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tionQuantitative stability studies in sto
hasti
 programming (see [18℄ for a re
ent survey)indi
ate whi
h probability metri
s (i.e., distan
es of probability distributions) are relevantand, in some sense, even 
anoni
al for the stability of spe
i�
 
lasses of sto
hasti
 pro-grams. In parti
ular, Fortet-Mourier and Wasserstein metri
s are relevant for two-stagesto
hasti
 programs [19, 17℄, B-dis
repan
ies are 
anoni
al for 
han
e 
onstrained models[20, 7, 8℄ and also relevant for two-stage mixed-integer models [22, 17℄. The 
lass B ofBorel sets is 
hosen as small as possible but large enough to 
ontain all sets appearing in
han
e 
onstrained models or all 
losures of 
ontinuity regions of integrands in two-stagemixed-integer models.Fortet-Mourier metri
s have re
ently been used for the (nearly) optimal redu
tionof dis
rete probability distributions in two-stage sto
hasti
 programs without integralityrequirements [3, 4, 6℄. Furthermore, a multiperiod re
ursive extension of the redu
tionte
hnique is developed in [5℄ for generating s
enario trees as inputs of multistage sto
hasti
1



programs. Inserting dis
rete probability distributions into 
han
e 
onstrained and two-stage mixed-integer sto
hasti
 programs represents an often used approximation te
hniquefor solving these models (
f. [21℄). Su
h dis
rete approximations lead to mixed-integerprograms in both 
ases (see [15, Chapter 11.9℄ for 
han
e 
onstrained models), whosedimensions grow rapidly with the number of s
enarios involved. Hen
e, moderately sizeds
enario sets that represent good approximations of the underlying probability distributionare even of greater importan
e than for two-stage models without integrality requirements.The present paper aims at paving some roads for optimal s
enario redu
tion in 
han
e
onstrained and mixed-integer two-stage sto
hasti
 programming models. Let P be adis
rete probability measure on Rs with support {ξ1, . . . , ξN} and P (ξi) = pi > 0 for
i = 1, . . . , N . We 
onsider the problem of �nding another dis
rete probability measure
Q on Rs whi
h is supported on a subset of {ξ1, . . . , ξN} and whi
h deviates from P aslittle as possible with respe
t to some dis
repan
y. We re
all from [10, 9℄ that, for givenBorel probability measures P , Q on Rs and for a given system B of Borel subsets of Rs,the B-dis
repan
y between P and Q is de�ned as

αB(P,Q) := sup
B∈B

|P (B) −Q(B)| .Important examples are the systems Bcl of all 
losed subsets, Bconv of all 
losed, 
onvexsubsets, Bpolyk of all polyhedra having at most k verti
es, Brect of all 
losed, s-dimensionalre
tangles ×s
i=1Ii with Ii, i = 1, . . . , s, denoting a 
losed interval in R, and Bcell of all
losed 
ells (i.e., sets of the form ξ + Rs

− with ξ ∈ Rs) of Rs. Evidently, one has that
αBcell

≤ αBrect
≤ αBpolyk

≤ αBconv
≤ αBcl

, (1)where for the inequality αBrect
≤ αBpolyk

one has to require that k ≥ 2s (in order to ensurethat Brect ⊆ Bpolyk). Any B-dis
repan
y is a semimetri
 on the spa
e of all probabilitymeasures on Rs, i.e., it is non-negative, symmetri
 and satis�es the triangle equality.The dis
repan
y αBcell
(and, thus, all dis
repan
ies in (1)) are metri
s as, in addition,

αBcell
(P,Q) = 0 implies P = Q. A sequen
e (Pn) of probability measures 
onverges to Pwith respe
t to αB with B ⊆ Bcl i� it 
onverges weakly to P and P (∂B) = 0 holds forea
h B ∈ B (with ∂B denoting the boundary of B) [2℄. We refer to the monograph [1℄for further ba
kground on weak 
onvergen
e of probability measures.In the literature (
f. [16℄), αBcell

is also 
alled uniform or Kolmogorov metri
 as
αBcell

(P,Q) is just the uniform distan
e of the probability distribution fun
tions of Pand Q on Rs. The distan
e αBconv
is known as isotrope dis
repan
y [12℄ and αBcl

astotal variation [16℄. Consistently, the distan
e αBcell
(αBrect

, αBpolyk
) will be 
alled 
ell(re
tangular, polyhedral) dis
repan
ies. Some of these dis
repan
ies have been extensivelyused for studying properties of uniformly distributed sequen
es in the s-dimensional unit
ube Us = [0, 1]s [11℄ and, more re
ently, for developing Quasi-Monte Carlo methods[13℄. Converse inequalities to (1), e.g., for the isotrope and re
tangular dis
repan
ies ofprobability measures P and Q on Rs, were also derived [9, 11, 12, 14℄. For instan
e, theestimate

αBconv
(P,Q) ≤ s

(
4Ms

s− 1

) s−1
s

αBrect
(P,Q)

1
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holds if P has a density (with respe
t to the Lebesgue measure on Rs) whi
h is boundedby M [14℄. In the 
ontext of quantitative stability of sto
hasti
 programs it is worthnoting that the polyhedral, re
tangular and 
ell dis
repan
ies are of spe
ial importan
efor linear 
han
e 
onstrained and mixed-integer two-stage models [19, 22, 17, 18, 8℄.Denoting by δξ the Dira
-measure pla
ing mass one at the point ξ, one may write thedis
rete measure P introdu
ed above as
P =

∑N

i=1
piδξi , (2)where ∑N

i=1 pi = 1. Now, the redu
tion problem formulated above 
an be restated as thefollowing optimization problem:minimize αB(P,Q) = αB(
∑N

i=1
piδξi,

∑n

j=1
qjδηj )subje
t to {η1, . . . , ηn} ⊂ {ξ1, . . . , ξN}, qj ≥ 0 (j = 1, . . . , n),

∑n

j=1
qj = 1 (3)The variables to be optimally adjusted here are η1, . . . , ηn and q1, . . . , qn and altogetherthey de�ne the desired redu
ed dis
rete measure Q via

Q =
∑n

j=1
qjδηj . (4)The optimization problem (3) may be de
omposed into two subproblems: a 
ombinatorialoptimization problem for determining the s
enario set η = {η1, . . . , ηn} and a (linear)program for �xing q = (q1, . . . , qn). To des
ribe this in more detail, we denote by αB(η, q)the B-dis
repan
y between P and Q for �xed P , and by Sn the standard simplex in Rn,i.e.,

αB(η, q) := αB(
∑N

i=1
piδξi ,

∑n

j=1
qjδηj )

