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Abstract

This paper deals with MIP-based primal heuristics to be used within a branch-and-cut

approach for solving multi-layer telecommunication network design problems. Based on a

mixed-integer programming formulation for two network layers, we present three heuristics

for solving important subproblems, two of which solve a sub-MIP. On multi-layer planning

instances with many parallel logical links, we show the effectiveness of our heuristics in finding

good solutions early in the branch-and-cut search tree.
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1 Introduction

Many telecommunication networks consist of several technological layers, like MPLS, ATM, SDH,
or WDM, which are strongly interdependent. In an SDH over WDM network, for instance, light-
paths with different bandwidths (e. g., 2.5, 10, or 40 Gbit/s) are configured between the nodes of
the network. These lightpaths are routed through a fiber network, where each fiber supports up to
40 or 80 lightpaths using wavelength division multiplexing. In a leased-line SDH network, STM-1
or STM-4 connections are configured between the nodes with a bandwidth of 155 and 622 Mbit/s,
respectively. These connections may be realized using fibers or capacitated radio links. For in-
stance, if the end-nodes of such a link are equipped with a 4xSTM-1 or 1xSTM-4 line card, the
link can be used by four STM-1 connections or by one STM-4 connection, respectively.
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Figure 1: Links (solid) in upper logical layer correspond to paths (dashed) in the physical layer.

A two-layer network can be modeled using a lower-layer physical graph representing for example
a fiber or radio network, and an upper-layer logical graph with the same set of nodes (or a subset
of it), whose links represent the lightpath or STM-N connections (see Figure 1). Every link in
the logical graph corresponds to a path in the physical network. Capacity modules, i. e., different
bandwidths, installed on a logical link consume fiber or port capacity on the corresponding physical
links. The planning task is to install discrete capacities on logical and physical links at minimum
cost such that communication demands can be routed through the logical links and the physical
network supports the logical link configuration. The process of choosing a subset of all possible
logical links together with their physical representation is called grooming.

Several authors have used mixed-integer programming (MIP) models for two-layer network
design. Some of them have employed a branch-and-cut solver as a black box either to solve their
problems directly [3] or to obtain dual bounds to assess the quality of their iterative heuristic
approaches [7, 9]. Others have added cutting planes or additional variables to Cplex on the
fly [5, 6]. Primal heuristics, however, have always been used separately from branch-and-cut in
multi-layer network design, although modern MIP solvers also provide callbacks for integrating
problem-specific heuristics into the branch-and-cut process.

In this paper, we propose to combine primal heuristics and branch-and-cut instead of viewing
these approaches as competing alternatives. We repeatedly solve two important subproblems as
heuristics within a branch-and-cut procedure to obtain both high-quality solutions and a dual
bound at the same time. One of these subtasks is the grooming and capacity assignment prob-
lem for a given flow, i. e., choosing a subset out of a possibly large set of admissible logical and
physical links and installing capacities on them. The other one is the routing subproblem, i. e.,
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determining a routing within a given capacity configuration. These subtasks are themselves for-
mulated as mixed-integer programs and solved using a branch-and-cut algorithm, allowing for an
easy extension of the model by further side constraints without major implementation changes.

This paper is structured as follows. In the next section, we present a mixed-integer program-
ming formulation and review the corresponding literature. The following section describes our
algorithmic approach and our MIP-based primal heuristics. On multi-layer planning instances
with many parallel logical links derived from six SNDlib [1] networks, we show their effectiveness
in finding good solutions early in the branch-and-cut search tree, and investigate the effect of
other MIP-based heuristics implemented in the branch-and-cut solver SCIP [2]. We conclude by
indicating some further research directions.

