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Abstract

We review some known results for POD model reduction applied to ODEs. Then, these results
are generalized to several types of DAEs. We provide algorithms for the model reduction and error
bounds for the reduced order models. Some limits of the approach are pointed out and alternative
methods for reduced order subspace approximation are presented. The POD approach is tested and
evaluated for a medium sized DAE example from multibody dynamics.
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1 Introduction

The proper orthogonal decompositon (POD) model order reduction approach has been a useful tool
in many applications, cf. [21, 25, 27]. Originating from data representation problems, it has offered
possiblilities for the state space reduction of ordinary differential equations of the form

ẏ = f(t, y), (1)

where y ∈ C1([0, tend] → Rn),with given y(0) = y0 and where f satisfies a Lipschitz condition with respect
to the second argument. Its mode of application is rather general, which distinguishes this method from
Krylov-space based methods or Balanced Truncation, which all are intended for linear, time-invariant
systems

Eẋ = Ax + Bu, (2a)

y = Cx, (2b)

where E, A ∈ Rn,n, B ∈ Rn,m, C ∈ Rp,n and usually m, p ≪ n, with possibly singular E. The functions
u and y are called control and output of the system, respectively. For a detailed study of model order
reduction of systems of the form (2) see [3].
The great disadvantage of POD based model reduction is that in order to be able to reduce the size of a
system the solution of the system, or an approximation thereof has to be known a priori. Only recently
in [26], error bounds and a perturbation analysis for POD model reduction have been presented. Still,
there POD is only applied to ordinary differential equations (ODEs). However, the state of the art in
modelling constrained multibody systems, electrical circuits and chemical processes among many others
leads to differential-algebraic equations (DAEs),

0 = F (t, ẋ, x). (3)

DAEs not only model the dynamic behaviour of a system but explicitly contain constraints on the system.
This significantly distinguishes them from ODEs and requires specific treatment, both analytically and
numerically, see [9, 12, 15, 19, 23, 24]. The index of a DAE is a measure of how much the DAE deviates
from an ODE and it also serves as an indicator of the difficulties involved in the numerical solutions of
DAEs. While many index concepts exist, under common assumptions they appear to be more or less
equivalent. Hence, here we will limit our considerations to the differentiation- or d-index introduced
in [11]. Recent results in the study of some structured DAEs suggest that the appearance of DAEs of
index higher than one may be avoided already in the modelling phase or the equation setup for certain
systems, namely multibody systems and electrical circuits, see [7, 29]. In other cases it is possible to
algebraically reduce the index of the DAE to one, see [19]. Thus, we will restrict ourselves to the study
of DAEs of differentiation index 1.
The present paper tries to present methods and error bounds for the application of POD model order
reduction to some types of DAEs. We will first construct an error bound for the ODE case. This error
bound is simpler than the one presented in [26], but possibly also less accurate. This result will then be
applied to semi-explicit and to linear implicit DAEs. For the latter case, an algorithm will be provided
that lists the steps necessary for the reduction of these DAEs. Also, results from model order reduction
for linear systems with constant coefficients will be applied to nonlinear DAEs to present an alternative
to the often costly computation of snapshots for the POD approach.

2 POD model reduction for ODEs

2.1 The POD method in data representation

The POD method has been conceived as a method for finding approximating subspaces for sets of data
points. Here, the task is to find an optimal approximating subspace for the trajectory x, i.e. to determine
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a projector P of rank m such that

‖x − Px‖2
2 =

∫ tend

0

‖x(t) − Px(t)‖2
2 dt (4)

is minimized. A necessary condition for the existence of the integral is that x ∈ L2([0, tend] → Rn), but
since the considered trajectories are solutions of ODEs or DAEs of d-index one, we assume
x ∈ C1([0, tend] → Rn), cf. [19], which for finite time intervals is contained within the respective L2

space. Equation (4) means that P projects x on a subspace of dimension m and P has to be found such
that x deviates from this subspace as little as possible.
For the solution of this problem, one needs to consider the correlation matrix (or Gramian)

M =

∫ tend

0

x(t)xT (t) dt.

This matrix is symmetric and positive semidefinite by construction. Hence, it has an orthogonal set of
eigenvectors. Let

[
P Q

] [
Λ1

Λ2

] [
PT

QT

]
(5)

be the spectral decomposition of M , with Λ1 = diag(λ1, . . . , λm) and Λ2 = diag(λm+1, . . . , λn), where
λ1 ≥ λ2 ≥ . . . ≥ λn. Note that, since M is symmetric positive definite, the spectral decomposition (5)
and the singular value decomposition of M coincide.
The optimal approximating subspace of dimension m is given by the columns of P and the projector P

in (4) can be computed as P = PPT , cf. [18]. The minimum in (4) is then

‖x − Px‖2
2 =

n∑

i=m+1

λi = trace Λ2.

Depending on what error is ’acceptable’, m can be chosen such that ‖x − Px‖2
2 lies below a prescribed

threshold.

2.2 Subspace approximation for ODEs

The idea behind POD model reduction for ODEs is to restrict the differential equation to the approxi-
mating subspace spanned by the orthogonal columns of P . This approach, known as Galerkin projection,
has been investigated e.g. in [2, 26].
Given an ordinary differential equation of the form

ẏ = f(t, y), (6)

with initial value y(0) = y0, where f is continuous in t and Lipschitz continuous with respect to y, then
a unique continuously differentiable solution exists on the bounded interval [0, tend]. Assuming that we
know the solution or an approximation thereof, we can compute the Gramian and its decomposition (5).
Then, the Galerkin projection is obtained by setting y = Pu and multiplying (6) with P T .

u̇ = PT f(t, Pu) (7)

With P constant, the new right hand side retains the smoothness properties of f and so the reduced
state u lies in C1([0, tend]) → Rm), cf. [4], which hopefully is of much smaller dimension than n.
For the development of an error bound, we first restrict ourselves to the simplified case of a linear ODE
with constant coefficients,

ẏ = Ay + f̂(t), y(0) = y0. (8)
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The Galerkin projection of (8) is

u̇ = PT APu + PT f̂(t), u(0) = u0 = PT y0. (9)

We are interested in the error of the approximated solution ŷ = Pu with respect to the solution y of (8).

