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700506, Iaşi, Romania
E-mail: leftercg@yahoo.com, catalin.lefter@uaic.ro

3 Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39,
D–10117 Berlin, Germany
E-Mail: sprekels@wias-berlin.de

Abstract

In this paper, we study an optimal control problem for a singular system
of partial differential equations that models a nonisothermal phase transition
with a nonconserved order parameter. The control acts through a third bound-
ary condition for the absolute temperature and plays the role of the outside
temperature. It is shown that the corresponding control-to-state mapping is
well defined, and the existence of an optimal control and the first-order opti-
mality conditions for a quadratic cost functional of Bolza type are established.

2000 Mathematics Subject Classification: 35K55, 80A22, 49J20, 49K20.
Keywords and Phrases: Phase-field system, phase transition, optimal control,
necessary conditions.

1This work has been supported by the DFG Research Center Matheon “Mathematics for key
technologies” in Berlin, and the first author was supported by a Humboldt Research Fellowship at
the Weierstrass Institute for Applied Analysis and Stochastics, Berlin.

1



1 Introduction

Let Ω ⊂ IR3 be an open and bounded domain with smooth boundary Γ, and let
T > 0 be given. We denote Qt = Ω × (0, t) , Γt = ∂Ω × (0, T ), for any t ∈ (0, T ].
We consider the following phase field system:

µ(θ)χt = −F ′
1(χ)−

(
β1

θ
+ β2

)
F ′

2(χ)− F ′
3(χ)

θ
, in QT , (1.1)

CV θt + (β1F
′
2(χ) + F ′

3(χ))χt −∆θ = 0 , in QT , (1.2)

∂θ

∂n
+ kθ = u , on ΓT , (1.3)

χ(·, 0) = χ0, θ(·, 0) = θ0 , in Ω . (1.4)

This system constitutes a model for a nonisothermal phase transition occurring in
the container Ω that is controlled by the outside temperature u. In this connection, θ
stands for the (positive) absolute temperature, χ is a nonconserved order parameter
that characterizes the phase transition, CV , β1, β2, k are positive physical constants,
and µ, F1, F2, F3 are given nonlinearities. Typically, χ must attain values in [0, 1]; for
instance, if χ represents the liquid fraction in a melting-solidification process, then
{χ = 0} characterizes the solid phase, {χ = 1} the liquid phase, and {0 < χ < 1} a
mixture of both phases.

The system (1.1)–(1.4), as well as nonlocal versions thereof, has been extensively
studied in recent years for the case of thermal insulation, i.e., if the boundary con-
dition (1.3) is replaced by

∂θ

∂n
= 0 , on ΓT . (1.3)′

In this connection, we refer to the papers [1, 2, 4, 6]. A very general case with
boundary condition of the form (1.3) was recently studied in [3]. Notice, however,
that the smoothness assumptions for the control u in [3] are stronger than in this
paper, so that we have a weaker regularity of the temperature field θ. More precisely,
we assume here that u ∈ L∞(ΓT ) so that (1.2), (1.3) has to be understood in the
weak sense; in particular, we only can expect that θt ∈ L2(0, T ; (H1(Ω))∗), while
under the assumptions of [3] one obtains that θt ∈ L2(QT ). In this sense, also the
wellposedness results stated below deserve some interest on their own right.

However, we do not strive for the largest possible generality in this paper, since we
want to stress the control aspects. Notice also that (depending on the form of µ(θ))
Eq. (1.1) may become singular, so that the positivity of θ must be guaranteed. In
addition, the typical form of the nonlinearity F2 is given by

F2(χ) = κ
(
χ log(χ) + (1− χ) log(1− χ)

)
, κ > 0 , (1.5)

which induces another singularity. In fact, it is then necessary to bound χ uniformly
away from both 0 and 1.
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We thus consider the following optimal control problem (which will be denoted by
(P) in the following):

Minimize

J [u, (χ, θ)] :=

T∫

0

∫

Γ

u2(x, t) dx dt + ‖θ(·, T )− θT‖2 + ‖χ(·, T )− χT‖2, (1.6)

subject to (1.1)–(1.4) (state equations) and to the pointwise control constraints

u ∈ U := {u ∈ L∞(ΓT ); 0 < u1 ≤ u(x, t) ≤ u2 a.e. } . (1.7)

Here, u1 > 0, u2 > 0 are given constants, (θT , ΓT ) ∈ L2(Ω)2 is the desired final
state at time T , and ‖ · ‖ denotes the L2(Ω) norm. Notice that the regularity results
proved below will guarantee that χ, θ ∈ C([0, T ]; L2(Ω)), which implies that J is
well defined.

