The Order of the Giant Component of Random Hypergraphs
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Abstract. We establish central and local limit theorems for the nundbeertices in the largest com-
ponent of a randomi-uniform hypergraphHq(n, p) with edge probabilityp = ¢/ (gj), where
(d—-1)"' 4+ ¢ < ¢ < oo. The proof relies on a new, purely probabilistic approacid & based
on Stein’s method as well as exposing the edged g, p) in several rounds.
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1 Introduction and Results

A d-uniform hypergraptfl = (V, E) consists of a sét’ of vertices and a sdt of edges, which are subsets
of V' of cardinalityd. Moreover, a vertexv is reachable inH from a vertexv if eitherv = w or there is a
sequences, ..., ¢, of edges such that€ ey, w € ex, ande; Ne;1 # O fori=1,... k— 1. Of course,
reachability inH is an equivalence relation. The equivalence classes amothponentsf H, and H is
connectedf there is only one component.

Throughoutthe paper, we let= {1, ..., n} be a set ofu vertices. Moreover, i2 < dis a fixed integer
and0 < p = p(n) < 1is a sequence, then we I8t;(n, p) signify a randomi-uniform hypergraph with
vertex setl” in which each of the(Z) possible edges is present with probabifitindependently. We say
that H,(n, p) enjoys some propert with high probability(w.h.p.) if the probability that{ ;(n, p) hasP
tends tol asn — oc. If d = 2, then theH ;(n, p) model is identical with the well-know& (n, p) model of
random graphs. In order to state some related results waladlineed a different modél,(n, m) of ran-
dom hypergraphs, where the hypergraph is chosen unifortmgnaom among ali-uniform hypergraphs
with n vertices andn edges.

Since the pioneering work of Erdés and Rényi [8], the congut structure of random discrete struc-
tures has been a central theme in probabilistic combiretoln the present paper, we contribute to this
theme by analyzing the maximum ord®i( H4(n, p)) of a component ofi,(n, p) in greater detail. More
precisely, establishing central and local limit theorems X (H,(n,p)), we determine the asymptotic
distribution of N'(H4(n, p)) precisely. Though such limit theorems are known in the césgaphs (i.e,

d = 2), they are new in the case @funiform hypergraphs fad > 2. Indeed, to the best of our knowledge
none of the arguments known for the graph case extendslglitethe case of hypergraphs & 2). There-
fore, we present a new, purely probabilistic proof of thetdmand local limit theorems, which, in contrast
to most prior work, does not rely on involved enumerativéntegues. We believe that this new technique
is interesting in its own right and may have further applmag.

The giant component. In the seminal paper [8], Erdés and Rényi proved that thalmr of vertices in
the largest component 6f(n, p) undergoes @hase transitiorasnp ~ 1. They showed thatifp < 1 —¢
for an arbitrarily small: > 0 that remains fixed a8 — oo, then all components aF(n, p) consist of
O(Inn) vertices. By contrast, ifp > 1 + ¢, thenG(n, p) has onegiant component on a linear number
£2(n) of vertices, while all other components contain oflfin ») vertices. In fact, in the caset+ e < ¢ =
(n—1)p = O(1) Erd6s and Rényi estimated the order (i.e., the numberntites) of the giant component:
let V' (G(n,p)) signify the maximum order of a component@fn, p). Then

n~'N(G(n,p)) converges in distribution to the constant p, 1)
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where0 < p < 1 is the unique solution to the transcendental equatienexp(c(p — 1)).

A corresponding result was established by Schmidt-Pruadr&namir [17] for random hypergraphs
H,(n,p). They showed that a random hypergraih(n, p) consists of components of ordéx(Inn) if
(d - 1)(3:})p < 1 — ¢, whereasH,(n, p) has a unique large (thgiant) component on2(n) vertices
w.h.p. if (d — 1)(3~})p > 1 + e. Furthermore, Coja-Oghlan, Moore, and Sanwalani [7] distadd a
result similar to (1), showing that in the cage— 1)(;:})19 > 1 + ¢ the order of the giant component is
(1 = p)n+ o(n) w.h.p., wheré) < p < 1 is the unique solution to the transcendental equation

p = exp(c(p?! = 1)). 2)

Central and local limit theorems. In terms of limit theorems, (1) providess&rong law of large numbers
for N(G(n,p)), i.e., it yields the probable value df (G(n,p)) up to fluctuations of ordes(n). Thus,

a natural question is whether we can characterize thellisivn of V(G (n, p)) (or N(Hy(n,p))) more
precisely; for instance, is it true thAt (G(n,p)) “converges to the normal distribution” in some sense?
Ouir first result, which we will prove in Section 5, shows thastis indeed the case.

Theorem 1. LetJ C ((d — 1)7*, 00) be a compact interval, and 1€t < p = p(n) < 1 be a sequence
such thate = ¢(n) = (Zj)p € J for all n. Furthermore, le0 < p = p(n) < 1 be the unique solution
to (2), and set
1- d—1)(p—pt
02=a(n)2:p[ p+c( Jp—p*Hn
(1—c(d—1)pt1)2

Theno =1 (N (Hqa(n,p)) — (1 — p)n) converges in distribution to the standard normal distribat

3)

Theorem 1 provides eentral limit theorenfor A'(H,(n, p)); it shows that for any fixed numbeds< b

n— o0 o

0 ) = oyt [ xp(rt 2y @

(provided that the sequenpe= p(n) satisfies the above assumptions).

Though Theorem 1 provides quite useful information aboetdistribution ofNV'(H4(n, p)), the main
result of this paper is actuallylacal limit theorenfor N'( Hy(n, p)), which characterizes the distribution of
N (Hgq(n,p)) even more precisely. To motivate the local limit theorem gnehasize that Theorem 1 only
estimates\V'(G(n, p)) up to an error ob(c) = o(y/n). That is, we do obtain from (4) that for arbitrarily
small but fixedy > 0

1 i v—(1-p)n—t)?
PN, p) vl <0~ e [ e LA ©
2n0 J—vo 20
i.e., we can estimate the probability th{ ,(n, p)) deviates from some valueby at mostyo. However,
it is impossible to derive from (4) or (5) the asymptotic pabbity that\'(Hy(n, p)) hits v exactly
By contrast, our next theorem shows that for any integeuch thafr — (1 — p)n| < O(o) we have

o [

P (Ha(n,p)) = ] ~ s

(6)

2o
provided thatd — 1)~ + ¢ < (Zj)p = O(1). Note that (6) is exactly what we would obtain from (5) if
we were allowed to set = %o—(n,p)*1 in that equation. Stated rigorously, the local limit theaneads as
follows.

Theorem 2. Letd > 2 be a fixed integer. For any two compact intervals R, J C ((d — 1)71,c0),
and for anyd > 0 there exists, > 0 such that the following holds. Let= p(n) be a sequence such that
c=c(n) = ("])p e Jforalln,let0 < p = p(n) < 1 be the unigue solution to (2), and letbe as
in (3). If n > ng and ifv is an integer such that ! (v — (1 — p)n) € Z, then

1-96 (v—(1-p)n)? 1+96 (v—(01—-p)n)?

77 < = < —
o, P 52 < P[N(Ha(n,p)) =v] < o, P 57




Related work. Since the work of Erd6s and Rényi [8], the component stmgcdfG (n, p) = Ha(n, p) has
received considerable attention. Stepanov [19] providedral and local limit theorems fo¥' (G(n, p)),
thereby proving thed = 2 case of Theorems 1 and 2. In order to establish these linotéimes, he estimates
the probability that a random gragh(n, p) is connected up to a factaér+ o(1) using recurrence formulas
for the number of connected graphs. Furthermore, Barraeaclieron, and Fernandez de la Vega [2]
reproved the central limit theorem fdv'(G(n, p)) via the analogy of breadth first search on a random
graph and a Galton-Watson branching process. In additimgah limit theorem for\ (G(n, p)) can also
be derived using the techniques of van der Hofstad and Spgicer the enumerative results of either
Bender, Canfield, and McKay [5] or Pittel and Wormald [15].

Moreover, Pittel [14] proved a central limit theorem for thggest componentin th&(n, m) model of
random graphgi7(n, m) is just a uniformly distributed graph with exactiyvertices andn edges. Indeed,
Pittel actually obtained his central limit theorem via aititheorem for the joint distribution of the number
of isolated trees of a given order, cf. also Janson [10]. Ap@hensive treatment of further results on the
components of7(n, p) can be found in [11].

In contrast to the case of graphs, only little is known deuniform hypergraphs witld > 2; for the
methods used for graphs do not extend to hypergraphs dirétging the result [12] on the number of
sparsely connected hypergraphs, Karohski and tuczakifi¥8ktigated the phase transition &f;(n, p).
They established (among other things) a local limit thedi@m\ ( H;(n, m)) form = n/d(d—1)+1 and
1 < L < 1o which is similar toH,(n, p) at the regimg%~})p = (d — 1)~! + w, wheren~'/3 <
w = w(n) < n~Y3Inn/Inlnn. These results were extended by Andriamampianina, Raglama and
Rijamamy [1, 16] to the regimé= o(n'/?) (w = o(n~2/3) respectively).

By comparison, Theorems 1 and 2 deal with edge probabifiteesh that(gj)p =(d-1)"1+0(1),
i.e., (~])p is bounded away from the critical poit — 1)~*. Thus, Theorems 1 and 2 complement [1,
13, 16]. The only prior paper dealing wi(ljj)p = (d—1)"' 4 2(1) is that of Coja-Oghlan, Moore, and
Sanwalani [7], where the authors computed the expectatidntee variance alV'(H4(n, p)) and obtained
qualitative results on the component structurefBf(n, p). In addition, in [7] the authors estimated the
probability thatH ;(n, p) or a uniformly distributedi-uniform hypergraptH ,(n, m) with n vertices and
m edges is connected up to a constant factor. While in the pregark we build upon the results on the
component structure dff;(n, p) from [7], the results and techniques of [7] by themselvesnartestrong
enough to obtain a central or even a local limit theoremNa@iH ;(n, p)).

Techniques and outline. The aforementioned prior work [1, 12, 13] on the giant congrrior random
hypergraphs relies on enumerative techniques to a signifeeent; for the basis [1,12,13] are results
on the asymptotic number of connected hypergraphs with engiumber of vertices and edges. By con-
trast, in the present work we employ neither enumerativiertieeies nor results, but rely solely on proba-
bilistic methods. Our proof methods are also quite diffefesm Stepanov’s [19], who first estimates the
asymptotic probability that a random gra@fin, p) is connected in order to determine the distribution of
N (Hgy(n,p)). By contrast, in the present work we prove the local limitotreen for V' (Hy(n, p)) directly,
thereby obtaining “en passant” a new proof for the localtitheorem for random graplts(n, p), which
may be of independent interest. Besides, the local limibrb can be used to compute the asymptotic
probability thatG(n, p) or, more generallyH,(n, p) is connected, or to compute the asymptotic number
of connected hypergraphs with a given number of verticeseatus (cf. Section 6). Hence, the general
approach taken in the present work is actually conversestottior ones [1, 12,13, 19].