2 Mixed-integer programming model

For solving the two-layer network planning problem, we use the following mixed-integer program-
ming formulation. The physical network is represented by an undirected graph (V, E). The logical
network is modeled by an undirected graph (V, L) with the same set of nodes and a fixed set L of
admissible logical links, where each ℓ ∈ L is defined by an undirected path in the physical network.
Consequently, there can be many parallel logical links corresponding to different physical paths
between the same nodes, and the size of L can be exponential in |V |. For ease of notation, let
Le ⊆ L be the set of logical links containing physical link e ∈ E. Similarly, Lvw ⊆ L denotes the
subset of all logical links connecting nodes v and w. Furthermore, a set Q of commodities is given,
where each commodity q ∈ Q has a demand value dq

v at node v ∈ V such that
∑

v∈V dq
v = 0.

Typically, these commodities are derived by aggregating point-to-point demands at a common
source or target node. Each logical link ℓ ∈ L has a set Mℓ of installable capacity modules (e. g.,
lightpath capacities) which can be installed in arbitrary combination. Each module m ∈ Mℓ has a
capacity of Cm and a cost of cm. On a physical link e ∈ E, any number of capacity batches (e. g.,
fibers) can be installed at a unit cost of ce, each of them supporting at most B logical capacity
modules.

For a logical link ℓ ∈ L and a module m ∈ Mℓ, the logical link capacity variable ym
ℓ ∈ Z+

represents the number of modules of type m installed on ℓ. Similarly, the number of batches
installed on physical link e ∈ E is given by the physical link capacity variable xe ∈ Z+. Finally,
the flow variables f

q
ℓ,vw, f

q
ℓ,wv ∈ R+ represent the flow for commodity q ∈ Q on logical link ℓ ∈ Lvw

directed from v to w and vice versa. The goal is to minimize total installation cost (1), subject to
the constraints that all demands can be routed in the logical network (2) and that neither logical
(3) nor physical link capacities (4) are exceeded:

min
∑

ℓ∈L

∑

m∈Mℓ

cmym
ℓ +

∑

e∈E

cexe (1)

s.t.
∑

w∈V

∑

ℓ∈Lvw

(f q
ℓ,vw − f

q
ℓ,wv) = dq

v v ∈ V, q ∈ Q (2)

∑

m∈Mℓ

Cmym
ℓ −

∑

q∈Q

(f q
ℓ,vw + f

q
ℓ,wv) ≥ 0 v, w ∈ V, ℓ ∈ Lvw (3)

Bxe −
∑

ℓ∈Le

∑

m∈Mℓ

ym
ℓ ≥ 0 e ∈ E (4)

ym
ℓ , xe ∈ Z+, f

q
ℓ,vw, f

q
ℓ,wv ∈ R+ (5)

Similar mixed-integer programming models for multi-layer network design problems have been
proposed by several authors. Some of them design the logical and physical network at the same
time [7, 9], while others assume the physical network to be given [3, 5, 6].

Kubilinskas and Pióro [9] present an integer programming formulation where one capacity type
can be installed in integer multiples on the logical and physical links, respectively. Their iterative
search procedure repeatedly reroutes the demands and solves a sub-MIP to install as much logical
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and physical capacity as needed, taking global budget constraints into account. The solutions
obtained by this heuristic are compared to branch-and-cut results on one network instance. In
the model of H”oller and Vo”s [7], SDH or WDM capacities can be installed on the logical links
in multiples of a wavelength granularity. Their formulation comprises an unsplittable routing of
wavelength demands on the logical links as well as the dimensioning of a suitable fiber network. The
proposed GRASP-like heuristic iteratively sorts the demands in different ways, reroutes bundles of
demands, and recomputes the necessary capacities. On small instances, dual bounds are obtained
from a separate branch-and-cut run.

With a fixed physical layer, the planning task is to determine a demand routing and a suitable
logical network supported by the physical link capacities. For a model with one base capacity on
the logical links, Dahl et al. [5] propose a branch-and-cut algorithm with different cutting planes,
such as knapsack, strengthened cutset, flow-cutset, and hypomatchable inequalities. Baier et
al. [3] present a mixed-integer programming model for multi-period planning with node-switching
capacities, which is solved using Cplex as a black box. In contrast to most other multi-layer
models, their formulation allows for several logical link capacities to support lightpaths with
bandwidth 2.5, 10, and 40 Gbit/s in the same network. The path-flow formulation presented in
Dawande et al. [6] includes upper bounds on the number of logical links (wavelength channels) at
each node to account for a limited number of transponders. It is solved using a price-and-branch
algorithm where routing paths are generated in the root relaxation. A wavelength assignment is
determined heuristically afterwards. Dual bounds are obtained from a Lagrangian relaxation of
an equivalent edge-flow formulation.