It is the aim of this note to show that the optimal control problem (P) admits a
solution pair [u∗, (χ∗, θ∗)] and to derive the first-order optimality conditions. To this
end, we first study in Section 2 the state system (1.1)–(1.4) for fixed u ∈ U , showing
the wellposedness. The technique used differs from the one employed in [1, 4, 6]
for similar problems; indeed, we will reverse the order of arguments used there. In
addition, we obtain new results for the state system itself. The concluding Section 3
is devoted to the existence of an optimal solution [u∗, (χ∗, θ∗)] and to the derivation
of first-order necessary conditions.

2 Wellposedness of the state system

The proof of existence and uniqueness of the solution of the state system (1.1)–(1.4)
follows the ideas developed in [1, 6], but the order of arguments is reversed in the
sense that we first derive a priori bounds for the solution and then treat a truncated
system that coincides with the initial system inside these bounds.

We generally assume:

(H1) χ0, χT , θ0, θT ∈ L∞(Ω), and there is some 0 < δ < 1 such that δ ≤ χ0(x) ≤
1− δ, θ0(x) ≥ δ, for a.e. x ∈ Ω.

(H2) F1, F3 ∈ C2[0, 1] , F2 ∈ C2(0, 1), and it holds

lim
s↘0

F ′
2(s) = −∞, lim

s↗1
F ′

2(s) = +∞ . (2.1)

(H3) µ ∈ C1(0,∞), and there is some µ̂ > 0 such that

µ(s) ≥ µ̂ min
{
1,

1

s

}
∀ s > 0 . (2.2)
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(H4) u ∈ U := {u ∈ L∞(ΓT ); u1 ≤ u(x, t) ≤ u2 a.e. },
with given constants u1 > 0, u2 > 0.

Remark 2.1 Condition (2.1) is satisfied if µ(s) = µ̂s−α with some µ̂ > 0 and
0 ≤ α ≤ 1. Note that the case α = 1 corresponds to the Caginalp phase field model,
while α = 0 gives the analogue of the Penrose–Fife model. Notice also that (2.2) is
more general than the condition

µ(s) ≥ µ̂
(
1 +

1

s

)
, µ̂ > 0 , ∀ s > 0 , (2.2)′

which was needed to derive the very general well-posedness results of [3].

2.1 A priori bounds

For what follows, we introduce the function l ∈ C1(0,∞),

l(s) :=
1

sµ(s)
> 0 for s > 0 .

To simplify notation, we assume without loss of generality that µ̂ = CV = 1, and
we denote, for 0 < χ < 1,

h1(χ) := β1F
′
2(χ) + F ′

3(χ) , h2(χ) := β2F
′
2(χ) + F ′

1(χ) .

Then, rearranging terms in (1.1) and substituting χt from (1.1) in (1.2), we may
rewrite (1.1), (1.2) in the form

χt = −l(θ)[h1(χ) + h2(χ)θ] , (2.3)

θt −∆θ = l(θ)h1(χ)[h1(χ) + h2(χ)θ] . (2.4)

We have the following result.

Proposition 2.2 Suppose that (H1)–(H3) are fulfilled. For any θ ∈ L∞(QT ) sat-
isfying θ(x, t) ≥ θ a.e. in QT for some θ > 0, there is a unique solution χ ∈ L∞(QT )
to (2.3) such that χt ∈ L∞(QT ) and χ(x, 0) = χ0(x) for a.e. x ∈ Ω. Moreover, there
are constants 0 < χ < χ < 1, which are independent of θ, such that

χ ≤ χ(x, t) ≤ χ a.e. in QT . (2.5)

Proof: There is some set N ⊂ Ω of zero measure such that θ(x, t) ≥ θ > 0 and
χ0(x) ∈ IR for every x ∈ Ω \N , and for any such x it follows that the initial value
problem

χt(x, t) = l(θ(x, t)) [h1(χ(x, t)) + h2(χ(x, t))θ(x, t)] , for a.e. t ∈ (0, T ) ,

χ(x, 0) = χ0(x) , (2.6)
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has a unique local Carathéodory solution. Now observe that, owing to the general
hypotheses (H1)–(H3), there are constants 0 < χ1 < χ2 < 1 such that h1 < 0 , h2 <
0 on (0, χ1], and h1 > 0 , h2 > 0 on [χ2, 1), respectively. Thus, χt(x, t) > 0 whenever
χ(x, t) ∈ (0, χ1], and χt(x, t) < 0 whenever χ(x, t) ∈ [χ2, 1). Consequently, we must
have

χ := min{δ, χ1} ≤ χ(x, t) ≤ χ := max{1− δ, χ2} , a.e. in QT .