‖y − ŷ‖2
2 = ‖y − Pu‖2

2

=

∫ tend

0

(y(t) − Pu(t))T (y(t) − Pu(t))dt

= 2

∫ tend

0

(∫ t

0

(y(s) − Pu(s))T (
d

ds
y(s) − P

d

ds
u(s))ds

)
dt

Replacing d
ds

y(s) and d
ds

u(s) by the expressions (8) and (9) yields

‖y − ŷ‖2
2 = 2

∫ tend

0

(∫ t

0

(y(s) − Pu(s))T (Ay(s) + f̂(s)) − PPT APu(s) − PPT f̂(s)))ds

)
dt.

We set

P = PPT , I − P = Q = QQT , (10)

with Q as in (5). By construction, P is a projector and Q its complementary projector. Then, we have

‖y − ŷ‖2
2 = 2

∫ tend

0

(∫ t

0

(y(s) − Pu(s))T (P + Q)(Ay(s) + f̂(s)) − PAPu(s) − Pf̂(s))ds

)
dt

= 2

∫ tend

0

(∫ t

0

(y(s) − Pu(s))T (PA(y(s) − Pu(s)) + Q(Ay(s) + f̂(s)))ds

)
dt

= 2

∫ tend

0

(∫ t

0

(y(s) − Pu(s))T PA(y(s) − Pu(s)) ds

)
dt

+2

∫ tend

0

(∫ t

0

(y(s) − Pu(s))T Q(Ay(s) + f̂(s))ds

)
dt

With (8) and PT Q = 0, the second integral simplifies to 2
∫ tend

0

(∫ t

0
yT (s)Q d

ds
y(s) ds

)
dt. We set

e2(t) =

∫ t

0

(y(s) − ŷ(s))T (y(s) − ŷ(s)) ds

where obviously e2(0) = 0 and obtain

e2(tend) = 2

∫ tend

0

(∫ t

0

(y(s) − Pu(s))T PA(y(s) − Pu(s)) ds

)
dt + 2

∫ tend

0

(∫ t

0

yT (s)Q
d

ds
y(s) ds

)
dt.

Differentiation with respect to tend yields

d

dtend

e2(tend) = 2

∫ tend

0

(y(s) − Pu(s))T PA(y(s) − Pu(s)) ds + 2

∫ tend

0

yT (s)Q
d

ds
y(s) ds.

The term (y−Pu)T PA(y−Pu) can be bounded by µ(PA)(y−Pu)T (y−Pu). Here, µ(A) represents the
logarithmic norm of a matrix associated with a matrix norm ‖ · ‖ as introduced in [13]

µ(A) = lim
h→0,h>0

‖I + hA‖ − 1

h
.
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In the case of the ‖ · ‖2 norm, it satisfies µ(A) = maxx6=0
xT Ax
xT x

.
Using (y − Pu)T PA(y − Pu) ≤ µ(PA)(y − Pu)T (y − Pu) and with the definition of e2(t) we can find an
upper bound for e2(tend) as

e2(tend) ≤ exp (2µ(PA)tend) e2(0) + exp(2µ(PA)tend)

∫ tend

0

exp(−2µ(PA)t)

(
2

∫ t

0

yT (s)Q
d

ds
y(s) ds

)
dt,

= exp (2µ(PA)tend) e2(0) + exp(2µ(PA)tend)

∫ tend

0

exp(−2µ(PA)t)yT (t)Qy(t) dt.

For details on bounds of the solution of ODEs see e.g. [32].
Since µ(PA) may be negative, the term exp(−2µ(PA)t) cannot be bounded by 1 but instead by
max(1, exp(−2µ(PA)tend)). Hence,

exp(2µ(PA)tend)

∫ tend

0

exp(−2µ(PA)t)yT (t)Qy(t) dt ≤ max(1, exp(2µ(PA)tend))

∫ tend

0

yT (t)Qy(t) dt.

Setting ε =
∫ tend

0
y(t)T Qy(t) dt =

∑n
i=m+1 λi, the error can be bounded as

‖y − ŷ‖2 ≤
√

exp (2µ(PA)tend) ‖Qy0‖2
2 + max(exp (2µ(PA)tend) , 1)ε. (11)

In the general case, the exact solution y will usually not be available for the determination of the subspace
P and some approximate solution ȳ has to be used. In general, ε will then be larger than the optimal∑n

i=m+1 λi, depending on the difference of y and ȳ. Assuming that an approximation ȳ has been used to
determine the projector P and that the correct solution y differs from ȳ as y = ȳ + δ, then the following
holds,

‖y − Py‖2 = ‖Q(ȳ + δ)‖2

≤ ‖Qȳ‖2 + ‖Qδ‖2 =

√√√√
n∑

i=m+1

λi + ‖Qδ‖2 =:
√

ε.

If y0 lies in the subspace P , then projection does not change the initial value y(0), i.e., Qy0 = 0 and (11)
simplifies to

‖y − ŷ‖2 ≤
√

max(exp (2µ(PA)tend) , 1)ε. (12)

In the general nonlinear case (6), the approach is almost identical. We have

‖y − ŷ‖2
2 = ‖y − Pu‖2

2,

= 2

∫ tend

0

(∫ t

0

(y(s) − Pu(s))T (
d

ds
y(s) − P

d

ds
u(s))ds

)
dt,

= 2

∫ tend

0

(∫ t

0

(y(s) − Pu(s))T (f(s, y(s)) − Pf(s, Pu(s)))ds

)
dt,

= 2

∫ tend

0

(∫ t

0

(y(s) − Pu(s))T P(f(s, y(s)) − f(s, Pu(s)))ds

)
dt

+ 2

∫ tend

0

(∫ t

0

(y(s) − Pu(s))T Q(f(s, y(s)) − Pf(s, Pu(s)))ds

)
dt. (13)

The second summand simplifies to

2

∫ tend

0

(∫ t

0

(y(s) − Pu(s))T Q(f(s, y(s)) − Pf(s, Pu(s)))ds

)
dt = 2

∫ tend

0

(∫ t

0

yT (s)Qf(s, y)ds

)
dt,

= 2

∫ tend

0

(∫ t

0

yT (s)Q
d

ds
y(s)

)
dt,
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while, using the mean value theorem, one can express f(t, y)−f(t, Pu) = f(t, y)−f(t, ŷ) = fy(t, ξ)(y−ŷ) =
fy(t, ξ)(y − Pu) for some ξ ∈ [y, ŷ]. Here, ξ ∈ [y, ŷ] means that ξ = y + θ(ŷ − y) with θ ∈ [0, 1]. Then,
the first summand in (13) can be written as

2

∫ tend

0

(∫ t

0

(y(s) − Pu(s))T P(f(s, y(s)) − f(s, Pu(s)))ds

)
dt

= 2

∫ tend

0

(∫ t

0

(y(s) − Pu(s))T Pfy(s, ξ(s))(y(s)− Pu(s))ds

)
dt.