Sn := {q ∈ Rn|qj ≥ 0, j = 1, . . . , n,
∑n

j=1
qj = 1}.Now, the optimization problem (3) is of the form

min
η

{ inf
q∈Sn

αB(η, q)|η ⊂ {ξ1, . . . , ξN},#η = n}, (5)where infq∈Sn
αB(η, q) refers to the in�mum of the inner optimization model

min{αB(η, q)|q ∈ Sn} (6)for �xed s
enario set η. While (5) represents a spe
i�
 
lustering problem, a so-
alled
k-median problem of 
ombinatorial optimization, the problem (6) will turn out as a linearprogram. Both problems will be further dis
ussed in Se
tion 3. In Se
tion 2, we deriveupper and lower bounds of the optimal value of (3) and dis
uss some parti
ular 
ases,whi
h allow for an expli
it solution. In Se
tion 4 we provide some preliminary numer-i
al experien
e for optimal s
enario redu
tion with respe
t to the 
ell dis
repan
y (orKolmogorov distan
e). 3



2 Bounds and spe
i�
 solutionsIn this se
tion, we shall derive a spe
i�
 solution for problem (3) in the 
ase of the 
losedset dis
repan
y αB = αBcl
as well as universal bounds for the optimal value of (3) in
ase of general dis
repan
ies. By 'universal' we mean a bound that just depends on theprobabilities pi of the original dis
rete measure P but not on its support. In parti
ular,these bounds do not depend on the geometry of the support or the spa
e dimension s.Hen
e, in 
ontrast to the exa
t solution of (3), these bounds are very easy to 
ompute fora quite general 
lass of dis
repan
ies.2.1 Ordered solution and upper boundIntuitively, approximating the original dis
rete measure P by some other measure Q whi
his supported by a subset of the support of P , requires well to approximate those supportingpoints of P having large probability. In this se
tion, we assume, without loss of generality,that p1 ≥ · · · ≥ pN . Then, a naive idea for solving (3) would be to put in the de�nition(4) of Q:

ηj := ξj (j = 1, . . . , n); qj := pj (j = 1, . . . , n− 1); qn :=
∑N

i=n
pi. (7)This means that Q sele
ts its support as the atoms of P having largest probability and,that the assignment of probabilities is adopted from the original measure ex
ept at thelast atom, where the new probability is modi�ed to make all qj sum up to one. Evidently,this simple approximating probability measure Q, whi
h from now on shall be 
alled theordered solution, is feasible in (3). It has the interesting feature, that it realizes a universal(with respe
t to any dis
repan
y), easy to 
al
ulate upper bound in (3) whi
h is a
tuallysharp in 
ase of the 
losed set dis
repan
y.Proposition 2.1 As before, we assume, without loss of generality, that p1 ≥ · · · ≥ pN .Denote by ∆B the optimal value of (3), where B is any system of Borel measurable subsetsof Rs. Then, one has that1. ∆B ≤

∑N
i=n+1 pi.2. ∆Bcl

=
∑N

i=n+1 pi.Proof. De�ne Q in (4) as the ordered solution a

ording to (7). Let B ∈ B be arbitraryand put
J := {j ∈ {1, . . . , n}|ξj ∈ B}.
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Then, by (7),
|P (B) −Q(B)|

=
∣
∣
∣

∑N

i=1
piδξi(B) −

∑n

j=1
qjδηj (B)

∣
∣
∣

=

∣
∣
∣
∣

∑

i∈J\{n}
piδξi(B) + pnδξn(B) +

∑N

i=n+1
piδξi(B)

−
∑

j∈J\{n}
qjδξj (B) − qnδξn(B)

∣
∣
∣
∣

=

∣
∣
∣
∣

∑

i∈J\{n}
pi + pnδξn(B) +

∑N

i=n+1
piδξi(B) −

∑

j∈J\{n}
qj − qnδξn(B)

∣
∣
∣
∣

=
∣
∣
∣pnδξn(B) − qnδξn(B) +

∑N

i=n+1
piδξi(B)

∣
∣
∣

=

{ ∣
∣
∣
∑N

i=n+1 piδξi(B) −
∑N

i=n+1 pi

∣
∣
∣ if n ∈ J

∑N
i=n+1 piδξi(B) if n /∈ J

.Due to
0 ≤

∑N

i=n+1
piδξi(B) ≤

∑N

i=n+1
pi,one arrives at

|P (B) −Q(B)| ≤
∑N

i=n+1
pi.Sin
e B ∈ B was arbitrary, there follows assertion 1.:

∆B ≤ αB(P,Q) = sup
B∈B

|P (B) −Q(B)| ≤
∑N

i=n+1
pi.Con
erning assertion 2., let Q in (4) be any dis
rete measure whi
h is feasible in problem(3) with respe
t to the spe
ial dis
repan
y distan
e αB = αBcl

. Feasibility of Q in (3)implies that {η1, . . . , ηn} ⊆ {ξ1, . . . , ξN}. Therefore, ηj = ξij for 
ertain sele
tions ij ∈
{1, . . . , N} and j = 1, . . . , n. Sin
e B := {ξ1, . . . , ξN}\{η1, . . . , ηn} is a 
losed set, onederives that B ∈ Bcl and thus:

αBcl
(P,Q) ≥ |P (B) −Q(B)|

=

∣
∣
∣
∣

∑

i∈{i1,... ,in}
piδξi(B) +

∑

i/∈{i1,... ,in}
piδξi(B) −

∑n

j=1
qjδηj (B)

∣
∣
∣
∣

=
∑

i/∈{i1,... ,in}
pi ≥

∑N

i=n+1
pi,where in the last inequality the assumed de
reasing order of the pi was exploited. As Qwas supposed to be arbitrary feasible in (3), one gets that

∆Bcl
= inf{αBcl

(P,Q)|Q feasible in (3)} ≥
∑N

i=n+1
pi .Taking into a

ount the reverse inequality, already proved in assertion 1. for an arbitrarydis
repan
y, there follows assertion 2. 5



Corollary 2.1 The ordered solution de�ned in (7) is a (nonunique) optimal solution ofproblem (3) for the 
losed set dis
repan
y αBcl
.Proof. In the �rst part of the proof of Proposition 2.1, we have shown that, for anydis
repan
y αB, the ordered solution realizes an obje
tive value in (3) whi
h is not largerthan ∑N

i=n+1 pi. On the other hand, the same value is optimal in (3) for the 
losed setdis
repan
y αBcl
(see assertion 2. in Prop. 2.1).The last 
orollary shows, that in 
ase of the 
losed set dis
repan
y, an expli
it solution ofproblem (3) 
an be found without any 
omputational e�ort. The same does not hold truefor the weaker dis
repan
ies mentioned in the introdu
tion. Nevertheless, for those otherdis
repan
ies too, one may bene�t from the upper bound information for the optimal valuein (3) provided by the �rst statement in Proposition 2.1. For instan
e, from the (ordered)values of the original probabilities pi, one 
an dire
tly read o� the number of atoms

n < N required for the approximating measure Q, in order to make the approximationerror αB(P,Q) not ex
eed a pres
ribed toleran
e ε > 0. In the spe
ial 
ase of pi = N−1(i =
1, . . . , N), one derives the 
ondition

n

N
≥ 1 − ε.For instan
e, a toleran
e of 10% (ε = 0.1) 
an be satis�ed then, if n is at least 90%of N . Of 
ourse, su
h linear relation between toleran
e and size of distribution is notvery satisfa
tory. Indeed, the se
ond assertion of Proposition 2.1 tells us, that, in theassumed equi-distributed 
ase, one a
tually observes this undesirable linear relation forthe 
losed set dis
repan
y. Consequently, there is some hope, that a better behaviour 
anbe observed for the weaker dis
repan
ies, whi
h are more appropriate for the stability of
han
e 
onstrained and mixed-integer sto
hasti
 programs (
f. Se
tion 1). This, however,
omes at the pri
e that a simple solution of (3) is no longer available and, a
tually, 
annoteven be obtained 
omputationally for relevant problem sizes in an exa
t sense.The following example 
omplements Corollary 2.1 by showing that the ordered solutionneed not be optimal for a dis
repan
y di�erent from αBcl

