have order
≤ ln2 n.

Finally, we need the following local limit theorem for N (Hd(n, p)) from [4].

Theorem 10. Let d ≥ 2 be a fixed integer. For any two compact intervals I ⊂ R, J ⊂ ((d − 1)−1,∞),
and for any δ > 0 there exists n0 > 0 such that the following holds. Let p = p(n) be a sequence such that
c = c(n) =

(
n−1
d−1

)
p ∈ J for all n.

1. We have P [N (Hd(n, p)) = ν]] = O(n−1/2) for all ν.
2. Furthermore, let 0 < ρ = ρ(n) < 1 be the unique solution to (1), and let σN be as in (2). If ν is an

integer such that σ−1
N (ν − (1− ρ)n) ∈ I, then

1− δ√
2πσN

exp
[
− (ν − (1− ρ)n)2

2σ2
N

]
≤ P [N (Hd(n, p)) = ν] ≤ 1 + δ√

2πσN
exp

[
− (ν − (1− ρ)n)2

2σ2
N

]
.
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3 The Local Limit Theorems: Proofs of Theorems 1 and 3

Throughout this section, we let J ⊂ ((d − 1)−1,∞) and I ⊂ R2 denote compact sets. Moreover, we let
δ > 0 be arbitrarily small but fixed. In addition, 0 < p = p(n) < 1 is a sequence of edge probabilities
such that

(
n−1
d−1

)
p ∈ J for all n. Then by Theorem 9 there exists a unique 0 < ρ = ρ(n) < 1 such that

ρ = exp(
(
n−1
d−1

)
p(ρd−1 − 1)). Moreover, we let σ =

√(
n
d

)
p(1− p).

Furthermore, we consider two sequences ν = ν(n) and µ̄ = µ̄(n) of integers. We set

x = x(n) = ν − (1− ρ)n and y = y(n) = ρd

(
n

d

)
p− µ̄.

We assume that |x|, |y| ≤
√

n lnn.

3.1 Outline

In order to prove Theorem 3, our starting point is Theorem 10, i.e., the local limit theorem forN (Hd(n, p));
we shall convert this univariate limit theorem into a bivariate one that covers both N and M. To this end,
we observe that Theorem 10 easily yields a local limit theorem for the joint distribution ofN (Hd(n, p)) and
the number M̄(Hd(n, p)) of edges outside the largest component of Hd(n, p). Indeed, we shall prove that
given thatN (Hd(n, p)) = ν, the random variable M̄(Hd(n, p)) has approximately a binomial distribution
Bin(

(
n−ν

d

)
, p). That is,

P
[
N (Hd(n, p)) = ν ∧ M̄(Hd(n, p)) = µ̄

]
∼ P [N (Hd(n, p)) = ν]·P

[
Bin

((
n− ν

d

)
, p

)
= µ̄

]
. (7)

As Theorem 10 and Proposition 8 yield explicit formulas for the two factors on the r.h.s., we can thus infer
an explicit formula for P

[
N (Hd(n, p)) = ν ∧ M̄(Hd(n, p)) = µ̄

]
. However, this does not yield a result

on the joint distribution of N (Hd(n, p)) and M(Hd(n, p)). For the random variables M(Hd(n, p)) and
M̄(Hd(n, p)) are not directly related, because the total number of edges in Hd(n, p) is a random variable.

Therefore, to derive the joint distribution of N (Hd(n, p)) and M(Hd(n, p)), we make a detour to the
Hd(n, m) model, in which the total number of edges is fixed (namely, m). Hence, in Hd(n, m) the step
fromM to M̄ is easy (because M̄(Hd(n, m)) = m−M(Hd(n, m))). Moreover, Hd(n, p) and Hd(n, m)
are related as follows: given that the total number of edges in Hd(n, p) equals m, Hd(n, p) is distributed
as Hd(n, m). Consequently,

P
[
N (Hd(n, p)) = ν ∧ M̄(Hd(n, p)) = µ̄

]
=

=
(n

d)∑
m=0

P
[
Bin

((
n

d

)
, p

)
= m

]
· P
[
N (Hd(n, m)) = ν ∧ M̄(Hd(n, m)) = µ̄

]
. (8)

As a next step, we would like to “solve” (8) for P
[
N (Hd(n, m)) = ν ∧ M̄(Hd(n, m)) = µ̄

]
. To this

end, recall that (7) yields an explicit expression for the l.h.s. of (8). Moreover, Proposition 8 provides an
explicit formula for the second factor on the r.h.s. of (8). Now, the crucial observation is that the terms
P
[
N (Hd(n, m)) = ν ∧ M̄(Hd(n, m)) = µ̄

]
we are after are independent of p, while (8) is true for all p.

To exploit this observation, let

pz = p + zσ

(
n

d

)−1

and mz = d
(

n

d

)
pze = d

(
n

d

)
p + zσe,

and set z∗ = ln2 n. Moreover, consider the two functions

f(z) = fn,ν,µ(z) =
{

nP
[
N (Hd(n, pz)) = ν ∧ M̄(Hd(n, pz)) = µ̄

]
if z ∈ [−z∗, z∗]

0 if z ∈ R \ [−z∗, z∗] ,

g(z) = gn,ν,µ(z) =
{

nP
[
N (Hd(n, mz)) = ν ∧ M̄(Hd(n, mz)) = µ̄

]
if z ∈ [−z∗, z∗]

0 if z ∈ R \ [−z∗, z∗] .
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Then computing the coefficients P
[
N (Hd(n, m)) = ν ∧ M̄(Hd(n, m)) = µ̄

]
is the same as computing

the function g explicitly. To this end, we are going to show that (8) can be restated as ‖f − g ∗ φ‖2 = o(1).
Further, this relation in combination with some Fourier analysis will yield a formula for g(z). Although
f(z) and g(z) depend on n and on ν = ν(n) and µ = µ(n), in the sequel we will omit these indices to
ease up the notation, while keeping in mind that actually f(z) and g(z) represent sequences of functions.

To see that (8) implies ‖f − g ∗φ‖2 = o(1), we need to analyze some properties of the functions f and
g. Using Theorem 10 and Proposition 8, we can estimate f as follows.

Lemma 11. There exists a number γ0 > 0 such that for each γ > γ0 there exists n0 > 0 so that for all
n ≥ n0 the following holds.

1. We have f(z) ≤ γ0 for all z ∈ R, and ‖f‖1, ‖f‖2 ≤ γ0.
2. Suppose that n−

1
2
(
x
y

)
∈ I. Let

λ =
dσ(ρd − ρ)

σN (1− c(d− 1)ρd−1)
and (9)

F (z) =
n

2πρd/2σσN
exp

[
−1

2
(
(xσ−1

N − zλ)2 + ρd(yρ−dσ−1 − cρ−1σ−1x + z)2
)]

.

Then |f(z)− F (z)| ≤ γ−2 for all z ∈ [−γ, γ]. If |z| > γ0, then |f(z)| ≤ exp(−z2/γ0) + O(n−90).

We defer the proof of Lemma 11 to Section 3.3. Note that Lemma 11 provides an explicit expression F (z)
that approximates f(z) well on compact sets, and shows that f(z) → 0 rapidly as z → ∞. Indeed, F (z)
just reflects (7).

Furthermore, the following lemma, whose proof we defer to Section 3.4, shows that g enjoys a certain
“continuity” property.

Lemma 12. For any α > 0 there are β > 0 and n0 > 0 so that for all n ≥ n0 and z, z′ ∈ [−z∗, z∗] such
that |z − z′| < β we have g(z′) ≤ (1 + α)g(z) + n−20.

Further, in Section 3.6 we shall combine Lemmas 11 and 12 to restate (8) as follows.

Lemma 13. We have f(z) = (1 + o(1))(g ∗ φ(z)) + O(n−18) for all z ∈ R.

Since f is bounded and both f and g vanish outside of the interval [−z∗, z∗], Lemma 13 entails that
‖f − g ∗ φ‖2 = o(1). In addition, we infer the following bound on g.