Then, one can proceed as in the linear case using

µ̂ = max
t∈[0,tend], ξ∈[y,ŷ]

µ (fy(t, ξ)) ,

where [y, ŷ] is the convex hull of y and ŷ, to obtain the error bound

‖y − ŷ‖2 ≤
√

exp (2µ̂tend) ‖Qy0‖2
2 + max(exp (2µ̂tend) , 1)ε. (14)

or in the case of no projection error of the initial value

‖y − ŷ‖2 ≤
√

max(exp (2µ̂tend) , 1)ε. (15)

3 POD model reduction for semi-explicit DAEs

For the treatment of DAEs let us first consider linear semi-explicit DAEs in the form

ẏ = A1,1y + A1,2z + f1, (16a)

0 = A2,1y + A2,2z + f2, (16b)

with consistent starting values y(0) = y0, z(0) = z0, i.e. fulfilling (16b). We assume furthermore that the
system is of d-index 1 , i.e. A2,2 is nonsingular, cf. [19]. Since the differential and algebraic equations in
this case are separated, it is possible to perform model reduction only on the dynamic part of the system
which is given by

ẏ = (A1,1 − A1,2A
−1
2,2A2,1)y + f1 − A1,2A

−1
2,2f2, (17a)

while the algebraic condition relates z and y via

z = −A−1
2,2(A2,1y + f2). (17b)

It is important, that no reduction is performed on the algebraic equations, since this may mean that
algebraic equations representing physical laws are no longer fulfilled. In the higher index case, some of
the differential equations will turn out to be algebraic equations, so called hidden constraints, cf. e.g. [19],
and should thus be identified first.
For POD model reduction, we need to construct the correlation matrix with respect to y only, because we
only want to reduce the state space of y. We proceed as in the ODE case by constructing the correlation
matrix

My =

∫ tend

0

y(t)yT (t) dt,

and factorizing it as

My =
[

P̃ Q̃
] [

Λ1

Λ2

] [
P̃

Q̃

]
.
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In order to keep the initial value consistent, we add the initial value to the projection subspace with the
Gram-Schmidt method, cf. [14],

p0 = Q̃Q̃T y0,

P =

[
p0

‖p0‖2
, P̃

]
.

The reduced system is given by

u̇ = PT A1,1Pu + PT A1,2ẑ + f1

0 = A2,1Pu + A2,2ẑ + f2.

Then, we can formally obtain the reduced ODE for u as

u̇ = PT (A1,1 − A1,2A
−1
2,2A2,1)Pu + PT (f1 − A1,2A

−1
2,2f2). (18)

As the initial value is projected onto itself, we can use the error estimate (12) and obtain

‖y − ŷ‖2 = ‖y − Pu‖ ≤
√

max(exp(2µ(P(A1,1 − A1,2A
−1
2,2A2,1)tend), 1)ε.

For the error in the algebraic variable ẑ = −A−1
2,2(A2,1ŷ + f2), we obtain

‖z − ẑ‖2 = ‖A−1
2,2A2,1(y − ŷ)‖2 ≤ ‖A−1

2,2A2,1‖2‖(y − ŷ)‖2.

Hence, for x = [yT , zT ]T and x̂ = [ŷT , ẑT ]T we have the error estimate

‖x − x̂‖2 ≤
√

(1 + ‖A−1
2,2A2,1‖2

2) max(exp(2µ(Ã)tend), 1))ε,

with Ã = P(A1,1 − A1,2A
−1
2,2A2,1).

In the semi-explicit nonlinear case

ẏ = f(t, y, z) (19a)

0 = g(t, y, z) (19b)

we have to require that gz is nonsingular in order to have a d-index 1 system. Then, by use of the Implicit
Function Theorem, one can locally conclude the existence of a function z = ϕ(t, y). Therefore, we can
set f̃(t, y) = f(t, y, ϕ(y)), where

f̃y(t, y) = fy(t, y, ϕ(y)) − fz(t, y, ϕ(y)) (gz(t, y, ϕ(y)))−1 fy(t, y, ϕ(y)).

Thus, for the differential equation

ẏ = f̃(t, y),

we can apply POD model reduction

u̇ = PT f̃(t, Pu).

Using (15) we have the error bound

‖y − P̂ u‖2 = ‖y − ŷ‖2 ≤
√

max(exp (2µ̂tend) , 1)ε, (20)

where

µ̂ = max
t∈[0,tend]
η∈[y,ŷ]

µ
(
f̃y(t, η)

)
,

= max
t∈[0,tend]
η∈[y,ŷ]
ζ∈[z,ẑ]

µ
(
(fy(t, η, ζ) − fz(t, η, ζ)(gz(t, η, ζ))−1gy(t, η, ζ))

)
.
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For the error in z we have

z − ẑ = ϕ(t, y) − ϕ(t, ŷ),

≤ max
t∈[0,tend],

η∈[y,ŷ]

ϕy(t, η)(y − ŷ),

≤ max
t∈[0,tend],

η∈[y,ŷ]

−(gz(t, η, ϕ(t, η)))−1gy(t, η, ϕ(t, η))(y − ŷ).

Setting ν̂ = max
t∈[0,tend]
η∈[y,ŷ]
ζ∈[z,ẑ]

−(gz(t, η, ζ))−1gy(t, η, ζ), we have an error bound for x =

[
y
z

]
given by

‖x − x̂‖2 ≤
√

(1 + ν̂2) max(exp (2µ̂tend) , 1)ε. (21)

Note, that these error bounds are closely related to the asymptotic stability of the considered DAE as it

has recently been derived in [20]. It can be observed that the drift between two solutions x =

[
y
z

]
and

x̂ =

[
ŷ
ẑ

]
of (19) can be bounded by (21) if the difference of the starting values ‖y − ŷ‖2

2 is at most ε .

