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Abstract

Discrete approximations to chance constrained and mixed-integer two-stage sto-
chastic programs require moderately sized scenario sets. The relevant distances
of (multivariate) probability distributions for deriving quantitative stability results
for such stochastic programs are B-discrepancies, where the class B of Borel sets de-
pends on their structural properties. Hence, the optimal scenario reduction problem
for such models is stated with respect to B-discrepancies. In this paper, upper and
lower bounds, and some explicit solutions for optimal scenario reduction problems
are derived. In addition, we develop heuristic algorithms for determining nearly
optimally reduced probability measures, discuss the case of the cell discrepancy (or
Kolmogorov metric) in some detail and provide some numerical experience.
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1 Introduction

Quantitative stability studies in stochastic programming (see [18| for a recent survey)
indicate which probability metrics (i.e., distances of probability distributions) are relevant
and, in some sense, even canonical for the stability of specific classes of stochastic pro-
grams. In particular, Fortet-Mourier and Wasserstein metrics are relevant for two-stage
stochastic programs |19, 17|, B-discrepancies are canonical for chance constrained models
[20, 7, 8] and also relevant for two-stage mixed-integer models |22, 17]. The class B of
Borel sets is chosen as small as possible but large enough to contain all sets appearing in
chance constrained models or all closures of continuity regions of integrands in two-stage
mixed-integer models.

Fortet-Mourier metrics have recently been used for the (nearly) optimal reduction
of discrete probability distributions in two-stage stochastic programs without integrality
requirements [3, 4, 6|. Furthermore, a multiperiod recursive extension of the reduction
technique is developed in [5] for generating scenario trees as inputs of multistage stochastic



programs. Inserting discrete probability distributions into chance constrained and two-
stage mixed-integer stochastic programs represents an often used approximation technique
for solving these models (cf. [21]). Such discrete approximations lead to mixed-integer
programs in both cases (see [15, Chapter 11.9] for chance constrained models), whose
dimensions grow rapidly with the number of scenarios involved. Hence, moderately sized
scenario sets that represent good approximations of the underlying probability distribution
are even of greater importance than for two-stage models without integrality requirements.

The present paper aims at paving some roads for optimal scenario reduction in chance
constrained and mixed-integer two-stage stochastic programming models. Let P be a
discrete probability measure on R® with support {¢!,... &V} and P(£%) = p; > 0 for
1 =1,...,N. We consider the problem of finding another discrete probability measure
Q on R® which is supported on a subset of {¢!,... &N} and which deviates from P as
little as possible with respect to some discrepancy. We recall from [10, 9| that, for given
Borel probability measures P, ) on R® and for a given system B of Borel subsets of R?,
the B-discrepancy between P and () is defined as

as(P,Q) = sup |P(B) —Q(B)].

Important examples are the systems B, of all closed subsets, B, of all closed, convex
subsets, Bpoyr of all polyhedra having at most £ vertices, B,. of all closed, s-dimensional
rectangles x;_,I; with [;, « = 1,... s, denoting a closed interval in R, and B,y of all
closed cells (i.e., sets of the form £ + R® with £ € R?®) of R®. Evidently, one has that

ag.., < ag.., <ag
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where for the inequality as,.,,, < ag,,, . one has to require that k > 2° (in order to ensure
that Breet € Bpoiyk). Any B-discrepancy is a semimetric on the space of all probability
measures on R? i.e., it is non-negative, symmetric and satisfies the triangle equality.
The discrepancy ap_, (and, thus, all discrepancies in (1)) are metrics as, in addition,
ag,.,(P,Q) =0 implies P = Q. A sequence (F,) of probability measures converges to P
with respect to ag with B C B, iff it converges weakly to P and P(0B) = 0 holds for
each B € B (with 0B denoting the boundary of B) [2|. We refer to the monograph [1]
for further background on weak convergence of probability measures.

In the literature (cf. [16]), agp,, is also called uniform or Kolmogorov metric as
ag,., (P, Q) is just the uniform distance of the probability distribution functions of P
and @@ on R°. The distance ap,,, is known as isotrope discrepancy |12] and ap, as
total variation [16]. Consistently, the distance ap,,, (0B, @8,,,,) Will be called cell
(rectangular, polyhedral) discrepancies. Some of these discrepancies have been extensively
used for studying properties of uniformly distributed sequences in the s-dimensional unit
cube U® = [0,1])* [11] and, more recently, for developing Quasi-Monte Carlo methods
[13|. Converse inequalities to (1), e.g., for the isotrope and rectangular discrepancies of
probability measures P and () on R?®, were also derived |9, 11, 12, 14|. For instance, the
estimate
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holds if P has a density (with respect to the Lebesgue measure on R*) which is bounded
by M |14]|. In the context of quantitative stability of stochastic programs it is worth
noting that the polyhedral, rectangular and cell discrepancies are of special importance
for linear chance constrained and mixed-integer two-stage models [19, 22, 17, 18, §].

