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Summary. We present globally convergent multigrid methods for the nonsymmet-
ric obstacle problems as arising from the discretization of Black—Scholes models of
American options with local volatilities and discrete data. No tuning or regulariza-
tion parameters occur. Qur approach relies on symmetrization by transformation
and data recovery by superconvergence.

1 Introduction

Since Black and Scholes published their seminal paper [2] in 1973, the pricing
of options by means of deterministic partial differential equations or inequal-
ities has become standard practise in computational finance. An option gives
the right (but not the obligation) to buy (call option) or sell (put option)
a share for a certain value (the exercise price K) at a certain time T (ex-
ercise date). On the exercise day T', the value of an option is given by its
pay—off function ¢(S) = max(K — S,0) =: (K — S); for put options and
©(S) = (S — K)4 for call options. In contrast to European options which can
only be exercised at the expiration date T', American options can be exercised
at any time until expiration. Due to this early exercise possibility the evalua-
tion of American options is formulated as an optimal stopping problem: The
holder of the American option has to decide, whether his gain by immediately
exercising the option exceeds the current value of the option. In the original
paper of Black and Scholes it is assumed, that the risk—less interest rate and
the volatility are constant. Meanwhile, financial practise has led to a number
of local volatility models, where the volatility is a given deterministic func-
tion of time and space [4]. While existence, uniqueness and discretization is
well understood (cf., e.g., [1, Chapter 6]), the efficient and reliable solution of
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the spatial obstacle problems arising from implicit time discretization is still
an issue. The multigrid solver by Brandt and Cryer [3] as applied in [18, 19]
mostly works in practice but lacks a convergence proof. Globally convergent
multigrid methods [12, 16] were applied in [9] after symmetrization of the
underlying bilinear form by suitable transformation. However, only constant
coefficients were considered there.

In this paper, we present globally convergent multigrid methods for local
volatility models with real-life data. To this end, we extend the above ’sym-
metrization by transformation’ approach to variable coefficients. No continu-
ous functions but only discrete market observations are available in banking
practise. Therefore, we develop a novel recovery technique based on super-
convergence in order to provide sufficiently accurate approximations of the
coefficient functions and their derivatives. Finally, we present some numerical
computations for an American put option with discrete dividends on a single
share.

2 Continuous problem and semi—discretization in time

The Black—Scholes model for the value V(S,t) of an American put option
at asset price S € 2, = [0,00) and time ¢t € [0,T) can be written as the
following degenerate parabolic complementary problem [1, 4, 14]

2 2
—O 20 —uSSE +rV >0,  V-9>0,

(-9 - 5525 —usZ+1v)(v-¢) =0, o

in backward time ¢ with stopping condition V(-,T) = ¢ and the pay—off
function ¢(S) = (K — S)4+ with exercise price K. The risk-less interest rate
r(t), the strictly positive volatility surface o (S, t), and p(t) = r(t) — d(t) with
continuous dividend yield d(¢) are given functions.

Numerical computations require bounded approximations of the unbounded
intervall {2,. Additional problems are resulting from the degeneracy at S = 0.
Hence, (2., is replaced by the bounded intervall {2,

N = [Smin; Smax] - Qoo 5 0< Smin < Smax < 00,

Appropriate boundary conditions will now be discussed at the example of a
put option. Recall that a put option is the right to sell an asset for a fixed price
K. If the price of the asset S tends to infinity, the option becomes worthless,
because the holder would not like to lose an increasing amount of money by
exercising it. Note that ¢(Spmax) = 0 for sufficiently large Spmax. On the other
hand, if the asset price tends to zero, then the holder would like to exercise
the option almost surely to obtain almost maximal pay—off ~ K & ¢(Smin)-
Hence, we consider the truncation of (1) with S € 2 and boundary conditions
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V(Smin) = @(Smin) ) V(Smax) = @(Smax) . (2)

Note that the boundary conditions are consistent with the stopping condition
V(T,") = ¢. As Smin — 0, Smax — 00, the solutions of the resulting trun-
cated problem converge to the solution of the original problem [10]. Pointwise
truncation error estimates are available for constant coefficients [17].