The proof of Theorem 1 makes useStkin’s methodwhich is a general technique for proving central
limit theorems [18]. Roughly speaking, Stein’s result ireplthat a sum of a family of dependent random
variables converges to the normal distribution if one camnoothe correlations within any constant-sized
subfamily sufficiently well. The method was used by Barbdtarofski, and Rucifski [3] in order to
prove that in a random grapH(n, p), e.g., the number of tree components of a given (bounded)isiz
asymptotically normal. To establish Theorem 1, we exteed techniques in two ways.

— Instead of dealing with the number of vertices in trees ofvaigisize, we apply Stein’s method to the
total numbern — NV (H,(n, p)) of vertices outside of the giant component; this esseptiabans that
we need to sum over all possible (hyper)tree sizes up to dhaut



— Since we are dealing with hypergraphs rather than graphsyavéacing a somewhat more complex
situation than [3], because the fact that an edge may invanivarbitrary numbed of vertices yields
additional dependencies.

The main contribution of this paper is the proof of Theoreri@establish this result, we think of the
edges off;(n,p) as being added in two “portions”. More precisely, we firstune each possible edge
with probabilityp; = (1 — ¢)p independently, where > 0 is small but independent of (and denote the
resulting random hypergraph by, ); by Theorem 1, the orde¥'(H; ) of the largest component df; is
asymptotically normal. Then, we add each possible edgeadimatt present iff; with a small probability
p2 ~ ep and investigate closely how these additional random edtgashafurther vertices to the largest
component of{;. Denoting the number of these “attached” verticessbwe will show that the conditional
distribution ofS given the value oV ( H, ) satisfies a local limit theorem. Sinpg andp, are chosen such
that each edge is present with probabifitafter the second portion of edges has been added, this yields
the desired result oV (Hy(n, p)).

The analysis of the conditional distribution &finvolves proving thatS is asymptotically normal. To
show this, we employ Stein’s method once more. In additiolyder to show tha$ satisfies docal limit
theorem, we prove that the number of isolated verticeH pthat get attached to the largest component
of Hy by the second portion of random edges is binomially disteduSince the binomial distribution
satisfies a local limit theorem, we thus obtain a local lin@&drem forS.

Our proof of Theorem 2 makes use of some results on the compstrecture ofH,(n, p) derived
in [7]. For instance, we employ the results on the expeaiadind the variance 0¥ (Hy(n,p)) from that
paper. Furthermore, the analysis®given in the present work is a considerable extension ofiperaent
used in [7], which by itself would just yield the probabilityatS attains a specific valueup to a constant
factor.

The main part of the paper is organized as follows. After mglsome preliminaries in Section 2, we
outline the proof of Theorem 2 in Section 3. In that sectiorewlain in detail howH ;(n, p) is generated in
two “portions”. Then, in Section 4 we analyze the randomalalgS, assuming the central limit theorem
for S. Further, Section 5 deals with the proof of Theorem 1 and tio®fpof the central limit theorem
for S via Stein’s method; the reason why we defer the proof of Téeol to Section 5 is that we can
use basically the same argument to prove the asymptoticalityrof both A"(H4(n, p)) andS. Finally,
Section 6 contains some concluding remarks, e.g., on thefube present results to derive further limit
theorems and to solve enumerative problems.

2 Preliminaries

Throughout the paper, we 1& = {1,...,n}. If d > 2 is an integer and’,...,V, C V, then we let
Ea(V1, ..., V) signify the set of all subsetsC V' of cardinalityd such thai N V; # () for all 7. We omit
the subscriptl if it is clear from the context.

If H is a hypergraph, then we 1&t(H) denote its vertex set anfl( H) its edge set. We say that a set
S C V(H) is reachable fromil’ ¢ V(H) if each vertexs € S is reachable from some vertexe T.
Further, if V(H) Cc V = {1,...,n}, then the subsets f can be ordered lexicographically; hence, we
can define théargest componenif H to be the lexicographically first component of ordé(H ).

We use the)-notation to express asymptotic estimatesias> co. Furthermore, iff (z1, ..., zx, n)
is a function that depends not only anbut also on some further parametetsfrom domainsD; C R
(1 <i < k),andifg(n) > 0is another function, then we say that the estinfdte,, . . . , xx, n) = O(g(n))

holdsuniformly inz+, ...,z if the following is true: ifZ; andD;, Z; C D;, are compact sets, then there
exist numbers = C(Zy,...,Z;) andng = no(Z1, ..., Zx) such that f (z1, ..., x5, n)| < Cg(n) for all

n > ngand(zy,...,xx) € Hle Z;. We define uniformity analogously for the other Landau syls62

O, etc.

We shall make repeated use of the followi@gernoff boundn the tails of a binomially distributed
variableX = Bin(v, ¢) (cf. [11, p. 26] for a proof): for any > 0 we have

PIX - E(X)| = t] < 2exp (—m> : (7



Moreover, we employ the followinfpcal limit theoremfor the binomial distribution (cf. [6, Chapter 1]).

Proposition 3. Suppose that < p = p(n) < 1 is a sequence such thap(l — p) — oo asn — oo. Let
X = Bin(n, p). Then for any sequenae= x(n) of integers such that: — np| = o(np(1 — p))?/3,

(z —np)?
2p(1 - p)n)

Furthermore, we make use of the following theorem, whichmsanizes results from [7, Section 6] on
the component structure &f;(n, p).

P[X =z] ~ (2mnp(1 —p))_% exp (— asn — oo.

n—l)fl.

Theorem 4. Letp = ¢(’,”;

1. Ifthere is a fixedy < (d — 1)~ ! such thaic = ¢(n) < o, then
P [N (Ha(n,p)) <3(d—1)*(1 = (d — 1)co) *Inn] >1—n"'%.

2. Suppose thaty > (d — 1)~!is a constant, and thaty < ¢ = ¢(n) = o(Inn) asn — oc. Then the
transcendental equation (2) has a unique solution p = p(c) < 1, which satisfies

pn _
<d_1)p<cg<(d—1) L (8)
for some number, > 0 that depends only om,. Moreover,

|E W (Ha(n,p))] = (1 = p)n| < n°V),

pll—p+ed-1)(p—p"H]n
(1 —c(d—1)pd=1)2 '

Var(N(Ha(n,p))) ~

Furthermore, with probability> 1—n =10 there is precisely one component of ordes-o(1))(1—p)n
in Hy(n, p), while all other components have orderln?® n. In addition,

P [N (Ha(n,p)) — BN (Ha(n,p)))| > n®'] < n~100.

Finally, the following result on the component structureff(n, p) with average degre(é;j)p <
(d — 1)1 below the threshold has been derived in [7, Section 6] vidhbery of branching processes.

Proposition 5. There exists a function: (0, (d—1)71)x[0,1] — R0, (¢, &) = (¢, &) = Yoo, ar(¢)€F
whose coefficients — ¢ (¢) are differentiable such that the following holds. Suppdsg 6 < p =
p(n) < 1is a sequence such that< (Z:I)p =c=c(n) < (d—1)"! — ¢ for an arbitrarily smalle > 0
that remains fixed as — oo. Let P(c, k) denote the probability that ifif;(n, p) some fixed vertex € V/

lies in a component of ordédr. Then
Ple,k) = (1+o(n™ %)) qu(c) forall 1 < k <In’n.
Furthermore, for any fixed > 0 there is a numbed < v = v(e) < 1 such that

qr(c) <4F forallo<c< (d—1)"' —e. 9)

3 Proof of Theorem 2

Throughout this section, we assume that ¢(n) = (Zj)p € J for some compact intervall C
((d — 1), 00). Moreover, we leZ C R be some fixed compact interval, andienotes an integer such
that(v — (1 — p)n)/o € Z. All asymptotics are understood to hold uniformlyciand (v — (1 — p)n)/o.



3.1 Outline

Lete = ¢(J) > 0 be independent af and small enough so that — ) (%~ )p > (d — 1)~ + &. Set
p1 = (1 — &)p. Moreover, letp, be the solution to the equatign + p2 — p1p2 = p; thenpy ~ ep. We
expose the edges &f;(n, p) in four “rounds” as follows.

R1. As afirst step, we let/; be a random hypergraph obtained by including each o(jbupossible edges
with probabilityp; independently. Le€' denote the largest componentidf.

R2. Let H, be the hypergraph obtained frofy by adding each edge¢ H; that lies completely outside
of G (i.e.,e C V' \ G) with probabilityp, independently.

R3. Obtain H; by adding each possible edgeZ H; that contains vertices of boti andV \ G with
probabilityp, independently.

R4. Finally, include each possible edgeZ H, such thate C G with probabilityps independently.

Here the 1st round corresponds to the first portion of edgesiomed in Section 1, and the edges added in
the 2nd—4th round correspond to the second portion. Notédheach possible edgecC V the probability
thate is actually present i, is p1 + (1 — p1)p2 = p, henceH, = Hy(n, p). Moreover, ag",~})p1 >

(d — 1)~! + ¢ by our choice of, Theorem 4 entails that w.h.jpl; has exactly one largest component of
linear sizef2(n) (the “giant component”). Further, the edges added in thealihd do not affect the order
of the largest component, i.eV,(Hy) = N (H3).

In order to analyze the distribution &f (H,(n, p)), we first establisksentral limit theorems$or N (H; ) =
|G| and N (H3) = N(Hy) = N(Hg(n,p)), i.e., we prove that (centralized and normalized versions
of) N(H,) and N(H3) are asymptotically normal. Then, we investigate the nundfererticesS =
N (Hs3) — N(Hy) that get attached t@; during the 3rd round. We shall prove tlgaven thalG| = nq, S
is locally normal with meanus + (n1 — p1)As and variancer% independent ofi; . Finally, we combine
these results to obtain the local limit theoremA6t H,(n,p)) = N (Hs) = N(Hy) + S.

Lete; = (%-1)p1 andes = (~;)p. Moreover, letd < ps < p; < 1 signify the solutions to the

transcendental equatiops = exp [c; (pj‘1 —1)] and set forj = 1,3

o pill=pi+c(d=1)(p;—pi H]n
pi=(1—pjn, oj= =112
(1 =ci(d=1)p;)

The following proposition, which we will prove in Section &stablishes a central limit theorem for both
N (H,) and N (H3) and thus proves Theorem 1.

Proposition 6. (N (H;) — uj)/o; converges in distribution to the standard normal distribatfor j =
1,3.

With respect to the distribution &, we will establish the following local limit theorem in Semt 4.

(cf. Theorem 4)

Proposition 7. Suppose thati; — p1| < n%.

1. The conditional expectation &fgiven that| G| = n; satisfieE(S|N, = n1) = pus + As(ng — 1) +
o(v/n), whereus = ©(n) and\s = ©(1) are independent of; .