Denoting by ¢ the Dirac-measure placing mass one at the point £, one may write the
discrete measure P introduced above as

N
P = Zi:l pzéﬁ“ (2)

where Zi]iﬂ?i = 1. Now, the reduction problem formulated above can be restated as the
following optimization problem:

N n

minimize ag(P, Q) = O‘B(Zizlpiéfi’ ijl qj00i )

subject to {n',... "} c{¢ ... "¢, >0(=1,... ,n),z

_g=1 (3)
7j=1
The variables to be optimally adjusted here are n',... ,n™ and ¢,... , g, and altogether
they define the desired reduced discrete measure () via

Q=" ady. (4)

The optimization problem (3) may be decomposed into two subproblems: a combinatorial
optimization problem for determining the scenario set n = {n',... 7"} and a (linear)
program for fixing ¢ = (g1, ... ,¢,). To describe this in more detail, we denote by az(n, q)
the B-discrepancy between P and @) for fixed P, and by .S, the standard simplex in R",
ie.,

n

astng) = as(} pides Y aidy)
S, == {g€R"g;>0,j=1,...,n, Z;qj —1}.
Now, the optimization problem (3) is of the form
min{ inf as(n,q)ln < {¢',... . &} #n = n}, (5)
where inf,cg, ap(n, q) refers to the infimum of the inner optimization model

min{as(1, ¢)|q € Sy} (6)

for fixed scenario set 7. While (5) represents a specific clustering problem, a so-called
k-median problem of combinatorial optimization, the problem (6) will turn out as a linear
program. Both problems will be further discussed in Section 3. In Section 2, we derive
upper and lower bounds of the optimal value of (3) and discuss some particular cases,
which allow for an explicit solution. In Section 4 we provide some preliminary numer-
ical experience for optimal scenario reduction with respect to the cell discrepancy (or
Kolmogorov distance).



2 Bounds and specific solutions

In this section, we shall derive a specific solution for problem (3) in the case of the closed
set discrepancy ap = ap, as well as universal bounds for the optimal value of (3) in
case of general discrepancies. By 'universal’” we mean a bound that just depends on the
probabilities p; of the original discrete measure P but not on its support. In particular,
these bounds do not depend on the geometry of the support or the space dimension s.
Hence, in contrast to the exact solution of (3), these bounds are very easy to compute for
a quite general class of discrepancies.

2.1 Ordered solution and upper bound

Intuitively, approximating the original discrete measure P by some other measure () which
is supported by a subset of the support of P, requires well to approximate those supporting
points of P having large probability. In this section, we assume, without loss of generality,
that p; > -+ > py. Then, a naive idea for solving (3) would be to put in the definition

(4) of Q:

e =L gimp G=Leon=D g=Y pe ()
n j=1....n) q=p; (G=1...,n=1); ¢n: _Dis

This means that @ selects its support as the atoms of P having largest probability and,
that the assignment of probabilities is adopted from the original measure except at the
last atom, where the new probability is modified to make all g; sum up to one. Evidently,
this simple approximating probability measure (), which from now on shall be called the
ordered solution, is feasible in (3). It has the interesting feature, that it realizes a universal
(with respect to any discrepancy), easy to calculate upper bound in (3) which is actually
sharp in case of the closed set discrepancy.

Proposition 2.1 As before, we assume, without loss of generality, that p1 > --+ > py.

Denote by Ag the optimal value of (3), where B is any system of Borel measurable subsets
of R®. Then, one has that

1. AB S Zi\;n-‘rlpl

2. ANp, =30 i1 Div

Proof. Define @) in (4) as the ordered solution according to (7). Let B € B be arbitrary
and put

J:={je{l,... ,n}|¢ € B}.



Then, by (7),
|[P(B) — Q(B)|
N n

= |3 poa(B) =3 4y ()]
- 8 (B) + puden(B Y (B
= Ziej\{n}pi ¢i(B) + prden( )—I-Zi:nﬂpi ¢i(B)

=3 85— (5

N

— 'Zm\{n} Pi + Puden(B) + Zi:nﬂ pibei(B) — ZJ_EJ\{”} G — qulen(B)

N
Pnen(B) = gnden (B) + Zi:n+1pi55i(3)’

_ { ’Zi]\in—klpiéﬁi(B) - Zfl\;n-l-l pi| ifnelJ
> Pidei (B) ifn¢.J

Due to

0< Zinﬂ pié&i(B) = Zin—l—lpi’

one arrives at

PB)-QBI<Y  n

Since B € B was arbitrary, there follows assertion 1.:
Ap < as(P.Q) P(B)-Q(B) <Y "
ap(P,Q) = su — < ;-
B - B Beg i=n+1p

Concerning assertion 2., let @) in (4) be any discrete measure which is feasible in problem
(3) with respect to the special discrepancy distance ap = ap,. Feasibility of @ in (3)
implies that {n',... "} C {&',... &V}, Therefore, 7/ = £ for certain selections i; €
{1,...,N}and j =1,... ,n. Since B := {&',... ;N N\{n',... ,n"} is a closed set, one
derives that B € B, and thus:

QBCL(P>Q) Z |P(B)_Q(B>|
- 'ZiE{i17---7in}pi5£i(B) + Z’iﬁé{’il,---,in}piési(B) a ijl qjd"j(B)'
N
= > .
Zz’gé{il,...,in} pi = Zi:n+1 Pi,

where in the last inequality the assumed decreasing order of the p; was exploited. As @)
was supposed to be arbitrary feasible in (3), one gets that

N
Ap,, = inf{ag, (P,Q)|Q feasible in (3)} > ) P

Taking into account the reverse inequality, already proved in assertion 1. for an arbitrary
discrepancy, there follows assertion 2.
|



Corollary 2.1 The ordered solution defined in (7) is a (nonunique) optimal solution of
problem (3) for the closed set discrepancy ag,,.

Proof. In the first part of the proof of Proposition 2.1, we have shown that, for any
discrepancy ag, the ordered solution realizes an objective value in (3) which is not larger
than Zi\inﬂpi. On the other hand, the same value is optimal in (3) for the closed set
discrepancy ag,, (see assertion 2. in Prop. 2.1).