Corollary 14. There is a number 0 < K = O(1) such that g(z) ≤ Kf(z)+O(n−18) for all z ∈ [−z∗, z∗].
Hence, ‖g‖1, ‖g‖2 = O(1).

Proof. Let z ∈ [−z∗, z∗]. By Lemma 12 there is a number β > 0 such that g(z′) ≥ 1
2g(z) − n−20 for all

z′ ∈ [−z∗, z∗] that satisfy |z − z′| ≤ β. Therefore, Lemma 13 entails that

f(z) = (1 + o(1))
∫

g(z + ζ)φ(ζ)dζ + O(n−18)

≥ g(z)
2 + o(1)

∫
[−z∗,z∗]∩[z−β,z+β]

φ(ζ)dζ + O(n−18) ≥ βg(z)
10

+ O(n−18),

whence the desired estimate follows. ut

To obtain an explicit formula for g, we exhibit another function h such that ‖f − h ∗ φ‖2 = o(1).

Lemma 15. Suppose that n−
1
2
(
x
y

)
∈ I, let λ be as in (9), and define

ς = λ2 + ρd, κ = −
[

λ

σN
+

cρd−1

σ

]
x +

y

σ
, θ =

x2

σ2
N

+
(cρd−1x− y)2

ρdσ2
, and

h(z) =
n

2πρd/2
√

1− ςσNσ
exp

[
− ςθ − κ2

2ς
− (ςz + κ)2

2(ς − ς2)

]
, (10)

Then ‖f − h ∗ φ‖2 = o(1).
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The proof of Lemma 15 can be found in Section 3.7. Thus, we have the two relations ‖f−g∗φ‖2 = o(1)
and ‖f − h ∗ φ‖2 = o(1). In Section 3.2 we shall see that these bounds imply that actually h approximates
g pointwise.

Lemma 16. For any α > 0 there is n0 > 0 such that for all n > n0, all z ∈ [−z∗/2, z∗/2], and all ν, µ̄

such that n−
1
2
(
x
y

)
∈ I we have |g(z)− h(z)| < α.

In summary, by now we have obtained an explicit formula for g(z) by rephrasing (8) in terms of f and g
as ‖f−g∗φ‖2 = o(1). Since Theorem 10 yields an explicit formula for f , we have been able to compute g.
In particular, we have an asymptotic formula for g(0) = P

[
N (Hd(n, m0)) = ν ∧ M̄(Hd(n, m0)) = µ̄

]
;

let us point out that this implies Theorem 3.
Proof of Theorem 3. Suppose that n−

1
2
(
x
y

)
∈ I. Let µ = m0 − µ̄. Since M(Hd(n, m0)) = m0 −

M̄(Hd(n, m0)), we have g(0) = P [N (Hd(n, m0)) = ν ∧M(Hd(n, m0)) = µ] . Furthermore, |h(0) −
g(0)| < α by Lemma 16. Moreover, it is elementary though tedious to verify that h(0) = Q(ν − (1 −
ρ)n, µ− (1− ρd)m0), where Q is the function defined in Theorem 3. ut

Finally, to derive Theorem 1 from Theorem 3, we employ the relation

P [N (Hd(n, p)) = ν ∧M(Hd(n, p)) = µ]

=
(n

d)∑
m=0

P [N (Hd(n, m)) = ν ∧M(Hd(n, m)) = µ] · P
[
Bin

((
n

d

))
, p = m

]
, (11)

whose r.h.s. we know due to Theorem 3. We defer the details to Section 3.8.

3.2 Proof of Lemma 16

We normalize the Fourier transform as ϕ̂(ξ) = (2π)−
1
2
∫
R

ϕ(ζ) exp(iζξ)dζ, so that the Plancherel theorem
yields

‖ϕ‖2 = ‖ϕ̂‖2, provided that ϕ ∈ L1(R) ∩ L2(R). (12)

Note that the proof of Lemma 16 would be easy if it were true that f = g ∗ φ and f = h ∗ φ. For in
this case we could just Fourier transform f to obtain f̂ = ĝφ̂ = ĥφ̂. Then, dividing by φ̂ = φ would yield
ĝ = ĥ, and Fourier transforming once more we would get g = h. However, since we do not have f = g ∗φ
and f = h ∗ φ, but only ‖f − g ∗ φ‖2, ‖f − h ∗ φ‖2 = o(1), we have to work a little.

Lemmas 13 and 15 imply that there is a function ω = ω(n) such that limn→∞ ω(n) = ∞ and ‖f − g ∗
φ‖2, ‖f − h ∗ φ‖2 < 1

2 exp(−ω2). Thus,

‖(g − h) ∗ φ‖2 < exp(−ω2) = o(1). (13)

In order to compare g and h, the crucial step is to establish that actually ‖(g − h) ∗ φ0,τ2‖2 = o(1) for
“small” numbers τ < 1; indeed, we are mainly interested in τ = o(1). We point out that by Lemma 11 and
Corollary 14 we can apply the Plancherel theorem (12) to both f and g, because f, g ∈ L1(R) ∩ L2(R).

Lemma 17. Suppose that ω−1/8 ≤ τ ≤ 1. Then ‖(g − h) ∗ φ0,τ2‖2 ≤ exp(−ω/5).

Proof. Let ξ = φ̂0,τ2 = φ0,τ−2 . Then

‖(g − h) ∗ φ0,τ2‖22
(12)= ‖(ĝ − ĥ)ξ‖22 =

∫ ω

−ω

|(ĝ − ĥ)ξ|2 +
∫
R\[−ω,ω]

|(ĝ − ĥ)ξ|2. (14)

Since φ̂ = φ, we obtain∫ ω

−ω

|(ĝ − ĥ)ξ|2 ≤ ‖ξ‖∞
inf−ω≤t≤ω |φ̂(t)|2

∫ ω

−ω

|(ĝ − ĥ)φ̂|2

≤ exp(ω2)‖(ĝ − ĥ)φ̂‖22
(12)= exp(ω2)‖(g − h) ∗ φ‖22

(13)
≤ exp(−ω2). (15)
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In addition, by the Cauchy-Schwarz inequality∫
R\[−ω,ω]

|(ĝ − ĥ)ξ|2 ≤
[∫

R

|(ĝ − ĥ)2|2
] 1

2

·

[∫
R\[−ω,ω]

|ξ|4
] 1

2

(16)

Furthermore, as τ−2 ≤ ω
1
4 , we have∫
R\[−ω,ω]

|ξ|4 ≤ τ−2

∫ ∞

ω

exp(−2τ2ζ2)dζ ≤ exp(−ω). (17)

Moreover, by Corollary 14∫
R

|(ĝ − ĥ)2|2 = ‖(ĝ − ĥ)2‖22
(12)= ‖(g − h) ∗ (g − h)‖22 ≤ [‖g ∗ g‖2 + 2‖g ∗ h‖2 + ‖h ∗ h‖2]2

≤
[
K2‖f ∗ f‖2 + 2K‖f ∗ h‖2 + ‖h ∗ h‖2

]2
+ o(1). (18)

Considering the bounds on f and h obtained in Lemmas 11 and 15, we see that ‖f∗f‖2, ‖f∗h‖2, ‖h∗h‖2 =
O(1). Therefore, (16), (17), and (18) imply that∫

R\[−ω,ω]

|(ĝ − ĥ)ξ|2 ≤ O(exp(−ω/2)). (19)

Finally, combining (14), (15), and (19), we obtain the desired bound on ‖(g − h) ∗ φ0,τ2‖2. ut

In order to complete the proof of Lemma 16, we show that Lemma 17 implies that actually g(z) must
be close to h(z) for all points z ∈ [−z∗/2, z∗/2]. The basic idea is as follows. For “small” τ the function
φ0,τ2 is a narrow “peak” above the origin. Therefore, the continuity property of g established in Lemma 12
implies that the convolution g ∗ φ0,τ2(z) is “close” to the function g(z) itself. Similarly, h ∗ φ0,τ2(z) is
“close” to h(z). Hence, as g ∗ φ0,τ2(z) is “close” to h ∗ φ0,τ2(z) by Lemma 17, we can infer that h(z)
approximates g(z). Let us carry out the details.
Proof of Lemma 16. Assume for contradiction that there is some z ∈ [−z∗/2, z∗/2] and some fixed 0 <
α = Ω(1) such that g(z) > h(z) + α for arbitrarily large n (an analogous argument applies in the case
g(z) < h(z)− α). Let τ = ω−1/8. Our goal is to infer that

