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Abstract. Roughgarden and Sundararajan recently introduced an al-
ternative measure of efficiency for cost sharing mechanisms. We study
cost sharing methods for combinatorial optimization problems using this
novel efficiency measure, with a particular focus on scheduling problems.
While we prove a lower bound of Ω(log n) for a very general class of prob-
lems, we give a best possible cost sharing method for minimum makespan
scheduling. Finally, we show that no budget balanced cost sharing meth-
ods for completion or flow time objectives exist.
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1 Introduction

Many combinatorial optimization problems are concerned with establishing a
good or service at a minimum cost. Often, these problems can be viewed as
consisting of a set of users (or agents) that act strategically in order to receive
this service. For instance, in network design problems, users wish to be connected
to a network or a specific point of interest. In routing problems, agents want
their goods or information to be transferred from one point to another. In the
scheduling context, we can imagine both machines or jobs to be owned by agents
who follow their selfish interest of maximizing their benefit by either processing
jobs at a high price, or having their job processed at a low price, respectively. In
all these settings, the problem is, besides finding a way of providing the service,
to distribute the resulting cost among the users in a fair manner. Meanwhile,
the service provider may not be able to offer the service to the entire user set
and must therefore decide upon a subset of users that are served.

In this paper, we study cost sharing mechanisms for combinatorial opti-
mization problems, with a particular focus on scheduling problems. The general
setting is as follows. We are given a set of players U that are interested in a
certain service. Every player i ∈ U has a private utility ui ≥ 0 for receiving this
service and announces a bid bi ≥ 0 which designates the maximum price she
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is willing to pay. Associated with the underlying optimization problem, we are
given a non-decreasing cost function C : 2U → R

+ describing the minimum cost
of serving a set of players S ⊆ U .

The theory of cost sharing is concerned with finding cost sharing mechanisms
that determine a subset of players S ⊆ U to service and compute a solution to
the underlying optimization problem on this set. Finally, the mechanism needs
to determine a payment xi(U) ≤ bi for each of the players in S. This payment
is usually referred to as the cost share of a player i ∈ S.

There are several desirable properties of a cost sharing mechanism: a mech-
anism is called strategyproof if bidding truthfully, i.e., announcing bi = ui, is a
dominant strategy for every player. If this is true even if players collude, then we
call a mechanism group-strategyproof. A mechanism is β-budget balanced if the
sum of the cost shares charged to the players in S deviates by at most a factor
of β ≥ 1 from the actual cost C(S). We call a mechanism efficient if it selects
a set of players that maximizes the social welfare u(S)−C(S), where we define
u(S) :=

∑

i∈S ui.

Classical results in economics [8, 24] state that budget balance and efficiency
cannot be achieved simultaneously; even for simple cost functions and if only
strategyproofness is required. As a consequence, most of the previous work has
concentrated on either achieving budget balance or efficiency.

Very recently, Roughgarden and Sundararajan [25] introduced an alternative
efficiency measure that attempts to circumvent the intractability results. The
authors define the social cost Π(S) of a set S ⊆ U as Π(S) := u(U \S) + C(S).
A mechanism is said to be α-approximate if the set of players it determines has
social cost at most α times the minimum social cost (over all subsets of U). It is
not hard to see that a set S minimizes the social cost iff it maximizes the social
welfare.

A large class of group-strategyproof cost sharing mechanisms are based on a
framework due to Moulin and Shenker [20]. This framework provides a means to
obtain group-strategyproof cost sharing mechanisms from cross-monotonic cost
sharing methods (definitions are given below). Moreover, Immorlica et al. [13]
prove that every group-strategyproof cost sharing mechanism (satisfying some
natural conditions) corresponds to a cross-monotonic cost sharing method.

Our Results. In this paper, we study cost sharing methods for optimization
problems in light of the new efficiency measure introduced by Roughgarden and
Sundararajan [25]. Our contribution is threefold:

1. Lower Bound on Approximability of Cost Sharing Methods. We present
a general inapproximability result for cost sharing methods of combinatorial
optimization problems. In particular, we prove that there is no cost sharing
method that is α-summable and satisfies cost recovery for any α < log n, where
n denotes the number of players. Our proof holds true if the underlying cost
function satisfies a certain “stability” property.