2. There is a constar@ > 0 such that for alls satisfying|us + As(n1 — u1) — s| < n%°¢ we have
P[S =vN =ny] < Cne.

3. If sis aninteger such thdius + As(n1 — 1) — 5| < O(y/n), then

LI (us + As(na — p1) — s)?
V2ros 20% ’

wherecs = ©(/n) is independent af;.

P[S:S|N1 :nl] ~

SinceN; = N + S, Propositions 6 and 7 yield
3 = 1 + pis +o(v/n). (10)

Combining Propositions 6 and 7, we derive the following fataforP [N3; = v] in Section 3.2. Recall
that we are assuming thatis an integer such thdt — ) /o = (v — pg) /o3 € .



Corollary 8. Lettingz = (v — y3)/03, we have

[e’e) 2 2
PNs=v] ~ ! / exp [—£—1<(x-(1+kg)2—z-2) ]dm. (12)
2nos J_o 2 2 os os
Proof of Theorem 2ntegrating the right hand side of (11), we obtain an expoessf the form
B 1 (v —k)?
PN;=v] ~ Wor exp <— 52 > , (12)

wherer, 72 = ©(n). Therefore, on the one hafid/s — 113) /o3 converges in distribution to the normal dis-
tribution with means — ;3 and variancér /o3)2. On the other hand, Proposition 6 states {Naf— 13) /o3
converges to the standard normal distribution. Consetyyent— p3| = o(7) andr ~ 3. Plugging these
estimates into (12), we obtaln [NV = v] ~ \/%Ug exp (—%(v — ps)?03?). SinceNs = N (Hq(n,p)),
this yields the assertion. ‘ |

3.2 Proof of Corollary 8

Let a > 0 be arbitrarily small but fixed as — oo, and letC’ = C’(«) > 0 be a large enough number
depending only om. SetJ = {ny € Z : |n1 — 1| < C'/n},letJ ={n1 € Z : C'\/n < |n1 — | <
n%6}, andJ” = {ny € Z : |n1 — p1| > n%6}. Then letting

Ux = > PN =m]P[S=v-—m|N =ny], forXe{JJ J'}
nieX

we haveP [N3 = v| = ¥; + ¥ + ¥, and we shall estimate each of the three summands indiydual
Since Theorem 4 implies th&[|N7 — y1| > n®*1] < n~1%, we conclude that
Wy <P[N e J'] <n 100 (13)
Furthermore, as? = O(n), Chebyshev’s inequality implies that
PNy € J] <P [N — | > C'Vn] <oiC 07! < a/C, (14)
provided that”’ is large enough. Hence, combining (14) with the second gdttaposition 7, we obtain
Uy <P[N €J]: % < C‘f‘jﬁ <an~2, (15)
where once we need to picK sufficiently large.
To estimate the contribution ef; € J, we split.J into subintervals/y, . .., Jx of length betweenr7;

andZ;. Moreover, letl; be the interval(min J; — 11) /01, (max J; — p1)/o1]. Then Proposition 6 implies
that

1\/—2_: : exp(—22/2)dx < Z PN =n] < 1\/‘; ) exp(—a2/2)dz (16)

’ﬂler
for eachl < j < K. Furthermore, Proposition 7 yields

v—n1— pus — As(n1 — 2
eXp(_( 1 Ms%?ss( 1 — 1)) >

1
PS=v—m|N =n] ~ N
S

for eachn; € J. Hence, choosing’ sufficiently large, we can achieve that forall € J; and allz € I;
the bound

2 _ _ _ _ _ 2
PS=v—-—mN =n] < (1+0a) XP<—<V p — o1 — ps — As(m Ml)))

——¢
Voros 20?9

2
(10) (\1/;—_71-312 exp (_% ((m 1+ )\S)Z_; — . Z—z) ) a7



holds. Now, combining (16) and (17), we conclude that

J—ZZ WV =m|P[S =v—ni|N] =ny]

Jj=1ni€J;
1+ a)? 22 1 o1 03 ?
- — = 14+ As)— — 2z — d
2mos = /I b [ 2 2 ((x (1+ 8)05 i os v
1+4a [ 2 1 03 2
< —_ == 14+ Ag)— —2-— dx. 18
— 27os /_mexp[ 2 2 (( ( + S) os = 0'5) * ( )

Analogously, we derive the matching lower bound

1—da [ 2 1 2
vy > a/ exp - (z (1—|—)\5)——z 73
2r0s J_o 2 2 s os

Finally, combining (13), (15), (18), and (19), and remenihgthatP [N3 = v] = ¥; + Wy + W, We
obtain the assertion, because- 0 can be chosen arbitrarily smalliif gets sufficiently large.

da. (19)

4 The Conditional Distribution of S

Throughout this section, we keep the notation and the assomspfrom Section 3. In addition, we let
G C V be a set of cardinality,; such thatn; — pq| < n®S.

4.1 Outline

The goal of this section is to prove Proposition 7. Let us dioron the event that the largest component
of H, is G. To analyze the conditional distribution 6f, we need to overcome the problem thatfh

the edges in the séf \ G do not occur independently anymore once we conditioddeing the largest
component off/;. However, we will see that this conditioning is “not veryastg”. To this end, we shall
compareS with an “artificial” random variabl&, which models the edges containedin G as mutually
independent objects. To defife;, we set up random hypergrapHs ¢, j = 1,2, 3, in three “rounds” as
follows.

R1'. The vertex set off; ¢ is V = {1,...,n}, and each of thé""!) possible edges C V \ G is
present ind; ¢ with probabilityp, independently.

R2’. Adding each possible edgec V' \ G not present ind; ¢ with probabilityp, independently yields
Hj .

R3'. ObtainH; ¢ from Hs ¢ by including each possible edgéncident to bothz andV \ G with proba-
bility p, independently.

The process R1'-R3’ relates to the process R1-R4 from Se8tibas follows. While inff; the edges
in V'\ G are mutually dependent, we have “artificially” construcféd in such a way that the edges
outside ofG occur independently. Thelt{, ; andH; ; are obtained similarly a&/> and H3, namely by
including further edges inside df \ G and crossing edges betwe€handV \ G with probability ps.
Letting S denote the set of vertices i \ G that are reachable fro@, the quantitySz = |S¢| now
corresponds t&. In contrast to R1-R4, the process R1'-R3’ completely diards edges inside @f,
because these do not affét. The following lemma, which we will prove in Section 4.3 st®thatSs
is indeed a very good approximation®f so that it suffices to stud§c.

Lemma 9. Foranyr € ZZ we haveP [S = v | N (Hy) = nqy] — P [Se = v]| <n™?

As a next step, we investigate the expectatio§@fWhile there is no need to compUiéS; ) precisely,
we do need thaf(Ss) depends om; — p; linearly. The corresponding proof can be found in Section 4.4.



Lemma 10. We haveE(Sg) = s + As(n1 — p1) + o(y/n), whereus = ©(n) and\s = ©(1) do not
depend om;.

Furthermore, we need that the varianceSef is essentially independent of the precise valueofThis
will be proven in Section 4.5.

Lemma 11. We havéVar(Sg) = O(n). Moreover, ifG’ C V' is another set such thati; — |G'|| = o(n),
then|Var(Sg) — Var(Se/ )| = o(n).

To show thatS¢ satisfies a local limit theorem, the crucial step is to prdwa for numbers and+¢
such thats is “close” tot the probabilitie® [Si = s], P [Sg = t] are “almost the same”. More precisely,
the following lemma, proven in Section 4.2, holds.

Lemma 12. For everya > 0 there is3 > 0 such that for alls, ¢ satisfying|s — E(Sg)|, |t —E(Sg)| < n°6
and|s — t| < An'/? we have

(1-a)P[Seg=s]-n"""<P[Sg=t]<(1+a)P[Sc=s]+n""
Moreover, there is a constanit > 0 such that® [S¢ = s] < Cn~'/2 for all integerss.

Letting Gy = {1,..., [u1]}, we definer? = Var(S¢, ) and obtain a lower bound ars as an immediate
consequence of Lemma 12.

Corollary 13. We havers = 2(/n).

Proof. By Lemma 12 there exists a numhiek 3 < 0.01 independent ofi such that for all integers, ¢
satisfying|s — E(Sg)|, |t — E(S¢)| < v/nand|s — t| < 5/n we have

P[Sg=1t>-P[Sc=s]—n' (20)

Wl

Sety = (3?/64 and assume for contradiction thaf < ~n/2. Moreover, suppose th& = G, =
{1,...,Tu1]}. Then Chebyshev’s inequality entails tHaf|Se — E(S¢)| > \/n] < 3. Hence, there
exists an integes such thats — E(Sg)| < /yn andP [S¢ = 5] > %(Wn)_%. Therefore, due to (20) we
haveP [S¢ =t] > %(Wn)_% for all integerst such thats — t| < 3/n. Thus, recalling thaty = 3%/64,
we obtainl > P [[S¢ — s| < Bv/n] = 3, i_g<pym P [Sc =t = f\%ﬁn > 1. This contradiction shows
thato% > yn/2. O

Using the above estimates of the expectation and the var@i&; and invoking Stein’s method once
more, in Section 5 we will show the following.

Lemma 14. If [ny — u1| < n%%¢ then(Sg — E(Sg))/os is asymptotically normal.

Proof of Proposition 7The first part of the proposition follows readily from Lemnthand 10. Moreover,
the second assertion follows from Lemma 12. Furthermoreshvadl establish below that

P[SG:S]N

exp <_%) for any integers such thats — E(Sg)| = O(v/n). (21)

1
V2T
This claim implies the third part of the proposition. Fer— E(S))205? ~ (s + As(n1 — p1))?05° by
Lemma 10 and Corollary 13, aitl[S = s|N7 = ny| ~ P [S¢ = s] by Lemma 9.