‖(h− g) ∗ φ0,τ2‖2 > exp(−ω/5), (20)

which contradicts Lemma 17.
To show (20), note that Corollary 14 implies that ‖g‖∞ = O(1), because the bound ‖f‖∞ = O(1)

follows from Lemma 11. Similarly, the function h detailed in Lemma 15 is bounded. Thus, let Γ = O(1)
be such that g(ζ), h(ζ) ≤ Γ for all ζ ∈ R. Then Lemma 12 implies that there exists 0 < β = Ω(1) such
that

(1− 0.01αΓ−1)g(z)−O(n−18) ≤ g(z′) ≤ (1 + 0.01αΓ−1)g(z) + O(n−18) if |z − z′| < β. (21)

In fact, as h is continuous on (−z∗, z∗), we can choose β small enough so that in addition

(1− 0.01αΓ−1)h(z)−O(n−18) ≤ h(z′) ≤ (1 + 0.01αΓ−1)h(z) + O(n−18) if |z − z′| < β. (22)

Combining (21) and (22), we conclude that

|g(z′)− g(z′′)| ≤ 0.1α, |h(z′)− h(z′′)| ≤ 0.1α for all z′, z′′ such that |z − z′|, |z − z′′| < β. (23)

Further, let γ =
∫
R\[−β/2,β/2]

φ0,τ2 . Then for sufficiently large n we have γ < 0.01αΓ−1, because
τ → 0 as n →∞. Therefore, for any z′ such that |z′ − z| < β/2 we have

g ∗ φ0,τ2(z′) =
∫
R

g(z′ + ζ)φ0,τ2(ζ)dζ ≥
∫ β/2

−β/2

g(z′ + ζ)φ0,τ2(ζ)dζ

(23)
≥ (g(z)− 0.01α)(1− γ) ≥ g(z)− 0.02α, and similarly (24)

h ∗ φ0,τ2(z′)
(22)
≤ h(z) + 0.02α. (25)
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Since (24) and (25) are true for all z′ such that |z′ − z| < β/2, our assumption g(z) > h(z) + α yields

‖(g − h) ∗ φ0,τ2‖22 ≥
∫ β/2

−β/2

|g ∗ φ0,τ2(z′)− h ∗ φ0,τ2(z′)|2 ≥ 0.5α2β. (26)

As α, β remain bounded away from 0 while ω(n) → ∞ as n → ∞, for sufficiently large n we have
0.5α2β > exp(−ω/5), so that (26) implies (20). ut

3.3 Proof of Lemma 11

To prove Lemma 11, we first establish (7) rigorously. Then, we employ Proposition 8 and Theorem 10 to
obtain explicit expressions for the r.h.s. of (7).

Lemma 18. Let z ∈ [−z∗, z∗], µN = (1− ρ)n and λ = dσ(ρd−ρ)
σN (1−c(d−1)ρd−1)

.

1. Let cz =
(
n−1
d−1

)
pz . Then there is a unique 0 < ρz < 1 such that ρz = exp(cz(ρd−1

z − 1)). Moreover,
E(N (Hd(n, pz))) = (1− ρz)n + o(

√
n) = µN + zσNλ + o(

√
n).

2. Furthermore, P
[
N (Hd(n− ν, pz)) > ln2 n

]
,P
[
N (Hd(n− ν, µ̄)) > ln2 n

]
≤ n−100.

Proof. Since cz ∼ c0 =
(
n−1
d−1

)
p > (d− 1)−1, Theorem 9 entails that for each z ∈ [−z∗, z∗] there exists a

unique 0 < ρz < 1 such that ρz = exp(cz(ρd−1
z − 1)). Furthermore, the function z 7→ ρz is differentiable

by the implicit function theorem. Consequently, we can Taylor expand ρz at z = 0 by differentiating both
sides of the transcendental equation ρz = exp(cz(ρd−1

z − 1)), which yields

ρz = ρ + λσNn−1z + o(n−1/2). (27)

Hence, as E(N (Hd(n, pz))) = (1− ρz)n + o(
√

n) by Theorem 9, we obtain the first assertion.
The second part follows from Theorem 9 as well, because by (27) we have ν ∼ (1− ρz)n ∼ (1− ρ)n

for all z ∈ [−z∗, z∗]. ut

The basic reason why Lemma 18 implies (7) is the following. Let G ⊂ V be a set of size ν. If we
condition on the event that G is a component, then the hypergraph Hd(n, pz)−G obtained from Hd(n, pz)
by removing the vertices in G is distributed as Hd(n−ν, pz). For whether or not G is a component does not
affect the edges of Hd(n, pz)−G. Thus, Lemma 18 entails that Hd(n, pz)−G has no component of order
> ln2 n w.h.p., whence G is the largest component of Hd(n, pz). Therefore, conditioning on the event that
G actually is the largest component is basically equivalent to just conditioning on the event that G is a
component, and in the latter case the number of edges in Hd(n, pz) − G = Hd(n − ν, p) is binomially
distributed Bin(N, pz), were we let N =

(
n−ν

d

)
. Let us now carry out this sketch in detail.

Lemma 19. We have 1− n−98 ≤ f(z)
nP[Bin(N,p)=µ̄]P[N (Hd(n,p))=ν] ≤ 1 + n−98.

Proof. Let G = {G ⊂ V : |G| = ν}. For G ∈ G we let CG denote the event that G is a component in
Hd(n, pz). Then by the union bound

Q ≤
∑
G∈G

P [CG ∧ |E(Hd(n, pz)−G)| = µ̄] =
∑
G∈G

P [CG] P [|E(Hd(n, pz)−G)| = µ̄] . (28)

As Hd(n, pz) − G is the same as Hd(n − ν, pz), |E(Hd(n, pz) − G)| is binomially distributed with pa-
rameters N and pz . Moreover, P [CG ∧N (Hd(n, pz)−G) < ν] = P [CG] P [N (Hd(n, pz)−G) < ν].
Therefore, (28) yields

f(z)n−1 ≤ P [Bin(N, pz) = µ̄]
∑
G∈G

P [CG]

= P [Bin(N, pz) = µ̄]
∑
G∈G

P [CG ∧N (Hd(n, pz)−G) < ν]
P [N (Hd(n, pz)−G) < ν]

. (29)
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Furthermore, P [N (Hd(n, pz)−G) < ν] ≥ 1− n−100 by the 2nd part of Lemma 18. Thus, (29) entails

(1− n−100)P [Bin(N, pz) = µ̄]−1
n−1f(z) ≤

∑
G∈G

P [CG ∧N (Hd(n, pz)−G) < ν]

= P [∃G ∈ G : CG ∧N (Hd(n, pz)−G) < ν] ≤ P [N (Hd(n, pz)) = ν] .(30)

Conversely, if G ∈ G is a component of Hd(n, pz) and N (Hd(n, pz) − G) < ν, then G is the unique
largest component of Hd(n, pz). Therefore,

n−1f(z) ≥
∑
G∈G

P [CG ∧N (Hd(n, pz)−G) < ν ∧ |E(Hd(n, pz)−G)| = µ̄]

=
∑
G∈G

P [CG] P [N (Hd(n, pz)−G) < ν ∧ |E(Hd(n, pz)−G)| = µ̄] .