[ ]

The last corollary shows, that in case of the closed set discrepancy, an explicit solution of
problem (3) can be found without any computational effort. The same does not hold true
for the weaker discrepancies mentioned in the introduction. Nevertheless, for those other
discrepancies too, one may benefit from the upper bound information for the optimal value
in (3) provided by the first statement in Proposition 2.1. For instance, from the (ordered)
values of the original probabilities p;, one can directly read off the number of atoms
n < N required for the approximating measure (), in order to make the approximation
error ag( P, Q) not exceed a prescribed tolerance € > 0. In the special case of p; = N71(i =
1,...,N), one derives the condition

>1—c.

=|=

For instance, a tolerance of 10% (¢ = 0.1) can be satisfied then, if n is at least 90%
of N. Of course, such linear relation between tolerance and size of distribution is not
very satisfactory. Indeed, the second assertion of Proposition 2.1 tells us, that, in the
assumed equi-distributed case, one actually observes this undesirable linear relation for
the closed set discrepancy. Consequently, there is some hope, that a better behaviour can
be observed for the weaker discrepancies, which are more appropriate for the stability of
chance constrained and mixed-integer stochastic programs (cf. Section 1). This, however,
comes at the price that a simple solution of (3) is no longer available and, actually, cannot
even be obtained computationally for relevant problem sizes in an exact sense.

The following example complements Corollary 2.1 by showing that the ordered solution
need not be optimal for a discrepancy different from og,,:

Example 2.1 Define the original measure P on R by

E1i=1,62.=3,:=2,¢" =4, pri=py:=04; p3:=ps:=0.1.

We are looking for the optimally reduced measure @Q in problem (3) which selects n := 2
atoms from the original measure. As far as this is done with respect to the closed set
discrepancy op,,, Corollary 2.1 guarantees that the ordered solution () defined by

ni=1,17"=3,¢:=04, ¢ :=0.6

is optimal and, by Proposition 2.1, realizes the minimal discrepancy Ag,, = ps+ps = 0.2.
For the convex set discrepancy ag,,,, (see introduction), this ordered solution realizes the
same value ag,,,, (P, Q) = 0.2. However, considering the reduced measure Q* defined by

nti=1,n0":=3, ¢ :=0.5, ¢ := 0.5,



it follows that ag,,,, (P, Q*) = 0.1. Consequently, the ordered solution is not optimal in
(3) with respect to ag,,,,. At the same time, this is an example for a strict inequality in
statement 1. of Proposition 2.1.

2.2 Lower bound

In this section, we want to find a universal lower bound for the optimal value of problem
(3). For this purpose, we will access on the following property.

Definition 2.1 We call a system B of Borel subsets of R® isolating if for any finite subset
{zt, ... 2P} C R® there exist sets B' € B fori=1,...,p with

Bn{z',... 2"} ={a"} (i=1,...,p).

Clearly, the systems Bycct, Beony, B and Bpopyi (for & > 2°) mentioned in the introduction
are isolating, whereas By, for instance, is not.

Theorem 2.1 Let B be an isolating system of Borel subsets of R*. In (3), let n < N.
Then, assuming as before that the p; are decreasingly ordered, the optimal value Ag in
problem (8) has the lower bound

N
Ap > max {Pn+1> n” Zi:n-ﬁ-lpi} '

Proof. Each measure @) defined by (4) which is feasible in problem (3) induces an injective
selection mapping o : {1,... ,n} — {1,... , N} with

=60 (i=1,...,n).

Applying Definition 2.1 to the support {&!,... &N} of the original measure P, we derive
the existence of sets B' € B for i = 1,..., N such that

Bin{e,. .. My ={Y (i=1,...,N).
Then,
PB0) Q)| = [PUEDY) ~ QU] = by —a] (=1 )
|P(B") - Q(BY)| = pi (i€Cy),
where C, :={1,... ,N}\{o(1),...,0(n)}. It follows for the discrepancy that

as(P,Q) = max |P(B') = Q(B')| = max {gggicpi,i:rglﬁ?fn [Poti) — Qi}} :

i=1,...

Note, that the variation of @) among the feasible measures in (3) amounts to variation of
the selection mapping ¢ and to variation of coefficients ¢; > 0 subject to the constraints
>, ¢ = 1. This allows to write

Ap = inf{ag(P,Q)|Q feasible in (3)}
> inf{p(o)lo: {1,... ,n} — {1,..., N} injective}, (8)

7



where

p(o) ZmaX{gggfpi,w(U)}

¢ =0 (’L:l,,n),zn_lqlzl}

Next, we want to develop the expression for ¢ (o). Since p; > 0 for i = 1,... N and
n < N, by assumption, it follows that

v i= Zj:l Po(4) < 1.

Note that the infimum in the definition of ¢(o) is always realized as a minimum. We
claim that ¢ € R" defined by

Ylo) @ = inf{iznll?fin }po(i) - Qi}

G =poy +n ' (1=7) (i=1,....n) (9)

provides this minimum. We have ¢; > 0 fori=1,... ,nduetoy < land } ;. ¢ =1,
hence ¢ is feasible in the definition of ¥)(0). Now, let ¢ € R™ be any other feasible n-tupel.
Then, by

Z:’L:l 6 = Zj:l G=1

it is excluded that ¢, < ¢; holds true for all i = 1,... ,n. Consequently, there exists some
k e {l,...,n} with ¢, > ¢, From the relation ¢y > p,x) (see (9)), one derives that
|Poky — @] = |Po) — Gi|- Thus,

A~

max |po) = gif > [poy — G| =07 (1 =) = max [po) — il

This shows that indeed § realizes the infimum in the definition of ¢(¢) and so, by (9) and
by definition of C,, one gets that

1 A =1 N ) — gt .
1/}(0-> =n (1 7) n (1 Zi:l pa(z)) n Ziecg Di-
Now, we continue (8) as
> i L .
Ap > inf {max {Iirelgicpl, n Ziecg pl}

Identifying the set of all selections as given in this relation with the system of all subsets
of {1,..., N} having cardinality n, one obtains the reformulation

o:{1,...,n} = {1,... ,N} injective}.

