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Abstract. We establish central and local limit theorems for the numberof vertices in the largest com-
ponent of a randomd-uniform hypergraphHd(n, p) with edge probabilityp = c/

(

n−1

d−1

)

, where

(d − 1)−1 + ε < c < ∞. The proof relies on a new, purely probabilistic approach, and is based
on Stein’s method as well as exposing the edges ofHd(n, p) in several rounds.
Keywords:random graphs and hypergraphs, limit theorems, giant component, Stein’s method.

1 Introduction and Results

A d-uniform hypergraphH = (V, E) consists of a setV of vertices and a setE of edges, which are subsets
of V of cardinalityd. Moreover, a vertexw is reachable inH from a vertexv if eitherv = w or there is a
sequencee1, . . . , ek of edges such thatv ∈ e1, w ∈ ek, andei ∩ ei+1 6= ∅ for i = 1, . . . , k − 1. Of course,
reachability inH is an equivalence relation. The equivalence classes are thecomponentsof H , andH is
connectedif there is only one component.

Throughout the paper, we letV = {1, . . . , n} be a set ofn vertices. Moreover, if2 ≤ d is a fixed integer
and0 ≤ p = p(n) ≤ 1 is a sequence, then we letHd(n, p) signify a randomd-uniform hypergraph with
vertex setV in which each of the

(

n
d

)

possible edges is present with probabilityp independently. We say
thatHd(n, p) enjoys some propertyP with high probability(w.h.p.) if the probability thatHd(n, p) hasP
tends to1 asn → ∞. If d = 2, then theHd(n, p) model is identical with the well-knownG(n, p) model of
random graphs. In order to state some related results we willalso need a different modelHd(n, m) of ran-
dom hypergraphs, where the hypergraph is chosen uniformly at random among alld-uniform hypergraphs
with n vertices andm edges.

Since the pioneering work of Erdős and Rényi [8], the component structure of random discrete struc-
tures has been a central theme in probabilistic combinatorics. In the present paper, we contribute to this
theme by analyzing the maximum orderN (Hd(n, p)) of a component ofHd(n, p) in greater detail. More
precisely, establishing central and local limit theorems for N (Hd(n, p)), we determine the asymptotic
distribution ofN (Hd(n, p)) precisely. Though such limit theorems are known in the case of graphs (i.e,
d = 2), they are new in the case ofd-uniform hypergraphs ford > 2. Indeed, to the best of our knowledge
none of the arguments known for the graph case extends directly to the case of hypergraphs (d > 2). There-
fore, we present a new, purely probabilistic proof of the central and local limit theorems, which, in contrast
to most prior work, does not rely on involved enumerative techniques. We believe that this new technique
is interesting in its own right and may have further applications.

The giant component. In the seminal paper [8], Erdős and Rényi proved that the number of vertices in
the largest component ofG(n, p) undergoes aphase transitionasnp ∼ 1. They showed that ifnp < 1− ε
for an arbitrarily smallε > 0 that remains fixed asn → ∞, then all components ofG(n, p) consist of
O(ln n) vertices. By contrast, ifnp > 1 + ε, thenG(n, p) has onegiant component on a linear number
Ω(n) of vertices, while all other components contain onlyO(ln n) vertices. In fact, in the case1+ε < c =
(n−1)p = O(1) Erdős and Rényi estimated the order (i.e., the number of vertices) of the giant component:
let N (G(n, p)) signify the maximum order of a component ofG(n, p). Then

n−1N (G(n, p)) converges in distribution to the constant1 − ρ, (1)
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where0 < ρ < 1 is the unique solution to the transcendental equationρ = exp(c(ρ − 1)).
A corresponding result was established by Schmidt-Pruzan and Shamir [17] for random hypergraphs

Hd(n, p). They showed that a random hypergraphHd(n, p) consists of components of orderO(ln n) if
(d − 1)

(

n−1
d−1

)

p < 1 − ε, whereasHd(n, p) has a unique large (thegiant) component onΩ(n) vertices

w.h.p. if (d − 1)
(

n−1
d−1

)

p > 1 + ε. Furthermore, Coja-Oghlan, Moore, and Sanwalani [7] established a

result similar to (1), showing that in the case(d − 1)
(

n−1
d−1

)

p > 1 + ε the order of the giant component is
(1 − ρ)n + o(n) w.h.p., where0 < ρ < 1 is the unique solution to the transcendental equation

ρ = exp(c(ρd−1 − 1)). (2)

Central and local limit theorems. In terms of limit theorems, (1) provides astrong law of large numbers
for N (G(n, p)), i.e., it yields the probable value ofN (G(n, p)) up to fluctuations of ordero(n). Thus,
a natural question is whether we can characterize the distribution ofN (G(n, p)) (or N (Hd(n, p))) more
precisely; for instance, is it true thatN (G(n, p)) “converges to the normal distribution” in some sense?
Our first result, which we will prove in Section 5, shows that this is indeed the case.

Theorem 1. LetJ ⊂ ((d − 1)−1,∞) be a compact interval, and let0 ≤ p = p(n) ≤ 1 be a sequence
such thatc = c(n) =

(

n−1
d−1

)

p ∈ J for all n. Furthermore, let0 < ρ = ρ(n) < 1 be the unique solution
to (2), and set

σ2 = σ(n)2 =
ρ
[

1 − ρ + c(d − 1)(ρ − ρd−1)
]

n

(1 − c(d − 1)ρd−1)2
. (3)

Thenσ−1(N (Hd(n, p)) − (1 − ρ)n) converges in distribution to the standard normal distribution.

Theorem 1 provides acentral limit theoremfor N (Hd(n, p)); it shows that for any fixed numbersa < b

lim
n→∞

P

[

a ≤ N (Hd(n, p)) − (1 − ρ)n

σ
≤ b

]

= (2π)−
1

2

∫ b

a

exp(−t2/2)dt (4)

(provided that the sequencep = p(n) satisfies the above assumptions).
Though Theorem 1 provides quite useful information about the distribution ofN (Hd(n, p)), the main

result of this paper is actually alocal limit theoremfor N (Hd(n, p)), which characterizes the distribution of
N (Hd(n, p)) even more precisely. To motivate the local limit theorem, weemphasize that Theorem 1 only
estimatesN (G(n, p)) up to an error ofo(σ) = o(

√
n). That is, we do obtain from (4) that for arbitrarily

small but fixedγ > 0

P [|N (Hd(n, p)) − ν| ≤ γσ] ∼ 1√
2πσ

∫ γσ

−γσ

exp

[

(ν − (1 − ρ)n − t)2

2σ2

]

dt, (5)

i.e., we can estimate the probability thatN (Hd(n, p)) deviates from some valueν by at mostγσ. However,
it is impossible to derive from (4) or (5) the asymptotic probability thatN (Hd(n, p)) hitsν exactly.

By contrast, our next theorem shows that for any integerν such that|ν − (1 − ρ)n| ≤ O(σ) we have

P [N (Hd(n, p)) = ν] ∼ 1√
2πσ

exp

[

− (ν − (1 − ρ)n)2

2σ2

]

, (6)

provided that(d − 1)−1 + ε ≤
(

n−1
d−1

)

p = O(1). Note that (6) is exactly what we would obtain from (5) if
we were allowed to setδ = 1

2σ(n, p)−1 in that equation. Stated rigorously, the local limit theorem reads as
follows.

Theorem 2. Let d ≥ 2 be a fixed integer. For any two compact intervalsI ⊂ R, J ⊂ ((d − 1)−1,∞),
and for anyδ > 0 there existsn0 > 0 such that the following holds. Letp = p(n) be a sequence such that
c = c(n) =

(

n−1
d−1

)

p ∈ J for all n, let 0 < ρ = ρ(n) < 1 be the unique solution to (2), and letσ be as
in (3). If n ≥ n0 and ifν is an integer such thatσ−1(ν − (1 − ρ)n) ∈ I, then

1 − δ√
2πσ

exp

[

− (ν − (1 − ρ)n)2

2σ2

]

≤ P [N (Hd(n, p)) = ν] ≤ 1 + δ√
2πσ

exp

[

− (ν − (1 − ρ)n)2

2σ2

]

.
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Related work. Since the work of Erdős and Rényi [8], the component structure ofG(n, p) = H2(n, p) has
received considerable attention. Stepanov [19] provided central and local limit theorems forN (G(n, p)),
thereby proving thed = 2 case of Theorems 1 and 2. In order to establish these limit theorems, he estimates
the probability that a random graphG(n, p) is connected up to a factor1 + o(1) using recurrence formulas
for the number of connected graphs. Furthermore, Barraez, Boucheron, and Fernandez de la Vega [2]
reproved the central limit theorem forN (G(n, p)) via the analogy of breadth first search on a random
graph and a Galton-Watson branching process. In addition, alocal limit theorem forN (G(n, p)) can also
be derived using the techniques of van der Hofstad and Spencer [9], or the enumerative results of either
Bender, Canfield, and McKay [5] or Pittel and Wormald [15].

Moreover, Pittel [14] proved a central limit theorem for thelargest component in theG(n, m) model of
random graphs;G(n, m) is just a uniformly distributed graph with exactlyn vertices andm edges. Indeed,
Pittel actually obtained his central limit theorem via a limit theorem for the joint distribution of the number
of isolated trees of a given order, cf. also Janson [10]. A comprehensive treatment of further results on the
components ofG(n, p) can be found in [11].

In contrast to the case of graphs, only little is known ford-uniform hypergraphs withd > 2; for the
methods used for graphs do not extend to hypergraphs directly. Using the result [12] on the number of
sparsely connected hypergraphs, Karoński and Łuczak [13]investigated the phase transition ofHd(n, p).
They established (among other things) a local limit theoremfor N (Hd(n, m)) for m = n/d(d−1)+ l and
1 ≪ l3

n2 ≤ lnn
ln ln n which is similar toHd(n, p) at the regime

(

n−1
d−1

)

p = (d − 1)−1 + ω, wheren−1/3 ≪
ω = ω(n) ≪ n−1/3 lnn/ ln lnn. These results were extended by Andriamampianina, Ravelomanana and
Rijamamy [1, 16] to the regimel = o(n1/3) (ω = o(n−2/3) respectively).

By comparison, Theorems 1 and 2 deal with edge probabilitiesp such that
(

n−1
d−1

)

p = (d−1)−1 +Ω(1),

i.e.,
(

n−1
d−1

)

p is bounded away from the critical point(d − 1)−1. Thus, Theorems 1 and 2 complement [1,

13, 16]. The only prior paper dealing with
(

n−1
d−1

)

p = (d− 1)−1 +Ω(1) is that of Coja-Oghlan, Moore, and
Sanwalani [7], where the authors computed the expectation and the variance ofN (Hd(n, p)) and obtained
qualitative results on the component structure ofHd(n, p). In addition, in [7] the authors estimated the
probability thatHd(n, p) or a uniformly distributedd-uniform hypergraphHd(n, m) with n vertices and
m edges is connected up to a constant factor. While in the present work we build upon the results on the
component structure ofHd(n, p) from [7], the results and techniques of [7] by themselves arenot strong
enough to obtain a central or even a local limit theorem forN (Hd(n, p)).

Techniques and outline. The aforementioned prior work [1, 12, 13] on the giant component for random
hypergraphs relies on enumerative techniques to a significant extent; for the basis [1, 12, 13] are results
on the asymptotic number of connected hypergraphs with a given number of vertices and edges. By con-
trast, in the present work we employ neither enumerative techniques nor results, but rely solely on proba-
bilistic methods. Our proof methods are also quite different from Stepanov’s [19], who first estimates the
asymptotic probability that a random graphG(n, p) is connected in order to determine the distribution of
N (Hd(n, p)). By contrast, in the present work we prove the local limit theorem forN (Hd(n, p)) directly,
thereby obtaining “en passant” a new proof for the local limit theorem for random graphsG(n, p), which
may be of independent interest. Besides, the local limit theorem can be used to compute the asymptotic
probability thatG(n, p) or, more generally,Hd(n, p) is connected, or to compute the asymptotic number
of connected hypergraphs with a given number of vertices andedges (cf. Section 6). Hence, the general
approach taken in the present work is actually converse to the prior ones [1, 12, 13, 19].

The proof of Theorem 1 makes use ofStein’s method, which is a general technique for proving central
limit theorems [18]. Roughly speaking, Stein’s result implies that a sum of a family of dependent random
variables converges to the normal distribution if one can bound the correlations within any constant-sized
subfamily sufficiently well. The method was used by Barbour,Karoński, and Ruciński [3] in order to
prove that in a random graphG(n, p), e.g., the number of tree components of a given (bounded) size is
asymptotically normal. To establish Theorem 1, we extend their techniques in two ways.

– Instead of dealing with the number of vertices in trees of a given size, we apply Stein’s method to the
total numbern −N (Hd(n, p)) of vertices outside of the giant component; this essentially means that
we need to sum over all possible (hyper)tree sizes up to aboutlnn.
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– Since we are dealing with hypergraphs rather than graphs, weare facing a somewhat more complex
situation than [3], because the fact that an edge may involvean arbitrary numberd of vertices yields
additional dependencies.