:Example 2.1 De�ne the original measure P on R by
ξ1 := 1, ξ2 := 3, ξ3 := 2, ξ4 := 4; p1 := p2 := 0.4; p3 := p4 := 0.1.We are looking for the optimally redu
ed measure Q in problem (3) whi
h sele
ts n := 2atoms from the original measure. As far as this is done with respe
t to the 
losed setdis
repan
y αBcl

, Corollary 2.1 guarantees that the ordered solution Q de�ned by
η1 := 1, η2 := 3, q1 := 0.4, q2 := 0.6is optimal and, by Proposition 2.1, realizes the minimal dis
repan
y ∆Bcl

= p3 + p4 = 0.2.For the 
onvex set dis
repan
y αBconv
(see introdu
tion), this ordered solution realizes thesame value αBconv

(P,Q) = 0.2. However, 
onsidering the redu
ed measure Q∗ de�ned by
η1 := 1, η2 := 3, q1 := 0.5, q2 := 0.5,6



it follows that αBconv
(P,Q∗) = 0.1. Consequently, the ordered solution is not optimal in(3) with respe
t to αBconv

. At the same time, this is an example for a stri
t inequality instatement 1. of Proposition 2.1.2.2 Lower boundIn this se
tion, we want to �nd a universal lower bound for the optimal value of problem(3). For this purpose, we will a

ess on the following property.De�nition 2.1 We 
all a system B of Borel subsets of Rs isolating if for any �nite subset
{x1, . . . , xp} ⊆ Rs there exist sets Bi ∈ B for i = 1, . . . , p with

Bi ∩ {x1, . . . , xp} = {xi} (i = 1, . . . , p) .Clearly, the systems Brect, Bconv, Bcl and Bpolyk (for k ≥ 2s) mentioned in the introdu
tionare isolating, whereas Bcell, for instan
e, is not.Theorem 2.1 Let B be an isolating system of Borel subsets of Rs. In (3), let n < N .Then, assuming as before that the pi are de
reasingly ordered, the optimal value ∆B inproblem (3) has the lower bound
∆B ≥ max

{

pn+1, n
−1

∑N

i=n+1
pi

}

.Proof. Ea
h measureQ de�ned by (4) whi
h is feasible in problem (3) indu
es an inje
tivesele
tion mapping σ : {1, . . . , n} → {1, . . . , N} with
ηi = ξσ(i) (i = 1, . . . , n) .Applying De�nition 2.1 to the support {ξ1, . . . , ξN} of the original measure P , we derivethe existen
e of sets Bi ∈ B for i = 1, . . . , N su
h that

Bi ∩ {ξ1, . . . , ξN} = {ξi} (i = 1, . . . , N) .Then,
∣
∣P (Bσ(i)) −Q(Bσ(i))

∣
∣ =

∣
∣P ({ξσ(i)}) −Q({ηi})

∣
∣ =

∣
∣pσ(i) − qi

∣
∣ (i = 1, . . . , n)

∣
∣P (Bi) −Q(Bi)

∣
∣ = pi (i ∈ Cσ) ,where Cσ := {1, . . . , N}\{σ(1), . . . , σ(n)}. It follows for the dis
repan
y that

αB(P,Q) ≥ max
i=1,... ,N

∣
∣P (Bi) −Q(Bi)

∣
∣ = max

{

max
i∈Cσ

pi, max
i=1,... ,n

∣
∣pσ(i) − qi

∣
∣

}

.Note, that the variation of Q among the feasible measures in (3) amounts to variation ofthe sele
tion mapping σ and to variation of 
oe�
ients qi ≥ 0 subje
t to the 
onstraints
∑n

i=1 qi = 1. This allows to write
∆B = inf{αB(P,Q)|Q feasible in (3)}

≥ inf {ϕ(σ)|σ : {1, . . . , n} → {1, . . . , N} inje
tive} , (8)7



where
ϕ(σ) : = max

{

max
i∈Cσ

pi, ψ(σ)

}

ψ(σ) : = inf

{

max
i=1,... ,n

∣
∣pσ(i) − qi

∣
∣

∣
∣
∣
∣
qi ≥ 0 (i = 1, . . . , n) ,

∑n

i=1
qi = 1

}

.Next, we want to develop the expression for ψ(σ). Sin
e pi > 0 for i = 1, . . . , N and
n < N , by assumption, it follows that

γ :=
∑n

i=1
pσ(i) < 1.Note that the in�mum in the de�nition of ψ(σ) is always realized as a minimum. We
laim that q̂ ∈ Rn de�ned by

q̂i = pσ(i) + n−1(1 − γ) (i = 1, . . . , n) (9)provides this minimum. We have q̂i ≥ 0 for i = 1, . . . , n due to γ < 1 and ∑n
i=1 q̂i = 1,hen
e q̂ is feasible in the de�nition of ψ(σ). Now, let q′ ∈ Rn be any other feasible n-tupel.Then, by

∑n

i=1
q′i =

∑n

i=1
q̂i = 1,it is ex
luded that q′i < q̂i holds true for all i = 1, . . . , n. Consequently, there exists some

k ∈ {1, . . . , n} with q′k ≥ q̂k. From the relation q̂k ≥ pσ(k) (see (9)), one derives that
∣
∣pσ(k) − q′k

∣
∣ ≥

∣
∣pσ(k) − q̂k

∣
∣. Thus,

max
i=1,... ,n

∣
∣pσ(i) − q′i

∣
∣ ≥

∣
∣pσ(k) − q̂k

∣
∣ = n−1(1 − γ) = max

i=1,... ,n

∣
∣pσ(i) − q̂i

∣
∣ .This shows that indeed q̂ realizes the in�mum in the de�nition of ψ(σ) and so, by (9) andby de�nition of Cσ, one gets that

ψ(σ) = n−1(1 − γ) = n−1(1 −
∑n

i=1
pσ(i)) = n−1

∑

i∈Cσ

pi.Now, we 
ontinue (8) as
∆B ≥ inf

{

max

{

max
i∈Cσ

pi, n
−1

∑

i∈Cσ

pi

}∣
∣
∣
∣
σ : {1, . . . , n} → {1, . . . , N} inje
tive} .Identifying the set of all sele
tions as given in this relation with the system of all subsetsof {1, . . . , N} having 
ardinality n, one obtains the reformulation