From this we can infer that the solution to (2.6) exists in fact on the entire time
interval [0, T ], and the assertion follows.

In order to obtain a priori bounds for the energy balance equation (2.1) (respectively,
(2.4)) under the boundary condition (1.3), and in order to apply an iterative method
to construct the solution to the system, we now replace in Eq. (2.4) the possibly
unbounded term l(θ) by a truncation. To this end, let 0 < ε < 1, and define

ϕε(s) := max{ε, s} , lε(s) :=





1

ϕε(sµ(s))
, for s > 0 ,

ε−1 , for s ≤ 0 .

(2.7)

Obviously, 0 < lε(s) ≤ ε−1 for all s ∈ IR, and thus lε ∈ L∞(IR). We now consider
the truncated problem

θt −∆θ = lε(θ)h1(χ)[h1(χ) + h2(χ)θ] , (2.8)

together with the boundary condition (1.3) and the initial condition (1.4) for θ. As
usual, we call θ a (weak) variational solution to (2.8), (1.3), (1.4) if

θ ∈ W :=
{
η ∈ L2(0, T ; H1(Ω)) ; ηt ∈ L2(0, T ; (H1(Ω))∗)

}
, (2.9)

and

〈θt(t), v〉+
∫

Ω

∇θ(t) · ∇v dx +
∫

Γ

(k θ(t)− u(t)) v dσ

=
∫

Ω

lε(θ(t)) h1(χ(t)) [h1(χ(t)) + h2(χ(t)) θ(t)] v dx

∀ v ∈ H1(Ω) , a.e. t ∈ (0, T ) , (2.10)

θ(0) = θ0 , (2.11)

where 〈·, ·〉 denotes the dual pairing between (H1(Ω))∗ and H1(Ω). We have the
following result.

Proposition 2.3 There are constants 0 < ε0 ≤ δ0 , δ1 > 0, depending only on
χ, χ, u1, u2, δ, ‖θ0‖L∞(QT ), such that the following holds: whenever θ ∈ L2(QT ) is a
variational solution to (2.8), (1.3), (1.4) for some 0 < ε ≤ ε0 and some χ ∈ L∞(QT )
satisfying χ ≤ χ ≤ χ a.e. in QT , then

0 < δ0 ≤ θ ≤ δ1 a.e. in QT . (2.12)

In particular, θ ≥ ε a.e. in QT , that is, θ satisfies Eq. (2.4).
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Proof:

Step 1: Let ε > 0 and χ ∈ L∞(QT ) with χ ≤ χ ≤ χ a.e. in QT be fixed, and let
θ ∈ W∩L∞(QT ) be an associated variational solution. Then θt−∆θ+cε(x, t) θ ≥ 0
in QT in the weak sense, where cε = −lε(θ) h1(χ) h2(χ) ∈ L∞(QT ). Thus, we can
infer from the maximum principle for parabolic equations that θ ≥ θε

1 a.e. in QT ,
where θε

1 is the strong solution to the problem

θε
1,t −∆θε

1 + c(x, t)θε
1 = 0 in QT , (2.13)

∂θε
1

∂n
+ k θε

1 = u1 on ΓT , (2.14)

θε
1(x, 0) = θ0(x) for a.e. x ∈ Ω , (2.15)

which is positive a.e. in QT . Thus, θ > 0 a.e. in QT .

Step 2: We now show that there is some c > 0 that does not depend on ε > 0 such
that

1

ϕε(θµ(θ))
[h2

1(χ) + h1(χ)h2(χ)θ] ≥ −c ϕε(θ) a.e. in QT . (2.16)

Indeed, if θ ≥ 1 then it follows from µ̂ = 1 that θ µ(θ) ≥ min{1, θ−1} θ ≥ 1. Hence,
ϕε(θµ(θ)) ≥ 1, so that the expression on the left-hand side of (2.16) is bounded from
below by −c1 ϕε(θ) for c1 := max

χ≤χ≤χ
|h1(χ) h2(χ)|.

On the other hand, if θ < 1 then θ ≤ θ µ(θ), and thus θ ≤ ϕε(θ µ(θ)). Therefore,

1

ϕε(θ µ(θ))
[h2

1(χ) + h1(χ) h2(χ) θ] ≥ − h2
2(χ) θ2

4 ϕε(θ µ(θ))
≥ −c2 ϕε(θ) ,

with c2 := 1
4

max
χ≤χ≤χ

h2
2(χ). Hence, (2.16) holds with the choice c = max{c1, c2}.