The main contribution of this paper is the proof of Theorem 2.To establish this result, we think of the
edges ofHd(n, p) as being added in two “portions”. More precisely, we first include each possible edge
with probabilityp1 = (1 − ε)p independently, whereε > 0 is small but independent ofn (and denote the
resulting random hypergraph byH1); by Theorem 1, the orderN (H1) of the largest component ofH1 is
asymptotically normal. Then, we add each possible edge thatis not present inH1 with a small probability
p2 ∼ εp and investigate closely how these additional random edges attach further vertices to the largest
component ofH1. Denoting the number of these “attached” vertices byS, we will show that the conditional
distribution ofS given the value ofN (H1) satisfies a local limit theorem. Sincep1 andp2 are chosen such
that each edge is present with probabilityp after the second portion of edges has been added, this yields
the desired result onN (Hd(n, p)).

The analysis of the conditional distribution ofS involves proving thatS is asymptotically normal. To
show this, we employ Stein’s method once more. In addition, in order to show thatS satisfies alocal limit
theorem, we prove that the number of isolated vertices ofH1 that get attached to the largest component
of H1 by the second portion of random edges is binomially distributed. Since the binomial distribution
satisfies a local limit theorem, we thus obtain a local limit theorem forS.

Our proof of Theorem 2 makes use of some results on the component structure ofHd(n, p) derived
in [7]. For instance, we employ the results on the expectation and the variance ofN (Hd(n, p)) from that
paper. Furthermore, the analysis ofS given in the present work is a considerable extension of the argument
used in [7], which by itself would just yield the probabilitythatS attains a specific values up to a constant
factor.

The main part of the paper is organized as follows. After making some preliminaries in Section 2, we
outline the proof of Theorem 2 in Section 3. In that section weexplain in detail howHd(n, p) is generated in
two “portions”. Then, in Section 4 we analyze the random variableS, assuming the central limit theorem
for S. Further, Section 5 deals with the proof of Theorem 1 and the proof of the central limit theorem
for S via Stein’s method; the reason why we defer the proof of Theorem 1 to Section 5 is that we can
use basically the same argument to prove the asymptotic normality of bothN (Hd(n, p)) andS. Finally,
Section 6 contains some concluding remarks, e.g., on the useof the present results to derive further limit
theorems and to solve enumerative problems.

2 Preliminaries

Throughout the paper, we letV = {1, . . . , n}. If d ≥ 2 is an integer andV1, . . . , Vk ⊂ V , then we let
Ed(V1, . . . , Vk) signify the set of all subsetse ⊂ V of cardinalityd such thate ∩ Vi 6= ∅ for all i. We omit
the subscriptd if it is clear from the context.

If H is a hypergraph, then we letV (H) denote its vertex set andE(H) its edge set. We say that a set
S ⊂ V (H) is reachable fromT ⊂ V (H) if each vertexs ∈ S is reachable from some vertext ∈ T .
Further, ifV (H) ⊂ V = {1, . . . , n}, then the subsets ofV can be ordered lexicographically; hence, we
can define thelargest componentof H to be the lexicographically first component of orderN (H).

We use theO-notation to express asymptotic estimates asn → ∞. Furthermore, iff(x1, . . . , xk, n)
is a function that depends not only onn but also on some further parametersxi from domainsDi ⊂ R
(1 ≤ i ≤ k), and ifg(n) ≥ 0 is another function, then we say that the estimatef(x1, . . . , xk, n) = O(g(n))
holdsuniformly inx1, . . . , xk if the following is true: ifIj andDj , Ij ⊂ Dj, are compact sets, then there
exist numbersC = C(I1, . . . , Ik) andn0 = n0(I1, . . . , Ik) such that|f(x1, . . . , xk, n)| ≤ Cg(n) for all
n ≥ n0 and(x1, . . . , xk) ∈ ∏k

j=1 Ij . We define uniformity analogously for the other Landau symbols Ω,
Θ, etc.

We shall make repeated use of the followingChernoff boundon the tails of a binomially distributed
variableX = Bin(ν, q) (cf. [11, p. 26] for a proof): for anyt > 0 we have

P [|X − E(X)| ≥ t] ≤ 2 exp

(

− t2

2(E(X) + t/3)

)

. (7)
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Moreover, we employ the followinglocal limit theoremfor the binomial distribution (cf. [6, Chapter 1]).

Proposition 3. Suppose that0 ≤ p = p(n) ≤ 1 is a sequence such thatnp(1 − p) → ∞ asn → ∞. Let
X = Bin(n, p). Then for any sequencex = x(n) of integers such that|x − np| = o(np(1 − p))2/3,

P [X = x] ∼ (2πnp(1 − p))−
1

2 exp

(

− (x − np)2

2p(1 − p)n

)

asn → ∞.

Furthermore, we make use of the following theorem, which summarizes results from [7, Section 6] on
the component structure ofHd(n, p).

Theorem 4. Letp = c
(

n−1
d−1

)−1
.

1. If there is a fixedc0 < (d − 1)−1 such thatc = c(n) ≤ c0, then

P
[

N (Hd(n, p)) ≤ 3(d − 1)2(1 − (d − 1)c0)
−2 lnn

]

≥ 1 − n−100.

2. Suppose thatc0 > (d − 1)−1 is a constant, and thatc0 ≤ c = c(n) = o(ln n) asn → ∞. Then the
transcendental equation (2) has a unique solution0 < ρ = ρ(c) < 1, which satisfies

(

ρn

d − 1

)

p < c′0 < (d − 1)−1. (8)

for some numberc′0 > 0 that depends only onc0. Moreover,

|E [N (Hd(n, p))] − (1 − ρ)n| ≤ no(1),

Var(N (Hd(n, p))) ∼ ρ
[

1 − ρ + c(d − 1)(ρ − ρd−1)
]

n

(1 − c(d − 1)ρd−1)2
.

Furthermore, with probability≥ 1−n−100 there is precisely one component of order(1+o(1))(1−ρ)n
in Hd(n, p), while all other components have order≤ ln2 n. In addition,

P
[

|N (Hd(n, p)) − E(N (Hd(n, p)))| ≥ n0.51
]

≤ n−100.

Finally, the following result on the component structure ofHd(n, p) with average degree
(

n−1
d−1

)

p <

(d − 1)−1 below the threshold has been derived in [7, Section 6] via thetheory of branching processes.

Proposition 5. There exists a functionq : (0, (d−1)−1)×[0, 1] → R≥0, (ζ, ξ) 7→ q(ζ, ξ) =
∑∞

k=1 qk(ζ)ξk

whose coefficientsζ 7→ qk(ζ) are differentiable such that the following holds. Suppose that 0 ≤ p =
p(n) ≤ 1 is a sequence such that0 <

(

n−1
d−1

)

p = c = c(n) < (d − 1)−1 − ε for an arbitrarily smallε > 0
that remains fixed asn → ∞. LetP (c, k) denote the probability that inHd(n, p) some fixed vertexv ∈ V
lies in a component of orderk. Then

P (c, k) = (1 + o(n−2/3))qk(c) for all 1 ≤ k ≤ ln2 n.

Furthermore, for any fixedε > 0 there is a number0 < γ = γ(ε) < 1 such that

qk(c) ≤ γk for all 0 < c < (d − 1)−1 − ε. (9)

3 Proof of Theorem 2

Throughout this section, we assume thatc = c(n) =
(

n−1
d−1

)

p ∈ J for some compact intervalJ ⊂
((d − 1)−1,∞). Moreover, we letI ⊂ R be some fixed compact interval, andν denotes an integer such
that (ν − (1 − ρ)n)/σ ∈ I. All asymptotics are understood to hold uniformly inc and(ν − (1 − ρ)n)/σ.
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3.1 Outline

Let ε = ε(J ) > 0 be independent ofn and small enough so that(1 − ε)
(

n−1
d−1

)

p > (d − 1)−1 + ε. Set
p1 = (1 − ε)p. Moreover, letp2 be the solution to the equationp1 + p2 − p1p2 = p; thenp2 ∼ εp. We
expose the edges ofHd(n, p) in four “rounds” as follows.

R1. As a first step, we letH1 be a random hypergraph obtained by including each of the
(

n
d

)

possible edges
with probabilityp1 independently. LetG denote the largest component ofH1.

R2. Let H2 be the hypergraph obtained fromH1 by adding each edgee 6∈ H1 that lies completely outside
of G (i.e.,e ⊂ V \ G) with probabilityp2 independently.

R3. ObtainH3 by adding each possible edgee 6∈ H1 that contains vertices of bothG andV \ G with
probabilityp2 independently.

R4. Finally, include each possible edgee 6∈ H1 such thate ⊂ G with probabilityp2 independently.

Here the 1st round corresponds to the first portion of edges mentioned in Section 1, and the edges added in
the 2nd–4th round correspond to the second portion. Note that for each possible edgee ⊂ V the probability
thate is actually present inH4 is p1 + (1 − p1)p2 = p, henceH4 = Hd(n, p). Moreover, as

(

n−1
d−1

)

p1 >

(d − 1)−1 + ε by our choice ofε, Theorem 4 entails that w.h.p.H1 has exactly one largest component of
linear sizeΩ(n) (the “giant component”). Further, the edges added in the 4thround do not affect the order
of the largest component, i.e.,N (H4) = N (H3).

In order to analyze the distribution ofN (Hd(n, p)), we first establishcentral limit theoremsforN (H1) =
|G| andN (H3) = N (H4) = N (Hd(n, p)), i.e., we prove that (centralized and normalized versions
of) N (H1) andN (H3) are asymptotically normal. Then, we investigate the numberof verticesS =
N (H3)−N (H1) that get attached toG1 during the 3rd round. We shall prove thatgiven that|G| = n1, S
is locally normal with meanµS + (n1 − µ1)λS and varianceσ2

S independent ofn1. Finally, we combine
these results to obtain the local limit theorem forN (Hd(n, p)) = N (H3) = N (H1) + S.

Let c1 =
(

n−1
d−1

)

p1 andc3 =
(

n−1
d−1

)

p. Moreover, let0 < ρ3 < ρ1 < 1 signify the solutions to the

transcendental equationsρj = exp
[

cj(ρ
d−1
j − 1)

]

and set forj = 1, 3

µj = (1 − ρj)n, σ2
j =

ρj

[

1 − ρj + cj(d − 1)(ρj − ρd−1
j )

]

n

(1 − cj(d − 1)ρd−1
j )2

(cf. Theorem 4).

The following proposition, which we will prove in Section 5,establishes a central limit theorem for both
N (H1) andN (H3) and thus proves Theorem 1.

Proposition 6. (N (Hj) − µj)/σj converges in distribution to the standard normal distribution for j =
1, 3.

With respect to the distribution ofS, we will establish the following local limit theorem in Section 4.

Proposition 7. Suppose that|n1 − µ1| ≤ n0.6.

1. The conditional expectation ofS given that|G| = n1 satisfiesE(S|N1 = n1) = µS + λS(n1 − µ1) +
o(
√

n), whereµS = Θ(n) andλS = Θ(1) are independent ofn1.
2. There is a constantC > 0 such that for alls satisfying|µS + λS(n1 − µ1) − s| ≤ n0.6 we have

P [S = ν|N1 = n1] ≤ Cn− 1

2 .
3. If s is an integer such that|µS + λS(n1 − µ1) − s| ≤ O(

√
n), then

P [S = s|N1 = n1] ∼
1√

2πσS
exp

(

− (µS + λS(n1 − µ1) − s)2

2σ2
S

)

,

whereσS = Θ(
√

n) is independent ofn1.

SinceN3 = N1 + S, Propositions 6 and 7 yield

µ3 = µ1 + µS + o(
√

n). (10)

Combining Propositions 6 and 7, we derive the following formula forP [N3 = ν] in Section 3.2. Recall
that we are assuming thatν is an integer such that(ν − µ)/σ = (ν − µ3)/σ3 ∈ I.
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Corollary 8. Lettingz = (ν − µ3)/σ3, we have

P [N3 = ν] ∼ 1

2πσS

∫ ∞

−∞
exp

[

−x2

2
− 1

2

(

(x · (1 + λS)
σ1

σS
− z · σ3

σS

)2
]

dx. (11)

Proof of Theorem 2.Integrating the right hand side of (11), we obtain an expression of the form

P [N3 = ν] ∼ 1√
2πτ

exp

(

− (ν − κ)2

2τ2

)

, (12)

whereκ, τ2 = Θ(n). Therefore, on the one hand(N3−µ3)/σ3 converges in distribution to the normal dis-
tribution with meanκ−µ3 and variance(τ/σ3)

2. On the other hand, Proposition 6 states that(N3−µ3)/σ3

converges to the standard normal distribution. Consequently, |κ − µ3| = o(τ) andτ ∼ σ3. Plugging these
estimates into (12), we obtainP [N3 = ν] ∼ 1√

2πσ3

exp
(

− 1
2 (ν − µ3)

2σ−2
3

)

. SinceN3 = N (Hd(n, p)),
this yields the assertion. ⊓⊔

3.2 Proof of Corollary 8

Let α > 0 be arbitrarily small but fixed asn → ∞, and letC′ = C′(α) > 0 be a large enough number
depending only onα. SetJ = {n1 ∈ ZZ : |n1 −µ1| ≤ C′√n}, let J ′ = {n1 ∈ ZZ : C′√n < |n1 −µ1| ≤
n0.6}, andJ ′′ = {n1 ∈ ZZ : |n1 − µ1| > n0.6}. Then letting