To prove (21) letv > 0 be arbitrarily small but fixed. Sinegz = ©(n) by Lemma 11 and Corollary 13,
Lemma 12 entails that for a sufficiently smalt> 0 and alls, ¢ satisfying|s — E(Sg)|, |t — E(Sg)| < n°¢
and|s — t| < Bos we have

(1-a)P[Sec=5-n""<P[Seg=t]<(1+a)P[Sq=s]+n . (22)
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Now, suppose that is an integer such that — E(S¢)| < O(y/n), and set = (s — E(S¢))/os. Then
Lemma 14 implies that

— z+p
PlISe sl < frs] > = [ (a2 (1200 a2/, @)
provided thats is small enough. Furthermore, (22) yields that
P(|Sg—s| < Bos|= Y. PlSa=1]<pos(1+a)P[Sc=s+n"")
t:[t—s|<Bos
< (1+a)BosP[Sg =s]+n~?, (24)

becausers = O(y/n) by Lemma 11. Combining (23) and (24), we conclude that

1 -2« 1 _ 1- (s —E(Sg))?
P[Sg =s] > . (S —222—n9> (—7.
86 =812 00 gy P T2 s T 2
Since analogous arguments yield the matching upper b&Usd = s] < 2o ex (—M)
o — V2mos b 20% !
and because > 0 may be chosen arbitrarily small, we obtain (21). a

Next we will prove Lemma 12 which provides the central logadirgument while the more technical
proofs of Lemma 9, 10 and 11 are deferred to the end of thigosect

4.2 Proof of Lemma 12

Since the assertion is symmetricdrandt, it suffices to prove tha [Sg = s] < (1 — ) 'P [Sg = 5] +
n~19 LetF = E(Hs,c) \ E(H2,c) be the (random) set of edges added duR3y. We splitF into three
subsets: letF; consist of alle € F such that eithefe \ G| > 2 or e contains a vertex that belongs to a
component of” \ G of order> 2. Moreover,F; is the set of all edges € F \ F; that contain a vertex
of '\ G that is also contained in some other edge F;. Finally, 75 = F \ (F1 U F3); thus, all edges
e € F3 connectl — 1 vertices inG with a vertexv € V'\ G that is isolated i, ¢ + F; + F», see Figure 1
for an example. Hencé{s ¢ = Hs ¢ + F1 + F2 + Fs.

Fig. 1. The three kinds of edges (black) which attach small compisrterz. The edges ofis, ¢ are depicted in grey.
The (3-uniform) edges are depicted as circular arcs spamy#te three vertices contained in the corresponding edge.

As a next step, we decomposg; into two contributions corresponding 18, U F» and F3. More
precisely, we IeiS‘glg be the number of vertices i \ G that are reachable frof in H, ¢ + F1 + F2 and
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setSie = Sg — Sy, Hence, if we letV signify the set of all isolated vertices &, ¢ + F; + F in the
setV \ G, thenS° equals the number of vertices W that get attached t6' via the edges itF;.

We can determine the distribution 6§ precisely. For ifv € W, then each edge containingv
and exactlyd — 1 vertices ofG is present with probability, independently. Therefore, the probability
thatv gets attached t6&/ is 1 — (1 — p2)(dnfl). In fact, these events occur independently forvalf W.
Consequently,

85 = Bin (W1 (1= p2) ™)), o = B(SE?) = WI(1 — (1 = p2)(™)) = (W), (25)

where the last equality sign follows from the fact that~ ep; = O(n'~9).

Hence S¢ = Sp® + Sk features a contribution that satisfies a local limit thegreamely the bino-
mially distributedSis°. Thus, to establish the locality &% (i.e., Lemma 12), we are going to prove that
Sc “inherits” the locality ofS°. To this end, we need to boumd/|, thereby estimatings, = E(SE°).

Lemma 15. We have® [|[W| > 3(n — ny) exp(—c)| > 1 —n~1°.

The proof of Lemma 15 is just a standard application of Azsnreéquality, cf. Section 4.6.
Further, letM be the set of all triple$H, I3, F») such that

M1. P [SG = S|H27G =H Fi=FN,F= FQ] > nill, and
M2. giventhatts ¢ = H, 71 = Fi, andF, = F;, the sebV has size> 1(n — ny) exp(—c) = 2(n).

Lemma 16. If |s—t| < 3+/nfor some small enough= g(«) > 0,thenP [S¢ = t|(Ha,¢, F1, Fa) € M| >
(1 — a)P [SG = S|(ngg,.7:1,.7:2) S M]

Proof. Let (H, F1, F») € M, and letb be the value oﬁgig giventhatH, ¢ = H, F; = Fy andF; = F5.
Then given that this event occurs, we h&ge = s iff Sig‘) =s—b.As(H, F1, F») € M, we conclude that

. (nl) M1 11
P[Sg = s|Hoc = H, Fi = Fy, Fo = F3] = P [Bm(|W|,1—(1—p2) ah ) :s—b} >p,

Therefore, the Chernoff bound (7) implies that- b — pis| < n%C. Furthermore, since we assume that

[t — s| < pn'/? for some smalBf = 3(a) > 0 and asuso = W|(1 — (1 —pg)(dn—ll)) > (2(n) due toM2,
Proposition 3 entails that

P [Bin (|W|, 1-(1 —pz)(d"fl)) —t- b} >(1—a)P [Bin (|W|, 1-(1— p2)(d"31)) —s— b} .
Thus, the assertion follows from (25). a
Proof of Lemma 12By Lemmas 15 and 16, we have

P[Sc=s] < P[Sq=s|(Haa F1,F2) ¢ MP[(Hz, F1,F2) ¢ M]+(1—a)"'P[Sc =1]
ML P I = on)] + (1 - @) TP Se = ] < (1— ) 'P[Sg = ] + n 71,

as claimed. O

4.3 Proofof Lemma9

Let L signify the event that? is the largest component éf,. Given thatCs occurs, the edges iHs — G

do not occur independently anymore. Follif: occurs, thend; — G does not contain a component on
more than|G| vertices. Nonetheless, the following lemma shows thd it £(V) \ £(G) is a set of
edges such that the hypergraiiE) = (V, E N E(V \ G)) does not feature a “big” component, then the
dependence of the edges is very small. In other words, tHeapility that the edge&’ are present il

is very close to the probability that these edges are préseéne “artificial” model H3 ¢, in which edges
occur independently.
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Lemma 17. For any setfl ¢ £(V) \ £(G) such thatV' (H (E)) < In® n we have
P[E(Hs)\ £(G) = E|Lc] = (1+0(n™'°))P[E(Hs,c) = E].

Before getting down to the proof of Lemma 17, we first show hbimplies Lemma 9. As a first step, we
derive that it is actually quite unlikely that eithéf; — G or H3  — G features a component on In®n
vertices.

Corollary 18. We haveP [N'(Hz — G) > In n|£G] P [N(H3 e —G) >In’*n] =0(n=1).

Proof. Theorem 4 implies thd? [J\/ Hs ¢ —G) > In? n] = O(n™1Y), becausél; ; simply is a random
hypergraphf,(n — ny, p), and (", "!)p ~ (” “M)p < (d—1)"* by (8). Hence, Lemma 17 yields that
P [N(Hs = G) <In®n|Le] > (1= O0(n )P [N(Hs g — G) <In’n] > 1-0(n"). 0

Proof of Lemma 9Let .4, denote the set of all subses C £(V) \ £(G) such that in the hypergraph
(V, E) exactlys vertices inV \ G are reachable frorti. Moreover, letB; signify the set of allE' € A,
such thatV'(H (E)) < In® n. Then

P [8 = S|£G] =P [E(Hg) \ E(G) S A5|£G] , andP [SG = S] =P [E(Hgyc) € AS] . (26)
Furthermore, by Corollary 18

PE(H3) \ £(G) € As\ Bs|Lc]
P[E(Hz,c) € As \ By

(N(H; — G) >In*n|Le] = O(n 1Y), (27)

<P
<P [N(Hsg —G) >In’n] =0(n ). (28)

Combining (26), (27), and (28), we conclude that

P[S=s|Lc] = PIEH;)\EG)EB,|Ls]+0n )
LMD (B(Hs ) € By + O(n~10) = P [Sg = 5] + O(n~19),

thereby completing the proof. a

Thus, the remaining task is to prove Lemma 17. To this endi{l¢t£) denote the event tha&(V \
G)NE(H,) = E. Moreover, letHs(E) signify the eventthaf (V \ G)NE(H:)\ E(H,) = E (i.e.,Eis
the set of edges added duriRg). Further, letH3(E) be the event thef (G, V\ G)NE(H3) = E (i.e.,.E
consists of all edges added Bg). In addition, define event® ¢ (E), H2,¢(E), Hs,c(E) analogously,
with Hq, Ho, Hs replaced by, ¢, Ha.¢, Hs, . Finally, letC¢ denote the event thét is a component of
H;. In order to prove Lemma 17, we establish the following.

Lemma 19. LetEy C E(V\G), E; Cc E(V\G)\ E1,andE; C £(G,V \ G). Moreover, suppose that
N(H(Ey)) < In2n. ThenP [/\;?’:1 Hi(Ei)|LG} = (14 0(n-10)P [/\fz1 HZ—VG(EZ-)} .

Proof. Clearly,

_ P [HQ(EQ) A H3(E3)|£G A Hq (El)] P [Hl(El) A Eg] . (29)

P P[]

N\ Hi(E)|La

i=1

Furthermore, sincR2 andR3 add edges independently of the 1st round with probahilityand because
the same happens duriR®’ andR3’, we have

P [HQ(EQ) VAN Hg(Eg)lEG AN Hl(El)] =P [H27g(E2) AN H37g(E3)|H17g(E1)] . (30)

Moreover, given that{; (E;) occurs,H; — G has no component on more thar? n vertices. Hence,
G is the largest component df; iff G is a component; that is, given that; (E£;) occurs, the events
L andCg are equivalent. Therefor®, [Lo A Hi(E1)] = P [Ca A Hi(E1)]. Further, whether or na¥
is a component off; is independent of the edges containediin\ G, and thusP [Co A Hi(E1)] =
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P [Cc] P [H1(E1)]. Hence, as each edge Ky is present inH, as well as inH; ¢ with probability p;
independently, we obtain

P[Le AHi(EL)] = P Calp P (1 = p)EV\D-IE — PlCa] P My 6 (Ey)] . (31)

Combining (29), (30), and (31), we obtain
_ Pl bl A gy
=g © L_/\lHl,c(E

Since by Theorem 4 with probability 1 — n~19 the random hypergrapl; = H,(n,p1) has precisely

one component of orde?(n), we getP[SG]] =1+ 0(n~19). Hence, (32) implies the assertion. a

3

/\ Hi(E;)|La

i=1

p (32)

Proof of Lemma 17For any setE C £(V) \ £(G) let F(E) denote the set of all decompositions
(Er, Es, E5) of E into three disjoint sets such thét, 2 ¢ E(V \ G) andE; C E(G,V \ G). If
N(H(e)) < In®n, then Lemma 19 implies that

3

P[E(H3) \ £(G) = E|Lg] = > P l/\ Hi(E:)|La
ef(E)

(Ev,E2,E3) i=1

—a+om) Y

(El,Ez,E3)€.7:(

(1+0(n'°)P[E(Hs,c) = EJ,

/\HzG

as claimed. O

4.4 Proof of Lemma 10

Recall thatSs signifies the set of all vertices € V \ G that are reachable fro& in Hs ¢, so that
@ = |S¢|. LettingC,, denote the component éf; ¢; that containg € V', we have

n—mni

E@Sc)= D> PleSel= Y > PlveSclCl=HrP[C|=H (33)

vEV\G vEV\G k=1

Since Hs ¢ is just a random hypergrapti,;(n — ny, p), and becaus€”, "\*)p ~ (", )p < (d — 1)~
by (8), Theorem 4 entails that' (H,, ) < In® n with probability> 1 — n—'°, Therefore, (33) yields