∆B ≥ inf

{

max

{

max
i∈A

pi, n
−1

∑

i∈A
pi

}∣
∣
∣
∣
A ⊆ {1, . . . , N}, #A = N − n

}

.As the pi are de
reasingly ordered, both expressions
max
i∈A

pi and n−1
∑

i∈A
pi8



are simultaneously minimized by the set A∗ := {n+ 1, . . . , N}. Therefore,
∆B ≥ max

{

max
i∈{n+1,... ,N}

pi, n
−1

∑N

i=n+1
pi

}

.Owing to max{pi|i ∈ {n+ 1, . . . , N}} = pn+1, the assertion of the theorem is proved.Remark 2.1 The lower bound from Theorem 2.1 
an be interpreted as follows. Consideran arbitrary redu
ed measure Q. Sin
e B is isolating, the B-dis
repan
y between P and
Q is larger than the maximal di�eren
e of P and Q on a singleton. Over all 
ommonmass points of P and Q, this maximum is at least n−1

∑N
i=n+1 pi, over all points without

Q-mass it is not less than pn+1.Corollary 2.2 Under the assumptions of Theorem 2.1, the following holds true:1. If n ≥ N
2
, then the lower bound in Theorem 2.1 redu
es to pn+1.2. If n = 1, then ∆B = 1 − p1 and the optimal solution of (3) is given by the measure

Q pla
ing unit mass on the atom realizing maximum probability with respe
t to theoriginal measure P .If n = N − 1, then ∆B = pN , and any measure Qj of the form
Qj =

∑N−1

i=1,i6=j
piδξi + (pj + pN )δξj j ∈ {1, . . . , N − 1}is an optimal solution of (3).Proof. The de
reasing order of the pi implies 1. by Theorem 2.1 and the estimate

npn+1 ≥ (N − n)pn+1 ≥
∑N

i=n+1
pi,whi
h proves the �rst statement.In both 
ases n = 1 and n = N−1, Theorem 2.1 provides that ∆B ≥

∑N
i=n+1 pi. Now,the upper bound in Proposition 2.1 turns this inequality into an equality:

∆B =
∑N

i=2
pi =

{
1 − p1 if n = 1
pN if n = N − 1From the proof of statement 1. in Proposition 2.1) we know that the ordered solutionalways realizes a dis
repan
y not larger than ∑N

i=2 pi., where this last value was justre
ognized to be optimal for n = 1 and n = N − 1. Consequently, the ordered solutionmust be optimal in these 
ases. For n = 1, the ordered solution pla
es unit mass on theatom with highest probability in the original measure P . For n = N − 1, the orderedsolution 
orresponds to the measure QN−1. Sin
e B is isolating, the measure Qj is optimalfor any j ∈ {1, . . . , N − 1}.Unfortunately, the results in Corollary 2.2 are lost for the 
ell dis
repan
y αBcell
as thenext example shows.Example 2.2 Consider the probability measure P =

∑3
i=1 piδξi on R2 with ordered prob-abilities p1 ≥ p2 ≥ p3 and ξ1 = (1, 1), ξ2 = (1, 0.5), ξ3 = (2, 2). For n = 1 we obtain

∆Bcell
= αBcell

(P, δξ1) = p2, whi
h 
ontradi
ts to the results of Corollary 2.2.9



3 Solution te
hniquesAs mentioned in Se
tion 1 problem (3) 
an be ta
kled by a bilevel approa
h: in an outeriteration, the support sele
tion is 
arried out by solving the 
ombinatorial optimizationproblem (5), whereas in an inner iteration optimal probabilities qj are determined 
ondi-tional to the �xed support by solving (6). Sin
e problem (5) is known to be NP -hard, weresort to applying heuristi
 approa
hes. For two-stage models 
ertain forward sele
tionand ba
kward redu
tion te
hniques are developed in [4℄. In the 
ontext of the presentpaper, their analogues represent re
ursive extensions of the 
ases n = 1 and n = N − 1in Corollary 2.2. The forward and ba
kward algorithms determine index subsets J [n]and J [N−n], respe
tively, of {1, . . . , N}. Both index sets are of 
ardinality n and the
orresponding s
enario sets form the support of the redu
ed probability measure Q.Algorithm 3.1 (Forward sele
tion)Step [0℄: J [0] := ∅ .Step [i℄: li ∈ argminl 6∈J [i−1] inf
q∈Si

αB({ξl1, . . . , ξli−1, ξl}, q),

J [i] := J [i−1] ∪ {li}.Step [n+1℄: Minimize αB({ξl1, . . . , ξln}, q) subje
t to q ∈ Sn.Algorithm 3.2 (Ba
kward redu
tion)Step [0℄: J [0] := {1, . . . , N}.Step [i℄: ui ∈ argminu∈J [i−1] inf
q∈SN−i

αB({ξj|j ∈ J [i−1] \ {u}}, q),

J [i] := J [i−1] \ {ui} .Step [N-n+1℄: Minimize αB({ξj|j ∈ J [N−n]}, q) subje
t to q ∈ Sn.Note that, at ea
h Step [i℄, i = 1, . . . , n, one has to solve N − i linear programs, whi
h areof dimension i and N− i in Algorithms 3.1 and 3.2, respe
tively. Hen
e, forward sele
tionseems to be preferable in most relevant 
ases. Although both algorithms do not lead tooptimality in (3) in general, the performan
e evaluation of their implemented analoguesfor transportation distan
es in [4, 6℄ is en
ouraging.In the following, we want to 
onsider the inner iteration problem of optimizing the prob-ability distribution 
onditional to a �xed support. Without loss of generality, we mayassume that {η1, . . . , ηn} = {ξ1, . . . , ξn}. Of 
ourse, we may no longer maintain then theassumption of ordered probabilities pi from the previous se
tion without restri
ting thegenerality. Anyway, ordered probabilities pi are no longer relevant in the sequel. Then,problem (6) is of the form:minimize αB({ξ1, . . . , ξn}, q) = αB(
∑N

i=1
piδξi,

∑n

j=1
qjδξj ) subje
t to q ∈ Sn. (10)

10



3.1 Formulation as a linear optimization problemIn this se
tion, we are going to reformulate (10) as a linear optimization problem. For
B ∈ B, de�ne a '
riti
al index set' I(B) ⊆ {1, . . . , N} by the relation

B ∩ {ξ1, . . . , ξN} = {ξi|i ∈ I(B)}.Then,
|P (B) −Q(B)| =

∣
∣
∣
∣
∣
∣

∑

i∈I(B)

pi −
∑

j∈I(B)∩{1,... ,n}

qj

∣
∣
∣
∣
∣
∣

. (11)Obviously, this value does not depend on the 
on
rete stru
ture of the set B but is uniquelydetermined by the index set I(B). That is why, for 
al
ulating the dis
repan
y αB(P,Q),it su�
es to know all (�nitely many) 
riti
al index sets whi
h may o

ur when B variesin B. We de�ne the system of 
riti
al index sets as
IB := {I ⊆ {1, . . . , N}|∃B ∈ B : I = I(B)}.For the 
losed set dis
repan
y, for instan
e, one has IBcl