Further, given that |E(Hd(n, pz) − G)| = µ̄, Hd(n, pz) − G is just a random hypergraph Hd(n − ν, µ̄).
Hence, (31) yields

n−1f(z) ≥ P [N (Hd(n− ν, µ̄)) < ν] P [Bin(N, pz) = µ̄]
∑
G∈G

P [CG]

≥ P [N (Hd(n− ν, µ̄)) < ν] P [Bin(N, pz) = µ̄] P [N (Hd(n, pz)) = ν] , (31)

where the last estimate follows from the union bound. Moreover, P [N (Hd(n− ν, µ̄)) ≥ ν] ≤ n−99 by the
2nd part of Lemma 18. Plugging this into (31), we get

n−1f(z) ≥ (1− n−99)P [Bin(N, pz) = µ̄] P [N (Hd(n, pz)) = ν] . (32)

Combining (30) and (32) completes the proof. ut

Proof of Lemma 11. Suppose that |x|, |y| ≤
√

n lnn. Then Theorem 10 entails that P [N (Hd(n, pz) = ν] =
O(n−

1
2 ), and Proposition 8 yields P [Bin(N, pz) = µ̄] = O(n−

1
2 ). Thus, the assertion follows from

Lemma 19.
With respect to the 2nd assertion, suppose that n−

1
2
(
x
y

)
∈ I, fix some γ > 0, and consider z ∈ [−γ, γ].

Let cz =
(
n−1
d−1

)
pz , and let 0 < ρz < 1 be the unique solution to to ρz = exp(cz(ρd−1

z −1)) (cf. Lemma 18).
In addition, let

µN ,z = (1− ρz)n, σN ,z =

√
ρz

(
1− ρz + cz(d− 1)(ρz − ρd−1

z )
)
n

1− cz(d− 1)ρd−1
z

,

and set σN = σN ,0. Then Theorem 10 implies that

P [N (Hd(n, pz)) = ν] ∼ 1√
2πσN ,z

exp

(
− (ν − µN ,z)2

2σ2
N ,z

)
Lemma 18∼ 1√

2πσN
exp

(
− (ν − (1− ρ)n− zλσN )2

2σ2
N

)
. (33)

In addition, since Npz =
(
n−ν

d

)
(p + zσ

(
n
d

)−1) = ρd(m0 + zσ − cρ−1x) + o(
√

n), Proposition 8 entails
that

P [Bin(N, pz) = µ̄] ∼ 1√
2πρdm0

exp
(
− (µ̄− ρd(m0 + zσ − cρ−1x))2

2ρdm0

)
. (34)

Hence, Lemma 19 yields

n−1f(z) ∼ P [N (Hd(n, pz)) = ν] P [Bin(N, pz) = µ̄]

(33), (34)∼ 1

2π
√

ρdm0σN
exp

(
− (ν − (1− ρ)n− zλσN )2

2σ2
N

− (µ̄− ρd(m0 + zσ − cρ−1x))2

2ρdm0

)
∼ 1

2πρd/2σσN
exp

(
− (x− zλσN )2

2σ2
N

− (y + ρdσz − cρd−1x)2

2ρdσ2

)
= n−1F (z),
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so that we have established the first assertion.
Finally, let us assume that γ0 < |z| ≤ |z∗| for some large enough but fixed γ0 > 0. Then |Npz −

µ̄| = Ω(z
√

n). Therefore, Proposition 8 implies that P [Bin(n, pz) = µ̄] ≤ n−1/2 exp(−Ω(z2)). Fur-
thermore, P [N (Hd(n, pz)) = ν] = O(n−1/2) by Theorem 10. Hence, Lemma 19 entails that f(z) ≤
O(exp(−Ω(z2)) + n−97), as desired. ut

3.4 Proof of Lemma 12

Throughout this section we assume that z, z′ ∈ [−z∗, z∗], and that |z − z′| < β for some small β > 0. In
addition, we may assume that

g(z′) ≥ n−30, (35)

because otherwise the assertion is trivially true. To compare g(z) and g(z′), we first express g(z) in terms
of the number Cd(ν,mz − µ̄) of connected d-uniform hypergraphs of order ν and size mz − µ̄.

Lemma 20. We have
((n

d)
mz

)
g(z) ∼ n

(
n
ν

)
Cd(ν,mz − µ̄)

((n−ν
d )
µ̄

)
. A similar statement is true for g(z′).

Proof. We claim that

n−1g(z) ≤
(

n

ν

)
Cd(ν, mz − µ̄)

((n−ν
d

)
µ̄

)((n
d

)
mz

)−1

. (36)

The reason is that n−1g(z) is the probability that the largest component of Hd(n, mz) has order ν and
size mz − µ̄, while the right hand side equals the expected number of such components. For there are(
n
ν

)
ways to choose ν vertices where to place such a component. Then, there are Cd(ν,mz − µ̄) ways to

choose the component itself. Moreover, there are
((n−ν

d )
µ̄

)
ways to choose the hypergraph induced on the

remaining n−ν vertices, while the total number of d-uniform hypergraphs of order n and size mz is
((n

d)
mz

)
.

Conversely,

n−1g(z) ≥
(

n

ν

)
Cd(ν,mz − µ̄)

((n−ν
d

)
µ̄

)
P [N (Hd(n− ν, µ̄)) < ν]

((n
d

)
mz

)−1

. (37)

For the right hand side equals the probability that Hd(n, mz) has one component of order ν and size
mz − µ̄, while all other components have order < ν. Since P [N (Hd(n− ν, µ̄)) < ν] ∼ 1 by Lemma 18,
the assertion follows from (36) and (37). ut

Lemma 20 entails that

g(z′)
g(z)

∼ Cd(ν,mz′ − µ̄)
Cd(ν,mz − µ̄)

·
((n

d)
mz

)((n
d)

mz′

) . (38)

Thus, as a next step we estimate the two factors on the r.h.s. of (38).

Lemma 21. If |z − z′| < β for a small enough β > 0, then Cd(ν,mz′−µ̄)
Cd(ν,mz−µ̄) · p

mz−mz′ ≤ 1 + α/2.

To prove Lemma 21, we employ the following estimate, which we will establish in Section 3.5.

Lemma 22. If |z − z′| < β for a small enough β > 0, then letting

P = P [N (Hd(n, pz′)) = ν ∧M(Hd(n, pz′)) = mz − µ̄] ,
P ′ = P [N (Hd(n, pz′)) = ν ∧M(Hd(n, pz′)) = mz′ − µ̄] ,

we have (1− α/3)P − n−80 ≤ P ′ ≤ (1 + α/3)P + n−80.
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Proof of Lemma 21. We observe that

P ≤
(

n

ν

)
Cd(ν, mz − µ̄)pmz−µ̄

z′ (1− pz′)(
n
d)−(n−ν

d )−(mz−µ̄), (39)

because the r.h.s. equals the expected number of components of order ν and size mz − µ̄ in Hd(n, pz′).
(For there are

(
n
ν

)
ways to choose the ν vertices where to place the component and Cd(ν, mz − µ̄) ways to

choose the component itself. Furthermore, edges are present with probability pz′ independently, and thus
the pmz−µ̄

z′ factor accounts for the presence of the mz − µ̄ desired edges among the selected ν vertices.
Moreover, the (1 − pz′)-factor rules out further edges among the ν chosen vertices and in-between the ν
chosen and the n− ν remaining vertices.) Conversely,

P ≥
(

n

ν

)
Cd(ν,mz − µ̄)pmz−µ̄

z′ (1− pz′)(
n
d)−(n−ν

d )−(mz−µ̄)P [N (Hd(n− ν, pz′) < ν)] ; (40)

for the r.h.s. is the probability that there occurs exactly one component of order ν and size mz − µ̄, while
all other components have order < ν. As Lemma 18 entails that P [N (Hd(n− ν, pz′) < ν)] ∼ 1, (39)
and (40) yield

P ∼
(

n

ν

)
Cd(ν, mz − µ̄)pmz−µ̄

z′ (1− pz′)(
n
d)−(n−ν

d )−(mz−µ̄), and similarly

P ′ ∼
(

n

ν

)
Cd(ν, mz′ − µ̄)pmz′−µ̄

z′ (1− pz′)(
n
d)−(n−ν

d )−(mz′−µ̄).