4 POD model reduction for linear implicit DAEs

Finally, we will consider the case of linear implicit DAEs of d-index 1

E(t)ẋ = f(t, x). (22)

The matrix E(t) is allowed to be singular but assumed to be continuously differentiable and of constant
rank r. Here, d-index 1 means that the matrix [E(t), fx(t, x)] has full rank in the neighborhood of the
solution trajectory x. In [19, 28], it has been shown that for smooth E(t) of constant rank r smooth
invertible matrices S(t) and T (t) exist such that

[
Ir

0

]
= S(t)E(t)T (t). (23)

One possible factorization of this structure can be obtained from the orthogonal standard form in [19].
We will subsequently drop the explicit time dependency of S, E and T .

Setting x = T

[
y
z

]
in (22), one obtains

E

(
T

d

dt

[
y
z

]
+ Ṫ

[
y
z

])
= f

(
t, T

[
y
z

])
.

Multiplication with S(t) and reordering of the terms yields

SET
d

dt

[
y
z

]
= S

(
f

(
t, T

[
y
z

])
− EṪ

[
y
z

])
,

[
Ir

0

]
d

dt

[
y
z

]
= f̃

(
t,

[
y
z

])
. (24)

For this equation we can use the error estimate (21). The problem is that usually the formulation (24) is
not used for the integration of the DAE, but rather the original equation (22). Hence, generally, x will
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be available, while y and z are not. The task is to determine the correlation matrix My with the help of
the computed solution x.

My =

∫ tend

0

y(t)yT (t) dt

[
My 0
0 0

]
=

∫ tend

0

[
y
0

] [
yT 0

]
dt

=

∫ tend

0

[
Ir

0

] [
y
z

] [
yT zT

] [
Ir

0

]
dt

=

∫ tend

0

S(t)E(t)T (t)

[
y
z

] [
yT zT

]
TT (t)ET (t)ST (t)dt.

With x = T

[
y
z

]
and (23), we have

[
My 0
0 0

]
=

∫ tend

0

S(t)E(t)x(t)xT (t)ET (t)ST (t)dt. (25)

We thus can state the following POD algorithm.

Algorithm 4.1 (POD for linear implicit DAEs of d-index 1).
Given the solution x of the DAE (22), we perform the following steps.

• Construct smooth nonsingular matrices S = [S1 S2] and T =

[
T1

T2

]
such that (23) is fulfilled.

• Compute My =
∫ tend

0
S1ExxT ET ST

1 dt.

• Compute a decomposition

My =

[
PT

QT

] [
Λ1

Λ2

] [
P Q

]
.

• Set

PL := ST

[
P 0
0 In−r

]
, PR := T

[
P 0
0 In−r

]
.

• The reduced order DAE is then given by

PT
L E

d

dt
(PRxred) = PT

L f(t, PRxred),

with initial value xred(0) =

[
PT 0
0 In−r

]
T−1(0)x0.

Again, it has to be noted that it is usually unrealistic to assume that the exact solution x is known.
However, if a sufficiently accurate set of snapshots exists such that the approximating subspace can be
computed, then the POD method is applicable. The set of snapshots may be obtained empirically, using
the underlying physics or from simulation. Another approach will be presented in the following.
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5 Alternative computation of the correlation matrix

Besides the approximation of the correlation matrix via snapshots, another possibility for the computation
of dominant subspaces for model order reduction is known for linear dynamic and descriptor systems with
constant coefficients. Instead of approximating the finite integral M =

∫ tend

0
x(t)xT (t)dt with quadrature

rules, it is computed analytically. Suppose that x(t) solves a homogeneous descriptor system of the form

E
d

dt
x = Ax, x(0) = x0, (26)

where we assume that the pencil (E, A) is of index 1. For the generalized Lyapunov equation

EMAT + AMET = E(x(tend)x
T (tend) − x0x

T
0 )ET . (27)

it is known, that it has a solution M if for the finite eigenvalues of λj and λk of the pencil (E, A) it holds
that λ̄j + λk 6= 0 for all j, k = 1, . . . , n. Furthermore, the term EMET is unique, cf. [31]. Equation (27)
can be obtained as follows

d

dt
Ex(t)xT (t)ET = Ex(t)xT (t)AT + Ax(t)xT (t)ET .

After integration, we obtain

tend∫

0

(
d

dt
Ex(t)xT (t)ET ) = E

tend∫

0

x(t)xT (t)dtAT + A

tend∫

0

x(t)xT (t)dtET

which is the assertion. For the numerical solution of (27), we apply the algorithm proposed in [30]. For

simplicity, we assume that E is in the form

[
E1

0

]
with E1 of full rank. This can usually be obtained by

a simple transformation of the system from the left. Then EMET is of the form

[
E1MET

1 0
0 0

]
and

we are only interested in the computation of E1MET
1 . We apply the QZ-algorithm, cf. [14], to the pencil

(ET , AT ) and obtain

QET Z =

[
E11 E12

0 0

]
, QAT Z =

[
A11 Ã12

0 A22

]
(28)

with orthogonal Q and Z1 and E11, A11, A22 quasi upper triangular. Here, quasi upper triangular means
that the considered matrices only have 1 × 1 or 2 × 2 blocks on the diagonal. We set

Y =

[
I −E−1

11 E12

0 I

]
, Y −1 =

[
I E−1

11 E12

0 I

]

and multiply the matrices (28) with Y from the right

QET ZY =

[
E11 0
0 0

]
, QAT ZY =

[
A11 A12

0 A22

]
. (29)

We transform (27) with Y T ZT from the left and with ZY from the right and insert I = QT Q.

Y T ZT EQT QMQT QAT ZY + Y T ZT AQT QMQT QET ZY

= Y T ZT EQT Q(x(tend)x
T (tend) − x(t0)x

T (t0))Q
T QET ZY

We set M̂ = QMQT and

[
x̂1

x̂2

]
= Qx and with (29) we obtain

[
E

T

11 0
0 0

] [
cM11

cM12

cM21
cM22

] [
A11 A12

0 A22

]
+

[
A

T

11 0
A

T

12 A
T

22

] [
cM11

cM12

cM21
cM22

] [
E11 0
0 0

]
(30)

=

[
E

T

11(x̂1(tend)x̂
T

1 (tend) − x̂1(0)x̂T

1 (0))E11 0
0 0

]
.
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Equation (30) can now be solved blockwise for M̂11, M̂12, M̂21 while M̂22 can be chsoen arbitrarily.