As a consequence, our result implies a lower bound of log n on the approx-
imability of cost sharing mechanisms for various optimization problems, such



as, for instance, facility location, minimum spanning tree (and thus also min-
imum Steiner tree and forest), single-source rent-or-buy, minimum makespan
scheduling, etc. Despite its generality, our lower bound is tight for some specific
problems such as facility location and minimum makespan scheduling.

2. An Optimal Cost Sharing Method for Makespan Scheduling. We study the
minimum makespan scheduling problem, one of the most fundamental problems
in scheduling theory, in a cost sharing context. In this problem, we are given
a set of jobs N that have to be executed on m parallel machines. Every job
i ∈ N has a processing time pi, which is the time needed to process i on one
of the machines. The goal is to assign all jobs to the machines such that the
maximum completion time is minimized. We assume that jobs act strategically
and attempt to get processed at a low cost.

We develop a cross-monotonic cost sharing method for this problem that is
(2 − 1/m)-budget balanced and log n-approximate; this is tight with respect to
both budget balance and approximability.

3. Budget Balance of Cost Sharing Methods for other Scheduling Problems.
There are several other scheduling problems that one might want to consider
in a cost sharing context. We show that for scheduling problems in which we
aim at minimizing the total (weighted) completion (or flow) time, there is no
cross-monotonic cost sharing method that is β-budget balanced for any β < n/2,
where n is the number of jobs.

Previous and Related Work. The development of cost sharing mechanisms
for combinatorial optimization problems has recently attracted a lot of attention
in the theoretical computer science literature.

The framework of Moulin and Shenker [20] has been applied to game-theoretic
variants of classical optimization problems such as fixed multicast [1, 5, 6], sub-
modular cost sharing [20], Steiner trees [14, 15], facility location, single-source
rent-or-buy network design [22, 19, 10] and Steiner forests [16]. Lower bounds on
the budget balance factor that is achievable by a cross-monotonic cost sharing
mechanism are given in [13, 17]. Very recently, researchers started to investigate
cost sharing mechanisms in light of the novel efficiency measure of Roughgarden
and Sundararajan; see [9, 25, 26, 4].

Very notably, although network design problems have been studied exten-
sively in a cost sharing context, very little attention has been given to schedul-
ing problems; in particular if jobs are assumed to act strategically and group-
strategyproofness is a desirable objective. In most of the previous works, authors
have either concentrated on scheduling problems where machines act selfishly [21,
2, 18] or strategyproofness (but not group-strategyproofness) is an issue [23, 11].

Related to our work is the recent work of Bleischwitz and Monien [3]. The au-
thors present a cross-monotonic cost sharing method for the minimum makespan
scheduling problem. However, as we argue below, their cost sharing mechanism
does not approximate social cost.



2 Preliminaries

Let U be a set of potential players (or agents, users, customers) that are inter-
ested in a common service. Each player i ∈ U has a private utility ui for receiving
this service, i.e., ui is known to i only. Additionally, each player i announces a
bid bi for the service; bi represents the maximum price player i is willing to pay.

The servicing cost is given by a cost function C : 2U → R
+. For every subset

S ⊆ U , C(S) denotes the cost to establish the service for player set S. We assume
that C is non-decreasing, i.e., for all S ⊆ T , C(S) ≤ C(T ), and C(∅) = 0.

Cost Sharing Mechanisms. A cost sharing mechanism M first solicits all bids
{bi}i∈U from players in U , and based on these bids (i) determines a set S ⊆ U
of players that receive the service, and (ii) for every player i ∈ S, fixes a non-
negative payment xi(S) that she has to pay for the service. We assume that the
mechanism complies with the following three natural assumptions: (i) a player
is not charged more than her bid, (ii) a player is charged only if she receives
service, and (iii) a player is guaranteed to receive service if only she reports a
sufficiently high bid.

A cost sharing mechanism M is β-budget balanced if the total payment ob-
tained from all players in S deviates by at most a factor β ≥ 1 from C(S),
i.e.,

C(S)/β ≤
∑

i∈S

xi(S) ≤ C(S). (1)

If β = 1, we simply call the cost sharing mechanism budget balanced.
Define the benefit of a player i as ui − xi if i receives service and as zero

otherwise. We assume that each player’s strategy is to maximize her benefit.
Since the outcome computed by the cost sharing mechanism solely depends on
the bids {bi}i∈U , a player may have an incentive to misreport her actual utility,
i.e., to declare a bid bi 6= ui, if advantageous.