ΨX =
∑

n1∈X

P [N1 = n1] P [S = ν − n1|N1 = n1] , for X ∈ {J, J ′, J ′′}

we haveP [N3 = ν] = ΨJ + ΨJ′ + ΨJ′′ , and we shall estimate each of the three summands individually.
Since Theorem 4 implies thatP

[

|N1 − µ1| > n0.51
]

≤ n−100, we conclude that

ΨJ′′ ≤ P [N1 ∈ J ′′] ≤ n−100. (13)

Furthermore, asσ2
1 = O(n), Chebyshev’s inequality implies that

P [N1 ∈ J ′] ≤ P
[

|N1 − µ1| > C′√n
]

≤ σ2
1C

′−2n−1 < α/C′, (14)

provided thatC′ is large enough. Hence, combining (14) with the second part of Proposition 7, we obtain

ΨJ′ ≤ P [N1 ∈ J ′] · C√
n
≤ αC

C′√n
< αn−1/2, (15)

where once we need to pickC′ sufficiently large.
To estimate the contribution ofn1 ∈ J , we splitJ into subintervalsJ1, . . . , JK of length betweenσ1

2C′

and σ1

C′ . Moreover, letIj be the interval[(min Jj −µ1)/σ1, (max Jj −µ1)/σ1]. Then Proposition 6 implies
that

1 − α√
2π

∫

Ij

exp(−x2/2)dx ≤
∑

n1∈Jj

P [N1 = n1] ≤
1 + α√

2π

∫

Ij

exp(−x2/2)dx (16)

for each1 ≤ j ≤ K. Furthermore, Proposition 7 yields

P [S = ν − n1|N1 = n1] ∼
1√

2πσS
exp

(

− (ν − n1 − µS − λS(n1 − µ1))
2

2σ2
S

)

.

for eachn1 ∈ J . Hence, choosingC′ sufficiently large, we can achieve that for alln1 ∈ Jj and allx ∈ Ij

the bound

P [S = ν − n1|N1 = n1] ≤ (1 + α)2√
2πσS

exp

(

− (ν − µ1 − σ1x − µS − λS(n1 − µ1))
2

2σ2
S

)

(10)∼ (1 + α)2√
2πσS

exp

(

−1

2

(

(x · (1 + λS)
σ1

σS
− z · σ3

σS

)2
)

(17)
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holds. Now, combining (16) and (17), we conclude that

ΨJ =

K
∑

j=1

∑

n1∈Jj

P [N1 = n1] P [S = ν − n1|N1 = n1]

≤ (1 + α)3

2πσS

K
∑

j=1

∫

Ij

exp

[

−x2

2
− 1

2

(

(x · (1 + λS)
σ1

σS
− z · σ3

σS

)2
]

dx

≤ 1 + 4α

2πσS

∫ ∞

−∞
exp

[

−x2

2
− 1

2

(

(x · (1 + λS)
σ1

σS
− z · σ3

σS

)2
]

dx. (18)

Analogously, we derive the matching lower bound

ΨJ ≥ 1 − 4α

2πσS

∫ ∞

−∞
exp

[

−x2

2
− 1

2

(

(x · (1 + λS)
σ1

σS
− z · σ3

σS

)2
]

dx. (19)

Finally, combining (13), (15), (18), and (19), and remembering thatP [N3 = ν] = ΨJ + ΨJ′ + ΨJ′′ , we
obtain the assertion, becauseα > 0 can be chosen arbitrarily small ifn gets sufficiently large.

4 The Conditional Distribution of S

Throughout this section, we keep the notation and the assumptions from Section 3. In addition, we let
G ⊂ V be a set of cardinalityn1 such that|n1 − µ1| ≤ n0.6.

4.1 Outline

The goal of this section is to prove Proposition 7. Let us condition on the event that the largest component
of H1 is G. To analyze the conditional distribution ofS, we need to overcome the problem that inH1

the edges in the setV \ G do not occur independently anymore once we condition onG being the largest
component ofH1. However, we will see that this conditioning is “not very strong”. To this end, we shall
compareS with an “artificial” random variableSG, which models the edges contained inV \G as mutually
independent objects. To defineSG, we set up random hypergraphsHj,G, j = 1, 2, 3, in three “rounds” as
follows.

R1’. The vertex set ofH1,G is V = {1, . . . , n}, and each of the
(

n−n1

d

)

possible edgese ⊂ V \ G is
present inH1,G with probabilityp1 independently.

R2’. Adding each possible edgee ⊂ V \ G not present inH1,G with probabilityp2 independently yields
H2,G.

R3’. ObtainH3,G from H2,G by including each possible edgee incident to bothG andV \G with proba-
bility p2 independently.

The process R1’–R3’ relates to the process R1–R4 from Section 3.1 as follows. While inH1 the edges
in V \ G are mutually dependent, we have “artificially” constructedH1,G in such a way that the edges
outside ofG occur independently. Then,H2,G andH3,G are obtained similarly asH2 andH3, namely by
including further edges inside ofV \ G and crossing edges betweenG andV \ G with probabilityp2.
Letting SG denote the set of vertices inV \ G that are reachable fromG, the quantitySG = |SG| now
corresponds toS. In contrast to R1–R4, the process R1’–R3’ completely disregards edges inside ofG,
because these do not affectSG. The following lemma, which we will prove in Section 4.3 shows thatSG

is indeed a very good approximation ofS, so that it suffices to studySG.

Lemma 9. For anyν ∈ ZZ we have|P [S = ν | N (H1) = n1] − P [SG = ν]| ≤ n−9.

As a next step, we investigate the expectation ofSG. While there is no need to computeE(SG) precisely,
we do need thatE(SG) depends onn1 −µ1 linearly. The corresponding proof can be found in Section 4.4.
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Lemma 10. We haveE(SG) = µS + λS(n1 − µ1) + o(
√

n), whereµS = Θ(n) andλS = Θ(1) do not
depend onn1.

Furthermore, we need that the variance ofSG is essentially independent of the precise value ofn1. This
will be proven in Section 4.5.

Lemma 11. We haveVar(SG) = O(n). Moreover, ifG′ ⊂ V is another set such that|µ1 − |G′|| = o(n),
then|Var(SG) − Var(SG′)| = o(n).

To show thatSG satisfies a local limit theorem, the crucial step is to prove that for numberss andt
such thats is “close” tot the probabilitiesP [SG = s], P [SG = t] are “almost the same”. More precisely,
the following lemma, proven in Section 4.2, holds.

Lemma 12. For everyα > 0 there isβ > 0 such that for alls, t satisfying|s−E(SG)|, |t−E(SG)| ≤ n0.6

and|s − t| ≤ βn1/2 we have

(1 − α)P [SG = s] − n−10 ≤ P [SG = t] ≤ (1 + α)P [SG = s] + n−10.

Moreover, there is a constantC > 0 such thatP [SG = s] ≤ Cn−1/2 for all integerss.

LettingG0 = {1, . . . , ⌈µ1⌉}, we defineσ2
S = Var(SG0

) and obtain a lower bound onσS as an immediate
consequence of Lemma 12.

Corollary 13. We haveσS = Ω(
√

n).

Proof. By Lemma 12 there exists a number0 < β < 0.01 independent ofn such that for all integerss, t
satisfying|s − E(SG)|, |t − E(SG)| ≤ √

n and|s − t| ≤ β
√

n we have

P [SG = t] ≥ 2

3
P [SG = s] − n−10. (20)

Set γ = β2/64 and assume for contradiction thatσ2
S < γn/2. Moreover, suppose thatG = G0 =

{1, . . . , ⌈µ1⌉}. Then Chebyshev’s inequality entails thatP
[

|SG − E(SG)| ≥ √
γn
]

≤ 1
2 . Hence, there

exists an integers such that|s − E(SG)| ≤ √
γn andP [SG = s] ≥ 1

2 (γn)−
1

2 . Therefore, due to (20) we

haveP [SG = t] ≥ 1
4 (γn)−

1

2 for all integerst such that|s − t| ≤ β
√

n. Thus, recalling thatγ = β2/64,

we obtain1 ≥ P [|SG − s| ≤ β
√

n] =
∑

t:|t−s|≤β
√

n P [SG = t] ≥ β
√

n
4
√

γn > 1. This contradiction shows

thatσ2
S ≥ γn/2. ⊓⊔

Using the above estimates of the expectation and the variance ofSG and invoking Stein’s method once
more, in Section 5 we will show the following.

Lemma 14. If |n1 − µ1| ≤ n0.66, then(SG − E(SG))/σS is asymptotically normal.

Proof of Proposition 7.The first part of the proposition follows readily from Lemmas9 and 10. Moreover,
the second assertion follows from Lemma 12. Furthermore, weshall establish below that

P [SG = s] ∼ 1√
2π

exp

(

− (s − E(S))2

2σ2
S

)

for any integers such that|s − E(SG)| = O(
√

n). (21)

This claim implies the third part of the proposition. For(s − E(S))2σ−2
S ∼ (µS + λS(n1 − µ1))

2σ−2
S by

Lemma 10 and Corollary 13, andP [S = s|N1 = n1] ∼ P [SG = s] by Lemma 9.
To prove (21) letα > 0 be arbitrarily small but fixed. Sinceσ2

S = Θ(n) by Lemma 11 and Corollary 13,
Lemma 12 entails that for a sufficiently smallβ > 0 and alls, t satisfying|s−E(SG)|, |t−E(SG)| ≤ n0.6

and|s − t| ≤ βσS we have

(1 − α)P [SG = s] − n−10 ≤ P [SG = t] ≤ (1 + α)P [SG = s] + n−10. (22)
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Now, suppose thats is an integer such that|s − E(SG)| ≤ O(
√

n), and setz = (s − E(SG))/σS . Then
Lemma 14 implies that

P [|SG − s| ≤ βσS ] ≥ 1 − α√
2π

∫ z+β

z−β

exp(−x2/2)dx ≥ (1 − 2α)
β√
2π

exp(−z2/2), (23)

provided thatβ is small enough. Furthermore, (22) yields that

P [|SG − s| ≤ βσS ] =
∑

t:|t−s|≤βσS

P [SG = t] ≤ βσS((1 + α)P [SG = s] + n−10)

≤ (1 + α)βσSP [SG = s] + n−9, (24)

becauseσS = O(
√

n) by Lemma 11. Combining (23) and (24), we conclude that

P [SG = s] ≥ 1 − 2α

1 + α
· 1√

2πσS
exp(−z2/2) − n−9 ≥ 1 − 4α√

2πσS
exp

(

− (s − E(SG))2

2σ2
S

)

.

Since analogous arguments yield the matching upper boundP [SG = s] ≤ 1+4α√
2πσS

exp
(

− (s−E(SG))2

2σ2

S

)

,

and becauseα > 0 may be chosen arbitrarily small, we obtain (21). ⊓⊔
Next we will prove Lemma 12 which provides the central locality argument while the more technical

proofs of Lemma 9, 10 and 11 are deferred to the end of this section.

4.2 Proof of Lemma 12

Since the assertion is symmetric ins andt, it suffices to prove thatP [SG = s] ≤ (1 − α)−1P [SG = s] +
n−10. LetF = E(H3,G) \ E(H2,G) be the (random) set of edges added duringR3’. We splitF into three
subsets: letF1 consist of alle ∈ F such that either|e \ G| ≥ 2 or e contains a vertex that belongs to a
component ofV \ G of order≥ 2. Moreover,F2 is the set of all edgese ∈ F \ F1 that contain a vertex
of V \ G that is also contained in some other edgee′ ∈ F1. Finally,F3 = F \ (F1 ∪ F2); thus, all edges
e ∈ F3 connectd−1 vertices inG with a vertexv ∈ V \G that is isolated inH2,G +F1 +F2, see Figure 1
for an example. Hence,H3,G = H2,G + F1 + F2 + F3.

F3

F1

G

V \ G

F2

F1

F1

Fig. 1. The three kinds of edges (black) which attach small components toG. The edges ofH2,G are depicted in grey.
The (3-uniform) edges are depicted as circular arcs spannedby the three vertices contained in the corresponding edge.

As a next step, we decomposeSG into two contributions corresponding toF1 ∪ F2 andF3. More
precisely, we letSbig

G be the number of vertices inV \G that are reachable fromG in H2,G +F1 +F2 and
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setS iso
G = SG − Sbig

G . Hence, if we letW signify the set of all isolated vertices ofH2,G + F1 + F2 in the
setV \ G, thenS iso

G equals the number of vertices inW that get attached toG via the edges inF3.
We can determine the distribution ofS iso

G precisely. For ifv ∈ W , then each edgee containingv
and exactlyd − 1 vertices ofG is present with probabilityp2 independently. Therefore, the probability

thatv gets attached toG is 1 − (1 − p2)
( n1

d−1
). In fact, these events occur independently for allv ∈ W .

Consequently,

S iso
G = Bin

(

|W|, 1 − (1 − p2)
( n1

d−1
)
)

, µiso = E(S iso
G ) = |W|(1 − (1 − p2)

( n1

d−1
)) = Ω(|W|), (25)

where the last equality sign follows from the fact thatp2 ∼ εp1 = Θ(n1−d).
Hence,SG = Sbig

G + S iso
G features a contribution that satisfies a local limit theorem, namely the bino-

mially distributedS iso
G . Thus, to establish the locality ofSG (i.e., Lemma 12), we are going to prove that

SG “inherits” the locality ofS iso
G . To this end, we need to bound|W|, thereby estimatingµiso = E(S iso

G ).