ESa)=ol)+ > > PlesSqllC]=kPC)|=H. (34)

vEV\G 1<k<In2n
To estimateP [v € S¢||C.| = k], letz = z(n1) = (n1 — p1) /o1, &o = exp [—pg [(Zj) - ("d:“ll)H ,and
§(2) = & |1+ zouma ("1 | Additionally, let¢(2) = ("1 )p ~ (55)p = 201 (5.
Lemma 20. Forall 1 < k < In*nwe haveP [v € Sg | |Cy| = k] = 1 — £(2)F + O(n~" - polylogn).
Proof. Suppose thdC,| = k butv ¢ S¢. This is the case iff i3  there occurs no edge that is incident

to bothG and(,. Letting £(G, C(v)) denote the set of all possible edges conneafirgndC,, we shall
prove below that

1E(G,C)| =k [(di 1) — (nd__ﬂll) + dzill (nd__uzl)} + O(n%2 . polylogn)
= O(n""" - polylog@5)




14

By construction every edge §(G, C,,) occurs inHs ¢ with probabilityp, independently. Therefore,

Plo @ ScllCul = k] = (1= p2) "G = (14 0(n™" - polylogn)) exp [-ps[€(G, C,)]
21+ 0(n" - polylogn)¢(=)*,

hence the assertion follows.
Thus, the remaining task is to prove (35). As a first step, vesvshat

soen-()- () ()0 e

For there arg(") possible edges in total, among whi¢h,*) contain no vertex ot,, (") contain
no vertex ofGG, and ("*’;*k) contain neither a vertex a, nor of G; thus, (36) follows from the in-
clusion/exclusion formula. Furthermore, s= O(polylogn), we have() — (%) = (1 + O(n~* -

polylogn))k(,",) and(";"*) — (""" %) = (1 + O(n~" - polylogn))k (", ). Thus (36) yields

I£(G,C(v))] = (14 O(n~" - polylogn))k Kdﬁ 1) - (”d__”llﬂ . (37)

Asny = 1 + zoy, we have(", ") = (") — zo1 (") + O(n?~2 - polylog n), so that (35) follows

from (37). a

Letq(¢,€) = > pe; ax(Q)&F be the function from Proposition 5. Combining (34) with Posjtion 5
and Lemma 20, we conclude that

E(Sq) = o(n'/?) +q((n = m)p,£(2))(n — n1) = o(n'/?) + ¢(((2),£(2))(n = n1). (38
Sinceq is differentiable (cf. Proposition 5), we les; = 52(¢(0),£(0)) and A = 52(¢(0),£(0)). As
((2) = €(0),€(2) = £(0) = O(n~1/2), we get
4(¢(2),£(2)) = a(€(0),£(0)) = (¢(2) = C(0) A¢ + (£(2) — £(0)) Ag + o(n™'/?)

= (") lodepn = Aci + ofu ), (39)

Finally, letus = (n — 11)q(¢(0),£(0)) andAs = ¢(¢(0),£(0)) — (d — 1) [e&oA¢ — A¢ (" }')p. Then
combining (38) and (39), we see tHatS¢) = us + zo1 s + o(y/n), as desired.

4.5 Proofof Lemma 11

Remember thab denotes the set of all “attached” vertices, aNg the order of the component of
v € V' \ Ginthe graphf .
The following lemma provides an asymptotic formula¥ér(S¢).

Lemma 21. Letrg,; = P[Ny,g=iAv € Sg] andrg,; = P[N, ¢ =1iAv ¢ Sg] for any vertexv €
V '\ G. Moreover, set¢ = Sr rci, Re = Y1 irGi, Re = Yo ifq, for L = [In?n]. In
addition, letag = 1 — |G| /n and

R? _ _ 1—ad?_
I'c=(1-Rg)(Rg—rc)+((d—1)c— 1)7«_5 +Rg+(d—1)(1-a 2)acR2g+ﬁRg. (40)
e

ThenVar(Sg) ~ a2 Ign + agra(l —rg)n.



15

Before we get down to the proof of Lemma 21, we observe thatplies Lemma 11.

Proof of Lemma 11By Theorem 4 part 2 together with Lemma 9 we know that with piolity at least

1 — n~8 there are no components of orderln® n inside of V' \ G. Letq(¢,€) = Soo0, ¢1(C)EF be the
function from Proposition 5, and 1€t 2) be as in Lemma 20. Then Proposition 5 and Lemma 20 entail that
forallv e V\G

ras=a ("5 o) 6= o, ros~a (" 15)0) (= 61 = o

By (9) there exists a numbeér< ~ < 1 such that; ((" Np ) < % Sinced < £((|G|—p1)/o1) <1
this yieldsrq ;, 7¢ + < 7'. Hence,Rg, Rg = O(1), so that Lemma 21 impliegar(Sg) = O(n).
Finally, if G’ ¢ V satisfies|G’| - |G| < n%, then| ("1 p— ("71S1)p| = O(|G|~|G"|) /n, because

p = O(n'~%). Therefore)q; ((n;i?l)p) —q ((" “Np ) | = O(|G] — |G"|)/n, because the function

¢ — ¢i(¢) is differentiable. Similarly, a§(z) = & (1 + zo1p2 (", %)) for some fixedty = O(1), we have
(|G|~ 1) /1) —E((|G'|—p1) [o1)| = O(|G|—|G"]) /n. Consequentlyrc ; — ¢ i| = O(|G|—|G'|)/n
and|rg.; — 7o 5| = O(|G| — |G'])/n, and thus

re —rel |Re = Rerl, |Re — Rer| = O(IG| = [G'])/n = O(n™ ).

Hence, Lemma 21 implies thi¥ar(Sg) — Var(Se/)| = o(n). O

The remaining task is to establish Lemma 21. Keepihfixed, in the sequel we constantly omit the
subscript in order to ease up the notation; thus, we wiitinstead ot etc. As a first step, we compute
P(v,w € S) — r?. Setting

L
51=Z[P[N =jAweSwgCyyNy,=i,veS|—P[N,=jAweS]
ij=1

Plw¢ C,|N, =i,v € S]P[N, =iAveS],

L
5’2:(1—7’)2 [we Cy|Ny, =i,ve S]P[N, =iAveS],
i=1

we haveP (v, w € S) —r? = 51 + So.
To computeS,, observe that whether € C, depends only onV,, but not on the event € S.

ThereforeP [w € C,|N, = i,v € S] =P [w € Cy|N, =] = (7)) (’;:11)_1 ==L
N, = i, there arg"°",") ways to choose the sét, C V' \ G, while there arg°"?) ways to choos€,

in such a way thatv € C,,. As a consequence,

L 1—1r

S,

N,=iNveS|= (R—r).

With respect taS,, we let
Pi(i,j) =P [Ny = jlw & Cy, Ny = 1],
Py(i,j) =Plwe S|Ny =j,w &€ Cy, N, =i,v € S],
so that
1= [P0, j)Pa(i.§) = P[Nu = j Aw € S|P [w & Cu|N, =i,v € S]P[N, =i Av € 5]
i

~ > [Pi(i,)Pa(i, §) = P [Ny = ] P [w € S|Ny = j]JP [N, =i Av € S].

4]
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Lemma 22. We haveP, (i, j)P [N,, = j] " = 1 + {d=De Vit o -2 polylog n).

n—mi

Proof. This argument is similar to the one used in the proof of Lemman47]. Remember that if we
restrict our view orfls ¢ to the sel/ \ G the hypergraph is similar to Hy(n — n1, p). In order to estimate
S, we observe that

P[Ny, =jinHy(n —n1,p) | Ny =i, w g C,)] =P [Ny, =jin Hy(n —nqy,p) \ Cyl. (42)

Given thatN, = i, Hy(n,p) \ C, is distributed as a random hypergrafih(n — n; — 4, p). Hence, the
probability thatN,, = j in Hy(n,p) \ C, equals the probability that a given vertexi@f;(n — n1 — ¢, p)
belongs to a component of ordgr Therefore, we can compale[N,, = j in Hy(n — ny,p) \ C,] and
P [Ny, = jin Hy(n — nq,p)] as follows: inH;(n—n; —i,p) there are("";.ljli_l) ways to choose the set
Cw \ {7} Moreover, there ar§*~"~*) — ("~ ~*=7) — (J) possible edges connecting the chosergt
with V' \ C,,, and ag”,, is a component, none of these edges is present. Since edtkdye is present
with probability p independently, the probability that there is@g-V" \ C,, edge equals

(1= (=),

By comparison, inH,(n — ny, p) there are("_j’fl_l) ways to choose the vertex set@f,. Further, there
are (") — (""" 77) — (/) possible edges connectiig, andV \ C,,, each of which is present with

probabilityp independently. Thus, letting= ("~ ~*) — ("™ ) = [(*") — (""" 77)] , we obtain

P[N, =jin Hyn—ni,p)\C,] (n—ni—i—-1\(n—-n—1 -1
P [N, = jin Hy(n —ny,p)] _( j—1 )( i1 ) (1-p). (42)

Concerning the quotient of the binomial coefficients, weehav

(n —ny—i— 1) (n —ny— 1) - ~ exp [_M +0(n2- polylogn)] . (43)

j—1 7g—1 n—ng

Moreover;y = (") {("’”1’i)”(”’"l’j)d’(”’"l’i’j)d - 1}. Expanding the falling factorials, we get

(n—n1)a

o (n—n) l(g)(i2+j2—(i+j)2)

_ n—nr\.. _
d (n—nq)? +0(n~? 'pOllegn)l = —< d— 21>m + O(n%=3 . polylogn).

(44)

Plugging (43) and (44) into (42), we obtain

Pl =jin e -mp\Col _ [ 831

= - +0(n~? - polylogn } | — p)~ (i) 740~ polylogn)

(i1 _
= exp [—M + (nd _T;l)ijp +O(n~? - polylog n)}

=1+ n—n1) " [((d=1)c—1)ij +i] + O(n? - polylogn).
Therefore, by (41)

p [Nw = .]|N71 = ia w ¢ Cv] -P [Nw - .] in Hd(n - nlvp)]
=P [Ny = jin Ha(n — ny,p)] [n7" [((d — 1)c — 1)ij + i] + O(n~* - polylog n{45)
O

Lemma 23. Settingy; = P[Ues‘}v:jj]zf_ad,l) andvy; = (d — 1)(1 — a??)ec, we havePs(i,j) —

Plwe SNy =j] =n"'Pw & S|Ny = j] (jm — ijy2) + O(n=2 - polylogn).
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Proof. Let F be the event thav,, = j, w € C,, N, = i, andv € S. Moreover, letQ be the event
that in 5 there exists an edge incident to the three 6&tsC,,, andG simultaneously, so thd® (i, j) =
P[Q|F]+Plw € S|-Q, F]P[-Q|F].