The task is to design a cost sharing mechanism that enforces truth-telling.
A mechanism is strategyproof if the dominant strategy of each player is to bid
her utility; it is said to be group-strategyproof if the same holds even if players
collude.

Moulin Mechanisms. A cost sharing method ξ is a function ξ : U×2U → R
+ that

assigns to each user i ∈ U and subset S ⊆ U a non-negative cost share ξ(i, S).
We define ξ(i, S) := 0 for all i ∈ U \S, for all S ⊆ U . ξ is cross-monotonic if the
cost share of a player does not increase as the player set grows; more formally,

∀S′ ⊆ S ⊆ U, ∀i ∈ S′ : ξ(i, S′) ≥ ξ(i, S).

Similar to the definition in (1), ξ is β-budget balanced if

∀S ⊆ U : C(S)/β ≤
∑

i∈S

ξ(i, S) ≤ C(S).



We say that ξ satisfies β-cost recovery if the first inequality holds; it is competitive
if the latter inequality is fulfilled.

Moulin and Shenker [20] showed that, given a budget balanced and cross-
monotonic cost sharing method ξ, the following cost sharing mechanism M(ξ)
satisfies budget balance and group-strategyproofness: Initially, let S = U . If for
each player i ∈ S the cost share ξ(i, S) is at most her bid bi, we stop. Otherwise,
remove from S all players whose cost shares are larger than their bids, and
repeat. Eventually, let S be the final player set and define the payments as
xi(S) = ξ(i, S) for all i ∈ S. Jain and Vazirani [14] later observed that the result
of Moulin and Shenker also holds true if one considers approximately budget
balanced and cross-monotonic cost sharing methods.

Yet another fairness concept is the β-core. A cost sharing method ξ is in the
β-core iff it is β-budget balanced and

∀S′ ⊆ S ⊆ U :
∑

i∈S′

ξ(i, S) ≤ C(S′).

Social Welfare vs. Social Cost. For a set S ⊆ U , define u(S) :=
∑

i∈S ui. A
cost sharing mechanism M is called efficient if it selects a set SM of players
that maximizes the social welfare u(S)−C(S). Classical results in economics [8,
24] state that budget balance and efficiency cannot be achieved simultaneously;
even for simple cost functions and if only strategyproofness is required.

Very recently, Roughgarden and Sundararajan [25] introduced an alternative
measure of efficiency that circumvents the intractability results in [6, 8, 24] at
least partially. The authors define the social cost Π(S) of a set S ⊆ U as

Π(S) := u(U \ S) + C(S).

A mechanism M is said to be α-approximate if it computes a final set SM of
social cost at most α times the minimum over all sets S ⊆ U , i.e.,

Π(SM ) ≤ α · Π(S) ∀S ⊆ U.

The intuition for this definition loosely comes from the fact that u(U)−Π(S) =
u(S) − C(S), which is the traditional definition of efficiency; since u(U) is a
constant, a set S has minimum social cost iff it has maximum efficiency.

Roughgarden and Sundararajan [25] revealed a relation between the ap-
proximability of a Moulin mechanism M(ξ) and a property of the cost sharing
method ξ: Assume we are given an arbitrary order σ on the players in U and a
subset S ⊆ U of players. We assume that the players in S are ordered according
to σ, i.e., S = {i1, . . . , i|S|} where ij ≺σ ik if and only if 1 ≤ j < k ≤ |S|. We
define Sj ⊆ S as the (ordered) set of the first j players of S according to the
order σ. A cost sharing method ξ is α-summable if for every ordering σ and
every subset S ⊆ U :

|S|
∑

j=1

ξ(ij , Sj) ≤ α · C(S). (2)



Roughgarden and Sundararajan [25] proved that the Moulin mechanism
M(ξ) is (α+β)-approximate and β-budget balanced if the underlying cost shar-
ing method ξ is α-summable and β-budget balanced. Moreover, the authors
argue that max{α, β} is a lower bound on the approximability of M(ξ).

In this paper, we use [n] to denote the set {1, . . . , n}. Moreover, we define
Hn to be the n-th harmonic number, i.e., Hn :=

∑n
i=1

1
i . As n grows to infinity,

Hn = log n+γ, where γ ≈ 0.577 denotes the Euler-Mascheroni constant. Hence,
Hn = Θ(log n) and we use both values interchangeably. Unless stated otherwise,
we denote by n the cardinality of the universe U .