For convenience, we replace backward time ¢ by forward time 7 = T —
t to obtain an initial boundary value problem, as usual. We now apply a
semidiscretization in time by the implicit Euler scheme using the given grid
0=m <7 <--- <71y =T with time steps h; := 7; — 7;_1. We introduce
the abbreviations V; = V (-, 7;), 0; = o(-,7), p; = (1), and r; = r(7;).
Starting with the initial condition Vi = ¢, the approximation V; on time level
j=1,..., N is obtained from the complementary problem

2
—Z SV — SV 4 (h 4+ )V —h'Vii >0, Vi—g >0, o
(= %52V = wSVy + (5 + )V = b5V ) (V= ¢) =0,

on {2 with boundary conditions taken from (2). For convergence results we
refer to [11].

3 Symmetrization and spatial discretization

We now derive a reformulation of the spatial problem (3) involving a non—
degenerate differential operator in divergence form. To this end, we introduce
the transformed volatilities and the transformed variables

a(z) = 0;(S(x)), u(z)=ePOVi(S(x)),  S(x)=e", zeX, (4)
on the intervall X = (Zmin, Zmax) With Zmin = 10g(Smin), Tmax = 10g(Smax),
utilizing the function

* ds
Blx) = %x + log (a(m)) —log (a(O)) - uj/ — - (5)
0 a?(s)
Observe that «, 8 usually vary in each time step.

Theorem 1. Assume o; € C%(2) and 0;(S) > ¢ > 0 for all S € 2. Then the
linear complementary problem

—(au) +bu—f>0, u—v>0,  (=(au) +bu—f)(u—v)=0
(6)

with coefficients
= F . b=h ket o) - )

right hand side f = hj_le’ﬁvj,l(SC)), obstacle 1 = e Pp(S(")), and bound-
ary conditions u(Zmin) = V(Tmin); W(Tmax) = V(Tmax) s equivalent to (3) in
the sense that u defined in (4) solves (6), if and only if V; solves (3).
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Proof. As e? > 0, it is sufficient to show that the differential operators ap-
pearing in (3) and (6) provide corresponding results, if applied to V;(S) =
eP@y(2(8)) and u(x), respectively. Here, z(S) = log S denotes the inverse
of S(x) = e®. This is an exercise in basic calculus. Using the chain rule, the
derivatives of V;(S) = e#®(9y(x(9)) can be rewritten as

le — eﬁS_l(u’—i—ﬁ’u) , Vj” — eBS_Q(U"+(2B’—1)u'+(ﬁ'(ﬁ’—1)+ﬁ”)u) .

Inserting these representations and the identity %21/’ = (%21/ )/ — ad’u’ into

the differential operator in (3), we get after rearranging terms

2
5 SV — SV + (b} 1)V - hyV, =
2
eﬁ (7(%,“/)’ ( (26/71 +‘LLJ7(JAO/)’U/
H(hT b =SB 1) — B — B )u— hjfle—ﬁvj_l) _

Inserting the derivatives of 3, given by

2

g =a(y

into this expression, we obtain the assertion.

— ; + aa’) , g =a3 (2uja’ +a"0? — (a’)Qa) ,

Observe that b might become negative for strongly varying a(x) =
0;(S(z)) due to the last term in the definition of b, which could even lead
to a stability constraint on the time step h;. We never encountered such dif-
ficulties for realistic data.

For a given spatial grid g, = 9 < 1+ < Ty = Tmax the finite ele-
ment discretization of (6) can be written as the discrete convex minimization
problem

U= argmin/ (a(v)? + bv?) — fvda (8)
ve X

with K denoting the discrete, closed, convex set
K={velC(X)|v|g,_, ) is linear , v(z;) > (x;) Vi=1,...,N,
v(zo) = ¥(20), v(znm) = Y(2ar)} -

The fast and reliable solution of (8) can be performed, e.g., by globally con-
vergent multigrid methods [12, 16].

4 Data recovery

In banking practise, r(t), p(t), and o(S,t) are not available as continuous
functions but have to be interpolated from discrete data as obtained from
market observations. We do not comment on possible preprocessing steps and
assume that the data are given in vectors or matrices of point values, such as
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date|rate to ...ty ... 1k
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The grid points ¢ and S; usually have nothing to do with the computational
grid. Intermediate function values can be approximated to second order by
piecewise linear interpolation. As our transformation technique also requires
gg and g <7, we now extend this result to the approximation of higher deriva-
tives by successive linear interpolation in suitable superconvergence points
(cf. Figure 1). Note that superconvergence has a long history in the finite el-
ement context (cf., e.g., [13] or [15] for one-dimensional problems). For two—
dimensional functions such as o(.S,t), this recovery technique can be applied
separately in both variables.