To boundP [w € S|-Q, F] — P [w € S|N,, = j], we condition on the event thét, andC,, are fixed
disjoint sets of sizesandj. Let @)’ signify the probability that’,, is reachable front in H3 ¢, and let
@ denote the probability that',, is reachable fronG in Hs ¢, and that the eventQ occurs. Ther®’
corresponds t® [w € S|N,, = j] and@ to P [w € S|-Q, F], so that our aim is to estimatg¢ — Q’. As
there are&(G, C,)| — |E(G, Cy, Cy,)| possible edges that joifi, andG but avoidC,,, each of which is
present inHs ¢ with probabilityp, independently, we have

Q =1 (1 _p2)IE(G,CU)I—IE(G,CU,CU,)‘7 while QI =1 (1 _pQ)IE(Gan)"
Therefore,

Q—Q =(1-p)ECECull1 (1 _pz)—w(acmcmq

~ (1= Q) - e (G CnCall) ~ @ -1 (") = () 2

As (%~ 1)ps2 ~ ec, we thus get
Plwe S|-Q,F] —Plwe SN, =j] ~ij(P[we SN, = j] — 1)(d—1)(1 — a® Heen™!.  (46)

With respect td [Q|F], we letK signify the number of edges joinin@, andG. Given thatF occurs,
K is asymptotically Poisson with mean = i [(dﬁl) - (d’?l)} pa ~ i(1—a?"1)ec. Moreover, given that
K = k, the probability that one of thedeedges hitg”,, is P (k) ~ kE(G.Cu.Cu) and thus

£(C..0)
-1 d—2
) n no n no ) 11—«
P~k (25) = (o)) [(a20) - ()] e izt
Consequently,
exp(— jk il —a’?)
P . 47
O~ T Z n(l—exp( A — @ T) *7)
Combining (46) and (47), we obtain the assertion. a
Thus,

L
nSy~Y PleSAN, =i

i=1

L
XZ[((d—l)c—1)ij+i]P[w€S/\Nw=j]+P[w€S/\NwZj][71j+’72ij]
j=1
R? 1—ad 2 =
R a2y m2, Ll
:((d—l)c—l)T—i-R—i—(d—l)(l—a JecR +1—ad_1

Hence, letting"” be as defined by (40) we ha?dv,w € S]—P [v € S]P [w € S]) ~ I'/n. Consequently,
Var(S) ~ al'n + a?r(1 — r)n.
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4.6 Proof of Lemma 15

The probability that a vertex € V' \ G is isolated inH; ¢ is at least(1 — p)(ndl:ll)(l - pz)(dil) ~
nlfl

exp(—p("t ) —ep(,",)) = exp(—c). Therefore,
E(IW]) = (1 = o(1)) exp(—c)(n — n1). (48)

To show thafW| is concentrated about its mean, we employ the followingiwarsf Azuma’s inequality
(cf. [11, p. 38)).

Lemma 24. Let(? = Hfil £2; be a product of probability spaces. Moreover, ¥t {2 — R be arandom
variable that satisfies the following Lipschitz condition.

If two tuplesw = (w;)1<i<k,w’ = (W])1<i<kx € §2 differ only in their;j’th components for (49)
somel < j < K, then|X (w) — X ()] < 1.

ThenP [|X —E(X)| >t < 26Xp(—%), provided thaf(X) exists.
Using Lemma 24, we shall establish the following.

Corollary 25. LetY be a random variable that maps the set of@&liniform hypergraphs with vertex set
V to [0, n]. Assume thaY” satisfies the following condition.

Let H be a hypergraph, andlete £(V). Then|Y (H)-Y (H+e)|,|Y(H)-Y(H—e)| <1.  (50)
ThenP [|Y (Hs.¢) — E(Y (Hs,¢))| = n%%] < exp(—n®"").

Proof. In order to apply Lemma 24, we need to decompfsg; into a produciﬂfi1 £2; of probability
spaces. To this end, consider an arbitrary decompositicheotetE (V) of all possible edges into sets
&1 U U&k sothatk < nandE(E(H;¢)NE;) < n'!foralll <j < K;suchadecomposition exists,
because the expected number of edgeSof; is < (Z)p = O(n). Now, let{2, be a Bernoulli experiment
with success probability for eache € £(V \ G), resp. with success probabilipg fore € E(G,V '\ G).
Then setting?; = [[ ¢, {2, we obtain a product decompositiéfy ¢ = 1, 2.

In addition, construct for each hypergrafhwith vertex setl” another hypergrapi * by removing
from H all edges: € &; such that E(H) N &;| > 4n! (1 <i < K). Since|E(Hs,¢) N &;| is the sum of
two binomially distributed variables, the Chernoff boui@) implies thatP | E(H3 ¢) N &]| > 4n®1) <
exp(—n"%). As K < n, this entails

P [H3 ¢ # H;G] < K exp(—n®%) < exp(—n®"), so that (51)
|[E(Y(Hs,q)) —E(Y(H;q)) <1 [becaus® <Y < n]. (52)

As a next step, we claim that*(H) = %n—“Y(H*) satisfies the Lipschitz condition (49). For

by construction modifying (i.e., adding or removing) anitesy number of edges belonging to a single
factor&; can affect at mostn®! edges ofHi *. Hence, (50) implies that *(H) satisfies (49). Therefore,
Lemma 24 entails that

P Y (H5 ) - E(Y(H; )| = n®®] <P [[Y*(Hsq) — E(Y*(Hs,6))| = n”**] < exp(—n"").
(53)
Finally, combining (51), (52), and (53), we conclude that
P [|Y(Hsc) - B(Y (Hs,c))| = n™*] < P[|[Y"(H) - E(Y*(H))| 2 n*%] + P [Hs.c # Hj g]
< exp(—n®")

3

thereby completing the proof. a

Finally, since|V|/d satisfies (50), Lemma 15 follows from Corollary 25 and (48).
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5 Normality via Stein’s Method

In this section we will use Stein’s Method to prove téfH,(n, p)) as well asSg tend (after suitable
normalization) in distribution to the normal distributidrhis proofs Proposition 6 as well as Theorem 1 and
Lemma 14. First we will define a general setting for usingr&seévlethod with random hypergraphs which
defines some conditions the random variables have to fulfién we show in two lemmas (Lemma 28
and Lemma 29) that the random variables corresponding(td;(n, p)) andS¢ do indeed comply to the
conditions and last but not least a quite technical partshiiw how to derive the limiting distribution from
the conditions.

5.1 Stein’s method for random hypergraphs

Let& be the set of all subsets of sizef V' = {1,...,n}, and letH be the power set &. Moreover, leh <
pe < 1foreache € £, and define a probability distribution gt by letingP [H] =[], pe-[[oce\ i 1—
pe. ThatisH € H can be considered a random hypergraph with "individual’eegigobabilities.

Furthermore, let4 be a family of subsets of, and let(Y,).c4 be a family of random variables.
Remember that fof) C V we setf(Q) = {e € £: enN@Q # 0}. We say thal, is feasibleif the following
holds.

For any two element&, H' € H such thatd N &(a) = H' N E(a) we haveY,, (H) = Y, (H').

That meand’, is feasible if its value depends only on edges having at @asendpoint irv. In addition,
setY2(H) = Yo (H\ E(S)) (He H,a € A, S CV,SNa=0). ThusY,? (H) is the value ofY,, after
removing all edges incident with. We define

Y = Z Yo, pa=E [Ya]a o® = Var [Y]’ Xo = (YO‘ - MQ)/U (54)
acA
B Ys ffanpg#£0
— = 1 A ’
o = Z Zag, WhereZ,g=o0"" X {Yﬁ - Yﬁa if anpg=0, (55)
BeA
Vap = Z Yo+ Z Y7 = YVQUB)/@ and (56)
~v:BNY#£D v:BNy=0
ANanNy=0 ANany=0
5= Y B[Xal 2]+ 3 (BllXaZagVasll + B XaZagllB [ Za + Vasl). (57
acA a,BeA

The following theorem was proven for graphs (ile= 2) in [3]. The argument used there carries over
to the case of hypergraphs without essential modificatibngs for the sake of brevity we omit a detailed
proof of this result.

Theorem 26. Suppose that alV,, are feasible. If§ = o(1) asn — oo, thenY_TE[Y] converges to the
standard normal distribution.

Now the following lemma states that a number of conditiongrenexpectations of the product of up to
three random variableg? will suffice for § = o(1). The conditions are identical for both statements we
want to prove and we will prove that they are fulfilled in bo#tses in the next two sections while the proof
of the lemma itself is deferred to the end of the section.

Lemma 27. Letk = O(polylogn) and let(Y,,).c.4 be a feasible family such that< Y,, < k for all
a € A. If the following six conditions are satisfied, thér- o(1) asn — .
Y1. We havéi(Y), Var(Y) = O(n), and)_ ¢ 4.5na0 #8 = O(E(Y)/n-polylogn) = O(polylog n).for
anya € A
Y2. Leta, 3, be distinct elements of. Then
Y. Y3=0 ifang#£0, (59)
(Y3 - YYo= (Y5 -Y§)Y, =0 ifanf=any=0+#307. (60)
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Y3. Forall o, Bwe haved " . 5.4 . na—p
Y4. If a, 8 € A are disjoint, then

E(Y5Y?) < k5.

E [Y.Y3] = O(taps - polylogn), (61)
E[Ys-Yg|] = O(% - polylogn), (62)
B [Ya| Vs — Y5[] = O(=222 - polylog n). (63)

Y5. If a, 3,7 € A are pairwise disjoint, then

E [Y3[Ye — YoUr|) = 0(% - polylogn), (64)
E[|Ys — Y- [V — YoUr|] = 0(“2# - polylogn), (65)
B [Yal¥s - Y5 - [¥5 = Y57|] = O(F*E0E2 - polylog n), (66)
E [Ya|Vs - Y§| - |Y, - Y2 = 0(% - polylogn), (67)
B[|(Ys = Y3)(¥, = )] = 02262 - polylog n). (68)
Y6. If a, 3,7 € Asatisfya N3 =an~y=0,then
E[Yf - viu = 0(% - polylog n). (69)

5.2 Conditions for the normality of N'(Ha(n, p))

In this section we will prove the properti&d—Y6 defined in Lemma 27 for the case of the normality of
N(Hd(nap))'

Letk = O(polylogn) and letA = {« C V : 1 < |a| < k}. Moreover, forA C VwithAna =0
let 74 = 1if « is a component ofl \ £(A), and0 otherwise. Further, séf” = |a| - I2. We briefly write
I, = 12 andY, = Y(f’. Then(Y,).c is a feasible family, because whetheis a component or not only
depends on the presence of edges that contain at least der o&x.