3 A General Lower Bound on Summability

In this section, we prove a lower bound of Ω(log n) on the summability of cost
sharing methods, where n is the number of players in U . Our lower bound holds
if only the underlying cost function C satisfies a certain “stability” property,
which is fulfilled by a variety of combinatorial optimization problems such as
facility location, Steiner tree, parallel machine scheduling, etc. Together with
the recent result of Roughgarden and Sundararajan [25], this shows that for
several problems, the approximability of Moulin mechanisms cannot be better
than Ω(log n).

Theorem 1. Let ξ be a cost sharing method on a universe U that satisfies the β-
cost recovery condition with respect to a cost function C. Suppose that there is a
set S ⊆ U with |S| ≥ |U |/γ for some constant γ ≥ 1 such that C(S′) ≥ C(S)/δ
for all S′ ⊆ S and some constant δ ≥ 1. Then ξ is not α-summable for any
α < H⌈n/γ⌉/(β · δ), where n is the number of players in U .

Proof. It is sufficient to prove that there exists an order σ on U such that

|S|
∑

j=1

ξ(ij , Sj) ≥
H⌈n/γ⌉

β · δ
· C(S),

where Sj is the set of the first j players in S and ij is the jth player of S (ordered
according to σ).

We construct σ implicitly by determining the sets Sj and users ij inductively
as follows. Initially, set j = |S| and assign Sj = S. Since ξ satisfies the β-
cost recovery condition, there must exist a user i ∈ Sj such that ξ(i, Sj) ≥
C(Sj)/(β · |Sj |) = C(S)/(βj). Assign ij := i.

Suppose we have determined sets S|S|, . . . , Sj+1 and users i|S|, . . . , ij+1. We
define Sj := Sj+1 \ {ij+1}. By an average argument, we can argue that there is
a player i ∈ Sj with

ξ(i, Sj) ≥
C(Sj)

β · |Sj |
≥

C(Sj)

β · j
≥

C(S)

βδ · j
,

where the last inequality holds because Sj ⊆ S. Define ij = i.



Let S = {i1, . . . , i|S|} be the set of players in S ordered according to the
order σ constructed above. We have

|S|
∑

j=1

ξ(ij , Sj) ≥

(

1 +
1

2
+ · · · +

1

|S|

)

·
C(S)

βδ
≥

H⌈n/γ⌉

βδ
· C(S),

where we exploit that |S| ≥ n/γ and |S| ∈ N. ⊓⊔

This lower bound applies to many problems, as for instance to the following
ones:

Example 1 (Fixed-tree Multicast Problem). Users are located at vertices of an
undirected graph and wish to receive a broadcasting service which is produced
in a root vertex. The cost of serving a set of users U is the cost of a minimum
spanning tree containing U and the root. An instance fulfilling the conditions of
the above theorem is the one in which all users are located on the same vertex
which is connected to the root by an edge of length 1. There are better lower
bounds for this problem.

Example 2 (Facility Location Problem). Users are located at vertices and wish
to be connected to an open facility, and facilities can be opened at a given subset
of vertices. Here a sample instance is the one in which there is only one vertex v
at which a facility may be opened, and all users are located directly on v. Then,
the cost of a solution is independent of the number of users and equal to the
opening cost of the facility. This lower bound is tight, as has been shown in [26].

Another example for which Theorem 1 applies is the makespan machine
scheduling problem that we define in Section 4 below. There we show that the
bound on summability is tight for this problem.

4 Minimum Makespan Scheduling

We consider the classical minimum makespan scheduling problem. We are given
a set of n jobs N that have to be scheduled on m identical machines. Each job
i ∈ N has a non-negative processing time pi, which is the time needed to execute
i on one of the machines. Let the time of completion of job i be denoted by Ci.
Every machine can execute at most one job at a time; preemption of jobs is
not allowed. The objective is to schedule all jobs in N on the m machines such
that the maximum completion time maxi∈N Ci, also called makespan, is mini-
mized. Following the naming scheme introduced by Graham, Lawler, Lenstra,
and Rinnoy Kan [7], this problem is referred to as P | |Cmax.