Therefore,

Cd(ν,mz′ − µ̄)
Cd(ν, mz − µ̄)

∼ P ′

P
· pmz′−mz

z′ · (1− pz′)mz−mz′ ∼ P ′

P
· pmz′−mz

Lemma 22
≤

(
1 +

α

3
+

2
n80P ′ − 2

)
pmz′−mz . (41)

In order to show that the r.h.s. of (41) is ≤ 1 + α/2, we need to lower bound P ′: by Proposition 8

P ′ ≥ P [N (Hd(n, mz′)) = ν ∧M(Hd(n, mz′)) = mz′ − µ̄] · P
[
Bin

((
n

d

)
, pz′

)
= mz′

]
≥ n−1g(z′)

(35)
≥ n−31. (42)

Finally, combining (41) and (42), we obtain the desired bound on C(ν, mz′ − µ̄). ut

Lemma 23. We have
((n

d)
mz′

)((n
d)

mz

)−1
= exp(O(z − z′)2) · pmz−mz′ .

Proof. By Stirling’s formula,((n
d

)
mz′

)((n
d

)
mz

)−1

∼

( (
n
d

)
mz′

)mz′
( (

n
d

)(
n
d

)
−mz′

)(n
d)−mz′

((nd)
mz

)mz
( (

n
d

)(
n
d

)
−mz

)(n
d)−mz

−1

∼ pmz
z

p
mz′
z′

(
1 +

mz′(
n
d

)
−mz′

)(n
d)−mz′

(
1 +

mz(
n
d

)
−mz

)mz−(n
d)

∼ pmz
z

p
mz′
z′

exp(mz′ −mz) ∼ pmz−mz′

(
pz

pz′

)mz′

exp(σ(z′ − z)), where (43)(
pz

pz′

)mz′

∼
(

m0 + zσ

m0 + z′σ

)mz′

∼ exp
(

(z − z′)σ0 −
(z − z′)2σ2

2mz′

)
= exp

(
(z − z′)σ0 −O(z − z′)2

)
(44)

Combining (43) and (44), we obtain the assertion. ut
Plugging the estimates from Lemmas 21 and 23 into (38), we conclude that 1− α ≤ g(z)/g(z′) ≤ 1 + α,
provided that |z − z′| < β for some small enough β > 0, thereby completing the proof of Lemma 12.
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3.5 Proof of Lemma 21

By symmetry, it suffices to prove that P ′ ≤ (1 + α/3)P + n−90. To show this, we expose the edges of
Hd(n, pz′) in three rounds. Let ε > 0 be a small enough number that remains fixed as n →∞. Moreover,
set q1 = (1−ε)pz′ , and let q2 ∼ εpz′ be such that q1 +q2−q1q2 = pz′ . Choosing ε > 0 sufficiently small,
we can ensure that

(
n−1
d−1

)
q1 > (d− 1)−1 + ε. Now, we construct Hd(n, pz′) in three rounds as follows.

1st round. Construct a random hypergraph H1 with vertex set V = {1, . . . , n} by including each of the(
n
d

)
possible edges with probability q1 independently. Let G1 be the largest component of H1.

2nd round. Let H2 be the hypergraph obtained by adding with probability q2 independently each possible
edge e 6∈ H1 that is not entirely contained in G1 (i.e., e 6⊂ G1) to H1. Let G2 signify the largest
component of H2.

3rd round. Finally, obtain H3 by adding each edge e 6∈ H1 such that e ⊂ G1 with probability q2 indepen-
dently. Let F denote the set of edges added in this way.

Since for each of the
(
n
d

)
possible edges the overall probability of being contained in H3 is q1+(1−q1)q2 =

pz′ , H3 is just a random hypergraph Hd(n, pz′). Moreover, as in the 3rd round we only add edges that fall
completely into the component of H2 that contains G1, we have N (Hd(n, pz′)) = N (H3) = N (H2).
Furthermore, |F| has a binomial distribution

|F| = Bin
((

|G1|
d

)
−M(H1), q2

)
. (45)

To compare P ′ and P , we make use of the local limit theorem for the binomially distributed |F| (Propo-
sition 8): loosely speaking, we shall observe that most likely G1 is contained in the largest component of
H3. If this is indeed the case, then M(H3) = |F|+M(H2), so that

M(H3) = mz′ − µ ⇔ |F| = mz′ − µ−M(H2), (46)
M(H3) = mz − µ ⇔ |F| = mz − µ−M(H2). (47)

Finally, since P [|F| = mz′ − µ−M(H2)] is “close” to P [|F| = mz − µ−M(H2)] if |z − z′| is small
(by the local limit theorem), we shall conclude that P ′ cannot exceed P “significantly”.

To implement the above sketch, let Q be the set of all pairs (H1,H2) of hypergraphs that satisfy the
following three conditions.

Q1. N (H2) = ν.
Q2. P [M(H3) = mz′ − µ|H1 = H1,H2 = H2] ≥ n−100.
Q3. The largest component of H2 contains the largest component of H1.

The next lemma shows that the processes such that (H1,H2) ∈ Q constitute the dominant contribution.

Lemma 24. Letting P ′′ = P [M(H3) = mz′ − µ ∧ (H1,H2) ∈ Q], we have P ′ ≤ P ′′ + n−99.

Proof. Let R signify the set of all pairs (H1,H2) such that Q1 is satisfied. Since H3 = Hd(n, pz′), we
have P ′ = P [M(H3) = mz′ − µ ∧ (H1,H2) ∈ R] . Therefore, letting Q̄2 (resp. Q̄3) denote the set of all
(H1,H2) ∈ R that violate Q2 (resp. Q3), we have

P ′ − P ′′ ≤ P [M(H3) = mz′ − µ ∧ (H1,H2) ∈ R \ Q]
≤ P

[
M(H3) = mz′ − µ|(H1,H2) ∈ Q̄2

]
+ P

[
(H1,H2) ∈ Q̄3

]
Q2
≤ n−100 + P

[
(H1,H2) ∈ Q̄3

]
. (48)

Furthermore, if (H1,H2) ∈ Q̄3, then either H1 does not feature a component of order Ω(n), or H2 has
two such components. Since

(
n−1
d−1

)
q1 > (d− 1)−1 + ε due to our choice of ε > 0, Theorem 9 entails that

the probability of either event is ≤ n−100. Thus, the assertion follows from (48). ut

Finally, we can compare P and P ′′ as follows.
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Lemma 25. We have P ′′ ≤ (1 + α/3)P .

Proof. Consider (H1,H2) ∈ Q and let us condition on the event (H1,H2) = (H1,H2). Let ∆ = mz −
µ−M(H2), ∆′ = m′

z − µ−M(H2). We claim that∣∣∣∣[(ν

d

)
−M(H1)

]
q2 −∆′

∣∣∣∣ ≤ n0.51; (49)

for if
∣∣[(ν

d

)
−M(H1)

]
q2 −∆′

∣∣ > n0.51, then the Chernoff bound (5) entails that

P [M(H3) = mz′ − µ|(H1,H2) = (H1,H2)]
(46)= P [|F| = ∆′|(H1,H2) = (H1,H2)]
(45)
≤ exp

[
−n0.01

]
< n−100,

in contradiction to Q2. Thus, if |z − z′| < β for a small enough β > 0, then Proposition 8 yields

P [|F| = ∆′|(H1,H2) = (H1,H2)] ≤ (1 + α/3)P [|F| = ∆|(H1,H2) = (H1,H2)] , (50)

because |∆′ −∆| = |z′ − z|σ, and Var(|F|) ∼
(
ν
d

)
q2 = Ω(σ2). Since (50) holds for all (H1,H2) ∈ Q,

the assertion follows. ut

Finally, Lemma 21 is an immediate consequence of Lemmas 24 and 25.

3.6 Proof of Lemma 13

Set m− = m0 − z∗σ, m+ = m0 + z∗σ, and let

P (m) = nP
[
N (Hd(n, m)) = ν ∧ M̄(Hd(n, m)) = µ̄

]
, Bz(m) = P

[
Bin

((
n

d

)
, pz

)
= m

]
.