3 Branch-and-cut algorithm with MIP-based heuristics

We solve the mixed-integer programming formulation using the branch-and-cut framework SCIP [2].
In addition, we have implemented several heuristics to construct feasible network configurations
based on integer or fractional solutions. At every node of the search tree, SCIP generates cutting
planes and calls both our heuristics and some of its own ones to identify feasible integer solutions.
If a new best solution is identified, it is added to SCIP’s solution pool such that it can be used
by other heuristics which take feasible solutions as a basis for their work. We will now describe
our heuristics and their use within the branch-and-cut framework.

Our MIP-based heuristics address two major subtasks. GroomCapMip and GroomCapHeur

solve the grooming and capacity installation subproblem for a given routing exactly and heuris-
tically, respectively, whereas ReroutingMip computes a routing within certain link capacities,
trying to reduce the required capacity at the same time. By construction, the MIP-based heuris-
tics can easily be adapted to include additional planning requirements, such as node hardware or
survivability constraints.

GroomCapMip The GroomCapMip procedure addresses the grooming and capacity assign-
ment subproblem for a given routing by solving a MIP. Let f∗

ℓ :=
∑

q∈Q(f q
ℓ,vw +f

q
ℓ,wv) be the total

flow on logical link ℓ ∈ Lvw in an integer or LP solution (after removing possible cycle flows). We
construct a sub-MIP of the original formulation (1)–(5) that contains logical and physical capacity
variables but no routing information:

min
{

(1) | (4),
∑

m∈Mℓ

Cmym
ℓ ≥ ⌈f∗

ℓ ⌉ ∀ℓ ∈ L, xe, y
m
ℓ ∈ Z+

}

.

Using SCIP’s branch-and-cut algorithm, this sub-MIP is solved as an improvement heuristic every
time a new best solution is identified, trying to reduce link capacity cost based on the given routing.
As the focus of the sub-MIP is on feasible solutions and not on the lower bound, we disable cut
generation and expensive heuristics in the subproblem and impose limits of 30 seconds and 10000
branch-and-bound nodes.
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GroomCapHeur In contrast to the GroomCapMip algorithm that solves the grooming and
capacity assignment problem exactly, the fast and simple GroomCapHeur procedure addresses
this problem heuristically by decomposition. Again, let f∗

ℓ be the total flow on logical link ℓ ∈ L

in an integer or LP solution after removing cycle flows. Installing capacities on ℓ at minimum cost
with a lower bound of f∗

ℓ can be formulated as an integer knapsack problem:

min
{

∑

m∈Mℓ

cmym
ℓ |

∑

m∈Mℓ

Cmym
ℓ ≥ ⌈f∗

ℓ ⌉ , ym
ℓ ∈ Z+

}

.

For |Mℓ| = 1 this knapsack problem is trivial to solve. Otherwise, it is solved heuristically for each
logical link ℓ ∈ L using a greedy algorithm. In a second step, each physical link is equipped with
the necessary number of capacity batches to accommodate the computed logical link capacities
y∗ by setting xe :=

⌈

1

B

∑

ℓ∈Le

∑

m∈Mℓ
ym

ℓ
∗
⌉

. As this heuristic runs very fast, we call it at every
branch-and-cut node to construct feasible solutions from the current LP solution.

ReroutingMip The ReroutingMip heuristic determines a routing together with a minimum-
cost capacity installation subject to an upper capacity bound on the logical links. More precisely,
given an upper bound U∗

ℓ on the capacity of each logical link ℓ ∈ L, ReroutingMip solves the
following problem using SCIP’s branch-and-cut capabilities:

min
{

(1) | (2)–(5),
∑

m∈Mℓ

Cmym
ℓ ≤ U∗

ℓ ∀ℓ ∈ L
}

.