In a game-theoretic variant of the machine scheduling problem, each job is
associated with a player. We therefore identify the universe of players U with
the set of jobs N . Every player wants her job to be processed on one of the
m machines. The cost C(S) incurred to schedule all jobs in S is the mini-
mum makespan. We are interested in designing a cost sharing mechanism for



the minimum makespan scheduling problem that is β-budget balanced and α-
approximate for every possible instance.

Define the total workload of a set S ⊆ U of jobs as W(S) :=
∑

i∈S pi. Let
pmax(S) denote the maximum processing time over all jobs in S. For notational
convenience, we use µ(S) as a short for the average machine load, i.e., µ(S) :=
W(S)/m.

The following fact is folklore (see, e.g., [12]).

Fact 1 For a given set S ⊆ U of jobs, let C(S) be the makespan of an optimal
schedule for S. The following two inequalities hold true:

1. C(S) ≤ µ(S) + (1 − 1
m ) · pmax(S);

2. C(S) ≥ max{µ(S), pmax(S)}.

4.1 Cross-Monotoninc Cost Shares

Bleischwitz and Monien [3] describe a cross-monotonic cost sharing method ξbm

for the above machine scheduling problem. We briefly review their cost sharing
method.1

We call a job i large with respect to S if pi = pmax(S) and small otherwise.
Let ℓ(S) be the number of large jobs in S. Given a subset S ⊆ U of the jobs, we
define the cost share of i ∈ S as:

ξbm(i, S) :=















pi

m
+

pi − µ(S)

ℓ(S)
if pi = pmax(S) and pi > µ(S),

pi

m
otherwise.

(3)

The intuition is as follows: Every job gets a cost share of pi/m. If the average
machine load µ(S) is less than the maximum processing time pmax(S), every
large job additionally obtains an equal share of the cost pmax(S) − µ(S). We
summarize one of the main results of Bleischwitz and Monien [3] in the following
theorem.

Theorem 2. ξbm is a (2m/(m+1))-budget balanced cross-monotonic cost shar-
ing method for the minimum makespan scheduling problem. Moreover, there is
no β-budget balanced cross-monotonic cost sharing method ξ for this problem,
for any β < 2m/(m + 1).

Albeit Theorem 2 proves that the Moulin mechanism M(ξbm), driven by the
cost sharing method ξbm by Bleischwitz and Monien, is optimal with respect to
budget balance, we show below that it is far from being optimal with respect to
social cost. In fact, the social cost of the final set SM output by M(ξbm) can be
as large as n/2 times the optimal social cost, where n is the number of jobs in
the universe U . Note that the trivial cost sharing mechanism is n-approximate.

1 At first sight, the cost shares that we state here differ from the ones defined by
Bleischwitz and Monien in [3]. However, it can easily be verified that both definitions
are in fact equivalent; we feel that the definition we present here is more intuitive.



Lemma 1. For every n ∈ N, there exists an instance of the minimum makespan
scheduling problem such that the cost sharing method ξbm is not α-summable for
any α < n/2.

Proof. It is sufficient to define an instance of the minimum makespan scheduling
problem on n jobs and a permutation σ for which the cost share sum in (2) with
respect to ξbm is at least n/2 times the minimum makespan.

Let S := {i1, . . . , im} be an (ordered) set of m jobs, where m is the number
of machines. Define the processing time of job ij to be pij

:= 1 + (j − 1)ǫ for all
j ∈ [m] and some small ǫ > 0. Since the number of jobs equals the number of
machines, the makespan of an optimal assignment for S is C(S) = 1 + (m− 1)ǫ.

Observe that the processing time of job ij , j ∈ [m], is maximum among all
jobs in the set Sj = {i1, . . . , ij}, i.e., ij is large. Furthermore, ij is the only large
job in Sj and thus ℓ(Sj) = 1. The average machine workload of Sj is

µ(Sj) =
1

m

j
∑

l=1

pil
=

1

m

(

j +
j(j − 1)ǫ

2

)

≤ 1 + (j − 1)ǫ = pmax(Sj).

Hence, the cost share that job ij obtains with respect to Sj is

ξbm(ij , Sj) =
pij

m
+ pij

− µ(Sj) = pij
− µ(Sj−1),

where we define S0 := ∅. We obtain

ξbm(ij , Sj) = (1 + (j − 1)ǫ) −
1

m

(

(j − 1) +
(j − 1)(j − 2)ǫ

2

)

≥ 1 −
j − 1

m
.