Lemma 15. We haveP
[

|W| ≥ 1
2 (n − n1) exp(−c)

]

≥ 1 − n−10.

The proof of Lemma 15 is just a standard application of Azuma’s inequality, cf. Section 4.6.
Further, letM be the set of all triples(H, F1, F2) such that

M1. P [SG = s|H2,G = H, F1 = F1, F2 = F2] ≥ n−11, and
M2. given thatH2,G = H , F1 = F1, andF2 = F2, the setW has size≥ 1

2 (n − n1) exp(−c) = Ω(n).

Lemma 16. If |s−t| ≤ β
√

n for some small enoughβ = β(α) > 0, thenP [SG = t|(H2,G,F1,F2) ∈ M ] ≥
(1 − α)P [SG = s|(H2,G,F1,F2) ∈ M ].

Proof. Let (H, F1, F2) ∈ M , and letb be the value ofSbig
G given thatH2,G = H , F1 = F1 andF2 = F2.

Then given that this event occurs, we haveSG = s iff S iso
G = s− b. As (H, F1, F2) ∈ M , we conclude that

P [SG = s|H2,G = H, F1 = F1, F2 = F2] = P
[

Bin
(

|W|, 1 − (1 − p2)
( n1

d−1
)
)

= s − b
]M1
≥n−11.

Therefore, the Chernoff bound (7) implies that|s − b − µiso| ≤ n0.6. Furthermore, since we assume that

|t − s| ≤ βn1/2 for some smallβ = β(α) > 0 and asµiso = |W|(1 − (1 − p2)
( n1

d−1
)) ≥ Ω(n) due toM2,

Proposition 3 entails that

P
[

Bin
(

|W|, 1 − (1 − p2)
( n1

d−1
)
)

= t − b
]

≥ (1 − α)P
[

Bin
(

|W|, 1 − (1 − p2)
( n1

d−1
)
)

= s − b
]

.

Thus, the assertion follows from (25). ⊓⊔

Proof of Lemma 12.By Lemmas 15 and 16, we have

P [SG = s] ≤ P [SG = s|(H2,G,F1,F2) 6∈ M ] P [(H2,G,F1,F2) 6∈ M ] + (1 − α)−1P [SG = t]

M1, M2
≤ n−11 + P [|W| = o(n)] + (1 − α)−1P [SG = t] ≤ (1 − α)−1P [SG = t] + n−10,

as claimed. ⊓⊔

4.3 Proof of Lemma 9

LetLG signify the event thatG is the largest component ofH1. Given thatLG occurs, the edges inH3−G
do not occur independently anymore. For ifLG occurs, thenH1 − G does not contain a component on
more than|G| vertices. Nonetheless, the following lemma shows that ifE ⊂ E(V ) \ E(G) is a set of
edges such that the hypergraphH(E) = (V, E ∩ E(V \ G)) does not feature a “big” component, then the
dependence of the edges is very small. In other words, the probability that the edgesE are present inH3

is very close to the probability that these edges are presentin the “artificial” modelH3,G, in which edges
occur independently.
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Lemma 17. For any setE ⊂ E(V ) \ E(G) such thatN (H(E)) ≤ ln2 n we have

P [E(H3) \ E(G) = E | LG] = (1 + O(n−10))P [E(H3,G) = E] .

Before getting down to the proof of Lemma 17, we first show how it implies Lemma 9. As a first step, we
derive that it is actually quite unlikely that eitherH3 − G or H3,G − G features a component on≥ ln2 n
vertices.

Corollary 18. We haveP
[

N (H3 − G) > ln2 n|LG

]

, P
[

N (H3,G − G) > ln2 n
]

= O(n−10).

Proof. Theorem 4 implies thatP
[

N (H3,G − G) > ln2 n
]

= O(n−10), becauseH3,G simply is a random
hypergraphHd(n − n1, p), and

(

n−n1

d−1

)

p ∼
(

n−µ1

d−1

)

p < (d − 1)−1 by (8). Hence, Lemma 17 yields that

P
[

N (H3 − G) ≤ ln2 n|LG

]

≥ (1 − O(n−10))P
[

N (H3,G − G) ≤ ln2 n
]

≥ 1 − O(n−10). ⊓⊔

Proof of Lemma 9.Let As denote the set of all subsetsE ⊂ E(V ) \ E(G) such that in the hypergraph
(V, E) exactlys vertices inV \ G are reachable fromG. Moreover, letBs signify the set of allE ∈ As

such thatN (H(E)) ≤ ln2 n. Then

P [S = s|LG] = P [E(H3) \ E(G) ∈ As|LG] , andP [SG = s] = P [E(H3,G) ∈ As] . (26)

Furthermore, by Corollary 18

P [E(H3) \ E(G) ∈ As \ Bs|LG] ≤ P
[

N (H3 − G) > ln2 n|LG

]

= O(n−10), (27)

P [E(H3,G) ∈ As \ Bs] ≤ P
[

N (H3,G − G) > ln2 n
]

= O(n−10). (28)

Combining (26), (27), and (28), we conclude that

P [S = s|LG] = P [E(H3) \ E(G) ∈ Bs|LG] + O(n−10)
Lemma 17

= P [E(H3,G) ∈ Bs] + O(n−10) = P [SG = s] + O(n−10),

thereby completing the proof. ⊓⊔
Thus, the remaining task is to prove Lemma 17. To this end, letH1(E) denote the event thatE(V \

G)∩E(H1) = E. Moreover, letH2(E) signify the event thatE(V \G)∩E(H2) \E(H1) = E (i.e.,E is
the set of edges added duringR2). Further, letH3(E) be the event thatE(G, V \G)∩E(H3) = E (i.e.,E
consists of all edges added byR3). In addition, define eventsH1,G(E), H2,G(E), H3,G(E) analogously,
with H1, H2, H3 replaced byH1,G, H2,G, H3,G. Finally, letCG denote the event thatG is a component of
H1. In order to prove Lemma 17, we establish the following.

Lemma 19. LetE1 ⊂ E(V \ G), E2 ⊂ E(V \ G) \ E1, andE3 ⊂ E(G, V \ G). Moreover, suppose that

N (H(E1)) ≤ ln2 n. ThenP
[

∧3
i=1 Hi(Ei)|LG

]

= (1 + O(n−10))P
[

∧3
i=1 Hi,G(Ei)

]

.

Proof. Clearly,

P

[

3
∧

i=1

Hi(Ei)|LG

]

=
P [H2(E2) ∧H3(E3)|LG ∧H1(E1)] P [H1(E1) ∧ LG]

P [LG]
. (29)

Furthermore, sinceR2 andR3 add edges independently of the 1st round with probabilityp2, and because
the same happens duringR2’ andR3’, we have

P [H2(E2) ∧H3(E3)|LG ∧H1(E1)] = P [H2,G(E2) ∧H3,G(E3)|H1,G(E1)] . (30)

Moreover, given thatH1(E1) occurs,H1 − G has no component on more thanln2 n vertices. Hence,
G is the largest component ofH1 iff G is a component; that is, given thatH1(E1) occurs, the events
LG andCG are equivalent. Therefore,P [LG ∧H1(E1)] = P [CG ∧H1(E1)]. Further, whether or notG
is a component ofH1 is independent of the edges contained inV \ G, and thusP [CG ∧H1(E1)] =
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P [CG] P [H1(E1)]. Hence, as each edge inE1 is present inH1 as well as inH1,G with probability p1

independently, we obtain

P [LG ∧H1(E1)] = P [CG] p
|E1|
1 (1 − p1)

E(V \G)−|E1| = P [CG] P [H1,G(E1)] . (31)

Combining (29), (30), and (31), we obtain

P

[

3
∧

i=1

Hi(Ei)|LG

]

=
P [CG]

P [LG]
· P
[

3
∧

i=1

Hi,G(Ei)

]

. (32)

Since by Theorem 4 with probability≥ 1 − n−10 the random hypergraphH1 = Hd(n, p1) has precisely
one component of orderΩ(n), we getP[CG]

P[LG] = 1 + O(n−10). Hence, (32) implies the assertion. ⊓⊔

Proof of Lemma 17.For any setE ⊂ E(V ) \ E(G) let F(E) denote the set of all decompositions
(E1, E2, E3) of E into three disjoint sets such thatE1, E2 ⊂ E(V \ G) and E3 ⊂ E(G, V \ G). If
N (H(e)) ≤ ln2 n, then Lemma 19 implies that

P [E(H3) \ E(G) = E|LG] =
∑

(E1,E2,E3)∈F(E)

P

[

3
∧

i=1

Hi(Ei)|LG

]

= (1 + O(n−10))
∑

(E1,E2,E3)∈F(E)

P

[

3
∧

i=1

Hi,G(Ei)

]

= (1 + O(n−10))P [E(H3,G) = E] ,

as claimed. ⊓⊔

4.4 Proof of Lemma 10

Recall thatSG signifies the set of all verticesv ∈ V \ G that are reachable fromG in H3,G, so that
SG = |SG|. LettingCv denote the component ofH2,G that containsv ∈ V , we have

E(SG) =
∑

v∈V \G

P [v ∈ SG] =
∑

v∈V \G

n−n1
∑

k=1

P [v ∈ SG||Cv| = k] P [|Cv| = k] (33)

SinceH2,G is just a random hypergraphHd(n − n1, p), and because
(

n−n1

d−1

)

p ∼
(

n−µ1

d−1

)

p < (d − 1)−1

by (8), Theorem 4 entails thatN (H2,G) ≤ ln2 n with probability≥ 1 − n−10. Therefore, (33) yields

E(SG) = o(1) +
∑

v∈V \G

∑

1≤k≤ln2 n

P [v ∈ SG||Cv| = k] P [|Cv| = k] . (34)

To estimateP [v ∈ SG||Cv| = k], let z = z(n1) = (n1 − µ1)/σ1, ξ0 = exp
[

−p2

[

(

n−1
d−1

)

−
(

n−µ1

d−1

)

]]

, and

ξ(z) = ξ0

[

1 + zσ1p2

(

n−µ1

d−2

)

]

. Additionally, letζ(z) =
(

n−n1

d−1

)

p ∼
(

n−µ1

d−1

)

p − zσ1

(

n−µ1

d−2

)

p.

Lemma 20. For all 1 ≤ k ≤ ln2 n we haveP [v ∈ SG | |Cv| = k] = 1 − ξ(z)k + O(n−1 · polylog n).

Proof. Suppose that|Cv| = k butv 6∈ SG. This is the case iff inH3,G there occurs no edge that is incident
to bothG andCv. LettingE(G, C(v)) denote the set of all possible edges connectingG andCv, we shall
prove below that

|E(G, Cv)| = k

[(

n

d − 1

)

−
(

n − µ1

d − 1

)

+
zσ1

d − 1

(

n − µ1

d − 2

)]

+ O(nd−2 · polylog n)

= O(nd−1 · polylog n).(35)
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By construction every edge inE(G, Cv) occurs inH3,G with probabilityp2 independently. Therefore,

P [v 6∈ SG||Cv| = k] = (1 − p2)
|E(G,Cv)| = (1 + O(n−1 · polylog n)) exp [−p2|E(G, Cv)|]

(35)
= (1 + O(n−1 · polylogn))ξ(z)k,

hence the assertion follows.
Thus, the remaining task is to prove (35). As a first step, we show that

|E(G, Cv)| =

(

n

d

)

−
(

n − k

d

)

−
(

n − n1

d

)

+

(

n − n1 − k

d

)

. (36)

For there are
(

n
d

)

possible edges in total, among which
(

n−k
d

)

contain no vertex ofCv,
(

n−n1

d

)

contain
no vertex ofG, and

(

n−n1−k
d

)

contain neither a vertex ofCv nor of G; thus, (36) follows from the in-
clusion/exclusion formula. Furthermore, ask = O(polylog n), we have

(

n
d

)

−
(

n−k
d

)

= (1 + O(n−1 ·
polylog n))k

(

n
d−1

)

and
(

n−n1

d

)

−
(

n−n1−k
d

)

= (1 + O(n−1 · polylog n))k
(

n−n1

d−1

)

. Thus (36) yields

|E(G, C(v))| = (1 + O(n−1 · polylog n))k

[(

n

d − 1

)

−
(

n − n1

d − 1

)]

. (37)

As n1 = µ1 + zσ1, we have
(

n−n1

d−1

)

=
(

n−µ1

d−1

)

− zσ1

(

n−n1

d−2

)

+ O(nd−2 · polylog n), so that (35) follows
from (37). ⊓⊔

Let q(ζ, ξ) =
∑∞

k=1 qk(ζ)ξk be the function from Proposition 5. Combining (34) with Proposition 5
and Lemma 20, we conclude that

E(SG) = o(n1/2) + q((n − n1)p, ξ(z))(n − n1) = o(n1/2) + q(ζ(z), ξ(z))(n − n1). (38)

Sinceq is differentiable (cf. Proposition 5), we let∆ζ = ∂q
∂ζ (ζ(0), ξ(0)) and∆ξ = ∂q

∂ξ (ζ(0), ξ(0)). As

ζ(z) − ζ(0), ξ(z) − ξ(0) = O(n−1/2), we get

q(ζ(z), ξ(z)) − q(ζ(0), ξ(0)) = (ζ(z) − ζ(0))∆ζ + (ξ(z) − ξ(0))∆ξ + o(n−1/2)

= zσ1

(

n − µ1

d − 2

)

[ξ0∆ξp2 − ∆ζp] + o(n−1/2). (39)

Finally, letµS = (n − µ1)q(ζ(0), ξ(0)) andλS = q(ζ(0), ξ(0)) − (d − 1) [εξ0∆ξ − ∆ζ ]
(

n−µ1

d−1

)

p. Then
combining (38) and (39), we see thatE(SG) = µS + zσ1λS + o(

√
n), as desired.