However, we will see that only M̂11 is needed for the computation of E1MET
1 . The equation for M̂11

ET
11M̂11A11 + AT

11M̂11E11 = ET
11(x̂1(tend)x̂

T
1 (tend) − x̂1(t0)x̂

T
1 (t0))E11

is again a generalized Lyapunov equation but in the convenient form where E11 and A11 are of full
rank and quasi upper triangular. Hence, the system is easily solvable by standard techniques such as
Hammarling’s algorithm, cf. [17, 22]. Now, for the computation of E1MET

1 , with the above definitions,
we have

[
E1

0

]
M

[
ET

1 0
]

= ZY −T Y T ZT

[
E1

0

]
QT QMQT Q

[
ET

1 0
]
ZY Y −1ZT

= ZY −T

[
ET

11 0
0 0

]
M̂

[
E11 0
0 0

]
Y −1ZT

= ZY −T

[
ET

11M̂11E11 0
0 0

]
Y −1ZT .

With

Z =

[
Z11 Z12

Z21 Z22

]

and the definition of Y we have that

My = E1MET
1 =

[
Z11 Z12

] [
ET

11

ET
12

]
M̂11

[
E11 E12

] [
ZT

11

ZT
12

]
.

In this final result, we see that Y does not have to be computed. The only matrices that enter the
computation of My are E11, E12, A11, Q and Z.

Remark 5.1. The Lyapunov approach works fine on systems of the form (26), provided that the system
size is small enough so that LAPACK, [1], can be applied. However several problems arise when applying
the technique to practical problems. First, the state x(tend) is usually unknown and if it is obtained by
numerical simulation, then all intermediate steps may already be used to compute an approximation to
the correlation matrix with quadrature rules. The approach makes sense, if it can be expected that the
system goes into a steady state within the interval [0, tend] and that the steady state can be computed
without simulating the system.
For the system (26), x = 0 is always a steady state. If additionally, the matrix A is nonsingular, then it
is also unique. Hence, if we set x(tend) = 0, then the generalized Lyapunov equation (27) simplifies to

EMAT + AMET = −Ex0x
T
0 ET .

The linearization of an autonomous nonlinear system around a steady state also has the advantage, that
the arising linear system is in the form (26) while retaining the index of the nonlinear system, cf. Theorem
1 in [10] or [29].

For autonomous systems, we can thus state the following algorithm.

Algorithm 5.1 (Computation of the correlation matrix My for autonomous linear implicit DAEs with
steady state).
Given a DAE of the form Eẋ = f(x) with initial value x0 we perform the following steps.

• Compute SE =

[
E1

0

]

• Compute a steady state x̄ via 0 = f(x̄).
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Figure 1: pendulum schematics

• Compute A = fx(x̄).

• Compute a QZ-decomposition of the pencil ((SE)T , (SA)T ) as

(Q(SE)T Z, Q(SA)T Z) =

([
E11 E12

0 0

]
,

[
A11 A12

0 A22

])
,

with

Z =

[
Z1

Z2

]
, Q =

[
Q1

Q2

]

• If the pencil (E11, A11) is unstable ABORT, otherwise compute, e.g. by the Hammarling method,

the solution M̂11 of the generalized Lyapunov equation

ET
11M̂11A11 + AT

11M̂11E11 = −ET
11Q1x0x

T
0 QT

1 E11.

• Compute the correlation matrix My as

My = Z1

[
ET

11

ET
12

]
M̂11

[
E11 E12

]
ZT

1 .

Remark 5.2. If not the matrix My itself is needed but only a square root factor Ry such that My =

RT
y Ry, then if Uy with UT

y Uy is a Cholesky factor of M̂11, Ry can be computed as Ry = Uy

[
E11 E12

]
ZT

1 .

6 Multibody system example

6.1 Derivation of the equations of motion for an n-links chain

As a numerical example we consider an n-link chain modeled by an n-element pendulum as depicted in
Fig. 6.1. This n-element pendulum is composed of n identical stiff massless rods of length l joined in
series. At the end of each rod, i.e. in the joints and at the end of the bottom rod, a point mass m will
be attached. The first rod is assumed to be attached to a joint in the origin. We denote the position of
the i-th joint by pi = [xi yi]

T . The position of the (i + 1)-th joint can be obtained by rotating the vector
[0 l]T about pi by the angle φi+1. Thus, every position pi can be expressed as

pi =




i∑

j=0

R(φj)




[

0
−l

]
,
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with

R(φ) =

[
cos φ − sin φ
sin φ cos φ

]
.

The velocity ṗi is then given as

ṗi =




i∑

j=0

φ̇jQ(φj)




[

0
−l

]
,

with

Q(φ) =
∂

∂φ
P (φ) =

[
− sin φ − cos φ
cos φ − sin φ

]
.

To derive the equations of motion we will use the Lagrangian formalism, cf. [5]. To this end we define
the Lagrangian as L = T − U with kinetic energy

T =
n∑

i=1

m

2
ṗT

i ṗi

=
m

2

n∑

i=1

[
0
−l

]T



i∑

j=1

φ̇jQ
T (φj)








i∑

j=1

φ̇jQ(φj)




[

0
−l

]

and potential energy

U = mg

n∑

i=1

yi

= −mgl

n∑

i=1

i∑

j=1

cos φj .

The equations of motion for this system are obtained by applying the Euler-Lagrange operator to L,

0 =

(
d

dt

(
∂

∂Φ̇

)
− ∂

∂Φ

)
L(Φ̇, Φ, t)

where Φ = [φ1, . . . , φn]T . We have

∂

∂φ̇k

T =
∂

∂φ̇k



m

2

n∑

i=1

[
0
−l

]T




i∑

j=1

φ̇jQ
T (φj)








i∑

j=1

φ̇jQ(φj)




[

0
−l

]



= m
n∑

i=1

[
0
−l

]T
∂

∂φ̇k




i∑

j=1

φ̇jQ
T (φj)








i∑

j=1

φ̇jQ(φj)




[

0
−l

]
.