Therefore,

m
∑

j=1

ξbm(ij , Sj) ≥ m −
m(m − 1)

2m
=

m

2
+

1

2
≥

m

2
(1 + (m − 1)ǫ) =

m

2
· C(S),

where the last inequality holds if we choose ǫ sufficiently small. Finally, identi-
fying U := S yields n = m and the lemma follows. ⊓⊔

Intuitively, this high summability gives voice to the fact that processing times
exceeding the average workload µ(S) are punished in an unfair manner: Instead
of sharing the additional cost of pmax(S) − µ(S) among all jobs for which wi >
µ(S), only those jobs attaining the maximum processing time come up for it.
We tackle this problem in the next section.

4.2 Approximate Cost Shares

We continue by proposing new cost shares ξbs for the minimum makespan
scheduling problem that are also (2−1/m)-budget balanced and cross-monotonic,
but concurrently log n-summable. This is tight in terms of both budget balance
and summability.



We use a different definition of small and large jobs here: A job i is large
with respect to S iff pi > µ(S) and small otherwise. The cost share of a job
i ∈ S with respect to S is defined as

ξbs(i, S) :=



















pi

m
+

pi
∫

µ(S)

1

|{j ∈ S : pj ≥ t}|
dt if pi > µ(S),

pi

m
otherwise.

(4)

Intuitively, every job receives a cost share of pi/m. A large job i obtains some
additional cost share: for every time instant t ∈ [µ(S), pi], i shares the cost of
1dt evenly with all other jobs in S whose processing time is at least t.

We show that ξbs is a cost sharing method that satisfies cross-monotonicity,
budget balance and summability.

Theorem 3. ξbs is a cross-monotonic, (2−1/m)-budget balanced and (Hn +1)-
summable cost sharing method for the minimum makespan scheduling problem.

The proof of Theorem 3 follows from Lemmas 2, 3 and 4 that are given below.

Lemma 2. ξbs is cross-monotonic.

Proof. Consider some set S ⊆ U and a job i ∈ S. We prove that if a new job
j /∈ S is added to S, the cost share of i does not increase.

If i was small with respect to S, then it remains small and hence i’s cost share
stays pi/m. If i was large with respect to S and becomes small with respect to
S ∪ {j}, then i’s cost share decreases to pi/m. It remains to show that the
cost share of i does not increase if i stays large. Note that by adding job j,
the number of jobs whose processing time is at least t for some t ≥ 0 does not
decrease. Moreover, since µ(S) ≤ µ(S ∪ {j}) we have

pi
∫

µ(S)

1

|{j ∈ S : pj ≥ t}|
dt ≥

pi
∫

µ(S∪{j})

1

|{j ∈ S ∪ {j} : pj ≥ t}|
dt.

This concludes the proof. ⊓⊔

We show next that the budget balance condition is satisfied.

Lemma 3. ξbs is (2 − 1/m)-budget balanced.

Proof. It is easy to verify that with the cost share definition in (4) we have
∑

i∈S

ξ(i, S) = max{µ(S), pmax(S)}.

By Fact 1, C(S) ≥ max{µ(S), pmax(S)}, which proves competitiveness. More-
over, the cost shares satisfy (2 − 1/m)-cost recovery because

(

2 −
1

m

)

· max{µ(S), pmax(S)} ≥ µ(S) +

(

1 −
1

m

)

pmax(S) ≥ C(S),

where the last inequality follows from Fact 1. ⊓⊔



Finally, we prove that the cost shares fulfill O(log n)-summability.

Lemma 4. ξbs is (Hn + 1)-summable.

Proof. First, observe that for the cost share of i ∈ S it holds that

ξbs(i, S) =
pi

m
+

pi
∫

µ(S)

1

|{j ∈ S : pj ≥ t}|
dt ≤

pi

m
+

pi
∫

0

1

|{j ∈ S : pj ≥ t}|
dt.

Let σ be an arbitrary order on the jobs in U , and let S := {i1, . . . , i|S|} ⊆ U
be a subset of U ordered according to σ. Using the above inequality, we obtain

|S|
∑

j=1

ξbs(ij , Sj) ≤

|S|
∑

j=1





pij

m
+

pij
∫

0

1

|{k ∈ Sj : pk ≥ t}|
dt





≤ µ(S) +

|S|
∑

j=1

pij
∫

0

1

|{k ∈ Sj : pk ≥ t}|
dt.