Ag > inf{max{rlrleaAXpi,n_l ZieApZ}'A C{1,...,N}, #A = N—n}.

As the p; are decreasingly ordered, both expressions

—1
maxp; and n E ;
e Di icA Di



are simultaneously minimized by the set A* := {n+1,..., N}. Therefore,

N
A > max max . n7t o
B = i€{n-+1,...,N} Pis Zz‘:nﬂp’

Owing to max{p;|i € {n+1,... ,N}} = p,11, the assertion of the theorem is proved.
n

Remark 2.1 The lower bound from Theorem 2.1 can be interpreted as follows. Consider
an arbitrary reduced measure Q). Since B is isolating, the B-discrepancy between P and
Q@ is larger than the maximal difference of P and @) on a singleton. Qwver all common
mass points of P and Q, this mazimum is at least n~* Zfinﬂpi, over all points without
Q-mass it is not less than p,yq.

Corollary 2.2 Under the assumptions of Theorem 2.1, the following holds true:

1. If n > %, then the lower bound in Theorem 2.1 reduces to pp.i1.

2. If n =1, then Ag =1 — py and the optimal solution of (3) is given by the measure
Q placing unit mass on the atom realizing mazimum probability with respect to the
original measure P.

If n =N —1, then Ap = pn, and any measure (); of the form

N-1 ‘
Q; = Zizlﬁjpﬁe +(pj+pn)0e je{l,... , N—1}

is an optimal solution of (3).

Proof. The decreasing order of the p; implies 1. by Theorem 2.1 and the estimate

N
Mpapr > (N =n)papr 2 P

which proves the first statement.

In both cases n = 1 and n = N — 1, Theorem 2.1 provides that Ag > Zi\inﬂpi. Now,
the upper bound in Proposition 2.1 turns this inequality into an equality:
Y | 1=p ifn=1
Ap = i=2pl_{pN ifn=N-1

From the proof of statement 1. in Proposition 2.1) we know that the ordered solution
always realizes a discrepancy not larger than ZZ; pi-, where this last value was just
recognized to be optimal for n = 1 and n = N — 1. Consequently, the ordered solution
must be optimal in these cases. For n = 1, the ordered solution places unit mass on the
atom with highest probability in the original measure P. For n = N — 1, the ordered
solution corresponds to the measure QQy_;. Since B is isolating, the measure (); is optimal
for any j € {1,... ,N —1}.

]

Unfortunately, the results in Corollary 2.2 are lost for the cell discrepancy ag_,, as the
next example shows.

Example 2.2 Consider the probability measure P = Z‘Z’:lpiég on R? with ordered prob-
abilities p1 > py > p3 and &' = (1,1), €2 = (1,0.5), & = (2,2). For n = 1 we obtain
Ag., = ag., (P,0¢) = p2, which contradicts to the results of Corollary 2.2.

cell cell



3 Solution techniques

As mentioned in Section 1 problem (3) can be tackled by a bilevel approach: in an outer
iteration, the support selection is carried out by solving the combinatorial optimization
problem (5), whereas in an inner iteration optimal probabilities ¢; are determined condi-
tional to the fixed support by solving (6). Since problem (5) is known to be N P-hard, we
resort to applying heuristic approaches. For two-stage models certain forward selection
and backward reduction techniques are developed in [4|. In the context of the present
paper, their analogues represent recursive extensions of the casesn =1 and n =N — 1
in Corollary 2.2. The forward and backward algorithms determine index subsets J™
and JW=" respectively, of {1,...,N}. Both index sets are of cardinality n and the
corresponding scenario sets form the support of the reduced probability measure Q).

Algorithm 3.1 (Forward selection)

Step [0]: J9:=0.
Step [i]: ZZ € argminlg][i*H léle QB({£l17 s 7£li717 é-l}7 q)v
qco;

Ji = gy {1},
Step [n+1]:  Minimize ap({€",... €™}, q) subject to q € S,,.

Algorithm 3.2 (Backward reduction)

Step [0]:  JO:={1,... N}.

Step [i]:  w; € argmin, i1

nf ag({]j € Jti=1l \ {u}},q),

qelsti
JU = JE=UN {4}
Step [N-n+1]:  Minimize ap({¢’]j € JN="1} q) subject to q € S,,.

Note that, at each Step [i|, i = 1,... ,n, one has to solve N —¢ linear programs, which are
of dimension ¢ and N —¢ in Algorithms 3.1 and 3.2, respectively. Hence, forward selection
seems to be preferable in most relevant cases. Although both algorithms do not lead to
optimality in (3) in general, the performance evaluation of their implemented analogues
for transportation distances in |4, 6] is encouraging.