4.5 Proof of Lemma 11

Remember thatSG denotes the set of all “attached” vertices, andNv,G the order of the component of
v ∈ V \ G in the graphH2,G.

The following lemma provides an asymptotic formula forVar(SG).

Lemma 21. Let rG,i = P [Nv,G = i ∧ v ∈ SG] and r̄G,i = P [Nv,G = i ∧ v 6∈ SG] for any vertexv ∈
V \ G. Moreover, setrG =

∑L
i=1 rG,i, RG =

∑L
i=1 irG,i, R̄G =

∑L
i=1 ir̄G,i for L =

⌈

ln2 n
⌉

. In
addition, letαG = 1 − |G|/n and

ΓG = (1−RG)(RG − rG)+ ((d− 1)c− 1)
R2

G

rG
+RG + (d− 1)(1−αd−2

G )εcR̄2
G +

1 − αd−2
G

1 − αd−1
G

R̄G. (40)

ThenVar(SG) ∼ α2
GΓGn + αGrG(1 − rG)n.
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Before we get down to the proof of Lemma 21, we observe that it implies Lemma 11.

Proof of Lemma 11.By Theorem 4 part 2 together with Lemma 9 we know that with probability at least
1 − n−8 there are no components of order> ln2 n inside ofV \ G. Let q(ζ, ξ) =

∑∞
k=1 qk(ζ)ξk be the

function from Proposition 5, and letξ(z) be as in Lemma 20. Then Proposition 5 and Lemma 20 entail that
for all v ∈ V \ G

rG,i = qi

((

n − |G|
d − 1

)

p

)

ξ((|G| − µ1)/σ1), r̄G,i ∼ qi

((

n − |G|
d − 1

)

p

)

(1 − ξ((|G| − µ1)/σ1)).

By (9) there exists a number0 < γ < 1 such thatqi

(

(

n−|G|
d−1

)

p
)

≤ γi. Since0 ≤ ξ((|G|−µ1)/σ1) ≤ 1,

this yieldsrG,i, r̄G,i ≤ γi. Hence,RG, R̄G = O(1), so that Lemma 21 impliesVar(SG) = O(n).

Finally, if G′ ⊂ V satisfies||G′|−|G|| ≤ n0.9, then|
(

n−|G|
d−1

)

p−
(

n−|G′|
d−1

)

p| = O(|G|−|G′|)/n, because

p = O(n1−d). Therefore,|qi

(

(

n−|G|
d−1

)

p
)

− qi

(

(

n−|G′|
d−1

)

p
)

| = O(|G| − |G′|)/n, because the function

ζ 7→ qi(ζ) is differentiable. Similarly, asξ(z) = ξ0(1 + zσ1p2

(

n−µ1

d−2

)

) for some fixedξ0 = Θ(1), we have
|ξ((|G|−µ1)/σ1)−ξ((|G′|−µ1)/σ1)| = O(|G|−|G′|)/n. Consequently,|rG,i−rG′,i| = O(|G|−|G′|)/n
and|r̄G,i − r̄G′,i| = O(|G| − |G′|)/n, and thus

|rG − rG′ |, |RG − RG′ |, |R̄G − R̄G′ | = O(|G| − |G′|)/n = O(n−0.1).

Hence, Lemma 21 implies that|Var(SG) − Var(SG′)| = o(n). ⊓⊔
The remaining task is to establish Lemma 21. KeepingG fixed, in the sequel we constantly omit the

subscriptG in order to ease up the notation; thus, we writeα instead ofαG etc. As a first step, we compute
P(v, w ∈ S) − r2. Setting

S1 =

L
∑

i,j=1

[P [Nw = j ∧ w ∈ S|w 6∈ Cv, Nv = i, v ∈ S] − P [Nw = j ∧ w ∈ S]]

×P [w 6∈ Cv|Nv = i, v ∈ S] P [Nv = i ∧ v ∈ S] ,

S2 = (1 − r)

L
∑

i=1

P [w ∈ Cv|Nv = i, v ∈ S] P [Nv = i ∧ v ∈ S] ,

we haveP(v, w ∈ S) − r2 = S1 + S2.
To computeS2, observe that whetherw ∈ Cv depends only onNv, but not on the eventv ∈ S.

Therefore,P [w ∈ Cv|Nv = i, v ∈ S] = P [w ∈ Cv|Nv = i] =
(

n−2
i−2

)(

n−1
i−1

)−1
= i−1

n−1 , because given that

Nv = i, there are
(

n0−1
i−1

)

ways to choose the setCv ⊂ V \ G, while there are
(

n0−2
i−2

)

ways to chooseCv

in such a way thatw ∈ Cv. As a consequence,

S2 ∼ 1 − r

n − 1

L
∑

i=1

(i − 1)P [Nv = i ∧ v ∈ S] =
1 − r

n − 1
(R − r).

With respect toS1, we let

P1(i, j) = P [Nw = j|w 6∈ Cv, Nv = i] ,

P2(i, j) = P [w ∈ S|Nw = j, w 6∈ Cv, Nv = i, v ∈ S] ,

so that

S1 =
∑

i,j

[P1(i, j)P2(i, j) − P [Nw = j ∧ w ∈ S]] P [w 6∈ Cv|Nv = i, v ∈ S] P [Nv = i ∧ v ∈ S]

∼
∑

i,j

[P1(i, j)P2(i, j) − P [Nw = j] P [w ∈ S|Nw = j]] P [Nv = i ∧ v ∈ S] .
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Lemma 22. We haveP1(i, j)P [Nw = j]−1 = 1 + ((d−1)c−1)ij+i
n−n1

+ O(n−2 · polylog n).

Proof. This argument is similar to the one used in the proof of Lemma 41 in [7]. Remember that if we
restrict our view onH3,G to the setV \G the hypergraph is similar to aHd(n−n1, p). In order to estimate
S1, we observe that

P [Nw = j in Hd(n − n1, p) |Nv = i, w 6∈ Cv] = P [Nw = j in Hd(n − n1, p) \ Cv] . (41)

Given thatNv = i, Hd(n, p) \ Cv is distributed as a random hypergraphHd(n − n1 − i, p). Hence, the
probability thatNw = j in Hd(n, p) \ Cv equals the probability that a given vertex ofHd(n − n1 − i, p)
belongs to a component of orderj. Therefore, we can compareP [Nw = j in Hd(n − n1, p) \ Cv] and
P [Nw = j in Hd(n − n1, p)] as follows: inHd(n−n1− i, p) there are

(

n−n1−i−1
j−1

)

ways to choose the set

Cw \ {j}. Moreover, there are
(

n−n1−i
d

)

−
(

n−n1−i−j
d

)

−
(

j
d

)

possible edges connecting the chosen setCw

with V \ Cw, and asCw is a component, none of these edges is present. Since each such edge is present
with probabilityp independently, the probability that there is noCw-V \ Cw edge equals

(1 − p)(
n−n1−i

d )−(n−n1−i−j

d )−(j
d).

By comparison, inHd(n − n1, p) there are
(

n−n1−1
j−1

)

ways to choose the vertex set ofCw. Further, there

are
(

n−n1

d

)

−
(

n−n1−j
d

)

−
(

j
d

)

possible edges connectingCw andV \ Cw, each of which is present with
probabilityp independently. Thus, lettingγ =

(

n−n1−i
d

)

−
(

n−n1−i−j
d

)

−
[(

n−n1

d

)

−
(

n−n1−j
d

)]

, we obtain

P [Nw = j in Hd(n − n1, p) \ Cv]

P [Nw = j in Hd(n − n1, p)]
=

(

n − n1 − i − 1

j − 1

)(

n − n1 − 1

j − 1

)−1

(1 − p)γ . (42)

Concerning the quotient of the binomial coefficients, we have

(

n − n1 − i − 1

j − 1

)(

n − n1 − 1

j − 1

)−1

= exp

[

− i(j − 1)

n − n1
+ O(n−2 · polylog n)

]

. (43)

Moreover,γ =
(

n−n1

d

)

[

(n−n1−i)d+(n−n1−j)d−(n−n1−i−j)d

(n−n1)d
− 1
]

. Expanding the falling factorials, we get

γ =

(

n − n1

d

)

[

(

d
2

)

(i2 + j2 − (i + j)2)

(n − n1)2
+ O(n−3 · polylog n)

]

= −
(

n − n1

d − 2

)

ij + O(nd−3 · polylog n).

(44)

Plugging (43) and (44) into (42), we obtain

P [Nw = j in Hd(n − n1, p) \ Cv]

P [Nw = j in Hd(n − n1, p)]
= exp

[

− i(j − 1)

n − n1
+ O(n−2 · polylogn)

]

(1 − p)−(n−n1

d−2
)ij+O(nd−3·polylog n)

= exp

[

− i(j − 1)

n − n1
+

(

n − n1

d − 2

)

ijp + O(n−2 · polylog n)

]

= 1 + (n − n1)
−1 [((d − 1)c − 1)ij + i] + O(n−2 · polylog n).

Therefore, by (41)

P [Nw = j|Nv = i, w 6∈ Cv] − P [Nw = j in Hd(n − n1, p)]

=P [Nw = j in Hd(n − n1, p)]
[

n−1 [((d − 1)c − 1)ij + i] + O(n−2 · polylog n)
]

.(45)

⊓⊔

Lemma 23. Settingγ1 = 1−αd−2

P[v∈S|Nv=i](1−αd−1)
and γ2 = (d − 1)(1 − αd−2)εc, we haveP2(i, j) −

P [w ∈ S|Nw = j] = n−1P [w 6∈ S|Nw = j] (jγ1 − ijγ2) + O(n−2 · polylog n).
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Proof. Let F be the event thatNw = j, w 6∈ Cv, Nv = i, andv ∈ S. Moreover, letQ be the event
that inH3 there exists an edge incident to the three setsCv, Cw, andG simultaneously, so thatP2(i, j) =
P [Q|F ] + P [w ∈ S|¬Q,F ] P [¬Q|F ] .

To boundP [w ∈ S|¬Q,F ] − P [w ∈ S|Nw = j], we condition on the event thatCv andCw are fixed
disjoint sets of sizesi andj. Let Q′ signify the probability thatCw is reachable fromG in H3,G, and let
Q denote the probability thatCw is reachable fromG in H3,G, and that the event¬Q occurs. ThenQ′

corresponds toP [w ∈ S|Nw = j] andQ to P [w ∈ S|¬Q,F ], so that our aim is to estimateQ − Q′. As
there are|E(G, Cv)| − |E(G, Cv , Cw)| possible edges that joinCv andG but avoidCw, each of which is
present inH3,G with probabilityp2 independently, we have

Q = 1 − (1 − p2)
|E(G,Cv)|−|E(G,Cv,Cw)|, while Q′ = 1 − (1 − p2)

|E(G,Cw)|.

Therefore,

Q − Q′ = (1 − p2)
|E(G,Cw)|

[

1 − (1 − p2)
−|E(G,Cv,Cw)|

]

∼ (1 − Q′) (1 − exp [p2|E(G, Cv, Cw)|]) ∼ ij(Q′ − 1)

[(

n

d − 2

)

−
(

n0

d − 2

)]

p2.

As
(

n−1
d−1

)

p2 ∼ εc, we thus get

P [w ∈ S|¬Q,F ] − P [w ∈ S|Nw = j] ∼ ij(P [w ∈ S|Nw = j] − 1)(d − 1)(1 − αd−2)εcn−1. (46)

With respect toP [Q|F ], we letK signify the number of edges joiningCv andG. Given thatF occurs,

K is asymptotically Poisson with meanλi = i
[

(

n
d−1

)

−
(

n0

d−1

)

]

p2 ∼ i(1−αd−1)εc. Moreover, given that

K = k, the probability that one of thesek edges hitsCw isP(k) ∼ kE(G,Cv,Cw)
E(Cv,G) , and thus

P(k) ∼ jk

[(

n

d − 2

)

−
(

n0

d − 2

)][(

n

d − 1

)

−
(

n0

d − 1

)]−1

∼ jk(d − 1)
1 − αd−2

1 − αd−1
.

Consequently,

P [Q|F ] ∼ exp(−λi)

1 − exp(−λi)

∑

k≥1

jkλk
i

k!
P(k) ∼ j(1 − αd−2)

n(1 − exp(−λi))(1 − αd−1)
. (47)

Combining (46) and (47), we obtain the assertion. ⊓⊔

Thus,

nS1 ∼
L
∑

i=1

P [v ∈ S ∧ Nv = i]

×
L
∑

j=1

[((d − 1)c − 1)ij + i] P [w ∈ S ∧ Nw = j] + P [w 6∈ S ∧ Nw = j] [γ1j + γ2ij]

= ((d − 1)c − 1)
R2

r
+ R + γ2R̄

2 +

N
∑

i=1

1 − αd−2

1 − αd−1
P [Nv = i] R̄

= ((d − 1)c − 1)
R2

r
+ R + (d − 1)(1 − αd−2)εcR̄2 +

1 − αd−2

1 − αd−1
R̄.