Then for all z ∈ [−z∗, z∗] we have

f(z) =
(n

d)∑
m=0

P (m)Bz(m) ≤ n · P
[
Bin

((
n

d

)
, pz

)
6∈ [m−,m+]

]
+

∑
m−≤m≤m+

P (m)Bz(m)

(5)
≤ n−100 +

∑
m−≤m≤m+

P (m)Bz(m).

because 0 ≤ P (m) ≤ n. Hence,

f(z) = O(n−100) +
∑

m−≤m≤m+

P (m)Bz(m). (51)

Now, to approximate the sum on the r.h.s. of (51) by the convolution g ∗ φ(z), we replace the sum by
an integral. To this end, we decompose the interval J = [m−,m+] into k subsequent pieces J1, . . . , Jk of
lengths in-between σ

2 log n and σ
log n . Then Lemma 12 entails that

P (m) = (1 + o(1))P (m′) + O(n−20) for all m,m′ ∈ Ji and all 1 ≤ i ≤ k. (52)

Moreover, Proposition 8 yields that

Bz(m) ∼ 1√
2πσ

exp
(
− (m−mz)2

2σ2

)
for all m,m′ ∈ Ji and all 1 ≤ i ≤ k. (53)
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Further, let Ii = {σ−1(x−m0) : x ∈ Ji} and set Mi = minJi ∩ZZ. Combining (52) and (53), we obtain∑
m∈Ji

P (m)Bz(m) = O(n−18) + (1 + o(1))P (Mi)
∑

m∈Ji

Bz(m)

= (1 + o(1))P (Mi)
∫

Ii

φ(ζ − z)dζ + O(n−18)

= (1 + o(1))
∫

Ii

P (mζ)φ(ζ − z)dζ + O(n−18). (54)

As |ζ| ≤ z∗ for all ζ ∈ Ii, we have P (mζ) = g(ζ). Therefore, (54) yields∑
m∈Ji

P (m)Bz(m) = (1 + o(1))
∫

Ii

g(ζ)φ(ζ − z)dζ + O(n−18). (55)

Summing (55) for i = 1, . . . , k, we get

f(z) (51)= O(n−18) + (1 + o(1))
k∑

i=1

∫
Ii

g(ζ)φ(ζ − z)dζ

= O(n−18) + (1 + o(1))
∫ z∗

−z∗
g(ζ)φ(ζ − z)dζ. (56)

As f(ζ) = g(ζ) = 0 if |ζ| > z∗, the assertion follows from (56).

3.7 Proof of Lemma 15

Lemma 26. We have ς < 1.

Proof. We can write the function F (z) from Lemma 11 as F (z) = ξ1 exp(− ς(z−ξ2)
2

2 ) with suitable coeffi-
cients ξ1, ξ2. Hence, the variance of the probability distribution ‖F‖−1

1 F is ς−1. To bound this from below,
note that ‖F − g ∗ φ‖1 = o(1) by Lemma 13. Moreover, as the convolution of two probability measures is
a probability measure, we have ‖g‖1 ∼ ‖F‖1. Therefore,

ς−1 = Var(‖F‖−1
1 F ) ∼ Var(‖g‖−1

1 (g ∗ φ)) = Var(‖g‖−1
1 g) + 1. (57)

Finally, Lemma 12 implies that Var(‖g‖−1
1 g) > 0, and thus the assertion follows from (57). ut

Now, we shall see that h ∗ φ = F , where F is the function from Lemma 11. Then the assertion follows
directly from Lemma 11. To compute h ∗ φ, let

η1 =
n

2πρd/2
√

1− ςσNσ
exp

(
− ςθ − κ2

2ς

)
, η2 = −κ/ς, η3 = ς−1 − 1, and η4 = η1

√
2πη3;

note that the definition of η4 is sound due to Lemma 26. Then h(z) = η4φη2,η3 . Hence, h∗φ = η4φη2,η3+1.
Finally, an elementary but tedious computation shows that η4φη2,η3+1 = F .

3.8 Proof of Theorem 1

Suppose that ν = (1 − ρ)n + x and µ = (1 − ρd)m0 + y, where n−
1
2
(
x
y

)
∈ I. Let α > 0 be ar-

bitrarily small but fixed, and let Γ = Γ (α) > 0 be a sufficiently large number. Moreover, set P =
P [N (Hd(n, p)) = ν ∧M(Hd(n, p)) = µ] , and let

B(m) = P
[
Bin

((
n

d

)
, p

)
= m

]
, Q(m) = P [N (Hd(n, m)) = ν ∧M(Hd(n, m)) = µ] .
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Then, letting m range over non-negative integers, we define

S1 =
∑

m:|m−m0|≤Γσ

B(m)Q(m), S2 =
∑

m:Γσ<|m−m0|≤L
√

n

B(m)Q(m), S3 =
∑

m:|m−m0|>L
√

n

B(m)Q(m),

so that we can rewrite (11) as
P = S1 + S2 + S3. (58)

We shall estimate the three summands S1, S2, S3 separately.
Let us first deal with S3. As

(
n
d

)
p = O(n), the Chernoff bound (5) entails that

∑
m:|m−m0|>L

√
n B(m) ≤

n−2. Since, 0 ≤ Q(m) ≤ 1, this implies
S3 ≤ n−2. (59)

To bound S2, we need the following lemma.

Lemma 27. There is a constant K ′ > 0 such that Q(m) ≤ K ′n−1 for all m such that |m−m0| ≤ L
√

n.

Proof. Let z = σ−1(m −m0), so that m = mz . Then |z| = O(L), because σ = Ω(
√

n). In addition, let
µ̄m = m− µ, so that

Q(m) = P
[
N (Hd(n, m)) = ν ∧ M̄(Hd(n, m)) = µ̄m

]
= gn,ν,µ̄m

(z)/n. (60)

Let cz = dmz/n = dm/n. Then by Lemma 18, the solution 0 < ρz < 1 to the equation ρz =
exp(cz(ρd−1

z − 1)) satisfies |ρz − ρ| = O(zn−
1
2 ). Therefore, we have |ν − (1 − ρz)n|, |µ̄m − (1 −

ρd
z)m| ≤

√
n lnn. Hence, combining the first part of Lemma 11 with Corollary 14, we conclude that

gn,ν,µ̄m(z) ≤ Kγ0. Thus, the assertion follows from (60). ut

Choosing Γ > 0 large enough, we can achieve that
∑

m:|m−m0|>Γσ B(m) ≤ α/K ′. Therefore, Lemma 27
entails that

S2 =
∑

m:Γσ<|m−m0|≤L
√

n

B(m)Q(m) ≤ αn−1. (61)

Concerning S1, we employ Proposition 8 to obtain

B(m) ∼ 1√
2πσ

exp
[
− (m−m0)2

2σ2

]
if |m−m0| ≤ Γσ. (62)

In addition, let 0 < ρm < 1 signify the unique number such that ρm = exp(dm
n (ρd−1

m − 1)). Then
Lemma 18 yields ρm = ρ + ∆m/n + o(n−1/2), where ∆m = −m−m0

σ · σNλ. Hence, 1− ρd
m = 1− ρd−

Ξm/m + o(n−1/2), where Ξm = dm0
n ∆mρd−1. Thus, Theorem 3 entails that Q(m) ∼ ϕ(m), where

ϕ(m) =
1

2π
√

τ2
N τ2

M − τ2
NM

(63)

× exp
[
− τ2

N τ2
M

2(τ2
N τ2

M − τ2
NM)

(
(x + ∆m)2

τ2
N

− 2τNM(x + ∆m)(y + Ξm)
τ2
N τ2

M
+

(y + Ξm)2

τ2
M

)]
.