As φ̇k will not appear in the inner sums until the index i = k, we can let the index i of the outer sum
start at i = k,

∂

∂φ̇k

T = m

n∑

i=k

i∑

j=1

[
0
−l

]T

QT (φk)Q(φj)

[
0
−l

]
φ̇j .

A simple computation shows that

[
0
−l

]T

QT (φk)Q(φj)

[
0
−l

]
=

[
0
−l

]T [
cos(φk − φj) sin(φk − φj)
− sin(φk − φj) cos(φk − φj)

] [
0
−l

]
= l2 cos(φk − φj).
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Hence,

∂

∂φ̇k

T = ml2
n∑

i=k

i∑

j=1

cos(φk − φj)φ̇j

and taking the time derivative

d

dt

(
∂

∂φ̇k

T

)
= ml2

n∑

i=k

i∑

j=1

d

dt
(cos(φk − φj)φ̇j),

= ml2
n∑

i=k

i∑

j=1

(cos(φk − φj)φ̈j − sin(φk − φj)φ̇j(φ̇k − φ̇j)). (31)

The derivative of T with respect to φk is given as

∂

∂φk

T =
∂

∂φk



m

2

n∑

i=1

[
0
−l

]T



i∑

j=1

φ̇jQ
T (φj)








i∑

j=1

φ̇jQ(φj)




[

0
−l

]



= m

n∑

i=1

[
0
−l

]T
∂

∂φk




i∑

j=1

φ̇jQ
T (φj)








i∑

j=1

φ̇jQ(φj)




[

0
−l

]
.

Again, φk will not appear in the inner sum before the index i = k of the outer sum, hence,

∂

∂φk

T = m

n∑

i=k

i∑

j=1

φ̇k

[
0
−l

]T

(
∂

∂φk

QT (φk))Q(φj)

[
0
−l

]
φ̇j

= m

n∑

i=k

i∑

j=1

φ̇k

[
0
−l

]T

(−R(φj))Q(φj)

[
0
−l

]
φ̇j ,

because ∂
∂φ

Q(φ) = −R(φ). The product −R(φk)T Q(φj) can be evaluated as

−R(φk)T Q(φj) =

[
− sin(φk − φj) cos(φk − φj)
− cos(φk − φj) − sin(φk − φj)

]
,

and thus,

[
0
−l

]T

(−R(φj))
T Q(φj)

[
0
−l

]
= −l2sin(φk − φj),

and

∂

∂φk

T = −ml2
n∑

i=k

i∑

j=1

φ̇kφ̇j sin(φk − φj). (32)

The potential energy U is independent of Φ̇, so we only need to consider ∂
∂Φ =

[
∂

∂φ1

. . . ∂
∂φn

]T

,

∂

∂φk

U =
∂

∂φk

(−mgl
n∑

i=1

i∑

j=1

cos φj)

= mgl
n∑

i=k

sin φk = mgl(n − k + 1) sin φk. (33)
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Collecting equations (31), (32) and (33) we obtain

(
d

dt

(
∂

∂φ̇k

)
− ∂

∂φk

)
(T − U) = ml2

n∑

i=k

i∑

j=1

(cos(φk − φj)φ̈j − sin(φk − φj)φ̇j(φ̇k − φ̇j))

+ml2
n∑

i=k

i∑

j=1

φ̇kφ̇j sin(φk − φj)

+mgl(n − k + 1) sin φk.

This can be simplified to

(
d

dt

(
∂

∂φ̇k

)
− ∂

∂φk

)
(T − U) = ml2

n∑

i=k

i∑

j=1

(cos(φk − φj)φ̈j + sin(φk − φj)φ̇
2
j)

+mgl(n − k + 1) sin φk.

Divided by ml, the equations of motion are given as

0 =

(
d

dt

(
∂

∂Φ̇

)
− ∂

∂Φ

)
L(Φ̇, Φ, t)

= M(Φ)Φ̈ + D(Φ)Φ̇2 + f(Φ), (34)

with

Φ̇2 =




φ̇2
1
...

φ̇2
1


 , M = [µi,j ]

n
i,j=1, D = [δi,j ]

n
i,j=1, f = [fi]

n
i=1,

µi,j = l cos(φi − φj)(n + 1 − max(i, j)), δi,j = l sin(φi − φj)(n + 1 − max(i, j)), fi = g(n − k + 1) sin φi.

The equations of motion (34) are an implicit system of second order ordinary differential equations. For
the treatment with many common solvers, we need to transform it into an explicit ODE of first order,

d

dt

[
Φ

Φ̇

]
=

[
Φ̇

−M−1(DΦ̇2 + f)

]
. (35)

As this equation describes an undamped system, high frequency components will remain in the solution.
However, the high frequent oscillations are usually not present in real life multi body systems. Addition-
ally they slow down numerical integration methods. It is, thus, suggested to introduce some artificial
damping, e.g. by adding a velocity dependent force term

d

dt

[
Φ

Φ̇

]
=

[
Φ̇

−M−1(DΦ̇2 + dΦ̇ + f)

]
. (36)

with small non-negative d.

6.2 Stiff n-element pendulum

The behaviour of the uncostrained pendulum chain is essentially chaotic and numerical simulations sug-
gest that the angles between adjacent pairs of rods φi and φi+1 appear to be mostly independent. We
try to change this behaviour by introducing additional stiffness into the equations via rotational springs
in the joints. These springs will be installed in all interior joints, i.e. not in the joint, where the chain
is fastened and not at the end of the final link. In this way, large differences the angles of adjacent links
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Figure 2: constrained pendulum

will be penalized by an increase of energy in the spring between both links. This changes the potential
energy of the system to

U = −mgl
n∑

i=1

i∑

j=1

cos φj +
κ

2

n−1∑

i=1

(φi − φi+1)
2.

The spring constant κ should be chosen depending on n. We suggest that κ is set to

κ = κ0n
4.

This choice reflects the bending moment of a beam which changes with the fourth power of the scaling
factor if the beam is scaled uniformly, cf. [8]. In this way a chain with more elements will have a
comparable overall stiffness. The equations of motion of the unconstrained pendulum chain (36) then
change to

d

dt

[
Φ

Φ̇

]
=

[
Φ̇

−M−1(DΦ̇2 + dΦ̇ + KΦ + f)

]
, (37)

with the previously introduced identifiers and additionally

K = κ




1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1




.