Hence, lettingΓ be as defined by (40) we haveP [v, w ∈ S]−P [v ∈ S] P [w ∈ S]) ∼ Γ/n. Consequently,
Var(S) ∼ αΓn + α2r(1 − r)n.
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4.6 Proof of Lemma 15

The probability that a vertexv ∈ V \ G is isolated inH3,G is at least(1 − p)(
n1−1

d−1
)(1 − p2)

( n
d−1) ∼

exp(−p
(

n1−1
d−1

)

− εp
(

n
d−1

)

) ≥ exp(−c). Therefore,

E(|W|) ≥ (1 − o(1)) exp(−c)(n − n1). (48)

To show that|W| is concentrated about its mean, we employ the following version of Azuma’s inequality
(cf. [11, p. 38]).

Lemma 24. LetΩ =
∏K

i=1 Ωi be a product of probability spaces. Moreover, letX : Ω → R be a random
variable that satisfies the following Lipschitz condition.

If two tuplesω = (ωi)1≤i≤K , ω′ = (ω′
i)1≤i≤K ∈ Ω differ only in theirj’th components for

some1 ≤ j ≤ K, then|X(ω) − X(ω′)| ≤ 1.
(49)

ThenP [|X − E(X)| ≥ t] ≤ 2 exp(− t2

2K ), provided thatE(X) exists.

Using Lemma 24, we shall establish the following.

Corollary 25. Let Y be a random variable that maps the set of alld-uniform hypergraphs with vertex set
V to [0, n]. Assume thatY satisfies the following condition.

LetH be a hypergraph, and lete ∈ E(V ). Then|Y (H)−Y (H+e)|, |Y (H)−Y (H−e)| ≤ 1. (50)

ThenP
[

|Y (H3,G) − E(Y (H3,G))| ≥ n0.66
]

≤ exp(−n0.01).

Proof. In order to apply Lemma 24, we need to decomposeH3,G into a product
∏K

i=1 Ωi of probability
spaces. To this end, consider an arbitrary decomposition ofthe setE(V ) of all possible edges into sets
E1∪· · ·∪EK so thatK ≤ n andE(E(H3,G)∩Ej) ≤ n0.1 for all 1 ≤ j ≤ K; such a decomposition exists,
because the expected number of edges ofH3,G is ≤

(

n
d

)

p = O(n). Now, letΩe be a Bernoulli experiment
with success probabilityp for eache ∈ E(V \ G), resp. with success probabilityp2 for e ∈ E(G, V \ G).
Then settingΩi =

∏

e∈Ei
Ωe, we obtain a product decompositionH3,G =

∏K
i=1 Ωi.

In addition, construct for each hypergraphH with vertex setV another hypergraphH∗ by removing
from H all edgese ∈ Ei such that|E(H) ∩ Ei| ≥ 4n0.1 (1 ≤ i ≤ K). Since|E(H3,G) ∩ Ei| is the sum of
two binomially distributed variables, the Chernoff bound (7) implies thatP [|E(H3,G) ∩ Ei] | ≥ 4n0.1) ≤
exp(−n0.05). As K ≤ n, this entails

P
[

H3,G 6= H∗
3,G

]

≤ K exp(−n0.05) ≤ exp(−n0.04), so that (51)

|E(Y (H3,G)) − E(Y (H∗
3,G))| ≤ 1 [because0 ≤ Y ≤ n]. (52)

As a next step, we claim thatY ∗(H) = 1
4n−0.1Y (H∗) satisfies the Lipschitz condition (49). For

by construction modifying (i.e., adding or removing) an arbitrary number of edges belonging to a single
factorEi can affect at most4n0.1 edges ofH∗. Hence, (50) implies thatY ∗(H) satisfies (49). Therefore,
Lemma 24 entails that

P
[

|Y (H∗
3,G) − E(Y (H∗

3,G))| ≥ n0.63
]

≤ P
[

|Y ∗(H3,G) − E(Y ∗(H3,G))| ≥ n0.52
]

≤ exp(−n0.02).
(53)

Finally, combining (51), (52), and (53), we conclude that

P
[

|Y (H3,G) − E(Y (H3,G))| ≥ n0.64
]

≤ P
[

|Y ∗(H) − E(Y ∗(H))| ≥ n0.63
]

+ P
[

H3,G 6= H∗
3,G

]

≤ exp(−n0.01),

thereby completing the proof. ⊓⊔

Finally, since|W|/d satisfies (50), Lemma 15 follows from Corollary 25 and (48).
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5 Normality via Stein’s Method

In this section we will use Stein’s Method to prove thatN (Hd(n, p)) as well asSG tend (after suitable
normalization) in distribution to the normal distribution. This proofs Proposition 6 as well as Theorem 1 and
Lemma 14. First we will define a general setting for using Stein’s Method with random hypergraphs which
defines some conditions the random variables have to fulfill.Then we show in two lemmas (Lemma 28
and Lemma 29) that the random variables corresponding toN (Hd(n, p)) andSG do indeed comply to the
conditions and last but not least a quite technical part willshow how to derive the limiting distribution from
the conditions.

5.1 Stein’s method for random hypergraphs

LetE be the set of all subsets of sized of V = {1, . . . , n}, and letH be the power set ofE . Moreover, let0 ≤
pe ≤ 1 for eache ∈ E , and define a probability distribution onH by lettingP [H ] =

∏

e∈H pe ·
∏

e∈E\H 1−
pe. That isH ∈ H can be considered a random hypergraph with ”individual” edge probabilities.

Furthermore, letA be a family of subsets ofV , and let(Yα)α∈A be a family of random variables.
Remember that forQ ⊂ V we setE(Q) = {e ∈ E : e∩Q 6= ∅}. We say thatYα is feasibleif the following
holds.

For any two elementsH, H ′ ∈ H such thatH ∩ E(α) = H ′ ∩ E(α) we haveYα(H) = Yα(H ′).

That meansYα is feasible if its value depends only on edges having at leastone endpoint inα. In addition,
setY S

α (H) = Yα(H \ E(S)) (H ∈ H, α ∈ A, S ⊂ V , S ∩ α = ∅). ThusY S
α (H) is the value ofYα after

removing all edges incident withS. We define

Y =
∑

α∈A
Yα, µα = E [Yα], σ2 = Var [Y ], Xα = (Yα − µα)/σ (54)

Zα =
∑

β∈A
Zαβ, whereZαβ = σ−1 ×

{

Yβ if α ∩ β 6= ∅,
Yβ − Y α

β if α ∩ β = ∅, (55)

Vαβ =
∑

γ:β∩γ 6=∅
∧α∩γ=∅

Y α
γ /σ +

∑

γ:β∩γ=∅
∧α∩γ=∅

(Y α
γ − Y α∪β

γ )/σ, and (56)

δ =
∑

α∈A
E
[

|Xα|Z2
α

]

+
∑

α,β∈A
(E [|XαZαβVαβ |] + E [|XαZαβ|]E [|Zα + Vαβ |]) . (57)

The following theorem was proven for graphs (i.e.d = 2) in [3]. The argument used there carries over
to the case of hypergraphs without essential modifications.Thus for the sake of brevity we omit a detailed
proof of this result.

Theorem 26. Suppose that allYα are feasible. Ifδ = o(1) as n → ∞, then Y −E[Y ]
σ converges to the

standard normal distribution.

Now the following lemma states that a number of conditions onthe expectations of the product of up to
three random variablesY S

α will suffice for δ = o(1). The conditions are identical for both statements we
want to prove and we will prove that they are fulfilled in both cases in the next two sections while the proof
of the lemma itself is deferred to the end of the section.

Lemma 27. Let k = O(polylog n) and let(Yα)α∈A be a feasible family such that0 ≤ Yα ≤ k for all
α ∈ A. If the following six conditions are satisfied, thenδ = o(1) asn → ∞.

Y1. We haveE(Y ), Var(Y ) = Θ(n), and
∑

β∈A:β∩α6=∅ µβ = O(E(Y )/n·polylogn) = O(polylog n).for
anyα ∈ A

Y2. Letα, β, γ be distinct elements ofA. Then

Yα(Yβ − Y α
β )Y α

β = 0 if α ∩ β = ∅, (58)

YαYβ = 0 if α ∩ β 6= ∅, (59)

(Yβ − Y α
β )Y α

γ = (Yβ − Y α
β )Yγ = 0 if α ∩ β = α ∩ γ = ∅ 6= β ∩ γ. (60)
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Y3. For all α, β we have
∑

γ:γ∩β 6=∅, γ∩α=∅ E(YβY α
γ ) ≤ k2µβ .

Y4. If α, β ∈ A are disjoint, then

E [YαYβ ] = O(µαµβ · polylog n), (61)

E
[

|Yβ − Y α
β |
]

= O(
µβ

n
· polylog n), (62)

E
[

Yα|Yβ − Y α
β |
]

= O(
µαµβ

n
· polylog n). (63)

Y5. If α, β, γ ∈ A are pairwise disjoint, then

E
[

Yβ |Y α
γ − Y α∪β

γ |
]

= O(
µβµγ

n
· polylog n), (64)

E
[

|Yβ − Y α
β | · |Y α

γ − Y α∪β
γ |

]

= O(
µβµγ

n2
· polylog n), (65)

E
[

Yα|Yβ − Y α
β | · |Y α

γ − Y α∪β
γ |

]

= O(
µαµβµγ

n2
· polylog n), (66)

E
[

Yα|Yβ − Y α
β | · |Yγ − Y α

γ |
]

= O(
µαµβµγ

n2
· polylog n), (67)

E
[

|(Yβ − Y α
β )(Yγ − Y α

γ )|
]

= O(
µαµβ

n2
· polylog n). (68)

Y6. If α, β, γ ∈ A satisfyα ∩ β = α ∩ γ = ∅, then

E
[

|Y β
α − Y β∪γ

α |
]

= O(
µγ

n
· polylog n). (69)

5.2 Conditions for the normality of N (Hd(n, p))

In this section we will prove the propertiesY1–Y6 defined in Lemma 27 for the case of the normality of
N (Hd(n, p)).

Let k = O(polylog n) and letA = {α ⊂ V : 1 ≤ |α| ≤ k}. Moreover, forA ⊆ V with A ∩ α = ∅
let IA

α = 1 if α is a component ofH \ E(A), and0 otherwise. Further, setY A
α = |α| · IA

α . We briefly write
Iα = I∅α andYα = Y ∅

α . Then(Yα)α∈A is a feasible family, because whetherα is a component or not only
depends on the presence of edges that contain at least one vertex ofα.

Let C(S) denote the even that the subhypergraph ofH induced onS ⊂ V is connected. IfIα = 1, then
C(α) occurs. Moreover,H contains no edges joiningα andV \ α, i.e.,H ∩ E(α, V \ α) = ∅. Since each
edge occurs inH with probabilityp independently, we thus obtain

P [Iα = 1] = P [C(α)] (1 − p)|E(α,V \α)|. (70)

Furthermore, observe that

∀α ∈ A, A ⊂ B ⊂ V \ α : IA
α = 1 → IB

α = 1. (71)

Proof of Y1: We know from Theorem 1 thatE [Y ] = Θ(n) andVar [Y ] = Θ(n). To see that

∑

β∈A:β∩α6=∅
µβ = O(E [Y ]/n · polylog n),

note thatµβ := E [Yβ ] depends only on the size ofβ. Thus withµb = µβ for an arbitrary setβ of
size b we haveE [Y ] =

∑

β∈A µβ =
∑k

b=1

∑

β∈A
|β|=b

µβ =
∑k

b=1

(

n
b

)

µb while
∑

β∈A:β∩α6=∅ µβ =
∑k

b=1

∑

β∩α 6=∅
|β|=b

µβ ≤∑k
b=1 k

(

n
b−1

)

µb.

Proof of Y2: (58): Suppose thatIα = 1. ThenH features no edge that contains a vertex inα and a
vertex inβ. If in additionIα

β = 1, then we obtain thatIβ = 1 as well. Hence,Yβ = Y α
β .

(59): This just means that any two components ofH are either disjoint or equal.
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(60): To show thatYγ(Yβ − Y α
β ) = 0, assume thatIγ = 1. Thenγ is a component ofH , so thatβ

cannot be a component, becauseγ 6= β butγ ∩ β 6= ∅; hence,Iβ = 0. Furthermore, ifγ is a component of
H , thenγ is also a component ofH \ E(α), so thatIα

γ = 1. Consequently,Iα
β = 0. Thus,Yβ = Y α

β = 0.
In order to prove thatY α

γ (Yβ − Y α
β ) = 0, suppose thatIα

γ = 1. ThenIα
β = 0, because the intersecting

setsβ, γ cannot both be components ofH\E(α). Therefore, we also haveIβ = 0; for if β were a component
of H , thenβ would also be a component ofH \ E(α). Hence, also in this case we obtainYβ = Y α

β = 0.
Proof of Y3: Suppose thatIβ = 1, i.e.,β is a component ofH . Then removing the edgesE(α) from

H may causeβ to split into several componentsB1, . . . , Bl. Thus, ifY β
γ > 0 for someγ ∈ A such that

γ ∩ β 6= ∅, thenγ is one of the componentsB1, . . . , Bl. Sincel ≤ |β| ≤ k, this implies that givenIβ = 1
we have the bound

∑

γ:γ∩β 6=∅, γ∩α=∅ Y α
γ ≤ k2. Hence, we obtainY3.