Step 3: Using the fact that ϕε(θ) ≤ θ + ε a.e., we conclude from (2.16) that θt −
∆θ + c θ ≥ −c ε in the weak sense. Hence, θ ≥ θε a.e. in QT , where θε solves

θε
t −∆θε + c θε = −c ε in QT , (2.17)

∂θε

∂n
+ k θε = u1 on ΓT , (2.18)

θε(x, 0) = δ for a.e. x ∈ Ω . (2.19)

From the general regularity theory of linear parabolic problems we infer that θε is
smooth. Moreover, we have θε → θ0 uniformly on QT as ε ↘ 0, where θ0 denotes
the solution to (2.17)–(2.19) for ε = 0. Since min

(x,t)∈QT

θ0(x, t) =: 2 δ0 > 0, there is

some ε̂ > 0 such that θε ≥ δ0 whenever 0 < ε < ε̂. Notice that δ0 , ε̂ only depend
on u1, δ, χ, χ.
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Step 4: To establish the global upper bound for θ, notice that, by Step 3, θ ≥ θε ≥
δ0 > 0 whenever 0 < ε ≤ ε̂. In particular, if 0 < ε ≤ min{δ0, ε̂}, then θ ≥ ε > 0 and
thus ϕε(θ) = θ, so that, using (H3),

lε(θ) = (θ µ(θ))−1 ≤ (min{θ, 1})−1 ≤ (min{δ0, 1})−1 =: κ̃ .

It thus follows from the maximum principle of parabolic equations that θ ≤ θ̃ a.e. in
QT , where θ̃ solves the problem

θ̃t −∆θ̃ − κ̃ max
χ≤χ≤χ

|h1(χ) h2(χ)| θ̃ = κ̃ max
χ≤χ≤χ

h2
1(χ) in QT , (2.20)

∂θ̃

∂n
+ k θ̃ = u2 on ΓT , (2.21)

θ̃(x, 0) = θ0(x) for a.e. x ∈ Ω . (2.22)

Putting δ1 := ‖θ̃‖L∞(QT ) , ε0 := min{δ0, ε̂}, we have proved the assertion.

Remark 2.4 The truncation procedure was needed, since l may be unbounded on
(0,∞). This is not the case if (H3) is replaced by the condition µ(θ) ≥ θ−1, since
then l ∈ L∞(0,∞).

2.2 Wellposedness of the State System

In this section, we are going to prove the following result.

Theorem 2.5 Suppose that (H1)–(H4) are fulfilled. Then the system (1.1)–(1.4)
admits for every u ∈ U a unique solution (χ, θ) such that

χ, χt ∈ L∞(QT ) , χ ≤ χ ≤ χ a.e. in QT , (1.1) holds a.e. in QT , (2.23)

θ ∈ W ∩ L∞(QT ) is a weak solution to (1.2)–(1.4) in the sense of (2.13), (2.14) ,
(2.24)

0 < γ1 ≤ θ ≤ γ2 a.e. in QT , (2.25)

with constants γ1, γ2 that depend only on δ, u1, u2, ‖θ0‖L∞(Ω). Moreover, (χ, θ) is the
only solution to (1.1)–(1.4) that satisfies (2.23), (2.24), and

ess inf
QT

θ(x, t) > 0 . (2.26)

Proof: Let χ, χ and ε0, δ0, δ1 be the positive constants introduced in Propositions
2.2 and 2.3, respectively. We fix ε ∈ (0, ε0], set ρ(θ) := min{θ, δ1}, and choose some
α > 0 such that

lε(θ) h1(χ) h2(χ) + α > 0 for θ ≥ 0 , χ ≤ χ ≤ χ . (2.27)
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Now let u ∈ U be arbitrary, but fixed. We then consider the initial-boundary value
problem

χt = lε(θ̃)[h1(χ) + h2(χ) θ̃] =: f(χ, θ̃) , in QT , (2.28)

θt −∆θ + α θ = lε(θ̃) h2
1(χ̃) + [lε(θ̃) h1(χ̃) h2(χ̃) + α] ρ(θ̃)

=: g(χ̃, θ̃) , in QT , (2.29)

∂θ

∂n
+ k θ = u , on ΓT , (2.30)

χ(·, 0) = χ0 , θ(·, 0) = θ0 , in Ω , (2.31)

where χ̃ ∈ L2(QT ) satisfies χ ≤ χ̃ ≤ χ a.e. in QT , and where θ̃ ∈ L2(QT ) fulfills

γ1 ≤ θ̃ ≤ γ2 a.e. in QT , (2.32)

with constants 0 < γ1 < γ2, which will be defined below.