With small U∗

ℓ , this problem is much easier to solve than the original problem. By setting U∗

ℓ

to the total capacity of link ℓ ∈ L in an integer solution, ReroutingMip can be used as an
improvement algorithm that tries to reduce capacities by rerouting flow. This generalizes the
rerouting step in the iterative heuristics proposed in [7, 9], making it independent of the ordering
of the demands.

We employ ReroutingMip not as an improvement heuristic but as a construction algorithm.
Given some value κ ≥ 1 and an LP solution with total logical link capacities y∗

ℓ :=
∑

m∈Mℓ
Cmym

ℓ
∗,

we solve the above sub-MIP with U∗

ℓ := C0
⌈

κ
C0 yℓ

∗
⌉

where C0 is the smallest module capacity
installable on ℓ. If the installable capacities form a divisibility chain (which is often the case in
practical applications), U∗

ℓ is the smallest installable integer capacity greater than or equal to κy∗

ℓ .
Obviously, a higher value of κ augments the solution space of the subproblem, allowing for better
solutions but also making it harder to solve. Experimenting with different values, we found that
κ = 2 often allowed to quickly determine good solutions in the sub-MIP.

As the ReroutingMip algorithm consumes much more time than the other heuristics, we
restrict its application to the LP solution at the end of the branch-and-cut root node. In the
sub-MIP (as well as in the original problem), good solutions are often found within the first few
branch-and-bound nodes, whereas much time is spent afterwards on proving optimality of the
solution. Hence, we disable cut generation and expensive heuristics in the subproblem, and we
impose a time limit of three minutes, a node limit of 2000 nodes, and a gap limit of 2 %. To increase
the chance of finding good solutions, we also apply the GroomCapHeur and GroomCapMip

algorithms within the sub-MIP, which tends to improve the overall solution quality.

4 Preliminary results

We have integrated our algorithms as heuristic callbacks into the branch-and-cut framework SCIP

0.90 [2], using Cplex 10.1 [8] as the underlying LP solver. All computations were performed on
a Linux machine with a Pentium IV 3.8 GHz processor and 2 GB of memory, using a time limit
of one hour.

Table 1 summarizes our 48 multi-layer planning instances based on six SNDlib [1] networks
which have been taken as the physical graph. Using the published communication demands, we
have constructed eight test instances from each of these networks by computing different sets of
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instance nodes physical links demands logical links |Mℓ| B

Polska 12 18 66 66–2441 2 4
Nobel-us 14 21 91 91–4526 1 40
Nobel-germany 17 26 121 136–6533 1 40
France 25 45 300 300–5892 1 40
Nobel-eu 28 41 378 378–7560 1 40
Pioro40 40 89 780 780–7800 2 4

Table 1: Characteristics of the test instances

admissible logical links. For every k ∈ {1, 2, 5, 10, 20, 30, 40, 50}, a set L has been determined by
letting kvw be the largest number of existing v-w-paths less than or equal to k and computing kvw

shortest physical paths (w. r. t. km-length) between every pair of nodes v, w. This approximates
the fact that in principle, every possible physical path might define a logical link (subject to
technological limitations), and significantly augments the solution space compared to numerous
publications that assume at most one logical link between each pair of nodes [3, 5–7, 9]. For
the France, Polska, and Pioro40 instances, we have used the capacity and cost structures
from SNDlib. For the Nobel instances, we have assumed the WDM-based cost model from [10]
developed together with the German network provider T-Systems, which takes cost of fibers, ports,
and regenerators into account.

We ran four tests on each instance: one with the default settings of SCIP, one with Groom-

CapMip and GroomCapHeur, one with ReroutingMip, and one with all three heuristics. The
following results are based on the 150 runs (38, 37, 38, and 37 for the four settings, respectively)
where at least the root node was finished within the time limit, including cutting plane generation
and root heuristics. Table 1 shows the range of the number of logical links of those test instances.