= 2{1,... ,N}, be
ause for anarbitrary subset I ⊆ {1, . . . , N} and an arbitrary ξi with i ∈ I, one may �nd a small
losed ball Bi ⊇ {ξi}, su
h that ξj /∈ Bi for all j ∈ {1, . . . , N}�{i}. Consequently,
B := ∪i∈IBi ∈ Bcl satis�es B ∩ {ξ1, . . . , ξN} = {ξi|i ∈ I}, so I(B) = I. For the othersystems B 
onsidered in the introdu
tion, all one usually gets, is the stri
t in
lusion
IB ⊂ 2{1,... ,N}.As soon as for some 
on
rete B the system IB of 
riti
al index sets is known, thedis
repan
y between P and Q may be 
al
ulated a

ording to (11) by using the formula

αB(P,Q) = max
I∈IB

∣
∣
∣
∣
∣
∣

∑

i∈I

pi −
∑

j∈I∩{1,... ,n}

qj

∣
∣
∣
∣
∣
∣

.We re
all the well-kown fa
t that minimizing a fun
tion |f(x)| in terms of the variable x isequivalent to minimizing the fun
tion t subje
t to the 
onstraints f(x) ≤ t and −f(x) ≤ tin terms of the variables (x, t). This allows to solve (10) by means of the following linearoptimization problem: minimize t subje
t to q ∈ Sn, (12)
−

∑

j∈I∩{1,... ,n} qj ≤ t−
∑

i∈I pi
∑

j∈I∩{1,... ,n} qj ≤ t+
∑

i∈I pi

}

I ∈ IB.The variables to be optimized here, are t and the qj . If (q∗, t∗) is an optimal solution of(12), then q∗ is an optimal solution of the original problem (10), whereas t∗ indi
ates theoptimal value attained by q∗ in (12), i.e., t∗ provides the minimal dis
repan
y αB(P,Q)between the original measure P and any measure Q whose support 
oin
ides with the�rst n points of the support of P . 11



Unfortunately, the size of (12) is too large to be useful, in general. Indeed, sin
e IBcl
=

2{1,... ,N}, as observed above, the number of 
onstraints in (12) amounts to 2N+1 + n + 1.On the other hand, one re
ognizes from (12), that many inequalities are just 
opies ofthemselves as far as the involved 
oe�
ients qj are 
on
erned, be
ause many di�erentindex sets I ∈ IB may lead to the same interse
tion I ∩ {1, . . . , n}. The only term whi
hvaries then for those sets I, is the right-hand side of the inequalities in (12). Consequently,one may pass to the minimum of these right-hand sides 
orresponding to one and the sameinterse
tion I ∩ {1, . . . , n} whi
h will drasti
ally redu
e the number of inequalities. Inorder to do so formally 
orre
t, we introdu
e a redu
ed system of 
riti
al index sets as
I∗
B := {I ∩ {1, . . . , n}|I ∈ IB}.Ea
h member J ∈ I∗

B of the redu
ed system generates a set ϕ(J) of members in theoriginal system IB all of whi
h share the same interse
tion with {1, . . . , n}:
ϕ(J) := {I ∈ IB|J = I ∩ {1, . . . , n}} (J ∈ I∗

B). (13)Now, introdu
ing the quantities
γJ := max

I∈ϕ(J)

∑

i∈I

pi and γJ := min
I∈ϕ(J)

∑

i∈I

pi (J ∈ I∗
B), (14)(12) may be rewritten as minimize t subje
t to q ∈ Sn, (15)

−
∑

j∈J qj ≤ t− γJ

∑

j∈J qj ≤ t+ γJ

}

J ∈ I∗
B.This 
orresponds indeed to passing to the minimum on the right-hand sides of the in-equalities in (12). Sin
e I∗

B is a subset of {1, . . . , n}, the number of inequalities in (15) isnot larger than 2n + n + 1. Having in mind that often n ≪ N , this results in a drasti
redu
tion of size in the linear optimization problem (12).The linear 
onstraints for ea
h J ∈ I∗
B imply that every feasible t of problem (15)satis�es t ≥ 1

2
(γJ − γJ) and, thus, one obtains the lower bound

1

2
max
J∈I∗

B

(γJ − γJ) ≤ inf
q∈Sn

αB({ξ1, . . . , ξn}, q).Hen
e, if q∗ ∈ Sn satis�es the 
onditions
γJ −

1

2
max
J∈I∗

B

(γJ − γJ) ≤
∑

j∈J
q∗j ≤

1

2
max
J∈I∗

B

(γJ − γJ) + γJ (J ∈ I∗
B),implying, in parti
ular,

∑

j∈J∗

q∗j =
1

2
(γJ∗ + γJ∗

) (J∗ ∈ argmaxJ∈I∗

B

(γJ − γJ)),then the pair (q∗, 1
2
maxJ∈I∗

B
(γJ − γJ)) is an optimal solution of (15).12



3.2 The spe
ial 
ase of the 
ell dis
repan
y αBcellThe main 
hallenge in the solution of (15) is not the solution of the linear program itself butthe 
omputational determination of the redu
ed 
riti
al index set I∗
B and of the 
oe�
ients

γJ and γJ introdu
ed in (14). As these strongly depend on the geometri
 stru
ture ofthe 
hosen system B of Borel subsets, there is no general pro
edure available for thisdetermination. In this se
tion, an algorithmi
 approa
h for dealing with the spe
ial 
aseof the 
ell dis
repan
y αBcell
shall be presented. The same methodology 
an be 
arriedover to the re
tangle dis
repan
y αBrect

though with higher 
omputational e�ort. Themore general dis
repan
ies αBpolyk
and αBconv

of polyhedra and 
losed 
onvex sets, wouldrequire more sophisti
ated approa
hes whi
h are outside the s
ope of this paper.Re
all that the sytem of 
ells is de�ned by
Bcell = {z + Rs

−|z ∈ Rs},where Rs
− = {x ∈ Rs|xj ≤ 0 (j = 1, . . . , s)} is the negative orthant of Rs. For the purposeof abbreviation, we put [z] := z + Rs

− for z ∈ Rs.Sin
e the support {ξ1, . . . , ξN} of the measure P is �nite, it is 
ontained in an openre
tangle (c, d) for some c, d ∈ Rs. We introdu
e an arti�
ial point set {r1, . . . , rs} inorder to 
ontrol the boundary of the support, where rj is de�ned by
rj
j := dj and rj

k := ck if k 6= j. (16)Re
all that the support of any feasible redu
ed measure Q in (10) is given by the set
{ξ1, . . . , ξn} of �rst n atoms of the support of P . We will show that it is su�
ient to
onsider those 
ells, whi
h are bounded in every dire
tion by an element of

R := {ξ1, . . . , ξn} ∪ {r1, . . . , rs}in the following sense.De�nition 3.1 A 
ell [z] is 
alled supporting, if there exists a subset {x1, . . . , xs} ⊆ Rsu
h that {x1, . . . , xs} ⊆ [z] and xj
j = zj for j = 1, . . . , s.Indeed, we 
an restri
t ourselves on supporting 
ells as shown by the following proposition,whi
h relies on the fa
t that every 
ell 
an be enlarged until it is a supporting one. Asthe proof of this proposition is rather te
hni
al, it is given in the appendix.Proposition 3.1 For any J ∈ I∗
Bcell