The following lemma which gives a description of the limiteddependence between the random vari-
ablesIα andIβ for disjointα andβ together with the fact thatP [Iα = 1] = O(µα) impliesY4–Y6.

Lemma 28. Let 0 ≤ l, r ≤ 2, and letα1, . . . , αl, β1, . . . , βr ∈ A be pairwise disjoint. Moreover, let
A1, . . . , Ar, B1, . . . , Br ⊂ V be sets such thatAi ⊂ Bi ⊂ V \ βi and |Bi| ≤ 2k for all 1 ≤ i ≤ r, and
assume that

⋂r
i=1 Bi \ Ai = ∅. Then

P





l
∧

i=1

,

r
∧

j=1

Iαi
= 1 ∧ I

Aj

βj
6= I

Bj

βj



 ≤ O(n−r · polylog n)

l
∏

j=1

P [Iαi
= 1]

r
∏

j=1

P
[

Iβj
= 1
]

.

Proof. Since (71) entails thatIAj

βj
6= I

Bj

βj
↔ I

Bj

βj
= 1 ∧ I

Aj

βj
= 0, we have

P
[

∀i, j : Iαi
= 1 ∧ I

Aj

βj
6= I

Bj

βj

]

= P
[

∀i, j : Iαi
= 1 ∧ I

Aj

βj
= 0 ∧ I

Bj

βj
= 1
]

. (72)

We shall bound the probability on the right hand side in termsof mutually independent events.
If Iαi

= 1 andI
Bj

βj
= 1 for all i, j, then the hypergraphs induced onαi andβj are connected, i.e.,

the eventsC(αi) andC(βj) occur. Note that these events are mutually independent, becauseC(αi) (resp.
C(βj)) onlydepends on the presence of edgese ∈ E(αi) \ E(V \ αi) (resp.e ⊂ E(βj) \ E(V \ βj)).

Furthermore, ifαi is a component, then inH there occur no edges joiningαi andV \αi; in other words,
H ∩E(αi, V \αi) = ∅. However, these events are not necessarily independent, becauseE(α1, V \α1) may
contain edges that are incident with vertices inα2. Therefore, we consider the sets

F(αi) =
⋃

i′ 6=i

αi′ ∪
r
⋃

j=1

βj ∪ Bj , D(αi) = E(αi, V \ αi) \ E(F(αi)),

F(βj) =

l
⋃

i=1

αi ∪
⋃

j′ 6=j

βj′ ∪
r
⋃

j′=1

Bj′ , D(βj) = E(βj , V \ βj) \ E(F(βj)).

ThenIαi
= 1 (resp.IBj

βj
= 1) implies thatD(αi) ∩ H = ∅ (resp.D(βj) ∩ H = ∅). Moreover, since

the setsD(αi) andD(βj) are pairwise disjoint, the eventsD(αi) ∩ H = ∅, D(βi) ∩ H = ∅ are mutually
independent.

Finally, we need to express the fact thatI
Aj

βj
= 0 but IBj

βj
= 1. If this event occurs, thenH contains

an edge connectingβj with Bj \ Aj , i.e., H ∩ E(βj , Bj \ Aj) 6= ∅. Thus, letQ denote the event that
H ∩ E(βj , Bj \ Aj) 6= ∅ for all 1 ≤ j ≤ r.

Thus, we obtain

P
[

∀i, j : Iαi
= 1 ∧ I

Aj

βj
= 0 ∧ I

Bj

βj
= 1
]

≤ P





l
∧

i=1

(C(αi) ∧ (D(αi) ∩ H = ∅)) ∧
r
∧

j=1

(C(βj) ∧ (D(βj) ∩ H = ∅)) ∧ Q





=

l
∏

i=1

P [C(αi)] P [D(αi) ∩ H = ∅] ×
r
∏

j=1

P [C(βj)] P [D(βj) ∩ H = ∅] × P [Q] . (73)
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We shall prove below that

P [D(αi) ∩ H = ∅] ∼ (1 − p)|E(αi,V \αi)|, P [D(βj) ∩ H = ∅] ∼ (1 − p)|E(βj,V \βj)|, (74)

P [Q] = O(n−r · polylog n). (75)

Combining (70) and (72)–(75), we then obtain the assertion.
To establish (74), note that by definitionD(αi) ⊂ E(αi, V \ αi). Therefore,

P [D(αi) ∩ H = ∅] = (1 − p)|D(αi)| ≥ (1 − p)|E(αi,V \αi)|. (76)

On the other hand, we have|αi|, |F(αi)| = O(polylog n), and thus|E(αi,F(αi))| ≤ |αi| · |F(αi)| ·
(

n
d−2

)

= O(nd−2 · polylog n). Hence, asp = O(n1−d), we obtain

P [D(αi) ∩ H = ∅] = (1 − p)|D(αi)| ≤ (1 − p)|E(αi,V \αi)|−|E(αi,F(αi))|

∼ (1 − p)|E(αi,V \αi)| exp(p · O(nd−2 · polylog n)) ∼ (1 − p)|E(αi,V \αi)|. (77)

Combining (76) and (77), we conclude thatP [D(αi) ∩ H = ∅] ∼ (1 − p)|E(αi,V \αi)|. As the same argu-
ment applies toP [D(βj) ∩ H = ∅], we thus obtain (74).

Finally, we prove (75). Ifr = 1, thenH contains an edge ofE(β1, B1 \ A1). Since

|E(β1, B1 \ A1)| ≤ |β1| · |B1 \ A1| · nd−2 = O(nd−2 · polylog n),

and because each possible edge occurs with probabilityp independently, the probability of this event is
P [Q] ≤ O(nd−2 · polylog n)p = O(n−1 · polylog n), as desired.

Now, assume thatr = 2. ThenH features edgesej ∈ E(βj , Bj \ Aj) (j = 1, 2).

1st case:e1 = e2. In this case,e1 contains a vertex of each of the four setsβ1, β2, B1 \ A1, B2 \ A2.
Hence, the number of possible such edges is≤ nd−4

∏2
j=1 |βj | · |Bj \ Aj | = O(nd−4 · polylog n).

Consequently, the probability that such an edge occurs inH is ≤ O(nd−4 · polylog n)p = O(n−3 ·
polylog n).

2nd case:e1 6= e2. There are≤ |βj | · |Bj \Aj | ·nd−2 = O(nd−2 ·polylogn) ways to chooseej (j = 1, 2).

Hence, the probability that such edgese1, e2 occur inH is ≤
[

O(nd−2 · polylog n)p
]2

= O(n−2 ·
polylog n).

Thus, in both cases we obtain the bound claimed in (75). ⊓⊔

5.3 Conditions for the normality of SG

In this section we will prove the propertiesY1–Y6 defined in Lemma 27 for the case of the normality of
SG.

Consider a setG ⊂ V of sizen1. LetA be the set of all subsetsα ⊂ V \ G of size|α| ≤ k. Moreover,
let pe = p for e ⊂ V \ G, pe = p2 for e ∈ E(G, V \ G), andpe = 0 if e ⊂ G.

ForA ⊆ V andA ∩ α = ∅ setIA
α = 1 if α is a component ofH \ E(A ∪ G). Moreover, letJA

α = 1 if
(H \ E(A)) ∩ E(G, α) 6= ∅. Further, letKA

α = IA
α JA

α andY A
α = |α|KA

α . Then

P [Kα = 1] = Ω(P [Iα = 1]). (78)

Proof of Y1: Using Lemma 10 we haveE [Y ] = Θ(n) and using Lemma 11 we haveVar [Y ] = Θ(n).
The proof of the rest ofY1 is analogous to the proof ofY1 in the case ofN (Hd(n, p)).

Proof of Y2: (58): Suppose thatKα = 1. ThenIα = 1, so thatH \ E(G) has noα-β-edges. Hence, if
alsoKα

β = 1, thenβ is a component ofH \ E(G) as well. Thus,Kβ = 1, so thatYβ = Y α
β .

(59): If Kα = 1, thenα is a component ofH \E(G). Since any two components ofH \E(G) are either
disjoint or equal, we obtainIβ = 0, so thatYβ = 0 as well.

(60): To show thatYγ(Yβ − Y α
β ) = 0, assume thatKγ = 1. ThenIγ = 1, i.e.,γ is a component of

H \ E(G). Sinceβ 6= γ but β ∩ γ 6= ∅, we conclude thatIβ = 0. Furthermore, ifγ is a component of
H \ E(G), thenγ is also a component ofH \ E(G ∪ α), whenceIα

β = 0. Consequently,Yβ = Y α
β = 0.
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In order to prove thatY α
γ (Yβ − Y α

β ) = 0, suppose thatKα
γ = 1. ThenKα

γ = 1. Therefore,Iα
β = 0,

because the intersecting setsβ, γ cannot both be components ofH \ E(α). Thus, we also haveIβ = 0; for
if β were a component ofH , thenβ would also be a component ofH \ E(α). Hence, also in this case we
obtainYβ = Y α

β = 0.
Proof of Y3: Suppose thatKβ = 1. ThenIβ = 1, i.e.,β is a component ofH \ E(G). Then removing

the edgesEα from H \ E(G) may causeβ to split into several componentsB1, . . . , Bl. Thus, ifY β
γ > 0

for someγ ∈ A such thatγ ∩ β 6= ∅, thenγ is one of the componentsB1, . . . , Bl. Sincel ≤ |β| ≤ k, this
implies that givenIβ = 1 we have the bound

∑

γ:γ∩β 6=∅, γ∩α=∅
Y α

γ ≤ k2.

Hence, we obtainY3.
Similar to Lemma 28 the following lemma on the limited dependence ofKα andKβ for disjointα and

β impliesY4–Y6.

Lemma 29. Let 0 ≤ l, r ≤ 2, and letα1, . . . , αl, β1, . . . , βr ∈ A be pairwise disjoint. Moreover, let
A1, . . . , Ar, B1, . . . , Br ⊂ V be sets such thatAi ⊂ Bi ⊂ V \ βi and|Bi| ≤ O(1) for all 1 ≤ i ≤ r, and
assume that

⋂r
i=1 Bi \ Ai = ∅. Then

P





l
∧

i=1

r
∧

j=1

Kαi
= 1 ∧ K

Aj

βj
6= K

Bj

βj



 ≤ O(n−r · polylog n)

l
∏

j=1

P [Kαi
= 1]

r
∏

j=1

P
[

Kβj
= 1
]

.

Proof. Let P = P
[

∀i, j : Kαi
= 1 ∧ K

Aj

βj
6= K

Bj

βj

]

. If K
Aj

βj
6= K

Bj

βj
, then eitherIAj

βj
6= I

Bj

βj
or I

Aj

βj
=

I
Bj

βj
= 1 andJ

Aj

βj
6= J

Bj

βj
. Therefore, lettingJ = {j : I

Aj

βj
6= I

Bj

βj
} andJ̄ = {1, . . . , r} \ J , we obtain

P ≤ P





l
∧

i=1

Iαi
= 1 ∧

∧

j∈J
I

Aj

βj
6= I

Bj

βj
∧
∧

j∈J̄

(

I
Aj

βj
= 1 ∧ J

Aj

βj
6= J

Bj

βj

)



 . (79)

Now, the random variablesIαi
, I

Aj

βj
, andI

Bj

βj
are determined just by the edges inE \ E(G), while J

Aj

βj

andJ
Bj

βj
depend only on the edges inE(G). Hence, as the edges inE \ E(G) and inE(G) occur inH

independently, (79) yields

P ≤ P





l
∧

i=1

Iαi
= 1 ∧

∧

j∈J̄
I

Aj

βj
= 1 ∧

∧

j∈J
I

Aj

βj
6= I

Bj

βj



 · P





∧

j∈J̄
J

Aj

βj
6= J

Bj

βj



 . (80)

Furthermore, Lemma 28 entails that

P





l
∧

i=1

Iαi
= 1 ∧

∧

j∈J̄
I

Aj

βj
= 1 ∧

∧

j∈J
I

Aj

βj
6= I

Bj

βj



 ≤ O(n−|J |·polylog n)·
l
∏

i=1

P [Iαi
= 1]·

r
∏

j=1

P
[

Iβj
= 1
]

.

(81)
In addition, we shall prove below that

P





∧

j∈J̄
J

Aj

βj
6= J

Bj

βj



 ≤ O(n−|J̄ | · polylog n). (82)

Plugging (81) and (82) into (80), we getP ≤ O(n−r · polylog n) ·∏l
i=1 P [Iαi

= 1] ·∏r
j=1 P

[

Iβj
= 1
]

,
so that the assertion follows from (78).

Thus, the remaining task is to establish (82). Let us first deal with the case|J̄ | = 1. Let j ∈ J̄ .
If J

Aj

βj
6= J

Bj

βj
, thenJ

Aj

βj
= 1 andJ

Bj

βj
= 0, becauseAj ⊂ Bj . Thus,βj is connected toG via an
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edge that is incident withAj \ Bj ; that is,H ∩ E(βj , Bj \ Aj) 6= ∅. Since there are|E(βj , Bj \ Aj)| ≤
|βj | · |Bj | ·nd−2 = O(nd−2 ·polylog n) such edges to choose from, and because each such edge is present

with probability p2 = O(n1−d), we conclude thatP
[

J
Aj

βj
6= J

Bj

βj

]

≤ P [H ∩ E(βj , Bj \ Aj) 6= ∅] ≤
O(nd−2 · polylog n)p2 = O(n−1 · polylog n), whence we obtain (82).