Fix a point in time t ∈ [0, pmax(S)]. Define S(t) := {l1, . . . , lr(t)} ⊆ S as
the (ordered) set of all jobs in S whose processing time is at least t. Using this
definition, we obtain

|S|
∑

j=1

pij
∫

0

1

|{k ∈ Sj : pk ≥ t}|
dt =

pmax(S)
∫

0

r(t)
∑

r=1

1

r
dt =

pmax(S)
∫

0

Hr(t) dt ≤ pmax(S)·H|S|.

Thus,

|S|
∑

j=1

ξbs(ij , Sj) ≤ µ(S) + pmax(S) · H|S| ≤
(

H|S| + 1
)

· C(S) ≤ (Hn + 1) · C(S).

⊓⊔

Lemma 4 is tight, as the following corollary shows.

Corollary 1. Let ξ be a cost sharing method for the minimum makespan schedul-
ing problem that satisfies the β-cost recovery condition. Then the summability of
ξ is no better than Hn/β.

Proof. Consider an instance that consists of n jobs with unit processing times
and m := n machines. Clearly, C(S) = 1 = C(U) for all S ⊆ U . Theorem 1 now
gives a lower bound of Hn/β. ⊓⊔



5 Minimum Weighted Completion Time Scheduling

In the minimum weighted completion time scheduling problem we are given a set
of n jobs N and m identical machines. Each job i ∈ N has a release date ri, a
processing time pi, and a weight wi. Job i cannot be executed before its release
date ri. Preemption of jobs is not allowed. Let Ci be the completion time of job
i ∈ N . The objective is to assign all n jobs to the m machines such that the
total weighted completion time

∑

i∈N wiCi is minimized.
In the minimum weighted flow time scheduling problem the setting is the

same as above, but with a different objective function. The flow time Fi of a
job i is defined as its completion time minus its release date. The goal is to
minimize the total weighted flow time

∑

i∈N wiFi.
In the cost sharing context, we define U := N as before, and let C be the

cost function that reflects the cost (i.e., total weighted completion/flow time) of
an optimal schedule.

We show that the β-core of all these scheduling problems is empty for β <
(n + 1)/2, where n denotes the number of jobs in the universe U .

Theorem 4. Consider the 1-machine minimum completion time scheduling prob-
lem 1| |

∑

i Ci. There is no cost sharing method ξ that is in the β-core for any
β < (n + 1)/2.

Proof. Let U be a set of n jobs and define pi := 1 for each i ∈ U . Clearly,
the optimal cost for every singleton set {i}, i ∈ N , is C({i}) = 1. The β-core
property therefore implies that the cost share of i is at a most 1, i.e., ξ(i, S) ≤ 1
for all i ∈ S and for all S ⊆ U . On the other hand, C(S) = |S|(|S|+ 1)/2 for all
S ⊆ U .

The condition of β-cost recovery now implies that for every S ⊆ U

β ≥
C(S)

∑

i∈S ξ(i, S)
≥

|S|(|S|+1)
2

|S|
=

|S| + 1

2
.

⊓⊔

Since every β-budget balanced cross-monotonic cost sharing method is in the
β-core, this theorem also implies the same lower bound on the budget balance
factor of cross-monotonic cost sharing methods for the 1-machine minimum
completion time scheduling problem. Remind that cross-monotonic and n-budget
balanced cost sharing methods trivially exist for these problems. This result also
carries over to all the scheduling problems mentioned above, as they are all
generalizations of the 1-machine minimum completion time scheduling problem.

6 Conclusion

We proved that in many cases, efficiency is not approximable within less than
logarithmic factors even with the new approach of social cost. This reduces the



hope to find truly efficient cost sharing mechanisms, while on the other hand
allowing us to evaluate social cost approximation factors in terms of their highest
polylogarithmic power.

We studied cost sharing methods for the two cases of minimum makespan
and minimum completion time scheduling. Our results demonstrate that differ-
ent scheduling problems can behave very differently. While the completion time
setting raises the question of how to handle problems for which the here exam-
ined framework does not allow for any solutions, there are many more scheduling
problems that deserve to be studied.
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