, there exists a supporting 
ell [z] su
h that γJ =
P (int [z]) and

∪j∈J{ξ
j} = {ξ1, . . . , ξn} ∩ int [z] . (17)Before drawing some essential 
on
lusions from Proposition 3.1, we mention the obviousfa
t that for any z ∈ Rs and any �nite subset F ⊆ Rs, there exists some ε > 0, su
h that

[zε] ∩ F = int [z] ∩ F, (18)where zε is de�ned by zε
j := zj − ε for j = 1, . . . , s.13



Corollary 3.1 De�ne
Z := {z ∈ Rs| [z] is a supporting 
ell}.Then,

I∗
Bcell

= {J ⊆ {1, . . . , n}|∃z ∈ Z : (17) holds true}
γJ = max{P (int [z])|z ∈ Z, (17) holds true} ∀J ∈ I∗

Bcell
.Proof. The in
lusion '⊆' in the �rst identity follows dire
tly from the se
ond statementof Proposition 3.1. Similarly, the inequality '≤' in the se
ond identity follows dire
tlyfrom the �rst statement of Proposition 3.1. For the reverse dire
tion of the �rst identity,let z ∈ Z be given su
h that (17) holds true for some J ⊆ {1, . . . , n}. Now, we apply(18) to F := {ξ1, . . . , ξn} to derive the existen
e of some zε su
h that

{ξ1, . . . , ξn} ∩ [zε] = {ξ1, . . . , ξn} ∩ int [z] = ∪j∈J{ξ
j}. (19)Sin
e [zε] ∈ Bcell, we observe upon re
alling the de�nition of I(B) for B ∈ Bcell in thebeginning of se
tion 3.1, that

I ([zε]) = {i ∈ {1, . . . , N}|ξi ∈ [zε]} = J ∪ {i ∈ {n + 1, . . . , N}|ξi ∈ [zε]}.Therefore,
I ([zε]) ∩ {1, . . . , n} = J ∩ {1, . . . , n} = J, (20)whi
h provides J ∈ I∗

Bcell
via the de�nition of I∗

Bcell
. This shows the in
lusion '⊇' in the�rst identity. Con
erning the reverse dire
tion of the se
ond identity, let J ∈ I∗

Bcell
and

z ∈ Z be arbitrary, su
h that (17) holds true. Applying again (18), this time 
onse
utivelyto {ξ1, . . . , ξn} and to {ξ1, . . . , ξN}, one dedu
es the existen
e of some zε su
h that (19)and
{ξ1, . . . , ξN} ∩ [zε] = {ξ1, . . . , ξN} ∩ int [z] (21)hold true simultaneously. From (19) it follows (20) as in the lines above. Therefore,

I ([zε]) ∈ ϕ(J) (see (13)) and
γJ ≥

∑

i∈I([zε])

pi =
∑

ξi∈[zε]

P (ξi) = P ([zε]) = P (int [z]),where the last equality relies on (21). Sin
e z ∈ Z was 
hosen arbitrarily su
h that (17)holds true, this shows the inequality '≥' in the se
ond identity.Corollary 3.1 suggests that one 
an 
al
ulate the index family I∗
Bcell

as well as all upper
oe�
ients γJ for J ∈ I∗
Bcell

, as soon as one knows the set Z of supporting 
ells whi
his �nite. Indeed, it follows from De�nition 3.1, that ea
h supporting 
ell is de�ned byan s-tupel {x1, . . . , xs}. Consequently, one may extra
t the �nite system of all s-tupels
{x1, . . . , xs} out of the set R = {ξ1, . . . , ξn} ∪ {r1, . . . , rs} and 
he
k for ea
h of itsmembers, whether this s-tupel de�nes a supporting 
ell. If so, this 
ell 
ontributes to the
al
ulation of I∗

Bcell
and of γJ for J ∈ I∗

Bcell
. It remains to determine the lower 
oe�
ients

γJ for J ∈ I∗
Bcell

. 14



Proposition 3.2 For all J ∈ I∗
Bcell

, one has γJ =
∑

i∈I pi, where
I := {i ∈ {1, . . . , N}|ξi

k ≤ max
j∈J

ξj
k (k = 1, . . . , s)}.Proof. Completely analogous to the derivation of (22) in the appendix, one obtains that

γJ = min{P ([y])| [y] ∩ {ξ1, . . . , ξn} = ∪j∈J{ξ
j}}.De�ne z ∈ Rs by zk := maxj∈J ξ

j
k for k = 1, . . . , s. Then, ξj ∈ [z] for all j ∈ J and, thus,

∪j∈J{ξ
j} ⊆ [z] ∩ {ξ1, . . . , ξn}.Assume that this in
lusion is stri
t. Then, there is some i ∈ {1, . . . , n}\J su
h that

ξi ∈ [z]. J ∈ I∗
Bcell

means that there exists some B ∈ Bcell with J = I(B) ∩ {1, . . . , n}.Consequently, ξj ∈ B for all j ∈ J , whi
h entails that [z] ⊆ B, by 
onstru
tion of z. Wederive that ξi ∈ B and, hen
e, i ∈ I(B). On the other hand, i ∈ {1, . . . , n}\J , whi
h isa 
ontradi
tion. It follows that
∪j∈J{ξ

j} = [z] ∩ {ξ1, . . . , ξn}.and, thus, γJ ≤ P ([z]). On the other hand, if y ∈ Rs is arbitrary feasible in the de�nitionof γJ , then ξj ∈ [y] for all j ∈ J , and so, [z] ⊆ [y] again by 
onstru
tion of z. Now, P ([z]) ≤
P ([y]) whi
h, upon passing to the minimum over all feasible y, provides P ([z]) ≤ γJ . Wemay 
on
lude that

γJ = P ([z]) =
∑

ξi∈[z]

pi,whi
h proves the assertion of the proposition.4 Algorithm and numeri
al resultsThe results of the previous se
tions suggest the following algorithmi
 approa
h for thesolution of problem (10) in the spe
ial 
ase of the 
ell dis
repan
y αBcell
, given the problemdata N , n, s, {ξ1, . . . , ξN} and {p1, . . . , pN}:

15



Algorithm 4.1Step [1℄: To �nd an open re
tangle (c, d) su
h that {ξ1, . . . , ξN} ⊆ (c, d) , de�ne
cj := min

i=1,... ,N
ξi
j − 1, dj := max

i=1,... ,N
ξi
j + 1 (j = 1, . . . , s) .Cal
ulate the set R from De�nition 3.1 with points rj de�ned in (16).Put I∗

B := {∅}, A′ := {∅} and γJ := 0 for all J ⊆ {1, . . . , n}.Let A := {A ⊆ {1, . . . , n + s}|#A = s}.Step [2℄: If A′ = A then go to Step [7℄ else sele
t A = {i1, . . . , is} ∈ A\A′.Put A′ := A′ ∪ {A} and
xj :=