Arguing as in the proof of Proposition 2.2, we can infer that (2.28), (2.31) admits
a unique solution χ ∈ L∞(QT ) such that χt ∈ L∞(QT ) and χ ≤ χ ≤ χ a.e. in
QT . Moreover, it follows from the general theory of parabolic equations (cf. [5])
that the problem (2.29), (2.30), (2.31) has a weak solution θ ∈ W that depends
continuously on the data θ0 ∈ L2(Ω) , u ∈ L2(0, T ; L2(Γ)), and on the right-hand
side g (with respect to the topology of L2(0, T ; (H1(Ω))∗)). Now, by construction of
α, the right-hand side of (2.29) is nonnegative. Hence, θ ≥ θ a.e. in QT , where θ is
the (smooth) solution to the problem

θt −∆θ + α θ = 0 , in QT , (2.33)

∂θ

∂n
+ k θ = u1 , on ΓT , (2.34)

θ(·, 0) = δ , in Ω , (2.35)

which is positive. Consequently,

θ ≥ γ1 := min
(x,t)∈QT

θ(x, t) > 0 a.e. in QT .

On the other hand, the right-hand side of (2.29) is bounded in the form

|g(χ̃, θ̃)| ≤ ε−1 max
χ≤χ≤χ

h2
1(χ) + ε−1 max

χ≤χ≤χ
|h1(χ) h2(χ)| δ1 + α δ1 =: σ .

Using the maximum principle once more, we find that θ ≤ θ, where θ solves

θt −∆θ + α θ = σ , in QT , (2.36)

∂θ

∂n
+ k θ = u2 , on ΓT , (2.37)

θ(·, 0) = ‖θ0‖L∞(Ω) , in Ω . (2.38)

In conclusion, we have γ1 ≤ θ ≤ γ2 a.e. in QT with γ2 := ‖θ‖L∞(QT ).
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Now let

M :=
{
(χ̃, θ̃) ∈ C

(
[0, T ]; L2(Ω)

)2
; χ ≤ χ ≤ χ and

γ1 ≤ θ̃ ≤ γ2 a.e. in QT

}
. (2.39)

Clearly, M is a nonempty and closed subset of C([0, T ]; L2(Ω))2. Moreover, if F
denotes the operator that assigns to each (u, (χ̃, θ̃)) ∈ U ×M the associated solution
to (2.29)–(2.31), then F(u, ·) maps M into M for any fixed u ∈ U . We now show
that F(u, ·) is a contraction on M with respect to a suitably weighted norm on
C([0, T ]; L2(Ω))2. To this end, we show the following stability result.

Lemma 2.6 Suppose that (ui, (χ̃i, θ̃i)) ∈ U × M, i = 1, 2, are given, and let
(χi, θi) = F (ui, (χ̃i, θ̃i)), i = 1, 2. Denote χ̃ := χ̃1 − χ̃2, θ̃ := θ̃1 − θ̃2, u :=
u1 − u2, χ := χ1 − χ2, θ := θ1 − θ2. Then there is some constant C > 0, de-
pending only on χ, χ, γ1, γ2, ε, such that

‖χ(t)‖2 + ‖θ(t)‖2 +

t∫

0

‖∇θ(s)‖2 ds +

t∫

0

∫

Γ

θ2 dσ ds +

t∫

0

‖θ(s)‖2 ds

≤ C




t∫

0


‖χ(s)‖2 + ‖χ̃(s)‖2 + ‖θ(s)‖2 + ‖θ̃(s)‖2 +

∫

Γ

u2 dσ


 ds


 . (2.40)

Proof: The pair (χ, θ) satisfies the initial-boundary value problem

χt = f(χ1, θ̃1)− f(χ2, θ̃2) , in QT , (2.41)

θt −∆θ + α θ = g(χ̃1, θ̃1)− g(χ̃2, θ̃2) , in QT , (2.42)

∂θ

∂n
+ k θ = u , on ΓT , (2.43)

χ(·, 0) = 0 , θ(·, 0) = 0 , in Ω , (2.44)

where Eq. (2.41) holds a.e. in QT , while the equations for θ have to be understood
in the weak sense (see (2.10), (2.12)).