LetC(S) denote the even that the subhypergrapiahduced onS C V is connected. If,, = 1, then
C(«) occurs. MoreoverH contains no edges joiningandV \ «, i.e., HN E(a, V' \ ) = . Since each
edge occurs i with probabilityp independently, we thus obtain

P (I, =1] =P [C(a)] (1 — p)E>V A, (70)
Furthermore, observe that
Vae A, ACBCcV\a:I4=1-18=1. (71)

Proof of Y1: We know from Theorem 1 thd@ [Y] = ©(n) andVar [Y] = ©(n). To see that

> s =O(E[Y]/npolylogn),
BeA:BNa#D
note thatus := E[Yz] depends only on the size ¢f Thus withu, = pg for an arbitrary sets of
sizeb we haveE[Y] = Y, ps = 25:1 Z‘%% pp = 25:1 (}) s while Y seaBnago b8 =
k k n
2 b1 Zﬁ‘g?jf B < Xpmy k() -
Proof of Y2: (58): Suppose that, = 1. ThenH features no edge that contains a vertexxiand a

vertex ing. If in addition I§ = 1, then we obtain thal; = 1 as well. HenceY; = Y.
(59): This just means that any two componentg/oére either disjoint or equal.
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(60): To show that, (Y — Y§') = 0, assume thaf, = 1. Then+y is a component of/, so that3
cannot be a component, becaysg § buty N 8 # (); hence Iz = 0. Furthermore, ify is a component of
H, theny is also a component df \ £(a), so thatl$ = 1. Consequentlyl§ = 0. Thus,Y = Yg =0.

In order to prove that’ (Y — Yg‘) = 0, suppose that* = 1. ThenIj = 0, because the intersecting
sets, v cannot both be componentsBf\ £ («). Therefore, we also havg = 0; for if 5 were a component
of H, thenj would also be a component &f \ £(«). Hence, also in this case we obtaip = Y5 = 0.

Proof of Y3: Suppose thafz = 1, i.e., 3 is a component off. Then removing the edge¥«) from
H may caused to split into several component3,, ..., B;. Thus, ifo > 0 for somey € A such that
~vN B # 0, theny is one of the componenBl, ..., Bj. Sincel < |g| < k, this implies that giverds = 1
we have the bound_ _ 5y n— p Yy < k2. Hence we obtairy3.

The following Iemma which glves a description of the limitéependence between the random vari-
ablesI,, andI for disjoint« andg together with the fact tha [1, = 1] = O(u,) impliesY4-Y6.

Lemma28. Let0 < [,r < 2, and letay,...,a;, f1,..., 0, € A be pairwise disjoint. Moreover, let
Ay,...,A.,By,...,B, C Vbesetssuchthat; ¢ B, Cc V\ 8, and|B;| < 2kforall1 <i <r, and
assume thaff),_, B; \ A; = 0. Then

l r l r
NN Lo =1AT5 #1577 | <O - polylogn) [[ P [la, = U [[ P [Is, =1] .
i=1 j=1 J=1 J=1

Proof. Since (71) entails thall;jjj + Ii? — Ifjj =1A Ig‘jj = 0, we have

P{Vi,j:fmszg‘; #Iiﬂ} :P[w,jzlmz1AI;‘; =0AT) :1}. (72)

We shall bound the probability on the right hand side in teofm®utually independent events.
If I,, =1 andIBJ = 1 for all ¢, j, then the hypergraphs induced apand3; are connected, i.e.,

the eventf(al) andC(/BJ) occur. Note that these events are mutually independerapise€(«;) (resp.
C(B;)) onlydepends on the presence of edges& (o) \ E(V \ «;) (resp.e C £(B;) \ E(V'\ 5))).
Furthermore, ity; is a component, then il there occur no edges joining andV'\ «;; in other words,
HnNéE(a;, V\ ;) = 0. However, these events are not necessarily independeat$e (a1, V' \ aq ) may
contain edges that are incident with verticesiin Therefore, we consider the sets

= U oy U U ﬁj UBj, D(al) = S(ai,V\ai) \5(.7:((11)),

i"#i j=1

l
J):Ual UﬁJUU E(B;, V\ B;) \ E(F(85))-

i=1 J'#J j'=1

Thenl,, =1 (resp.If;j = 1) implies thatD(a;) N H = 0 (resp.D(8;) N H = (). Moreover, since
the setsD(«;) andD(3;) are pairwise disjoint, the evenf¥«;) N H = 0, D(3;) N H = () are mutually
independent.

Finally, we need to express the fact tﬁﬁtj = 0 but IBJ = 1. If this event occurs, the# contains

an edge connecting; with B; \ A;, i.e., H N £(3;, B; \A ) # (. Thus, letQ denote the event that
HNEB, B\ 4;) #@forall 1<j<nr
Thus, we obtain

.. A B
P [\72,1 Loy =1AI =0AIS = 1}

IN

l r
A\ (Clai) A (D(e) N H = () /\ D(B;) NH =0)) A Q
i=1 =1

I
.EN

P[C(e)] P [D(e) N H = 0] H DB)NH=0xP[Q].  (73)

=1
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We shall prove below that

P [D(a;) N H = 0] ~ (1= p)l )l P D) N H = 0] ~ (1 - p) 80V (74)
P[Q] = O(n™" - polylogn). (75)

Combining (70) and (72)—(75), we then obtain the assertion.
To establish (74), note that by definiti@«;) C £(a;, V' \ ;). Therefore,

P[D(o)NH =0] = (1 _p)"D(O‘i)‘ > (1 _p)\f(ai,v\ai)l. (76)

On the other hand, we haye;|, |F(a;)] = O(polylogn), and thus|& (i, Flay))| < |ag| - |Flay)| -
(,"5) = O(n=2 . polylogn). Hence, ap = O(n'~?), we obtain

P[D()NH = 0] = (1 —p)IPldl < (1 — p)llaiViai)]=E(a:F(ai))
~ (1 = p)lEnViedlexp(p - O(n?? - polylog n)) ~ (1 — p)/eleeV Nl (77)

Combining (76) and (77), we conclude tiafD(a;) N H = (] ~ (1 — p)l€(@:V\i)l| As the same argu-
ment applies t&@ [D(5;) N H = (], we thus obtain (74).
Finally, we prove (75). If- = 1, thenH contains an edge &f(51, B1 \ 41). Since

1E(B1, Bi \ A1)| < |B1] - |B1 \ A1] - 0?2 = O(n? - polylog n),

and because each possible edge occurs with probapilitdependently, the probability of this event is
P[Q] < O(n?2 . polylogn)p = O(n~"' - polylogn), as desired.
Now, assume that = 2. ThenH features edges; € £(8;,B; \ 4;) (j =1, 2).

1st casee; = es. In this caseg; contains a vertex of each of the four sgls (2, B1 \ A1, Ba \ As.
Hence, the number of possible such edges ig?~* H?Zl 13i] - |Bj \ 4] = O(n®=* - polylogn).
Consequently, the probability that such an edge occufg is < O(n?=* - polylogn)p = O(n=3 -
polylogn).

2nd caseie; # es. There are< |3;]-|B;\ 4;|-n?=2 = O(n?2.polylog n) ways to choose; (j = 1, 2).
Hence, the probability that such edgase, occur inH is < [O(n?~2 -polylogn)p]2 =02
polylogn).

Thus, in both cases we obtain the bound claimed in (75). ad

5.3 Conditions for the normality of S

In this section we will prove the properti&d—Y6 defined in Lemma 27 for the case of the normality of
Sa.

Consider aseff C V of sizen;. Let A be the set of all subsetsC V' \ G of size|a| < k. Moreover,
letp. =pfore CV\ G, p. =pafore e E(G,V\ G),andp. = 0if e C G.

ForA C VandAna = () setl? = 1if aisacomponentofl \ £(A U G). Moreover, let/2 = 1 if
(H\ E(A))NE(G,a) # 0. Further, letk 2 = IAJ4 andY,A = |a| KA. Then

P[K, =1 = Q2P [L, = 1]). (78)

Proof of Y1: Using Lemma 10 we have [Y| = ©(n) and using Lemma 11 we ha¥&r [Y] = O(n).
The proof of the rest 0¥ 1 is analogous to the proof of1 in the case ofV' (H,(n, p)).

Proof of Y2: (58): Suppose that', = 1. Thenl, = 1, so thatH \ £(G) has noa-S-edges. Hence, if
also K = 1, theng is a componentoff \ £(G) as well. ThusKs = 1, so thaty = V¢

(59): If K, = 1, thena is a componentoff \ £(G). Since any two components &F\ £(G) are either
disjoint or equal, we obtaifiz = 0, so thatYs = 0 as well.

(60): To show that, (Ys — Yg') = 0, assume thak’, = 1. Thenl, = 1, i.e., is a component of
H \ £(G). Since # ~ buts N~ # 0, we conclude thafs = 0. Furthermore, ify is a component of
H\ £(G), theny is also a component df \ £(G U «), whencelg = 0. Consequentlyy; = V' = 0.
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In order to prove tha¥* (Y — Y4§') = 0, suppose thak' = 1. ThenK§ = 1. Therefore [ = 0,
because the intersecting sgtsy cannot both be components Bf\ £(«). Thus, we also havé; = 0; for
if 3 were a component dff, then would also be a component &f \ £(a). Hence, also in this case we
obtainY = Y = 0.

Proof of Y3: Suppose thak(s = 1. Thenlg = 1, i.e., 5 is a component off \ £(G). Then removing
the edge<,, from H \ £(G) may cause’d to split into several componenty, ..., B;. Thus, ifo >0
for somey € A such thaty N 5 # 0, thenv is one of the componenf3,, ..., B;. Sincel < |3| < k, this
implies that given/z = 1 we have the bound

> ower
Y:yNB#D, yNa=0

Hence, we obtaity 3.
Similar to Lemma 28 the following lemma on the limited depence ofK,, and K3 for disjointa and
£ impliesY4-Y6.

Lemma29. Let0 < [,r < 2, and letay,...,a;, f1,..., 0, € A be pairwise disjoint. Moreover, let
Ay,..., A, By,...,B. C Vbesetssuchthat, C B, C V'\ g;and|B;| <O(1)forall1 <i <r,and
assume thaff),_, B; \ A; = 0. Then

T

l r l
P [/\ N\ Ko, =1 AK;‘; £ Kfjj] < O(n™" - polylogn) [[ P [Ka, = [[ P [Ks, = 1]
j=1

i=1 j=1 j=1

Proof. LetP = P [Vi,j: K, = 1A KAJ' ARy If KAJ' # K7, then either? # 1% or 1 =
7 ﬁ] ﬁ] ﬁ]

IBJ =1 andJB # JBJ Therefore, letting7 = {j : I ;é IBJ} andJ = {1,...,r}\ J, we obtain
P<P /\1 =1n N\ 1) 75]]/\/\( __1AJ£j¢J§j) : (79)
JjET JjeET

Now, the random variables, ., Aj andIBj are determined just by the edgesdn, £(G), while J;‘jj

and Jﬁf depend only on the edges #(G). Hence, as the edges &\ £(G) and in&(G) occur in H
mdependently, (79) yields

P<P /\Ia_l/\/\l 1/\/\I§jj;£15;j]-P[/\J§jj7éJ£j (80)

jed Jjeg jeTJ

Furthermore, Lemma 28 entails that

l T

[/\Ia =1A /\1 =1A /\I 7&131 < O(n~Vl-polylogn)- [ [ P e, = 1]- [ P [Z5, = 1] .

jed jeJ i=1 j=1
(81)
In addition, we shall prove below that
N 5 #J5| <0m™ olylog n). (82)
B; B; - polylog

jeT

Plugging (81) and (82) into (80), we gBt< O(n"" - polylogn) - [['_, P [, = 1] - [Tj=, P [Is, = 1],
so that the assertion follows from (78). B B
Thus the remaining task is to establish (82). Let us first déth the case|7| = 1. Letj € J.