6.3 Constrained n-element pendulum

We now additionally require that the last mass of the pendulum is attached to a translational joint
keeping it at the same height as the origin as in Fig. 6.3.
This can be expressed by the constraint 0 = yn = l

∑n
i=1 cos φi. Then, in the formulation of constrained

multi-body systems, Equation (35) becomes

d

dt
Φ = Φ̇, (38a)

d

dt
Φ̇ = −M−1(DΦ̇2 + dΦ̇ + KΦ + f − GT λ), (38b)

0 = g(Φ), (38c)
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with g(Φ) =
∑n

i=1 cos φi and G = ∂
∂Φg(Φ) = −[sin φ1 . . . sin φn]. The resulting DAE (38) has d-index 3

and is, thus, badly suited for numerical integration. The reason for the bad numerical behaviour is that
the DAE (38) contains so-called hidden constraints 0 = gI(Φ, Φ̇) and 0 = gII(Φ, Φ̇, λ) that are obtained
by differentiating 0 = g(Φ) twice,

gI(Φ, Φ̇) =
d

dt
g(Φ) = −l

n∑

i=1

φ̇i sin φi,

gII(Φ, Φ̇, λ) =
d2

dt2
g(Φ) = −l

n∑

i=1

(φ̈i sin φi + φ̇2
i cos φi).

The dependency of gII on λ can be seen by replacing φ̈i with the right hand side in (38c). These two
constraints are needed for a numerically stable computation of (38). But, simply adding gI and gII to (38)
would produce a system with redundant equations. According to [29], this redundancy can be eliminated

by multiplying (38a) and (38b) with Π(Φ) such that

[
Π
G

]
is square and invertible. For an even number

n it is possible, that all rods of the chain are in vertical position pointing either up or down. Then the
chain would be in a singular position and the DAE becomes underdetermined. The consequence of this

is that G = 0 and no Π can be determined that makes

[
Π
G

]
regular. This situation can effectively be

avoided by choosing an odd number n of elements. Then, it is impossible for all rods to be in a vertical
position without violating the constraint.
As the entries of G change over time, the matrix Π has to be determined repeatedly during the integration.
Thus, Π(Φ) may change discontinuously over time, but since the rank of Π is constant, this incurs no
numerical problems. Following the approach in [29], the system

Π
d

dt
Φ = ΠΦ̇, (39a)

Π
d

dt
Φ̇ = −ΠM−1(DΦ̇2 + dΦ̇ + KΦ + f − GT λ), (39b)

0 = g(Φ), (39c)

0 = gI(Φ, Φ̇), (39d)

0 = gII(Φ, Φ̇, λ), (39e)

is of d-index 1. The system (39) is thus well suited for numerical integration with common solvers for
stiff ODEs, cf. [9, 16, 19].
The constant κ0 can be used to emphasize certain aspects of the model. For small κ0, the constrained
chain will be acting in a very chaotic way due to the high degree of nonlinearity in the system, whereas
for high stiffness, the pendulum chain behaves like a bending beam, which can basically be approximated
by a linear model. Higher stiffness has another advantage. If the chain rests more or less in horizontal
position, then the constraint matrix G becomes more predictable. Assuming that the chain is oriented
to the right, in horizontal position, all angles are approximately π

2 and G ≈ [−1, . . . ,−1]. For this case,
the matrix Π can be chosen constant, e.g as

Π =




1 −1
. . .

. . .

1 −1


 . (40)

6.4 Linearized model of the constrained pendulum chain

For some applications a nonlinear model may not be suitable. In such cases it is common practice to
linearize the model equations around a steady state, cf. [10]. Such a steady state of the equations of the



18 7 SIMULATION RESULTS

stiff constrained pendulum chain (38) can be computed by solving the system

0 = KΦ̄ + f(Φ̄) − GT (Φ̄)λ̄,

0 = g(Φ̄)

for

[
Φ̄
λ̄

]
. By construction ¯̇Φ = 0. We then set Φ̇ = ¯̇Φ + δΦ̇, Φ = Φ̄ + δΦ, λ = λ̄ + δλ in (38) and after

dropping higher order terms in a Taylor expansion, we obtain the linearized system

d

dt
δΦ = δΦ̇, (41a)

d

dt
δΦ̇ = −M(Φ̄)−1(dδΦ̇ + KδΦ + fΦ(Φ̄)δΦ − GT (Φ̄)δλ), (41b)

0 = G(Φ̄)δΦ. (41c)

According to [10], this system is of differentiation index 3 and we have to add the hidden constraints

0 = G(Φ̄)δΦ̇, (41d)

0 = G(Φ̄)
d

dt
δΦ̇ = −G(Φ̄)M(Φ̄)−1(dδΦ̇ + KδΦ + fΦ(Φ̄)δΦ − GT (Φ̄)δλ). (41e)

For this system we apply the selection procedure as in (39) with selector Π as in (40) and obtain a system
of the form Eẋ = Ax, x(0) = x0 with

E =




Π
Π

0
0
0




, A =




0 Π 0
−ΠM−1(Φ̄)(K + fΦ(Φ̄)) −ΠM−1(Φ̄)d ΠM−1(Φ̄)GT (Φ̄)

G(Φ̄) 0 0
0 G(Φ̄) 0

−G(Φ̄)M−1(Φ̄)(K + fΦ(Φ̄)) −G(Φ̄)M−1(Φ̄)d G(Φ̄)M−1(Φ̄)GT (Φ̄)




,(42)

xT = [δΦT , δΦ̇T , δλ] and xT
0 = [ΦT (0) − Φ̄T , Φ̇T (0) − ¯̇ΦT , λ(0) − λ̄]. (43)