Now observe that f, g are globally Lipschitz continuous on [χ, χ]× [γ1, γ2], i.e., there
is some Lε > 0 such that

|f(χ1, θ1)− f(χ2, θ2)|+ |g(χ1, θ1)− g(χ2, θ2)| ≤ Lε

(
|χ1 − χ2|+ |θ1 − θ2|

)

∀ (χ1, θ1), (χ2, θ2) ∈ [χ, χ]× [γ1, γ2] . (2.45)

Now multiply (2.41) by χ and integrate over Qt for t > 0. Then it follows from
(2.45), using Young’s inequality, that

‖χ(t)‖2 ≤ Lε

t∫

0

(
3‖χ(s)‖2 + ‖θ̃(s)‖2

)
ds . (2.46)
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Next, we test the variational form of (2.42)–(2.44) by θ. Using Young’s inequal-
ity and (2.45), we easily see that there is a constant C̃ > 0, depending only on
χ, χ, γ1, γ2, ε, such that

‖θ(t)‖2 +

t∫

0

‖∇θ(s)‖2 ds +

t∫

0

‖θ(s)‖2 ds +

t∫

0

∫

Γ

θ2 dσ ds

≤ C̃




t∫

0

(
‖χ̃(s)‖2 + ‖θ̃(s)‖2

)
ds +

t∫

0

∫

Γ

u2 dσ ds


 . (2.47)

Combining (2.46) and (2.47), we obtain the assertion.

Proof of Theorem 2.5 (continued) Consider for ω > 0 the norm

‖(χ, θ)‖ω := max
0≤t≤T

e−ω t (‖χ(t)‖+ ‖θ(t)‖) , (2.48)

which is equivalent to the standard norm of C
(
[0, T ]; L2(Ω)

)2
. Multiplying (2.40)

by 2e−2 ωt, we find that

e−2 ω t (‖χ(t)‖+ ‖θ(t)‖)2 ≤ 2 e−2 ω t
(
‖χ(t)‖2 + ‖θ(t)‖2

)

≤ C

ω
(1− e−2 ω T ) max

0≤s≤t
e−2 ω s

(
‖χ(s)‖2 + ‖χ̃(s)‖2 + ‖θ(s)‖2 + ‖θ̃(s)‖2

)

+2 C

t∫

0

∫

Γ

u2 dσ ds ,

whence

‖(χ, θ)‖2
ω ≤

C

ω
(1− e−2ω T )

(
‖(χ, θ)‖2

ω + ‖(χ̃, θ̃)‖2
ω

)

+2 C

t∫

0

∫

Γ

u2 dσ ds . (2.49)

Choosing ω > 0 appropriately large, it follows that there are constants Lω ∈
(0, 1), Cω > 0, which are independent of u, such that

‖(χ, θ)‖2
ω ≤ Lω‖(χ̃, θ̃)‖2

ω + Cω

t∫

0

∫

Γ

u2 dσ ds . (2.50)

In particular, the mapping F(u, ·) is a contraction on M (uniformly in u ∈ M) with
respect to ‖ · ‖ω, and thus enjoys a unique fixed point (χ̂, θ̂) in M , which in turn is
the unique solution to the problem

χt = lε(θ)[h1(χ) + h2(χ) θ] , in QT , (2.51)

θt −∆θ + α θ = lε(θ)h
2
1(χ) + [lε(θ)h1(χ) h2(χ) + α] ρ(θ) , (2.52)
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together with the initial and boundary conditions (1.3), (1.4). Clearly, χ̂, χ̂t ∈
L∞(QT ), while θ̂ ∈ W . Moreover, Proposition 2.3 implies that θ̂ ≥ ε a.e. in QT ,
that is, ϕε(θ̂) = θ̂, which implies that (χ̂, θ̂) solves in fact Eq. (2.3). Also, we
obviously have that

θ̂t −∆θ̂ + α θ̂ ≤ lε(θ̂) h1(χ̂) [h1(χ̂) + h2(χ̂) θ̂] + α θ̂

in the weak sense, and the same comparison argument as in Step 4 in the proof of
Proposition 2.3 yields that θ̂ ≤ δ1 a.e. in QT , and thus, ρ(θ̂) = θ̂. Therefore, (χ̂, θ̂)
solves also (2.4), and thus (1.1)–(1.4).

Finally, if (χ, θ) is any solution to (1.1)–(1.4) that satisfies (2.23), (2.24), (2.26),
then it follows from Proposition 2.2 that χ ≤ χ ≤ χ a.e. in QT , and Proposition 2.3

implies that (2.12) holds. But then in fact (χ, θ) ∈ M and thus, χ = χ̂, θ = θ̂. This
completes the proof of the theorem.