In the following, we want to consider the inner iteration problem of optimizing the prob-
ability distribution conditional to a fixed support. Without loss of generality, we may
assume that {p',... n"} ={&', ..., £"}. Of course, we may no longer maintain then the
assumption of ordered probabilities p; from the previous section without restricting the
generality. Anyway, ordered probabilities p; are no longer relevant in the sequel. Then,
problem (6) is of the form:

N n

minimize ag({',... "}, q) = aB(Zizlpiég, ijl qj0¢i) subject to g € S,.  (10)

10



3.1 Formulation as a linear optimization problem

In this section, we are going to reformulate (10) as a linear optimization problem. For
B € B, define a ’critical index set’ I(B) C {1,..., N} by the relation

Bn{e,... &'y ={¢lie I(B)}.

Then,

PB)=QB)=|> ni— D>, 4 (11)

i€I(B) JEI(B)N{1,... n}

Obviously, this value does not depend on the concrete structure of the set B but is uniquely
determined by the index set I(B). That is why, for calculating the discrepancy ag(P,Q),
it suffices to know all (finitely many) critical index sets which may occur when B varies
in B. We define the system of critical index sets as

Tg:={IC{l,... ,N}3BeB:I=1I(B)).

For the closed set discrepancy, for instance, one has Zp, = 21:N} hecause for an
arbitrary subset I C {1,..., N} and an arbitrary & with ¢ € I, one may find a small
closed ball B; D {¢'}, such that & ¢ B; for all j € {1,..., N}\{i}. Consequently,
B := UjerB; € By satisfies BN {¢Y, ... &V} = {€i € I}, so I(B) = I. For the other
systems B considered in the introduction, all one usually gets, is the strict inclusion
IB C 2{1,...,N}.

As soon as for some concrete B the system Zgz of critical index sets is known, the
discrepancy between P and () may be calculated according to (11) by using the formula

ap(P,Q)=max|> pi— > g

i€l jeIn{l,...,n}

We recall the well-kown fact that minimizing a function |f(z)| in terms of the variable x is
equivalent to minimizing the function ¢ subject to the constraints f(z) < tand —f(z) <t
in terms of the variables (z,¢). This allows to solve (10) by means of the following linear
optimization problem:

minimize ¢t subject to g € S,, (12)

- Zjé[ﬂ{l,...,n} 45 < t- Zielpi } Ie IB-
Zje[m{l,... n} 4i < t Zz‘elpi

The variables to be optimized here, are ¢ and the ¢;. If (¢*,¢*) is an optimal solution of
(12), then ¢* is an optimal solution of the original problem (10), whereas ¢* indicates the
optimal value attained by ¢* in (12), i.e., t* provides the minimal discrepancy ag(P, Q)
between the original measure P and any measure () whose support coincides with the
first n points of the support of P.

11



Unfortunately, the size of (12) is too large to be useful, in general. Indeed, since Zg,, =
21N} “as observed above, the number of constraints in (12) amounts to 2V+! 4+ n 4 1.
On the other hand, one recognizes from (12), that many inequalities are just copies of
themselves as far as the involved coefficients ¢; are concerned, because many different
index sets I € I may lead to the same intersection I N {1,... ,n}. The only term which
varies then for those sets I, is the right-hand side of the inequalities in (12). Consequently,
one may pass to the minimum of these right-hand sides corresponding to one and the same
intersection I N{1,...,n} which will drastically reduce the number of inequalities. In
order to do so formally correct, we introduce a reduced system of critical index sets as

<= {IN{L,... 0} €T}

Each member J € Zj of the reduced system generates a set ¢(J) of members in the
original system Zg all of which share the same intersection with {1,... ,n}:

o) ={IeTsg|lT=IN{1,...,n}} (JETI}. (13)

Now, introducing the quantities

7= max ; and min i (J ely), 14
max Zp v i ) p (J €Ip) (14)

(12) may be rewritten as
minimize ¢ subject to g € S, (15)

_ZjeJQj < t_’yJ
J e T,
Yiesti < t+ B

This corresponds indeed to passing to the minimum on the right-hand sides of the in-
equalities in (12). Since Zj is a subset of {1,...,n}, the number of inequalities in (15) is
not larger than 2" +n + 1. Having in mind that often n < N, this results in a drastic
reduction of size in the linear optimization problem (12).

The linear constraints for each J € Zj imply that every feasible ¢ of problem (15)
satisfies ¢t > %(7‘7 — ) and, thus, one obtains the lower bound

1

- J_ < Lo 6" q).
25%%(7 V) —qle%fn ag({&,...,€"}q)

Hence, if ¢* € S, satisfies the conditions

1
J _ = _ < J *
7! = 5 max(y’ =) ZEJJ_Q%%(W 1)+ (J € Ig),

implying, in particular,

1
deJ* 2(7 +71.) (s € argmaxJezg(ny — 7)),

*

then the pair (¢*, § max ezz (v’ — 7)) is an optimal solution of (15).

12



3.2 The special case of the cell discrepancy ap

cell

The main challenge in the solution of (15) is not the solution of the linear program itself but
the computational determination of the reduced critical index set Zj; and of the coefficients
v/ and 7y introduced in (14). As these strongly depend on the geometric structure of
the chosen system B of Borel subsets, there is no general procedure available for this
determination. In this section, an algorithmic approach for dealing with the special case
of the cell discrepancy ap_, shall be presented. The same methodology can be carried
over to the rectangle discrepancy ag,.,., though with higher computational effort. The
more general discrepancies ap , . and ag,,,, of polyhedra and closed convex sets, would
require more sophisticated approaches which are outside the scope of this paper.
Recall that the sytem of cells is defined by

Bcell = {Z _'_]Rs—|z € Rs}v

where R® = {z € R*|z; <0 (j =1,...,s)} is the negative orthant of R®. For the purpose
of abbreviation, we put [z] := z + R? for z € R°.