{
ξij if ij ≤ n
rij−n if ij > n

(j = 1, . . . , s) .Then, xj ∈ R for j = 1, . . . , s.Step [3℄: De�ne a 'potential' supporting 
ell [z] for some z ∈ Rs by
zk := max

j=1,... ,s
xj

k (k = 1, . . . , s) .Che
k whether it is indeed a supporting 
ell a

ording to De�nition 3.1.If not so, then go to Step [2℄.Step [4℄: De�ne J by the relation (17), i.e.,
J := {i ∈ {1, . . . , n}|ξi

k < zk (k = 1, . . . , s)}. If J ∈ I∗
B then go to Step [6℄.Step [5℄: I∗

B := I∗
B ∪ {J}. Cal
ulate γJ a

ording to Proposition 3.2.Step [6℄: Cal
ulate α :=

∑

i∈I

pi, where I := {i ∈ {1, . . . , N}|ξi
k < zk (k = 1, . . . , s)}.If α > γJ , then γJ := α. Go to Step [2℄.Step [7℄: With the additional data I∗

B and γJ , γ
J for all J ∈ I∗

B solve the linearoptimization problem (15).In the following, we present some numeri
al results whi
h are based on a Mathemati
aimplementation of Algorithm 4.1. Cal
ulations were 
arried out on a 1200 MHz PC. Figure1 shows possible redu
tions of a randomly generated (w.r.t. support and probabilities)2-dimensional measure with N = 1000 atoms. A redu
tion on n = 50 atoms is 
onsidered.The left diagram of the �gure illustrates the ordered solution de�ned in (7).By de�nition, this solution sele
ts the 50 atoms of the original measure realizing thelargest probabilities. The �rst 49 atoms even keep the original probabilities, whereas thelast one is arranged to 
omplement the sum of theses probabilities to one in order to makethe sele
ted measure a probability measure as well. Sin
e ea
h of the sele
ted 50 atoms hasrather low probability whereas the set of all non-sele
ted 950 atoms has high probability,the ordered solution pla
es almost all mass on atom no. 50. Although su
h 
hoi
e wouldbe optimal in 
ase of the 
losed-set dis
repan
y αBcl
a

ording to Proposition 2.1, it isintuitively 
lear from the pi
ture that su
h solution may not be meaningful for otherdis
repan
y distan
es. Indeed, the ordered solution realizes a 
losed-set dis
repan
y of16



Figure 1: Redu
tion of a 2-dimensional measure with 1000 atoms (thin lines) to 50 atoms(thi
k lines). Heights 
orrespond to probabilities. The left diagram illustrates the orderedsolution, whereas the right diagram shows the measure whi
h, on the �xed support of theordered solution, is best approximating in the sense of the 
ell dis
repan
y.

αBcl
= 0.90. Re
alling, that dis
repan
ies always take values between 0 and 1, this valueis 
ertainly not satisfa
tory. It illustrates the e�e
t of 'linear de
rease' mentioned inSe
tion 2.1: a redu
tion of the support to 5% of its atoms leads to a redu
tion of thedis
repan
y whi
h is no more than 10%. On the other hand, Proposition 2.1 tells us, thatthe same value of 0.90 is an upper bound for any solution of any other dis
repan
y. Now,measuring the ordered solution in the 
ell dis
repan
y instead, yields the slightly smallervalue of αBcell

= 0.81, whi
h is still far from satisfa
tory. However, there is no reason,why the ordered solution should be optimal with respe
t to the 
ell dis
repan
y, neitherfrom the 
hoi
e of the support nor from the assignment of probabilities. We illustrate thisfa
t by keeping the same support as the ordered solution but optimizing the probabilitiesa

ording to Algorithm 4.1. The resulting solution is illustrated in the right diagram ofFigure 1. It realizes the 
ell dis
repan
y αBcell
= 0.08, whi
h is optimal for the 
hosen�xed support (of 
ourse, even better solutions might exist for a di�erent support). Thisvalue of 8% dis
repan
y obtained by 5% of the original atoms highlights the potential ofAlgorithm 4.1 for s
enario redu
tion.Numeri
al experiments show, that the main e�ort in Algorithm 4.1 is spent for thedetermination of supporting 
ells (
ompared to this, the time 
onsumed by the solutionof the linear program in the last step is negligible). Supporting 
ells are identi�ed in thisalgorithm by 
he
king all subsets of 
ardinality s in a set of 
ardinality n+ s. Therefore,the 
omplexity of the algorithm is mainly determined by the binomial 
oe�
ient (

n+s
s

).This suggests that the pra
ti
al value of the algorithm is limited to small dimension s ofthe random distributions and moderate 
ardinality n of the redu
ed support or to small nand moderate s (due to the identity (
n+s

s

)
=

(
n+s
n

)). On the other hand, the 
omputational17



e�ort is basi
ally linear in the 
ardinality N of the original support, so larger values of Nseem to be no problem.Table 1: Computing times (in se
onds) for di�erent problem parameters (the two quan-tities 
orrespond to dimensions s=3 and s=4, respe
tively.
N = 100 N = 200 N = 300

n = 5 0.24 - 0.49 0.48 - 0.84 0.83 - 1.6
n = 10 0.92 - 2.5 1.7 - 3.8 2.9 - 8.3
n = 15 3.2 - 12.1 4.1 - 16.8 9.6 - 33.2Table 1 
ompiles some 
omputing times for Algorithm 4.1 under di�erent problem sizes.As one 
an see, the dependen
e of time on the size N of the original support is moderate(basi
ally linear), whereas it qui
kly grows with the size n of the redu
ed support andwith the dimension s. This is not surprising, be
ause the determination of all supporting
ells was 
arried out by 
he
king all subsets of 
ardinality s in the set {1, . . . , n + s}.One might wonder if there is a more e�
ient way of determining supporting 
ells thanjust by 
rude enumeration. It seems, however, that basi
ally all mentioned subsets arepotential 
andidates for realizing the upper bound in the 
ell dis
repan
y between twomeasures. Indeed, re
all that the 
ell dis
repan
y 
oin
ides with the supremum distan
eof distribution fun
tions (the Kolmogorov distan
e).Figure 2: Di�eren
e between the distribution fun
tions of two dis
rete probability mea-sures (having 30 and 18 atoms, respe
tively).
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Figure 2 plots the di�eren
e of two dis
rete distribution fun
tions having 30 and 18 atoms,respe
tively. It 
an be re
ognized at how many di�erent regions, the maximum (positiveor negative) deviation may o

ur.Figure 3: De
rease of the 
ell dis
repan
y in the 
ourse of a forward sele
tion pro
edure.
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Finally, Figure 3 shows the de
rease of the minimal dis
repan
y in the 
ourse of a forwardsele
tion pro
edure (see Algorithm 3.1), where the original 2-dimensional measure having50 atoms is redu
ed in a stepwise manner to a measure having 20 atoms. Computationtime was 160 se
onds.5 AppendixProof of Proposition 3.1. Let J ∈ I∗
Bcell

be arbitrary. By de�nition of ϕ(J) in (13), forany I ∈ ϕ(J) there exists some B ∈ Bcell su
h that I = I(B) and J = I(B) ∩ {1, . . . , n}.Then, by de�nition of I(B),
∑

i∈I

pi =
∑

i∈I(B)

pi = P (B),when
e
γJ = max

I∈ϕ(J)