It turned out that the number of admissible logical links had little influence on the optimality
gap after one hour. The final gap was below 5 % in most of the Pioro40, Polska, Nobel-

germany, and Nobel-us instances even with several thousands of logical links. The Nobel-eu

and France instances, which have relatively large logical link capacities compared to the demand
values, were more difficult to solve with gaps around 20 % and 100 %, respectively. In some longer
test runs on these instances, we found that their gaps could still significantly be reduced just by
raising the lower bound. Averaged over all instances, our heuristics had little impact on the final
gap, but helped to find high-quality solutions earlier in the search tree.

The ReroutingMip algorithm was particularly successful in terms of solution quality. In
20 out of the 75 runs where it was called, this heuristic identified a better solution at the root
node than all other heuristics (both ours and SCIP’s) within one hour. In four cases, this was
the only solution found at all. In fact, we observed that most logical links used in good integer
solutions also had a nonzero capacity in the LP solution at the end of the root node, and many
logical links not used in feasible solutions were also unused in the root LP solution. In contrast,
the LP routings were often completely different from those in feasible solutions. It was also these
observations which motivated the approach of rerouting flow based on the root LP capacities.

The GroomCapMip heuristic could improve 10 other solutions during 75 runs. In seven of
these cases, the improvement took place at the root node, and the resulting solution was the best
one found within one hour. In most cases, the GroomCapMip algorithm took less than one
second of computation time. However, in some of the Polska and Pioro40 instances (where
|Mℓ| = 2), the sub-MIP was not solved within its time limit of 30 seconds. Consequently, calling
it as a construction heuristic at every node would be too time-consuming, but as an improvement
heuristic for feasible integer solutions, its benefit outweighs the effort.

Whereas the previous heuristics invest much time in the solution quality, GroomCapHeur

has been designed to construct reasonable solutions within short time. Consequently, this heuristic
identified a feasible solution in the root node of all 75 runs where it was called, and it often detected
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several further incumbent solutions during the first branch-and-cut nodes. However, SCIP’s own
heuristics usually identified better solutions later on. As a fast heuristic, GroomCapHeur is thus
particularly suited for large instances where only a very small number of branch-and-cut nodes is
solved. In instances where many branch-and-cut nodes were solved, this heuristic often consumed
about five minutes in total. Reducing the call frequency or imposing a maximum call depth in the
search tree might be appropriate in such cases.

Summarizing, all of our heuristics were helpful in finding solutions early in the search tree. In
particular, ReroutingMip and GroomCapMip often detected solutions at the root node that
could not be improved by any other heuristic within one hour. With all our heuristics enabled,
the best known solution was found at the root node in 15 out of the 37 runs, compared to only 8
cases with the default settings.

It may be interesting to note that also two sub-MIP-based heuristics of SCIP were quite
successful. One of them is the Rens heuristic [4] which solves a sub-MIP for finding an optimal
rounding of the root relaxation. In the default settings, it determined the best known solution in 8
out of the 38 runs. The other one is the Crossover heuristic [4] that fixes all variables having the
same value in two feasible solutions, and solves the remaining problem as a sub-MIP. It detected
7 best solutions with all of our heuristics, compared to 4 with the default settings. Apparently,
our heuristics were also useful as an input for Crossover.

5 Conclusions

Based on a mixed-integer programming model for two-layer network design, we have presented
three primal heuristics to be called within a branch-and-cut algorithm. Two of them solve a
restriction of the original formulation as a sub-MIP. On multi-layer planning instances with many
parallel logical links, our heuristics significantly help the branch-and-cut solver in finding high-
quality solutions early in the search tree.

For future research, it might be interesting to employ an iterative procedure like those in [7,9] as
a primal heuristic at the root LP relaxation of a branch-and-cut algorithm. The subproblems can
be solved either using a sub-MIP with time and node limits or with any combinatorial heuristic.
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