Since the support {£1, ... &V} of the measure P is finite, it is contained in an open
rectangle (c,d) for some ¢,d € R*. We introduce an artificial point set {r!,... r®} in
order to control the boundary of the support, where r/ is defined by

rj: = d; and ) == ¢ if k # 7. (16)

Recall that the support of any feasible reduced measure @ in (10) is given by the set
{&,...,€"} of first n atoms of the support of P. We will show that it is sufficient to
consider those cells, which are bounded in every direction by an element of

R:={&, ..., eyulrt,... r}
in the following sense.

Definition 3.1 A cell [2] is called supporting, if there exists a subset {x',... x°} C R
such that {z',... z°} C [2] and :E; =z forj=1,... s

Indeed, we can restrict ourselves on supporting cells as shown by the following proposition,
which relies on the fact that every cell can be enlarged until it is a supporting one. As
the proof of this proposition is rather technical, it is given in the appendix.

Proposition 3.1 For any J € Iy ,» there exists a supporting cell [2] such that v =
P(int [2]) and

UeA&} = {6, nint [2]. (17)

Before drawing some essential conclusions from Proposition 3.1, we mention the obvious
fact that for any z € R® and any finite subset F' C R?, there exists some € > 0, such that

[2°]N F =int [z] N F, (18)

where 27 is defined by 25 :=z; —etfor j=1,... ,s.

13



Corollary 3.1 Define
Z = {z e R°|[2] is a supporting cell}.
Then,

T5., = JCA{1,...,n}3z€ Z:(17) holds true}

v" = max{P(int [z])|z € Z, (17) holds true} V.J € I5..,-

Proof. The inclusion ’C’ in the first identity follows directly from the second statement
of Proposition 3.1. Similarly, the inequality '<’ in the second identity follows directly
from the first statement of Proposition 3.1. For the reverse direction of the first identity,
let z € Z be given such that (17) holds true for some J C {1,... ,n}. Now, we apply
(18) to F :={&',... £} to derive the existence of some z° such that

{e .., N[ ={& ..., "} nint [2] = U;e €} (19)

Since [2°] € Beey, we observe upon recalling the definition of I(B) for B € B in the
beginning of section 3.1, that

I(F)={ie{l,..., N} e[F]}=Ju{ic{n+1,... N} e[}
Therefore,
I([z°])n{1,... ,n}=JdnNn{1,... ,n} =, (20)

which provides J € Zj; ~via the definition of Zj . This shows the inclusion "2 in the
first identity. Concerning the reverse direction of the second identity, let J € Zj; = and
z € Z be arbitrary, such that (17) holds true. Applying again (18), this time consecutively
to {&1, ..., &} and to {€, ..., &N}, one deduces the existence of some z° such that (19)
and

(e, n ) = {¢' .. N nint [2] (21)

hold true simultaneously. From (19) it follows (20) as in the lines above. Therefore,
I([z%]) € p(J) (see (13)) and

2 Y p= Y PE) = PO = Pl ),
]

icl([z7]) grelz®

where the last equality relies on (21). Since z € Z was chosen arbitrarily such that (17)
holds true, this shows the inequality ">’ in the second identity.
u

Corollary 3.1 suggests that one can calculate the index family Zp =~ as well as all upper
coefficients v/ for J € Ty ,» as soon as one knows the set Z of supporting cells which
is finite. Indeed, it follows from Definition 3.1, that each supporting cell is defined by
an s-tupel {z!, ... 2°}. Consequently, one may extract the finite system of all s-tupels
{a',... 2} out of the set R = {&, ..., " U {r',... ,r*} and check for each of its
members, whether this s-tupel defines a supporting cell. If so, this cell contributes to the
calculation of Zj; ~and of v’ for J € Ty, 1t remains to determine the lower coefficients
vy for J €1y .
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Proposition 3.2 For all J € 5, one has v; = > ic1 Dir where

I={ie{l,... ,N}|§;gr§1gj<gg (k=1,...,s)}

Proof. Completely analogous to the derivation of (22) in the appendix, one obtains that
s =min{P([y]) [y] N {&", ... €"} = Ujes{€}}
Define z € R® by 2, := max;¢; fi for k=1,...,s Then, & € [2] for all j € J and, thus,

UseA€ S 1N {EY... €M)

Assume that this inclusion is strict. Then, there is some ¢ € {1,...,n}\J such that
¢ € [z]. J €Iy means that there exists some B € By with J = I(B)N{1,... ,n}.
Consequently, &/ € B for all j € J, which entails that [z] C B, by construction of z. We
derive that £ € B and, hence, i € I(B). On the other hand, i € {1,... ,n}\J, which is
a contradiction. It follows that

Uer&) = 1N {eL, ... &)

and, thus, 7, < P([z]). On the other hand, if y € R?® is arbitrary feasible in the definition
of v, then &7 € [y] for all j € J, and so, [2] C [y] again by construction of z. Now, P([z]) <
P([y]) which, upon passing to the minimum over all feasible y, provides P([z]) < ~,;. We
may conclude that

vi=P() = > pi

£ielz]

which proves the assertion of the proposition.

4 Algorithm and numerical results

The results of the previous sections suggest the following algorithmic approach for the
solution of problem (10) in the special case of the cell discrepancy ag,,,,, given the problem

data N, n, s, {€,... &V} and {p1,... ,pn}:
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Algorithm 4.1

Step [1]: To find an open rectangle (c,d) such that {&*,... N} C (¢, d), define

cj = Z:rlman'; -1, d;:= Z:nlﬂaXNf; +1 (j=1,...,s).