Remark 2.7 Observe that (2.50) implies the Lipschitz continuous dependence of
the solution with respect to the control u. Indeed, if u1, u2 ∈ U are given, then it
holds for the corresponding solutions (χ1, θ1) , (χ2, θ2) the estimate

‖(χ1, θ1)− (χ2, θ2)‖2
ω ≤

Cω

1− Lω

t∫

0

∫

Γ

|u1 − u2|2 dσ ds . (2.53)

3 The Optimal Control Problem

3.1 Existence of Optimal Controls

We now study the optimal control problem (P). We first show the existence of
optimal controls. To this end, let {un} ⊂ U be a minimizing sequence, and let
(χn, θn) ∈ M denote the solution of (1.1)–(1.4) associated with un, n ∈ IN . Clearly,
{un} is bounded in L∞(QT ), {χn}, {χn,t} are bounded in L∞(QT ), and {θn} is
bounded in W ∩ L∞(QT ). Hence, for a subsequence, which is again indexed by
n, we have the convergences

un → u∗ weakly-star in L∞(QT ) ,

χn → χ∗ , χn,t → χ∗t , weakly-star in L∞(QT ) ,

θn → θ∗ , weakly in W and weakly-star in L∞(QT ) . (3.1)

Since W is continuously embedded in C([0, T ; L2(Ω)) and compactly embedded in
L2(QT ), we also have

θn → θ∗ , weakly in C([0, T ]; L2(Ω)) and strongly in L2(QT ) . (3.2)

In particular, θn(T ) → θ∗(T ) weakly in L2(Ω).
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Next, we subtract Eq. (2.3) for (χ, θ) = (χn, θn) from the equation for (χ, θ) =
(χ∗, θ∗) and multiply the resulting equation by χn − χ∗. Using the fact that lε(θ) =
l(θ) and ρ(θ) = θ for both θ = θn and θ = θ∗, and invoking (2.45), we can argue as
in the derivation of Eq. (2.46) to conclude that, for any t ≥ 0,

‖χn(t)− χ∗(t)‖2 ≤ Lε

t∫

0

(
3‖χn(s)− χ∗(s)‖2 + ‖θn(s)− θ∗(s)‖2

)
ds ,

and thus (3.2) implies that

χn → χ∗ strongly in C([0, T ]; L2(Ω)) . (3.3)

In particular, χn(T ) → χ∗(T ) weakly in L2(Ω), and using the L∞-bounds, we have

l(θn) → l(θ∗) , h1(χn) → h1(χ
∗) , h2(χn) → h2(χ

∗), all strongly in L2(QT ) .

In consequence, (χ∗, θ∗) satisfies (2.3) a.e. in QT and thus, also (1.1). Moreover, it
is a standard argument to conclude that (χ∗, θ∗) is a weak solution to (1.2)–(1.4)
associated with u = u∗, i.e., we have

〈θ∗t (t), v〉+
∫

Ω

∇θ∗(t) · ∇v dx +
∫

Γ

(k θ∗(t)− u∗(t)) v dσ

=
∫

Ω

(l(θ∗(t)) h1(χ
∗(t))) [h1(χ

∗(t)) + h2(χ
∗(t)) θ∗(t)] v dx

∀ v ∈ H1(Ω) , for a.e. t ∈ (0, T ) .

Since (χ∗, θ∗) is uniquely determined, we conclude that the convergences (3.1), (3.2)
hold for the entire sequence {(χn, θn)} and not just for a subsequence. The weak
lower semicontinuity of the cost functional J then shows that

J [u∗, (χ∗, θ∗)] ≤ lim inf
n→∞ J [un, (χn, θn)] ,

that is, u∗ ∈ U is an optimal control with the associated state (χ∗, θ∗) ∈ M . The
existence of an optimal control is thus shown.

3.2 Necessary Conditions of Optimality

In this section, we derive the first-order necessary conditions of optimality. To this
end, suppose that (u∗, (χ∗, θ∗)) ∈ U × M is optimal, and let v ∈ L∞(ΓT ) be an
admissible variation, i.e., ∃τ0 > 0 such that uτ := u∗ + τ v ∈ U for 0 ≤ τ ≤ τ0. We
denote by (χτ , θτ ) ∈ M the unique solution to (1.1)–(1.4) associated with uτ .