From now on, let wy = w(sg) denote given function values at given grid
points so < 81 < --- < sg with mesh size h = maxg—1,. Kk (Sk—5Sk—1). Starting

with s, ©) — = sy, we introduce a hierarchy of pivotal pomts

(n) Sk + -+ Sk—n

S :n—H’ I{/’:?’L,...,K, TLSK (9)
Note that i) < 551_21 << sgg) with sé ") (sé" 11) 56"71)) and
(n) (n)
< .
0< k:nm+z%XK(sk —5;,21) <h (10)

In the case of equidistant grids the pivotal points either coincide with grid
points (n even) or with midpoints (n uneven). Let

(n) (n)

n S - S n §— 5,
L) = s LU=
Sk T Sk-1 Sk T Sk—1

(n) (n)] We now

denote the linear Lagrange polynomials on the intervall [, , s

introduce piecewise linear approximations p, of w(™ by successive piecewise
interpolation. More precisely, we set

k k
0)
= > w(s)L(s) = > P sLMs) ()
Jj=k—1 Jj=k—1

for s € [sp—1,8k], k = 1,...,K, and s € [s,(c )1,356")], k=n+1,.., K,
respectively. The approximation p, can be regarded as the piecewise linear
interpolation of divided differences.
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Fig. 1. The recovery scheme. The tabulated data are linearly interpolated in the
upper picture to obtain pg. The (piecewise constant) derivation py is evaluated in
the pivotal points sg) and again linearly interpolated in—between, which provides

p1. The same procedure creates p2 (lower picture), etc.

Lemma 1. The derivative p,,_; has the representation

P18y =l wlsgp,..sk], k=n,.. ., K (12)
where w[Sk—n,...,Sk| denotes the divided differences of w with respect to

Sk—mns -+ Sk-

Proof. Recall that sgcn) € (sgcn__ll),sgcn_l)). Using the definitions (9), (11), we
immediately get

n— n— (n=1)y (n—1)
(n ) = pn,l(sgC 1)) fpn,l(s,(c_ll)) o (p{n—Q(Sk ) — Pr—a(Sk_1 ))

pfn—l(sk

S}(C"—l) _ Sl(cn—_ll) Sk — Sk—n
so that the assertion follows by straightforward induction.

We are now ready to state the main result of this section.
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Theorem 2. Assume that w € C"2[sg, sk] and let p, be defined by (11).
Then

max  |w"(s) —pa(s)] < (n+ 3 DY |lw™ 2| h?
(n) _(n)
sE€[sn 15y |

holds with ||w™?) || = max,e[sy s, W2 (2)].

Proof. Let s € [s,(cn)l, s,(cn)] and denote &,,(s) = w(™(s) — p/,_,(s). Exploiting
the linearity of interpolation and a well-known interpolation error estimate
(cf., e.g., [6, Theorem 7.16]), we obtain

w™+2) n n n n n n
w (5)—pa(s) = g (55 ) (s—si)H LYY, (8)en (s LY (5)en(s”)

with some ¢ € (s,(cn)l, s,(cn)) In the light of (10), it is sufficient to show that
|5n(sk 1)| + len ( N < nflw®™+?]|| k2. Utilizing (9) and Lemma 1, we get

k
n n 1
zsn(sgc )) = ™ (n—i—l Z sl> —nlw[sg—n,...,86] =1 A—B.
i=k—n

The Hermite—Genocchi formula (cf., e.g., [6, Theorem 7.12]) yields

B:n!/ w™ ( Z $181> dx ,

1=RkK—n

where 2™ denotes the n—dimensional unit simplex
yr={zeR"Y" jz; =1and z; > 0}.

As | X" = 1/n!, the value A is just the centroid formula for the quadrature
of the integral B [7]. It is obtained by simply replacing the integrand by its
barycentric value. Using a well-known error estimate [8], we obtain

[ o

R CFSCE) Z 5= 5"

1=k—n

len (s <

Now the assertion follows from the straightforward estimate
|sifs§€n)|§nh, i=k—-—mn,... k.