Calculate the set R from Definition 3.1 with points ! defined in (16).
Put Tj; == {0}, A == {0} and v/ :=0 for all J C {1,... ,n}.
Let A:={AC{1,... ,n+s}H#A=s}.

Step [2]:  If A" = A then go to Step [7] else select A = {iy,... ,is} € AAA"
Put A" := AU {A} and
xj::{ii;_n Zijiz (j=1,...,5).
Then, 2/ € R for j=1,...,s.

Step [3]:  Define a ’potential’ supporting cell [z] for some z € R® by

2) = ]gaxsati (k=1,...,s).

Check whether it 1s indeed a supporting cell according to Definition 3.1.
If not so, then go to Step [2].
Step [4]:  Define J by the relation (17), i.e.,

J={ie{l,... n}& <z (k=1,...,s)}. If J € I then go to Step [6].

Step [5]: 5 =21 U{J}. Calculate v; according to Proposition 3.2.
Step [6]:  Calculate o := Zpi, where I :={i € {1,... ,N}& <z (k=1,...,5)}

il
If a >+’ then v/ := a. Go to Step [2].
Step [7]: With the additional data Tj; and vy, for all J € T} solve the linear
optimization problem (15).

In the following, we present some numerical results which are based on a Mathematica
implementation of Algorithm 4.1. Calculations were carried out on a 1200 MHz PC. Figure
1 shows possible reductions of a randomly generated (w.r.t. support and probabilities)
2-dimensional measure with N = 1000 atoms. A reduction on n = 50 atoms is considered.
The left diagram of the figure illustrates the ordered solution defined in (7).

By definition, this solution selects the 50 atoms of the original measure realizing the
largest probabilities. The first 49 atoms even keep the original probabilities, whereas the
last one is arranged to complement the sum of theses probabilities to one in order to make
the selected measure a probability measure as well. Since each of the selected 50 atoms has
rather low probability whereas the set of all non-selected 950 atoms has high probability,
the ordered solution places almost all mass on atom no. 50. Although such choice would
be optimal in case of the closed-set discrepancy ag, according to Proposition 2.1, it is
intuitively clear from the picture that such solution may not be meaningful for other
discrepancy distances. Indeed, the ordered solution realizes a closed-set discrepancy of
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Figure 1: Reduction of a 2-dimensional measure with 1000 atoms (thin lines) to 50 atoms
(thick lines). Heights correspond to probabilities. The left diagram illustrates the ordered
solution, whereas the right diagram shows the measure which, on the fixed support of the
ordered solution, is best approximating in the sense of the cell discrepancy.

ag, = 0.90. Recalling, that discrepancies always take values between 0 and 1, this value
is certainly not satisfactory. It illustrates the effect of ’linear decrease’ mentioned in
Section 2.1: a reduction of the support to 5% of its atoms leads to a reduction of the
discrepancy which is no more than 10%. On the other hand, Proposition 2.1 tells us, that
the same value of 0.90 is an upper bound for any solution of any other discrepancy. Now,
measuring the ordered solution in the cell discrepancy instead, yields the slightly smaller
value of ap_, = 0.81, which is still far from satisfactory. However, there is no reason,
why the ordered solution should be optimal with respect to the cell discrepancy, neither
from the choice of the support nor from the assignment of probabilities. We illustrate this
fact by keeping the same support as the ordered solution but optimizing the probabilities
according to Algorithm 4.1. The resulting solution is illustrated in the right diagram of
Figure 1. It realizes the cell discrepancy ap_, = 0.08, which is optimal for the chosen
fixed support (of course, even better solutions might exist for a different support). This
value of 8% discrepancy obtained by 5% of the original atoms highlights the potential of
Algorithm 4.1 for scenario reduction.

Numerical experiments show, that the main effort in Algorithm 4.1 is spent for the
determination of supporting cells (compared to this, the time consumed by the solution
of the linear program in the last step is negligible). Supporting cells are identified in this
algorithm by checking all subsets of cardinality s in a set of cardinality n + s. Therefore,
the complexity of the algorithm is mainly determined by the binomial coefficient (":8)
This suggests that the practical value of the algorithm is limited to small dimension s of
the random distributions and moderate cardinality n of the reduced support or to small n
and moderate s (due to the identity ("7*) = ("7*)). On the other hand, the computational

s
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effort is basically linear in the cardinality N of the original support, so larger values of N
seem to be no problem.

Table 1: Computing times (in seconds) for different problem parameters (the two quan-
tities correspond to dimensions s=3 and s=4, respectively.

‘N:100 N =200 N =300
n=>5 [024-049 048-0.84 0.83-1.6
n=101| 0.92- 2.5 1.7-3.8 2.9-83
n=151| 3.2-121 41-16.8 9.6 -33.2

Table 1 compiles some computing times for Algorithm 4.1 under different problem sizes.
As one can see, the dependence of time on the size N of the original support is moderate
(basically linear), whereas it quickly grows with the size n of the reduced support and
with the dimension s. This is not surprising, because the determination of all supporting
cells was carried out by checking all subsets of cardinality s in the set {1,...,n + s}.
One might wonder if there is a more efficient way of determining supporting cells than
just by crude enumeration. It seems, however, that basically all mentioned subsets are
potential candidates for realizing the upper bound in the cell discrepancy between two
measures. Indeed, recall that the cell discrepancy coincides with the supremum distance
of distribution functions (the Kolmogorov distance).