Finally, suppose that|J̄ | = 2. If J
Aj

βj
6= J

Bj

βj
for j = 1, 2, then there occur edgesej ∈ H ∩ E(βj , Bj \

Aj) (j = 1, 2).

1st case:e1 = e2. In this casee1 = e2 is incident with all four setsβj , Bj \ Aj (j = 1, 2). Hence, as the
number of such edges is≤ nd−4

∏2
j=1 |βj |·|Bj\Aj| ≤ O(nd−4 ·polylog n) and each such edge occurs

with probabilityp2 = O(n1−d), the probability that the 1st case occurs isO(nd−4 · polylog n)p2 =
O(n−3 · polylog n).

2nd case:e1 6= e2. There are≤ |βj |·|Bj\Aj |·nd−2 ≤ O(nd−2 ·polylogn) ways to chooseej for j = 1, 2,
each of which is present with probabilityp2 = O(n1−d) independently. Hence, the probability that the

second case occurs is bounded by
[

O(nd−2 · polylog n)p2

]2 ≤ O(n−2 · polylogn).

Thus, the bound (82) holds in both cases. ⊓⊔

5.4 Proof of Lemma 27

All we need to show is that the conditions defined in Lemma 27 imply thatδ as defined by (57) tends to 0.
We will do so by proving that each of the three summands contributing toδ is O(σ−3E [Y ] · polylog n).
Together with conditionY1, stating thatE [Y ], σ2 = Θ(n), this implies the statement. We formulate one
lemma for each summand, bounding the expectations using conditionsY1–Y6. The proof of the lemmas
are mainly long and technical computations then.

Lemma 30.
∑

α∈A E
[

|Xα|Z2
α

]

= O(σ−3E [Y ] · polylog n)

Proof. Let

S1 =
∑

α∈A
E






Yα





∑

β:α∩β 6=∅
Yβ





2





, S2 =

∑

α∈A
E






µα





∑

β:α∩β 6=∅
Yβ





2





,

S3 =
∑

α∈A
E






Yα





∑

β:α∩β=∅
(Yβ − Y α

β )





2





, S4 =

∑

α∈A
E






µα





∑

β:α∩β=∅
(Yβ − Y α

β )





2





.

SinceXα = (Yα − µα)/σ ≤ (Yα + µα)/σ, (54) entails that

E
[

|Xα|Z2
α

]

≤ 2σ−3E






(Yα + µα)











∑

β:α∩β 6=∅
Yβ





2

+





∑

β:α∩β=∅
(Yβ − Y α

β )





2












≤ 2σ−3(S1 + S2 + S3 + S4).

Therefore, it suffices to show thatSj = O(E(Y ) · polylog n) for j = 1, 2, 3, 4.
RegardingS1, we obtain the bound

S1 =
∑

α∈A

∑

β:α∩β 6=∅

∑

γ:α∩γ 6=∅
E [YαYβYγ ]

(59)
≤ k2

∑

α∈A
E [Yα] ≤ O(E [Y ] · polylog n).

With respect toS2, note that due to (59) and (61) we haveE [YβYγ ] ≤ kµβ if β = γ, E [YβYγ ] = 0 if
β 6= γ butβ ∩ γ 6= ∅, andE [YβYγ ] = O(µβµγ · polylog n) if β ∩ γ = ∅. Consequently,

S2 =
∑

α∈A
µα

∑

β:α∩β 6=∅

∑

γ:α∩γ 6=∅
E [YβYγ ]

≤
∑

α∈A
µα

∑

β:α∩β 6=∅

∑

γ:α∩γ 6=∅
O(µβµγ · polylogn)

Y1
≤ O(E(Y ) · polylog n). (83)
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ConcerningS3, we obtain

S3 =
∑

α∈A

∑

β:α∩β=∅

∑

γ:α∩γ=∅
E
[

Yα(Yβ − Y α
β )(Yγ − Y α

γ )
]

(67), (60)

≤
∑

α∈A

∑

β:α∩β=∅

∑

γ:α∩γ=∅
O(µαµβµγn−2 · polylog n)

≤ O(n−2 · polylog n)E(Y )3
Y1
≤ O(E(Y ) · polylog n).

To boundS4, we note that for disjointα, β ∈ A andγ ∈ A disjoint fromα the conditions (62), (59),
and (68) yield

E
[

|(Yβ − Y α
β )(Yγ − Y α

γ )|
]

=







O(
µβ

n · polylog n) if β = γ
0 if β 6= γ, β ∩ γ 6= ∅

O(
µβµγ

n2 · polylog n) if β ∩ γ = ∅.
Therefore,
∑

β:α∩β=∅

∑

γ:α∩γ=∅
E
[

|(Yβ − Y α
β )(Yγ − Y α

γ )|
]

≤
∑

β∈A

∑

γ∈A
O(

µβµγ

n2
· polylog n) +

∑

β∈A
O(

µβ

n
· polylog n)

≤ O(E(Y )2/n2 · polylog n) + O(E(Y )/n · polylog n)

= O(polylog n).

Hence, we obtainS4 ≤∑α∈A µα

∑

β:α∩β 6=∅
∑

γ:α∩γ 6=∅ E
[

(Yβ − Y α
β )(Yγ − Y α

γ )
]

≤ O(E [Y ]·polylog n).
⊓⊔

Lemma 31.
∑

α∈A
∑

β∈A E [|XαZαβVαβ |] = O(σ−3E [Y ] · polylog n)

Proof. Let S1 =
∑

β:α∩β 6=∅ E [|XαYβVαβ |] andS2 =
∑

β:α∩β=∅ E
[∣

∣

∣
Xα(Yβ − Y α

β )Vαβ

∣

∣

∣

]

. Then the def-

inition (55) ofZαβ yields that
∑

α∈A
∑

β∈A E [|XαZαβVαβ |] ≤ σ−1(S1 + S2) Hence, it suffices to show
thatS1, S2 = O(σ−2E [Y ] · polylog n).

To boundS1, we note thatYαYβ = 0 if α ∩ β 6= ∅ butα 6= β by (59), and thatVαβ = 0 if α = β by
the definition (56) ofVαβ . Thus, ifα ∩ β 6= ∅, then

E [|XαYβVαβ |]
(54)

≤ σ−1E [(Yα + µα) |YβVαβ |] ≤ σ−1µαE [|YβVαβ |]. (84)

Furthermore,

T1(α, β) =
∑

γ:γ∩β 6=∅, γ∩α=∅
E
[

|YβY α
γ

] Y7
≤k2µβ . (85)

T2(α) =
∑

β:α∩β 6=∅

∑

γ:β∩γ=∅
∧α∩γ=∅

E
[

Yβ |Y α
γ − Y α∪β

γ |
]

(64)

≤
∑

β:α∩β 6=∅

∑

γ:β∩γ=∅
∧α∩γ=∅

O(
µβµγ

n
· polylog n)

≤ O(n−1 · polylog n)





∑

γ∈A
µγ





∑

β:α∩β 6=∅
µβ

Y1
≤ O(n−1E(Y ) · polylog n) = O(polylog n). (86)

Combining (84)–(86), we get

S1 ≤ σ−1
∑

α∈A

∑

β:α∩β 6=∅
µαE [|YβVαβ |]

(56)
≤ σ−2

∑

α∈A
µα



T2(α) +
∑

β:α∩β 6=∅
T1(α, β)





≤ O(σ−2 · polylog n)



E(Y ) + k2
∑

β:α∩β 6=∅
µβ





Y1
≤ O(σ−2E(Y ) · polylog n)
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To boundS2, let α, β ∈ A be disjoint. AsXα ≤ (Yα + µα)/σ, we obtain

E
[∣

∣Xα(Yβ − Y α
β )Vαβ

∣

∣

]

≤ σ−1E
[∣

∣(Yα + µα)(Yβ − Y α
β )Vαβ

∣

∣

]

(56), (60)

≤ σ−2E
[∣

∣(Yα + µα)(Yβ − Y α
β )Y α

β

∣

∣

]

+σ−2
∑

γ:β∩γ=∅
∧α∩γ=∅

E
[∣

∣(Yα + µα)(Yβ − Y α
β )(Y α

γ − Y α∪β
γ )

∣

∣

]

≤ σ−2(T1 + T2 + T3 + T4),

where

T1 = E
[∣

∣Yα(Yβ − Y α
β )Y α

β

∣

∣

]

, T2 = µαE
[∣

∣(Yβ − Y α
β )Y α

β

∣

∣

]

,

T3 =
∑

γ:β∩γ=∅
∧α∩γ=∅

E
[∣

∣Yα(Yβ − Y α
β )(Y α

γ − Y α∪β
γ )

∣

∣

]

, T4 = µα

∑

γ:β∩γ=∅
∧α∩γ=∅

E
[∣

∣(Yβ − Y α
β )(Y α

γ − Y α∪β
γ )

∣

∣

]

.

Now,T1 = 0 by (58). Moreover, boundingT2 by (62),T3 by (66) andT4 by (65), we obtain

σ2E
[∣

∣Xα(Yβ − Y α
β )Vαβ

∣

∣

]

≤ O(
µαµβ

n
· polylog n) +

∑

γ:β∩γ=∅
∧α∩γ=∅

O(
µαµβµγ

n2
· polylog n)

= O(
µαµβ

n
· polylog n).

Thus, (87) yieldsS2 ≤ σ−2
∑

β:α∩β=∅ O(
µαµβ

n ·polylog n) = O(n−1σ−2E(Y )2·polylog n) = O(σ−2E(Y )·
polylog n), as desired. ⊓⊔

Lemma 32.
∑

α∈A
∑

β∈A E [|XαZαβ|]E [|Zα + Vαβ |] = O(σ−3E [Y ] · polylog n)

Proof. Since|σXα| ≤ Yα + µα,

∑

α∈A

∑

β∈A
E [|XαZαβ |]E [|Zα + Vαβ |] ≤ σ−1

(

∑

α∈A

∑

β∈A
µαE [|Zαβ|](E [|Zα|] + E [|Vαβ |]) +

E [Yα |Zαβ |](E [|Zα|] + E [|Vαβ |])
)

. (87)

Furthermore, we have the three estimates

σE [|Zα|] ≤ σ
∑

β∈A
E [|Zαβ|]

(55)
=

∑

β:α∩β 6=∅
µβ +

∑

β:α∩β=∅
E
[∣

∣Yβ − Y α
β

∣

∣

]

(62), Y1

≤
∑

β∈A
O(n−1µβ · polylogn) = O(polylog n), (88)

σE [|Vαβ |]
(56)

≤
∑

γ:β∩γ 6=∅
∧α∩γ=∅

E
[∣

∣Y α
γ

∣

∣

]

+
∑

γ:β∩γ=∅
∧α∩γ=∅

E
[∣

∣Y α
γ − Y α∪β

γ

∣

∣

]

(69), Y1

=
∑

γ∈A
O(n−1µγ · polylog n) ≤ O(polylog n), (89)

∑

β∈A
σE [Yα |Zαβ |]

(55)
=

∑

β:α∩β 6=∅
E [YαYβ ] +

∑

β:α∩β=∅
E
[

Yα

∣

∣Yβ − Y α
β

∣

∣

]

(59), (63)
= kµα +

∑

β:α∩β=∅

µαµβ

n
= O(µα · polylog n). (90)
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Now, (88)–(90) yield

∑

α∈A

∑

β∈A
µαE [|Zαβ|](E [|Zα|] + E [|Vαβ |]) = O(σ−2 · polylog n)

∑

α∈A
µα

= O(σ−2E [Y ] · polylogn), (91)
∑

α∈A

∑

β∈A
E [Yα |Zαβ|](E [|Zα|] + E [|Vαβ |]) = O(σ−2 · polylog n)

∑

α∈A
µα

= O(σ−2E [Y ] · polylogn). (92)

Combining (87), (91), and (92), we obtain the assertion. ⊓⊔

Finally, Lemma 27 is an immediate consequence of Lemmas 30–32.

6 Conclusion

Using a purely probabilistic approach, we have establisheda local limit theorem forN (Hd(n, p)). This
result has a number of interesting consequences, which we derive in a follow-up paper [4]. Namely, via
Fourier analysis theunivariatelocal limit theorem (Theorem 2) can be transformed into abivariateone that
describes the joint distribution of the order and the numberof edges of the largest component. Furthermore,
since given its number of vertices and edges the largest component is a uniformly distributed connected
graph, this bivariate limit theorem yields an asymptotic formula for the number of connected hypergraphs
with a given number of vertices and edges. Thus, we can solve an involved enumerative problem (“how
many connected hypergraphs withν vertices andµ edges exist?”) via a purely probabilistic approach.

The techniques that we have presented in the present paper appear rather generic and may apply to
further related problems. For instance, it seems possible to extend our proof of Theorem 2 to the regime
c =

(

n−1
d−1

)

p = (d − 1)−1 + o(1). In addition, it would be interesting to see whether our techniques can be
used to obtain limit theorems for thek-core of a random graph, or for the largest component of a random
digraph.
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