Now, combining (62) and (63), we can approximate the sum S1 by an integral as follows:

S1 ∼
∑

m:|m−m0|≤Γσ

1√
2πσ

exp
[
− (m−m0)2

2σ2

]
ϕ(m) ∼

∫ Γ

−Γ

ϕ(mz)φ(z)dz. (64)

Further, since ∆mz = −zσNλ = −zΘ(
√

n) and Ξmz = −zdσNλm0ρ
d−1/n = −zΘ(

√
n), and because

τN , τM, τNM = Θ(
√

n), the function ϕ(mz) decays exponentially as z → ∞. Therefore, choosing Γ
large enough, we can achieve that ∫

R\[−Γ,Γ ]

ϕ(mz)φ(z)dz < α/n. (65)

Combining (58), (59), (61), (64), and (65), we obtain |P −
∫∞
−∞ ϕ(mz)φ(z)dz| ≤ 3α/n. Finally, a trite

computation shows that the integral
∫∞
−∞ ϕ(mz)φ(z)dz equals the expression P (x, y) from Theorem 1.
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4 The Probability that Hd(n, m) is Connected: Proof of Theorem 5

In this section we follow the way paved in [8] to derive the probability that Hd(ν, µ) is connected (Theo-
rem 5) from the local limit theorem for Hd(n, p) (Theorem 1). Let J ⊂ (d(d − 1)−1,∞) be a compact
interval, and let µ(ν) be a sequence such that ζ = ζ(ν) = dµ/ν ∈ J for all ν. The basic idea is to
choose n and p in such a way that |ν − E(N (Hd(n, p)))|, |µ − E(M(Hd(n, p)))| are “small”, i.e., ν and
µ will be “probable” outcomes of N (Hd(n, p)) and M(Hd(n, p)). Since given that N (Hd(n, p)) = ν and
M(Hd(n, p)) = µ, the largest component of Hd(n, p) is a uniformly distributed connected graph of order
ν and size µ, we can then express the probability that Hd(ν, µ) is connected in terms of the probability
χ = P [N (Hd(n, p)) = ν ∧M(Hd(n, p)) = µ]. More precisely, one can derive from Theorem 9 that

χ ∼
(

n

ν

)((ν
d

)
µ

)
cd(ν, µ)pµ(1− p)(

n
d)−(n−ν

d )−(ν
d)+µ, (66)

where the expression on the right hand side equals the expected number of components of order ν and
size µ occurring in Hd(n, p). Then, one solve (66) to obtain an explicit expression for cd(ν, µ) in terms of
χ. The (somewhat technical) details of approach were carried out in [8], where the following lemma was
established.

Lemma 28. Suppose that ν > ν0 for some large enough number ν0 = ν0(J ). Then there exist an integer
n = n(ν) = Θ(ν) and a number 0 < p = p(ν) < 1 such that the following is true.

1. Let c =
(
n−1
d−1

)
p. Then (d− 1)−1 < c = O(1), and letting 0 < ρ = ρ(c) < 1 signify the solution to (1),

we have ν = (1− ρ)n and |µ− (1− ρd)
(
n
d

)
p| = O(1).

2. The solution r to (3) satisfies |r − ρ| = o(1).
3. Furthermore, cd(ν, µ) ∼ χ−1 · nuvw · Φν , where Φ = (1− r)1−ζ rr/(1−r)

(
1− rd

)ζ/d
,

u = 2π
√

r(1− r)(1− rd)c/d, (67)

v = exp
[
(d− 1)rc

2
((1− rd) + (1− r)rd−2)

]
, and (68)

w =

{
exp

[
c2

2d (1− rd) · 1−rd−(1−r)d

(1−r)d

]
= c2r(1+r)

2 if d = 2,

1 if d > 2.
(69)

Now, Theorem 1 yields the asymptotics χ ∼ (2π)−1
[
σ2
Nσ2

M − σ2
NM

] 1
2 , where

σ2
N =

ρ
(
1− ρ + c(d− 1)(ρ− ρd−1)

)
(1− c(d− 1)ρd−1)2

n, (70)

σ2
M = c2ρd 2 + c(d− 1)ρ2d−2 − 2c(d− 1)ρd−1 + c(d− 1)ρd − ρd−1 − ρd

(1− c(d− 1)ρd−1)2
n + (1− ρd)

cn

d
, (71)

σNM = cρ
1− ρd − c(d− 1)ρd−1(1− ρ)

(1− c(d− 1)ρd−1)2
n. (72)

Further, since r ∼ ρ, n = ν/(1− ρ), and c ∼ 1−r
1−rd ζ, we can express (67)–(72) solely in terms of ν, r, and

ζ. As cd(ν, µ) ∼ χ ·nuvw ·Φν by Lemma 28, we thus obtain an explicit formula for cd(ν, µ) in terms of ν,
r, and ζ. Finally, simplifying this formula via elementary manipulations, we obtain the expressions stated
in Theorem 4.

Remark 29. While Lemma 28 was established in Coja-Oghlan, Moore, and Sanwalani [8], the exact lim-
iting distribution of N ,M(Hd(n, p)) was not known at that point. Therefore, Coja-Oghlan, Moore, and
Sanwalani could only compute the cd(ν, µ) up to a constant factor. By contrast, combining Theorem 1 with
Lemma 28, here we have obtained tight asymptotics for cd(ν, µ).
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5 The Probability that Hd(n, p) is Connected: Proof of Theorem 6

Let J ⊂ (0,∞) be a compact set, and let 0 < p = p(ν) < 1 be a sequence such that ζ = ζ(ν) =
(
ν−1
d−1

)
p ∈

J for all ν. To compute the probability cd(ν, p) that a random hypergraph Hd(ν, p) is connected, we will
establish that

P [N (Hd(n, p)) = ν] ∼
(

n

ν

)
cd(ν, p)(1− p)(

n
d)−(n−ν

d )−(ν
d) (73)

for a suitably chosen integer n > ν. Then, we will employ Theorem 10 (the local limit theorem for
N (Hd(n, p))) to compute the l.h.s. of (73), so that we can just solve (73) for cd(ν, p).

We pick n as follows. By Theorem 9 for each integer N such that
(
N−1
d−1

)
p > (d − 1)−1 the transcen-

dental equation ρ(N) = exp(
(
N−1
d−1

)
p(ρ(N)d−1− 1)) has a unique solution ρ(N) that lies strictly between

0 and 1. We let n = max{N : (1 − ρ(N))n′ < ν}. Moreover, set ρ = ρ(n) and c =
(
n−1
d−1

)
p, and let

0 < s < 1 be such that (1− s)n = ν. Then

(1− ρ)n ≤ ν = (1− s)n < (1− ρ)(n + 1). (74)

To establish (73), note that the r.h.s. is just the expected number of components of order ν in Hd(n, p).
For there are

(
n
ν

)
ways to choose the vertex set C of such a component, and the probability that C spans

a connected hypergraph is cd(ν, p). Moreover, if C is a component, then Hd(n, p) features no edge that
connects C with V \C, and there are

(
n
d

)
−
(
n−ν

d

)
−
(
ν
d

)
possible edges of this type, each being present with

probability p independently. Hence, we conclude that

P [N (Hd(n, p)) = ν] ≤
(

n

ν

)
cd(ν, p)(1− p)(

n
d)−(n−ν

d )−(ν
d). (75)

On the other hand,

P [N (Hd(n, p)) = ν] ≤
(

n

ν

)
cd(ν, p)(1− p)(

n
d)−(n−ν

d )−(ν
d)P [N (Hd(n− ν, p)) < ν] , (76)

because the r.h.s. equals the probability that Hd(n, p) has exactly one component of order ν. Furthermore,
as ν ∼ (1 − ρ)n, Theorem 9 entails that P [N (Hd(n− ν, p)) < ν] ∼ 1. Hence, combining (75) and (76),
we obtain (73).

To derive an explicit formula for cd(ν, p) from (73), we need the following lemma.

Lemma 30. 1. We have c = ζ(1− s)1−d
(
1 +

(
d
2

)
s

(1−s)n + O(n−2)
)

.

2. The transcendental equation (4) has a unique solution 0 < % < 1, which satisfies |s− %| = O(n−1).
3. Letting Ψ(x) = (1− x)x

x
1−x exp

(
ζ
d ·

1−xd−(1−x)d

(1−x)d

)
, we have Ψ(%)ν ∼ Ψ(s)ν .

Proof. Regarding the first assertion, we note that

(1− s)d−1
(
n−1
d−1

)(
(1−s)n−1

d−1

) =
d−1∏
j=1

1 +
sj

(1− s)n− j
= 1 +

(
d

2

)
s

1− s
+ O(n−2). (77)

Since
(
ν−1
d−1

)
c = ζ

(
n−1
d−1

)
and ν = (1− s)n, (77) implies 1.