In the remaining boundary regions s € [so,s%n)] and s € [s%),sK], the
function p, can still be defined according to (11) once a hierarchy of addi-
tional pivotal points sl(cn) for k=0,....n—1land k= K+1,..., K+n
has been selected. However, the approximation in such regions then reduces

to first order, unless additional boundary conditions of u at sp and sk are
incorporated.
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The following exemplary code computes the pivotal points s,(f) (stored

in dds) and the values pg(s,(f)) (stored in ddw) from the original data set

(sk, w(sg)) with precomputed (5,(91),])1 (s,(cl)) (stored in s, w,ds, dw, resp.) using

the boundary conditions w®) (sg) = w® (sx) = 0.

int recovery(const std::vector<double>%& s, const std::vector<double>&
ds, std::vector<double>& dds, const std::vector<double>& w, const
std::vector<double>& dw,std::vector<double>& ddw) {

int K = s.size();

dds.resize(K+2); ddw.resize(K+2);

// define the pivotal points at the boundaries
dds[0] = ds[0];

dds[1] (ds[0] + ds[11) / 2;

dds[X] = (ds[X-1] + ds[K]) / 2;

dds[K+1] = ds[X];

for (int i=2; i<=K-1 ; i++) {
//compute the pivotal points
dds[i] = (s[i-2] + s[i-1] + s[il) / 3;
//compute the derivations p| at these points
ddw[il = (dw[il - dw[i-11) / (ds[il-ds[i-11);

// define py for the other pivotal points
ddw[1] = (dw[1] - dw[0]) / (ds[1]-ds[0]);
ddw[0] = ddw[1];

ddw[K] = (dw[K] - dw[K-1]) / (ds[K]-ds[K-11);
ddw [K+1] = ddw[K];

}

It is sufficient to run the function recovery only once. As soon as the
vectors dds and ddw exist, the value pa(s) can be computed just by finding
the index n such that dds[n] < s < dds[n+1] and by interpolating

pa(s) =ddw[n] + ( s-dds[n]) * (ddw[n+1]-ddw[n]) / (dds([n+1]-dds[n]).

5 Numerical results

For confidential reasons, we consider an American put option on an artificial
single share with EURIBOR interest rates, strike price K = 10 €, and an
artificial but typical volatility surface o as depicted in the left picture of
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local volatility surface Black-Scholes valuation of an American put option

— — expiry in 4y
expiry in 1y
— — —expiryin 3m
obstacle
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spot asset price S

50
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Fig. 2. Local volatility surface o (left) and computed values V for different expiry
dates at time t = 0 (right) .

Figure 2 (see also [4, 5]) for the different expiry dates T'=3/12, 1, and 4 years.
Discrete dividends of d; = 0.3 € are paid after ¢; = 4/12,16/12,28/12,40/12
years. In order to incorporate discrete dividend payments into our model (1),
V(S) is replaced by V(S), ¢, o are replaced by the shifted functions ¢(S) =
©(S+D),5(S,-) = o(S+D,-) and we set d = 0. Here, D(t) is the present value
of all dividends yet to be paid until maturity [4, p. 7f.]. We set Spin = e!
and Spax = €30 Finally, V(S) = V(S — D) is the desired value of the option.

Local volatility data are given on a grid Sp = 0.36 < S1 < --- < S = 100.
The transformed grid points xy, = log(Sy) are equidistant for Sy < 4, Sy > 30
while the original grid points Sy, are equidistant for 4 < Sy < 30 thus reflecting
nicely the slope of the volatility surface for small S. To approximate o', o
occurring in Theorem 1, we use the recovery procedure (11) with respect to an

extension of the hierarchy S ,(f) as defined in (9), though second order accuracy

is only guaranteed for s € [552), Sg)] (cf. Theorem 2). For the actual data set,
the coefficient b is positive and thus the transformed problem (6) is uniquely
solvable, if the time steps satisfy h; < 0.35 years. Note that much smaller
time steps are required for accuracy reasons.

The transformed intervall X = (—1,3.5) is discretized by 81 equidistant
gridpoints and we use the uniform time step 7 = T//100 years, for simplicity.
The spatial problems of the form (6) were solved by monotone multigrid [12]
with respect to three grid levels as obtained by uniform coarsening. We found
that two or three V(1,1) sweeps were sufficient to reduce the error in the
energy norm below 107'2. The solutions at time ¢ = 0 for different expiry
dates are depicted in the right picture of Figure 2. Note that only the options
with the long maturity of 1, 4 years are influenced by dividend payments until
expiry date.
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