∑

i∈I

pi = max{P (B)|B ∈ Bcell, J = I(B) ∩ {1, . . . , n}}

= max{P (B)|B ∈ Bcell, B ∩ {ξ1, . . . , ξn} = ∪j∈J{ξ
j}}

= max{P ([y])|y ∈ (c, d) , [y] ∩ {ξ1, . . . , ξn} = ∪j∈J{ξ
j}}, (22)where in the last equation it was used that the support of P is 
ontained in (c, d). Let

y(0) be a maximizing 
ell, i.e.,
γJ = P (

[
y(0)

]
), y(0) ∈ (c, d) ,

[
y(0)

]
∩ {ξ1, . . . , ξn} = ∪j∈J{ξ

j}.For t ≥ 0, put y(t) :=
(

y
(0)
1 + t, y

(0)
2 , . . . , y

(0)
s

) and 
onsider the enlargement [y(t)] of the
ell [
y(0)

] along the �rst 
oordinate dire
tion. Put
τ := sup{t| [y(t)] ∩ R =

[
y(0)

]
∩R}.19



Sin
e the interse
tion of [y(t)] with the �nite set R remains 
onstant for small t > 0, itfollows that τ > 0. From y(0) ∈ (c, d), we derive that y(0)
1 < d1 = r1

1, when
e r1 /∈
[
y(0)

]
∩R.On the other hand, with t∗ := d1 − y

(0)
1 , one gets that r1 ∈ [y(t∗)] ∩ R. Consequently,

τ ≤ t∗ <∞. We put y(1) := y(τ) and arrive at
[
y(1)

]
∩ R =

{[
y(1)

]
∩ {y|y1 < y

(1)
1 } ∩ R

}

∪
{[
y(1)

]
∩ {y|y1 = y

(1)
1 } ∩ R

}

︸ ︷︷ ︸

α1

= {∪t<τ [y(t)] ∩R} ∪ ∆1 =
{[
y(0)

]
∩ R

}
∪ ∆1.On
e more, due to [y(τ + t)] ∩R remaining 
onstant for small t > 0 and to the de�nitionof τ , it follows that [

y(1)
]
∩ R 6=

[
y(0)

]
∩ R. Consequently, ∆1 6= ∅, whi
h means thatthere exists some x1 ∈

[
y(1)

]
∩ R su
h that x1

1 = y
(1)
1 .Now, in the se
ond step, we extend the 
onstru
tion above for the se
ond 
oordinateby de�ning

y(t) : =
(

y
(1)
1 , y

(1)
2 + t, y

(1)
3 , . . . , y(1)

s

)

τ : = sup{t| [y(t)] ∩R =
[
y(1)

]
∩ R}.Upon observing that y(1)

2 = y
(0)
2 < d2 and repla
ing r1 by r2, we may repeat the sameargumentation as before, in order to verify that 0 < τ < ∞, whi
h allows to put y(2) :=

y(τ). As before, the de�nition of τ allows to �nd that
[
y(2)

]
∩R =

{[
y(1)

]
∩ R

}
∪ ∆2 =

{[
y(0)

]
∩ R

}
∪ ∆1 ∪ ∆2,where

∆2 :=
{[
y(2)

]
∩ {y|y2 = y

(2)
2 } ∩ R

}

.With the same argument as in the �rst step, one infers that ∆2 6= ∅, whi
h means thatthere exists some x2 ∈
[
y(2)

]
∩ R su
h that x2

2 = y
(2)
2 .Continuing the 
onstru
tion in this way for all 
oordinates, we �nally arrive at points

y(j) and xj for j = 1, . . . , s, su
h that
[
y(j)

]
∩R =

{[
y(0)

]
∩ R

}
∪ ∆1 · · · ∪ ∆j

∆j =
{[
y(j)

]
∩ {y|yj = y

(j)
j } ∩ R

}

(j = 1, . . . , s)and
xj ∈

[
y(j)

]
∩ R, xj

j = y
(j)
j (j = 1, . . . , s).We put z := y(s). Then,

[z] ∩ R =
{[
y(0)

]
∩R

}
∪ ∆1 · · · ∪ ∆s. (23)20



By the very 
onstru
tion, [
y(j)

]
⊆

[
y(s)

] and zj = y
(s)
j = y

(j)
j for j = 1, . . . , s. Conse-quently,

xj ∈ [z] ∩R, xj
j = zj (j = 1, . . . , s),whi
h means that [z] is a supporting 
ell.To prove the remaining statements of the proposition, note that the equalities xj

j = zjfor xj ∈ R and j = 1, . . . , s imply that cj ≤ zj ≤ dj for j = 1, . . . , s be
ause the samebounds apply for all points of R. Again by 
onstru
tion, y(j)
j > y

(j−1)
j for j = 1, . . . , s,whi
h entails that zj > y

(0)
j for j = 1, . . . , s. Now, we de�ne a sequen
e of 
ells [zm] by

zm
j := zj − 1/m (j = 1, . . . , s). (24)It follows that, for m large enough, zm ∈ (c, d) and
zm

j > y
(0)
j (j = 1, . . . , s). (25)We 
on
lude from (24) and (23) that, for all m ∈ N,

[zm] ∩ R ⊆ [z] ∩R =
{[
y(0)

]
∩ R

}
∪ ∆1 · · · ∪ ∆s.The de�nition of ∆j shows that all elements of this subset have jth 
oordinate equal to

y
(j)
j = zj . Combining this with (24) yields

[zm] ∩ ∆j = ∅ (j = 1, . . . , s).Therefore, we may 
ontinue by
[zm] ∩ R ⊆

[
y(0)

]
∩ R.On the other hand, [zm] ⊇

[
y(0)

] by (25), hen
e [zm] ∩ R =
[
y(0)

]
∩ R. We re
all thefa
t that y(0) ∈ (c, d), when
e - by de�nition of the set {r1, . . . , rs} in (16) - [

y(0)
]
∩

{r1, . . . , rs} = ∅. With the same reasoning, the in
lusion zm ∈ (c, d) stated above, yieldsthat [zm] ∩ {r1, . . . , rs} = ∅. Owing to the de�nition of y(0), we may 
ontinue as
[zm] ∩ {ξ1, . . . , ξn} = [zm] ∩R =

[
y(0)

]
∩ R =

[
y(0)

]
∩ {ξ1, . . . , ξn}

= ∪j∈J{ξ
j} (m ∈ N) . (26)Clearly,

int [z] = ∪m∈N [zm] , (27)so (26) yields that
int [z] ∩ {ξ1, . . . , ξn} = ∪j∈J{ξ

j},whi
h is (17). Finally, (22) and the in
lusion [zm] ⊇
[
y(0)

] lead to
γJ ≥ P ([zm]) ≥ P

([
y(0)

])
= γJ (m ∈ N) ,21



hen
e, a
tually equality holds true here. Sin
e [zm] is an in
reasing sequen
e of 
ells inthe union (27), one gets that
P (int [z]) = P (∪m∈N [zm]) = lim

m→∞
P ([zm]) = γJ .A
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