With respect to 2., set

ϕz : (0, 1) → R, t 7→ exp
(

z
td−1 − 1

(1− t)d−1

)
for z > 0.

Then limt↘0 ϕz(t) = exp(−z) > 0, while limt↗1 ϕz(t) = 0. In addition, ϕz is convex for any z > 0.
Therefore, for each z > 0 there is a unique 0 < tz < 1 such that tz = ϕz(tz), whence (4) has the
unique solution 0 < % = tζ < 1. Moreover, letting ζ ′ = (1 − ρ)d−1c, we have ρ = tζ′ . Thus, since
t 7→ tz is differentiable by the implicit function theorem and |ζ − ζ ′| = O(n−1) by 1., we conclude that
|%− ρ| = O(n−1). In addition, |s− ρ| = O(n−1) by (74). Hence, |s− %| = O(n−1), as desired.
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To establish the third assertion, we compute

∂

∂x
Ψ(x) = (1− x)−d−1x

2x−1
1−x exp

(
ζ

d

1− xd − (1− x)d

(1− x)d

)
×
(
c(1− x)(x− xd) + (1− x)dx lnx

)
. (78)

As % = exp
(
ζ %d−1−1

(1−%)d−1

)
, (78) entails that ∂

∂xΨ(%) = 0. Therefore, Taylor’s formula yields that Ψ(s) −
Ψ(%) = O(s− %)2 = O(n−2), because s− % = O(n−1) by the second assertion. Consequently, we obtain(

Ψ(s)
Ψ(%)

)n

=
(

1 +
Ψ(s)− Ψ(%)

Ψ(%)

)n

∼ exp
(

n · Ψ(s)− Ψ(%)
Ψ(%)

)
= exp(O(n−1)) ∼ 1,

thereby completing the proof of 3. ut
Proof of Theorem 6. Since |ν − (1 − ρ)n| ≤ 1 by (74), Theorem 10 yields that P [N (Hd(n, p)) = ν] ∼
(2π)−

1
2 σ−1
N , where σN is given by (2). Plugging this formula into (73) and estimating the binomial coeffi-

cient
(
n
ν

)
via Stirling’s formula, we obtain

cd(ν, p) ∼ ssn(1− s)(1−s)n(1− p)(
n−ν

d )+(ν
d)−(n

d) · u, where (79)

u2 =
(1− s)(1− c(d− 1)sd−1)2

1− s + c(d− 1)(s− sd−1)
. (80)

Let us consider the cases d = 2 and d > 2 separately.

1st case: d = 2. Since ν = (1− s)n, we get

(1− p)(
n−ν

d )+(ν
d)−(n

d) = (1− p)s(s−1)n2
∼ exp

(
cs(1− s)(n + 1) +

c2

2
s(1− s)

)
.

Moreover, (80) simplifies to u = 1− cs. Hence, using Lemma 30 and recalling that n = (1− s)−1ν,
we can restate (79) as

c2(ν, p) ∼ Ψ2(s, ζ)ν exp
[

ζs

1− s
(1 + s) +

ζ2s

2(1− s)

] [
1− ζ

s

1− s

]
∼ Ψ2(%, ζ)ν exp

[
ζ%

1− %
(1 + %) +

ζ2%

2(1− %)

] [
1− ζ

%

1− %

]
(81)

Finally, for d = 2 the unique solution to (4) is just % = exp(−ζ). Plugging this into (81), we obtain
the formula stated in Theorem 6.

2nd case: d > 2. We have
(
n
d

)
p2 = o(1), because

(
n−1
d−1

)
p = c = Θ(1). Hence, as ν = (1− s)n, we get

v = (1− p)(
ν
d)+(n−ν

d )−(n
d) ∼ exp

[(
p +

p2

2

)((
n

d

)
−
(

ν

d

)
−
(

n− ν

d

))]
∼ exp

(
cn

d
(1− sd − (1− s)d) +

c(d− 1)
2

((1− s)sd−1 + s(1− s)d−1)
)

.

Plugging this into (79) and invoking Lemma 30, we obtain

cd(ν, p) ∼ ssn(1− s)(1−s)nuv

∼ Ψd(s, ζ) exp
[
ζs

1− sd − (1− s)d

d(1− s)d
+

c(d− 1)
2

((1− s)sd−1 + s(1− s)d−1)
]

u

∼ Ψd(%, ζ)ν exp

[
ζ%

1− %d − (1− %)d

d(1− %)d
+

ζ(d− 1)%
2

((
%

1− %

)d−2

+ 1

)]

×

[
1− ζ(d− 1)

(
%

1− %

)d−1
] [

1 + ζ(d− 1)(%− %d−1)(1− %)−d
]− 1

2 ,

which is exactly the formula stated in Theorem 6.
ut
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6 The Conditional Edge Distribution: Proof of Theorem 7

Let J ⊂ (0,∞) and I ⊂ R be compact sets, and let 0 < p = p(ν) < 1 be a sequence such that
ζ = ζ(ν) =

(
ν−1
d−1

)
p ∈ J for all ν. To compute the limiting distribution of the number of edges of

Hd(ν, p) given that this random hypergraph is connected, we choose n > ν as in Section 5. Thus, letting
c =

(
n−1
d−1

)
p, we know from Lemma 30 that c > (d − 1)−1, and that the solution 0 < ρ < 1 to (1)

satisfies (1 − ρ)n ≤ ν ≤ (1 − ρ)n + 1. Now, we investigate the random hypergraph Hd(n, p) given that
N (Hd(n, p)) = ν. Then the largest component of Hd(n, p) is a random hypergraph Hd(ν, p) given that
Hd(ν, p) is conncected. Therefore,

P [|E(Hd(ν, p)| = µ|Hd(ν, p) is connected] = P [M(Hd(n, p)) = µ|N (Hd(n, p)) = ν]

=
P [M(Hd(n, p)) = µ ∧N (Hd(n, p)) = ν]

P [N (Hd(n, p)) = ν]
(82)

Furthermore, as |ν − (1 − ρ)n| ≤ 1, we can apply Theorem 1 to get an explicit expression for the r.h.s.
of (82). Namely, for any integer µ such that y = n−

1
2 (µ− (1− ρd)

(
n
d

)
p) ∈ I we obtain

P [|E(Hd(ν, p)| = µ|Hd(ν, p) is connected]

∼
(

σ2
N

2π(σ2
Nσ2

M − σ2
NM)

) 1
2

exp
(
− σ2

N y2

2(σ2
Nσ2

M − σ2
NM)

)
, (83)

where

σ2
N =

ρ
(
1− ρ + c(d− 1)(ρ− ρd−1)

)
(1− c(d− 1)ρd−1)2

n, (84)

σ2
M = c2ρd 2 + c(d− 1)ρ2d−2 − 2c(d− 1)ρd−1 + c(d− 1)ρd − ρd−1 − ρd

(1− c(d− 1)ρd−1)2
n + (1− ρd)

cn

d
, (85)

σNM = cρ
1− ρd − c(d− 1)ρd−1(1− ρ)

(1− c(d− 1)ρd−1)2
n. (86)

Thus, we have derived a formula for P [|E(Hd(ν, p)| = µ|Hd(ν, p) is connected] in terms of n, c, and ρ.
In order to obtain a formula in terms of ν, ζ, and the solution % to (4), we just observe that |c−ζ(1−ρ)1−d| =
O(n−1) and |ρ−%| = O(n−1) by Lemma 30, and that |n− (1−ρ)−1ν| = O(n−1). Finally, substituting %
for ρ, ζ(1−%)1−d for c, and (1−%)−1ν for n in (84)–(86) and plugging the resulting expressions into (83)
yields the formula for P [|E(Hd(ν, p)| = µ|Hd(ν, p) is connected] stated in Theorem 7.

Acknowledgment. We thank Johannes Michaliček for helpful discussions on the use of Fourier analysis
for proving Theorem 1.
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