Figure 2: Difference between the distribution functions of two discrete probability mea-
sures (having 30 and 18 atoms, respectively).
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Figure 2 plots the difference of two discrete distribution functions having 30 and 18 atoms,
respectively. It can be recognized at how many different regions, the maximum (positive
or negative) deviation may occur.

Figure 3: Decrease of the cell discrepancy in the course of a forward selection procedure.

Finally, Figure 3 shows the decrease of the minimal discrepancy in the course of a forward
selection procedure (see Algorithm 3.1), where the original 2-dimensional measure having
50 atoms is reduced in a stepwise manner to a measure having 20 atoms. Computation
time was 160 seconds.

5 Appendix

Proof of Proposition 3.1. Let J € Zj;  be arbitrary. By definition of ¢(J) in (13), for
any I € ¢(J) there exists some B € B such that I = I(B) and J = I(B)N{l,...,n}.

Then, by definition of I(B),
Y pi= > pi=P(B),
)

el i€I(B
whence

. max > " pi =max{P(B)|B € Been, J =1(B)N{L,... ,n}}
el

Iep(J) <
= max{P(B)|B € B, BN{E,... &'} = Uses{&'})
= max{P([y))ly € (c,d), [yl n{',... ., "} = Ujes{€'}}, (22)

where in the last equation it was used that the support of P is contained in (¢, d). Let
y© be a maximizing cell, i.e.,

v =Py, yOeled, BUIn{e,. . = UedE)

For t > 0, put y(t) := <y§°) +t, yéo), . ,y§0)> and consider the enlargement [y(t)] of the
cell [y(o)} along the first coordinate direction. Put

T :=sup{t| [y(t)] N R = [y(o)] N R}.
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Since the intersection of [y(¢)] with the finite set R remains constant for small ¢ > 0, it
follows that 7 > 0. From y(© € (c, d), we derive that 3\” < d; = r!, whence r! ¢ [y @]NR.

On the other hand, with t* := d; — \*, one gets that r' € [y(t*)] N R. Consequently,
7 < t* < oo. We put y) := y(7) and arrive at

B0 = {0yl < w0 RPU{ 0] 0 {yly = "} 1 R}

- >
'

aq

= {Ur lyOINRYUA = {[yV] N R} UA,.

Once more, due to [y(7 4+ t)] NR remaining constant for small ¢ > 0 and to the definition
of 7, it follows that [yM] N R # [y¥] N R. Consequently, A; # @, which means that

there exists some z' € [y")] N R such that z{ = gV,
Now, in the second step, we extend the construction above for the second coordinate
by defining

(1 1
pt) + = (o el )
7+ =sup{t| [y®]NR = [yV] N R}.
Upon observing that yél) = yéo) < dy and replacing ! by 7%, we may repeat the same

argumentation as before, in order to verify that 0 < 7 < oo, which allows to put y® :=
y(T). As before, the definition of 7 allows to find that

@I R={lyW]nRUA = {[y"] N R}UALUA,,

where
Ay = {[y(z’] N {ylya = v 0 R} :

With the same argument as in the first step, one infers that Ay # @, which means that
there exists some z* € [y®] N R such that 23 = oy,

Continuing the construction in this way for all coordinates, we finally arrive at points
yU) and 27 for j =1,... s, such that

PN R = {[H®]NRYUA, - UA,

Ay = {0y =y R G=1,09)
and

PeyPnR, 2=y" (G=1,...,5).

We put z := y). Then,

INR={[y9]NR}uA-- - UA,. (23)

20



By the very construction, [y¥] C [y®] and z; = y](-s) = y](-j) for j = 1,...,s. Conse-

quently,
w?eZ]NR, 2=z (j=1,...,s),

which means that [z] is a supporting cell. ’
To prove the remaining statements of the proposition, note that the equalities :cz = 2;

for 27 € Rand j = 1,...,s imply that ¢; < z; < d; for j = 1,...,s because the same

bounds apply for all points of R. Again by construction, y](-]) > y](-]_l) for j =1,...,s,

which entails that z; > y](p) for j =1,...,s. Now, we define a sequence of cells [z™] by
Zt=—1/m (j=1,...,9). (24)

It follows that, for m large enough, 2™ € (¢, d) and

2>y (=1, ,s). (25)
We conclude from (24) and (23) that, for all m € N,
E"INRCZNR={[y?]NR}UA;---UA,.

The definition of A; shows that all elements of this subset have jth coordinate equal to
yﬁj) = z;. Combining this with (24) yields

ZMNA; =0 (j=1,...,s).
Therefore, we may continue by
"NRC [y nER.

On the other hand, [z™] D [y@] by (25), hence [z™] N R = [y¥] N R. We recall the
fact that y© € (c,d), whence - by definition of the set {r',... ,r*} in (16) - [y©] N

{r',...,r*} = @. With the same reasoning, the inclusion 2™ € (¢, d) stated above, yields
that [z™] N {r',... ,7*} = @. Owing to the definition of y(*, we may continue as
FIn{el.. 6 = EMInR=[V]nR=["]n{g, ... .¢"}
— Ude} (meN). (26)
Clearly,
int [2] = Upen [27], (27)

so (26) yields that
int [2]N{€",... . &"} = UseA&'
which is (17). Finally, (22) and the inclusion [z™] 2 [y©] lead to

v > P([") = P([y"]) =+ (meN),
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hence, actually equality holds true here. Since [2™] is an increasing sequence of cells in

the union (27), one gets that

P(int [2]) = P(Upey [2™]) = lim P ([z™]) =~”.

m—00
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