7 Simulation results

We have investigated the model described by equation (39) with Π as in (40), with stiffness parameter
κ0 = 2·10−2 and damping d = 1. With this set of parameters the system behaves highly nonlinear and the
solution gets close to a singular state, i.e. a state where the motion of the system becomes undetermined,
e.g. and inverted pendulum. The dimension n = 51 has been chosen such that the number of differential
equations in (38) is 100. The DAE has been integrated using the implicit Euler scheme with constant
stepsize 10−2 on the time interval [0, 10], i.e. in 1000 steps. The nonlinear systems arising in each
time step were solved with reasonable accuracy using one Newton iteration. The Euler scheme uses the
exact mass matrix but only a finite-difference approximation of the Jacobian. Unfortunately, even if
the state-space of the reduced order model is much smaller than for the original model, the work for
the evaluation of the right-hand side of (39) is not reduced, hence the main work load depends on the
number of function evaluations. However, computing the Jacobian by finite differences requires a number
of function evaluations proportional to the size of the system and becomes cheaper as the system size
decreases. Gains in computation time will mostly be attributed to this fact.
For the determination of the Galerkin projectors we have tested two approaches. The first one uses the
implicit Euler method, a shorter time interval and a larger stepsize to obtain a set of snapshots. These are
then used to generate an approximation to the correlation matrix. For a second approach, we linearize
the model around a steady state and compute the Gramian of the resulting linear constant coefficient
model via an appropriate Lyapunov equation.
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Figure 3: Decay of singular values of the snapshot matrix

7.1 Simulation with snapshots

For the generation of snapshots we have integrated (37) on the shorter time interval [0, 5] with 100
steps only. The computation of the snapshots took 800 seconds and the computation of the full model
with 1000 steps took about 7,800 seconds on a Pentium 4 desktop PC with 1.4 GHz and 1 GByte RAM
using MatLab7. Computation time for the Galerkin projectors took less than a second and was usually
negligible compared to the computation of the snapshots.
If we set X = [x̃(0), . . . , x̃(5)], where x̃(t) is the numerical approximation to x(t), then M̃x = XXT yields
a good approximation to the correlation matrix Mx with respect to the solution x(t) on [0, 5]. With

(25), the reduced correlation matrix My can easily be obtained via My = S1EMxET ST
1 since E =

[
Π
0

]

is constant and S =

[
S1

S2

]
can be chosen as identity. For numerical reasons we did not compute the

eigenvalues of the matrix M̃y but the singular value decomposition of E1X. By definition, the singular

values of E1X are the roots of the eigenvalues of M̃y = E1XXT ET
1 and the computation of the singular

values introduces less roundoff. In Figure 3 the decay of singular values is depicted. It is visible, that
the singular values decay rapidly to a magnitude of 10−6 and much slower afterwards. Hence, it can be
expected that a reduction of the systems dimension to 20 yields a good approximation while a higher
dimension does not improve the accuracy significantly. In Table 7.1 computational test results are listed.
For different tolerances tol, all singular values σi with σi/σ1 < tol have been dropped. The remaining
number of singular values determines the order of the reduced system and the respective singular vectors
are used for the construction of PL and PR. In the table only the order of the reduced dynamic part is
listed. The actual system contains three more states due to three constraints. The listed computation
times only show the time for the computation of the reduced order systems, i.e. without the time needed
for the computation of the snapshots and the Galerkin projection. The last line shows the obtained
relative errors with respect to the solution of the non-reduced system. For the tolerance 10−6 the system

ran into a singular position such that the matrix

[
Π
G

]
became singular and the simulation was aborted.
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tolerance 1E-2 1E-4 1E-6 1E-8 1E-10 1E-12
red. order 8 16 28 62 94 100

comp. time (s) 0.9E3 1.5E3 - 4.8E3 7.0E3 7.5E3
rel. error 1.1E-4 3.9E-6 - 1.3E-7 1.3E-7 1.3E-7

Table 1: test results using snapshots
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Figure 4: Decay of singular values of the square root factor

7.2 Correlation matrix via Lyapunov equation

In order to compute the correlation matrix My with the help of a generalized Lyapunov equation, we
have lineraized the nonlinear system around its steady state and obtained a system Eẋ = Ax with E and
A as in (42). The computation of the steady state took 17 seconds with a stabilized Newton method and
the solution of the generalized Lyapunov equation using Algorithm 5.1 took another 1.7s. As in the case
of the computation of the correlation matrix with snapshots, in order to reduce roundoff we computed
square root factors of the solution of the generalized Lyapunov equation. The decay of singular values
of the square root factor of My is depicted in Figure 4. It can be observed that they decay much slower
than for the computation with snapshots. Tests confirm that the rate of decay is related to the damping
parameter d in a way that high damping leads to rapidly decaying singular values. With the Lyapunov
approach, the correlation matrix is computed on an infinite time interval and slowly decaying parts of
the system dynamics become more important than for the correlation matrix on a short time interval.
The test results for different drop tolerances for singular values are listed in Table 7.2. For the computa-
tion with tolerance 10−2 the system again ran into a singular state and the simulation failed.
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tolerance 1E-2 1E-4 1E-6 1E-8 1E-10 1E-12
red. order 21 49 67 82 90 94

comp. time (s) - 4.3E3 5.6E3 6.6E3 7.1E3 7.9E3
rel. error - 1.2E-4 1.8E-6 3.1E-6 2.3E-7 1.3E-7

Table 2: test results using subspace computed via a Lyapunov equation

8 Summary

We have shown that the POD model order reduction method may sucessfully be applied to reduce the
dimension of moderately large scale DAEs. The main idea behind the approach was to split equations
and unknowns and to perform a reduction only on the dynamic part of the DAE. This already shows the
limits of the approach. In order to make the method efficient, it must be reasonably easy to separate
differential and algebraic parts of the DAE. Furthermore, as only the dynamic part is reduced this ap-
proach makes sense only if the dynamic part is considerably larger than the algebraic part.
A known problem for POD methods, the generation of the appropriate projection subspaces has been
adressed in two ways. First, a set of snapshots has been computed by a low accuracy simulation of
the original system to approximate the correlation matrix of the solution. In a different approach, a
linearization of the system around its steady state has been computed. With tools from linear model
order reduction, the Gramian of the linear system has been computed and used instead of the correlation
matrix. With both methods it was possible to compute systems of smaller dimension that reproduced
the solution of the large system with sufficient accuracy.
The construction of the projection subspaces with snapshots generated by simulation took a comparably
large amount of computation time but produced good approximations. The computation of the subspaces
using a generalized Lyapunov equation was comparably fast, but the decay of singular values was much
slower and thus the approximation quality was less than for the snapshot case. If the reduced model is
to be used repeatedly, the one-time computation of a large set of snapshots pays off as a good approx-
imating subspace of low dimension can be expected. If the system is solved with changing parameters,
e.g. in optimization problems, then the Lyapunov approach might be faster than several time-consuming
snapshot generations.
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