If Jﬁ # Jﬁj, thenJﬁ =1 andJBJ = 0, becaused; C Bj;. Thus,3; is connected td> via an
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edge that is incident withl; \ B;; thatis,H N E(8;, B; \ A;) # 0. Since there ar&€(3;, B; \ 4;)| <

|B3;]-|Bj|-n?=2? = O(n?=2 - polylog n) such edges to choose from, and because each such edge ig prese

with probability p, = O(n'~%), we conclude thaP [Jﬁj £ T3 } < PIHNEWB;, B;\ A;) £0] <

O(n?2 - polylogn)ps = O(n~" - polylog n), whence we obtain (82).
Finally, suppose that7| = 2. If ng_j =+ ijﬂ' for j = 1,2, then there occur edges € H N E(5;, B, \

Aj) (G =1,2).

1stcasee; = eq. In this cases; = ey is incident with all four setg);, B; \ A; (j = 1,2). Hence, as the
number of such edgesis n?—* Hle |3;]-|B;j\4;| < O(n?=*-polylog n) and each such edge occurs
with probabilityp, = O(n'~%), the probability that the 1st case occur€i&’—* - polylogn)ps =
O(n=3 - polylogn).

2nd caseie; # es. Thereare< |3;|-|B;\A4;|-n?=2 < O(n?~2-polylogn) ways to choose; for j = 1,2,
each of which is present with probabiliy = O(n'~%) independently. Hence, the probability that the
second case occurs is bounded BYn?~2 - polylog n)p: | > < 0(n~2 - polylogn).

Thus, the bound (82) holds in both cases. a

5.4 Proof of Lemma 27

All we need to show is that the conditions defined in Lemma 20yrthato as defined by (57) tends to 0.
We will do so by proving that each of the three summands daurtirig tod is O(c3E [Y] - polylogn).
Together with conditiorY 1, stating thaft [Y], 02 = ©(n), this implies the statement. We formulate one
lemma for each summand, bounding the expectations usirgdjtamrs Y1-Y6. The proof of the lemmas
are mainly long and technical computations then.

Lemma30. Y . 4 E[|Xa| Z2] = O(c7®E[Y] - polylogn)
Proof. Let

2 2
51:ZE Ya( Z Yg) ,SQ:ZE ua( Z Yg) ,
acA B:anNB#£0 acA

S3=Y E Ya( > (m-nﬁ)) , Si=)_E ua( > (m-ﬁ)) .

acA B:anp=0 acA

SinceX, = (Yo — pa)/0 < (Yo + o) /o, (54) entails that

E [|Xa|Zi] < 20 °E (Yo + pta) ( Z Yﬁ) + ( Z (Ys _Yﬁa))

B:anB#£0
<2073(S) + S2 + S3 + S4).

Therefore, it suffices to show th&§ = O(E(Y") - polylogn) forj = 1,2, 3, 4.
RegardingS;, we obtain the bound

=3 Y Y Epyy, D ke S EY. (E[Y] - polylogn).
a€A B:anPB#D v:any#0 acA

With respect taS,, note that due to (59) and (61) we haué¢YsY,| < kug if 5 = v, E[Y3Y,] = 0 if
B #~ybutgn~y #0,andE [Y3Y,] = O(upgpy - polylogn) if 3N~ = (. Consequently,

:Zﬂa Z Z E[YBYV]

acA B:aNB#£D y:any#£D

Y1
<Y e Y, Y. Olpspy - polylogn) < O(E(Y) - polylogn). (83)
acA B:anB#£D y:any#£D
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ConcerningSs, we obtain

Sso= > > Y E[Ya(Y Y)Y, -YP)]

acA B:anB=0vy:any=0

DL Z > > O(papppyn - polylogn)

acA B:anB=0vy:any=0
Y1
O(n™? - polylogn)E(Y)? < O(E(Y) - polylogn).

To boundS,, we note that for disjointy, 5 € A and~ € A disjoint from« the conditions (62), (59),
and (68) yield

IN

O(E2 - polylogn) if 3=+~
E[|(Ys - Y)Y, - YD) = 0 if3#~,60y#0
O(E252 - polylogn) if BN~ = 0.

Therefore,
o HBHy Hp
Z Z Vi)Y, =Y < Z Z 0(7 - polylogn) + Z 0(7 - polylogn)
B:anB=0vy:any=0 BeEA~NEA pBeA
< O(E(Y)?/n? - polylogn) + O(E(Y') /n - polylog n)
= O(polylogn).
Hence, we obtail¥s < 3~ c 4 o Do p.00520 2orany20 B {(Yﬁ — Y)Yy — Yva)} < O(E[Y]-polylogn).

O
Lemma3l. > 4> sea B[l XaZapVagl] = O(c3E[Y] - polylogn)

Proof. LetSi = " 5.ms E [1XaYsVasl] andSe = 355 E HXQ(Yﬁ - YB")Vaﬁu. Then the def-
inition (55) of Z,, yields thaty . 4 > 5 4 E | XaZasVas|] < 07'(S1 + S2) Hence, it suffices to show

thatS;, S = O(c~2E[Y] - polylogn).
To boundS;, we note thal, Yz = 0if a N 3 # 0 buta # £ by (59), and thal,,3 = 0if « = § by

the definition (56) ofl, 5. Thus, ifa N 3 # 0, then
(54)
E[|XaYsVasl] < 0 E[(Ya + a) [YaVasl] < 07 aE [[YaVagl]. (84)
Furthermore,
Y7
Ti(e, )= Y, E[VYP] <kus (85)
Y:yNB#D, yNa=0

(64)
-y 3 E[YB|Y$—Y$UB|]6£ >y O(MB—:V-polylogn)

B:aNB#D v:BNy=0 B:anBA£Q v:BNy=0

ANanNy=0 ANanNy=0
<O~ polylogn) | > uy| D> pp
yeA B:aNB#£D
Y1
< O(n *E(Y) - polylogn) = O(polylogn). (86)

Combining (84)—(86), we get

Sl<0ﬁlz Z toE |Yﬁ aﬁ| QZNQ

acA B:anB#D acA

T2 Z Tl(a,ﬁ)]

B:anp#0

v1
E(Y) + k? Z ps| < O(c?E(Y) - polylogn)

B:aNBZ£D

< O(c™% - polylogn)
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To boundSs, leta, 5 € A be disjoint. AsX,, < (Y, + ua)/o, we obtain

E[|Xa(Ys—Y§)WVasl] < 07'E[|(Ya+ 1a)(Ys — Y§)Vag|]
50,60 _, o)y
< EH(Y + ha) (Vs — Y5 Y5 ]

Y B[[(Ya+ )V = V) - Y2 ]

v:iBNy=
Aaﬁy:w

< oM+ T+ T3+ Ty,

where
T =E[|[Ya(Ys = Y)Y5], T2 = paB [[(Ys - Yﬁa Yz,
§ E[|[Ya(Ys = YS) (Y2 = Y2U9)], Ty = pia § E[|(Ys - Y5 (Yo =Y.
v:BNY=0 v:BNy=0
ANany=0 ANany=0

Now, T = 0 by (58). Moreover, boundin@;, by (62),75 by (66) andl’y by (65), we obtain

E [|Xa(Ys — Y§)Vagpl|] < O(% - polylogn) + Z O(% - polylogn)

Aany=0
::()(ﬁhxﬂﬁ

- polylogn).
n

Thus, (87) yieldsS; < o~ Eﬁ anf= g Ot )= O(n to2E(Y)2-polylogn) = O(c2E(Y)-
polylogn), as desired. O

Lemma32. 3, c 4 Y e E 1XaZaslE (| Za + Vasl] = O(c~3E [Y] - polylog n)

Proof. Since|loX,| <Yy + ptas

Y > ElXaZaplE[|Za + Vapl] < (Z > HaE (| Zagll(E |1 Zal] + E [[Vasll) +

acApBeA acApBeA

EYo [Zas|(E[|Zal] + E [|Vaﬁ|])>-(87)

Furthermore, we have the three estimates

EfZ)] < oY E[lZusll ® S w+ Y E[vs-vg]

BeA B:anB#£0 B:anNB=0
(62), Y1
< ) O(n 'ug-polylogn) = O(polylogn), (88)
BeA
(56)
BllVall = > B[P+ >0 B[y -y
Y:BNY#£D y:BNY=0
ANany=0 ANany=0
(69), ¥1 Z O(n~ !, - polylogn) < O(polylog n), (89)
yeA
(55)
> oE[YalZagll = Y OENYs 4+ > E[Ya|Vs - Yy
BeA B:anB#D B:anp=0
(G003, + ) ua”ﬁ O(pte, - polylogn). (90)

B:anB=0
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Now, (88)—(90) yield

DD Bl Zag(E (1 Zal] + E[|Vasl) = O - polylogn) Y pia

acApBeA acA
= O(c 2E[Y] - polylogn), (91)
Y D ENalZasllE (|1 Zal] + E[[Vagl]) = O(c™? - polylogn) Y~ pa
acApeA acA
= O(c 2E[Y] - polylogn). (92)
Combining (87), (91), and (92), we obtain the assertion. ad

Finally, Lemma 27 is an immediate consequence of LemmasZB0-3

6 Conclusion

Using a purely probabilistic approach, we have establigh&tal limit theorem fot\N' (H4(n, p)). This
result has a number of interesting consequences, which viseede a follow-up paper [4]. Namely, via
Fourier analysis thanivariatelocal limit theorem (Theorem 2) can be transformed intivariateone that
describes the joint distribution of the order and the nunalfedges of the largest component. Furthermore,
since given its number of vertices and edges the largest aoemt is a uniformly distributed connected
graph, this bivariate limit theorem yields an asymptotieriala for the number of connected hypergraphs
with a given number of vertices and edges. Thus, we can salevalved enumerative problem (“how
many connected hypergraphs witlvertices ang: edges exist?”) via a purely probabilistic approach.

The techniques that we have presented in the present papearagather generic and may apply to
further related problems. For instance, it seems possibéxtend our proof of Theorem 2 to the regime
c=(""1)p=(d—1)"' 4+ o(1). In addition, it would be interesting to see whether our téghes can be
used to obtain limit theorems for ttkecore of a random graph, or for the largest component of aaieind
digraph.
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