Now observe that the state system (2.3), (2.4), (1.3), (1.4) is, owing to the a priori
estimates shown in the previous section and due to the differentiability assumptions
made in (H2), in fact a nonsingular initial-boundary value problem with continu-
ously differentiable right-hand side. It is then a standard argument (which can be
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omitted here) to show that the solution operator S : u 7→ (χ, θ) admits a directional
derivative DvS(u∗) = (ξ, η) at u∗ in the direction v in the sense of L2, that is, we
have ∥∥∥∥

χτ − χ∗

τ
− ξ

∥∥∥∥
L2(QT )

+

∥∥∥∥∥
θτ − θ∗

τ
− η

∥∥∥∥∥
L2(QT )

→ 0 as τ ↘ 0 . (3.4)

The directional derivative (ξ, η) is defined as follows: if we denote the right-hand
sides of (2.3) and (2.4) by f̃(χ, θ) and g̃(χ, θ) respectively, and extend them from
[χ, χ]× [γ1, γ2] onto IR2 as continuously differentiable and bounded functions having
bounded first derivatives on IR2, then (ξ, η) solves the linear initial-boundary value
problem

ξt = f̃χ(χ∗, θ∗) ξ + f̃θ(χ
∗, θ∗) η in QT , (3.5)

ηt −∆η = g̃χ(χ∗, θ∗) ξ + g̃θ(χ
∗, θ∗) η in QT , (3.6)

∂η

∂n
+ k η = v , on ΓT , (3.7)

η(x, 0) = ξ(x, 0) = 0 for a.e. x ∈ Ω . (3.8)

Clearly, we have ξ, ξt ∈ L∞(QT ) , η ∈ W ∩ L∞(QT ).

We now introduce the adjoint system

q∗t = −f̃χ(χ∗, θ∗) q∗ − g̃χ(χ∗, θ∗) p∗ in QT , (3.9)

p∗t + ∆p∗ = −f̃θ(χ
∗, θ∗) q∗ − g̃θ(χ

∗, θ∗) p∗ in QT , (3.10)

∂p∗

∂n
+ k p∗ = 0 on ΓT , (3.11)

q∗(x, T ) = −(χ∗(x, T )− χT (x)) , p∗(x, T ) = −(θ∗(x, T )− θT (x)) ,

for a.e. x ∈ Ω . (3.12)

Again, (3.10)–(3.12) has to be understood in the weak sense.

By virtue of the boundedness properties of the partial derivatives of f̃ and g̃, we
easily conclude that the linear backwards-in-time problem (3.9)–(3.12) admits a
unique solution (p∗, q∗) such that

q∗, q∗t ∈ L∞(QT ) , p∗ ∈ W ∩ L∞(QT ) . (3.13)

Moreover, since (u∗, (χ∗, θ∗)) ∈ U ×M is optimal for the cost functional J , we must
have

lim
τ↘0

J(uτ , (χτ , θτ ))− J(u∗(χ∗, θ∗))
τ

≥ 0 ,

which, by definition of (ξ, η), results in the inequality

T∫

0

∫

Γ

u∗ v dσ dt +
∫

Ω

(θ∗(T )− θT ) η(T ) dx +
∫

Ω

(χ∗(T )− χT ) ξ(T ) dx ≥ 0 . (3.14)
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Finally, we eliminate the auxiliary variables (ξ, η) using the adjoint system. To this
end, we test (3.5) by q∗, (3.6) by p∗, (3.9) by ξ and (3.10) by η, and add the four
resulting equations. It then follows that

∫

Ω

(θ∗(T )− θT ) η(T ) dx +
∫

Ω

(χ∗(T )− χT ) ξ(T ) dx = −
T∫

0

∫

Γ

p∗ v dσ dt .

In conclusion, we have proved the following result.

Theorem 3.1 Under the general hypotheses (H1)–(H4), the optimal control prob-
lem (P) admits a solution. Moreover, if (u∗, (χ∗, θ∗)) is an optimal pair, then there
exist functions (p∗, q∗) such that q∗, q∗t ∈ L∞(QT ) , p∗ ∈ W ∩L∞(QT ), such that the
following optimality system is satisfied:

Eqs. (1.1)–(1.4) for (u∗, (χ∗, θ∗)), Eqs. (3.9)–(3.12) for (p∗, q∗), as well as
T∫

0

∫

Γ

(u∗ v − p∗ v) dσ dt ≥ 0 , for all admissible variations v ∈ L∞(ΓT ) . (3.15)

Remark 3.2 Notice that the Hamiltonian of the system,

H(u; (q, p), (χ, θ)) :=
∫

Ω

q f̃(χ, θ) dx−
∫

Ω

∇p · ∇θ dx

+
∫

Ω

p g̃(χ, θ) dx−
∫

Γ

(k θ − u) p dσ − 1

2

∫

Γ

u2 dσ , (3.16)

is concave with respect to the control u. Thus, (3.15) is equivalent to saying that

H(u∗; (q∗, p∗), (χ∗, θ∗)) = max
u∈U

H(u; (q∗, p∗), (χ∗, θ∗)) . (3.17)
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