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Abstract

Classical stability properties of solutions that are well-known for ordinary differential equa-
tions (ODEs) are generalized to differential-algebraic equations (DAEs). A new test equation
is derived for the analysis of numerical methods applied to DAEs with respect to the stability
of the numerical approximations. Morevover, a stabilization technique is developed to improve
the stability of classical DAE integration methods. The stability regions for these stabilized
discretization methods are determined and it is shown that they much better reproduce the
stability properties known for the ODE case than in the unstabilized form. Movies that depict
the stability regions for several methods are included for interactive use.
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1 Introduction and survey of previous results

In this paper we study different stability concepts for differential-algebraic equations (DAEs) as
well as stabilization techniques for numerical methods. In particular, we consider initial value
problems for general implicit systems of DAEs

F (t, x, ẋ) = 0, (1)

with an initial condition
x(t0) = x0 (2)

on the unbounded interval I = [t0,∞), with F ∈ C0(I × Dx × Dẋ, Rn) sufficiently smooth and
Dx, Dẋ ⊆ Rn open sets.

DAEs like (1) arise in constrained multibody dynamics [9], electrical circuit simulation [11, 12],
chemical engineering [7, 8] and many other applications, in particular when the dynamics of a
system is constrained to a manifold or when different physical models are coupled together [28].

While DAEs provide a very convenient modeling concept, many numerical difficulties arise due
to the fact that the dynamics is constrained to a manifold, which often is only given implicitly, see
[31] or the recent textbook [21]. These difficulties are typically characterized by one of many index
concepts that exist for DAEs, see [2, 10, 13, 21]. The fact that the dynamics of DAEs is constrained
also requires a modification of the classical stability concepts that were developed for ODEs.
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Appropriate stability concepts for DAEs have been discussed already in several publications. The
extension of the classical Lyapunov stability theory for linear DAEs with constant coefficients has
been studied in [36, 37, 38]. For particular classes of DAEs, the classical stability concepts known
for ODEs and for the corresponding integration methods have been analyzed in [1, 15, 16, 25, 27,
33, 34, 39]. Often this leads to modifications of the DAEs to avoid instabilities in the numerical
methods.

All these papers deal with special classes or special formulations of DAEs and usually some
restrictions on the size of the index of the DAE. In this paper we extend the classical stability
concepts for ordinary differential equations to general DAEs of the form (1) and we analyze
instabilities that may arise. We will discuss these concepts in Section 3.

The second topic of this paper is the development of stable integration methods for DAEs,
where stability problems arise that cannot be observed for ODEs, as e.g. the following example
taken from [27] demonstrates.

Example 1 Consider the linear DAE

[

δ − 1 δt
0 0

] [

ẋ1

ẋ2

]

=

[

−η(δ − 1) −ηδt
δ − 1 δt − 1

] [

x1

x2

]

,

with real parameters η and δ 6= 1. This system has the solution

x1(t) = (δ − 1)−1(1 − δt)x2(t), x2(t) = e(δ−η)tx2(0).

Obviously, x(t) → 0 as t → ∞ independently of x2(0) for δ < η. On the other hand, using a
constant stepsize h, the implicit Euler method yields numerical approximations

xi,1 = (δ − 1)−1(1 − δti)xi,2, xi,2 =
1 + hδ

1 + hη
xi−1,2,

which satisfy xi → 0 as i → ∞ independently of x0,2 if and only if |1 + hδ| < |1 + hη|. Hence,
there exist parameter values (δ, η) for which the exact solution asymptotically goes to zero while
the numerical solution grows unboundedly.

Example 1 demonstrates that for DAEs instabilities may arise that cannot be observed for ODEs
and thus the classical test equation

ẋ = λx, λ ∈ C, (3)

is not sufficient to analyze this instability.
For this reason and in order to allow a better comparison of different integration methods for

DAEs, in Section 4 we will take up on Example 1 and suggest a new linear test equation for DAEs
which generalizes (3). This new test equation is

[

1 −ωt
0 0

] [

ẋ1

ẋ2

]

=

[

λ ω(1 − λt)
−1 1 + ωt

] [

x1

x2

]

.

and combines the classical test equation with an algebraic equation in such a way that the kernel
of the corresponding matrix function E spins and ω is a measure for the size of the time derivative
of a kernel function.

We will show that with the variation of these two parameters many stability properties of
classical DAE integration methods can be tested and compared. A comparison of well-known
DAE integration methods for this test equation is presented in Section 5, where also DAE stability
functions for these methods are derived.

Finally, in Section 6 we derive a new stabilization technique for general DAE integration
methods (which we call spin-stabilization). We analyze the stability behavior of several classical
DAE integrators and show that with this technique more appropriate stability regions can be
achieved.
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2 Preliminaries, Notation, and Definitions

2.1 Notation

For x0 in some vector space X and ̺ > 0, we denote the open ball with radius ̺ around x0 in X

by B(x0, ̺), i.e.
B(x0, ̺) = {x ∈ X | ‖x − x0‖ < ̺},

and the corresponding closed ball by B(x0, ̺), i.e.

B(x0, ̺) = B(x0, ̺) = {x ∈ X | ‖x − x0‖ ≤ ̺}.

By 〈·, ·〉, we denote the Euclidian scalar product and by ‖x‖2 the associated Euclidian norm in
Rn as well as the associated spectral norm for matrices in Rn,n.

We use the relation X ≥ Y for symmetric (Hermitian) matrices X, Y to denote that X − Y is
positive semidefinite.

If (1) together with (2) possesses a unique solution on I, then we denote it by x(t; t0, x0) when
we want to stress its dependence on the initial condition.

2.2 DAE theory

In this section we briefly recall some concepts from the theory of differential-algebraic equations,
see [2, 10, 21, 30]. We follow [21] in notation and style of presentation.

Definition 1 Consider system (1) with sufficiently smooth F . A function x : I → Rn is called a
solution of (1) if x ∈ C1(I, Rn) and x satisfies (1) pointwise. It is called a solution of the initial
value problem (1)–(2) if x is a solution of (1) and satisfies (2). An initial condition (2) is called
consistent if the corresponding initial value problem has at least one solution.

It is possible to weaken this solution concept [22, 26, 29], but we will not consider such weaker
solution concepts in this paper.

For the DAE system (1), as in [4, 5, 19], we introduce a nonlinear derivative array of the form

Fℓ(t, x, ẋ, . . . , x(ℓ+1)) = 0,

which stacks the original equation and all its derivatives up to level ℓ in one large system, i. e.,

Fℓ(t, x, ẋ, . . . , x(ℓ+1)) =











F (t, x, ẋ)
d
dtF (t, x, ẋ)

...
dℓ

dtℓ F (t, x, ẋ)











.

Partial derivatives of Fℓ with respect to selected variables p from zℓ = (t, x, ẋ, . . . , x(ℓ+1)) are
denoted by Fℓ;p, e. g.,

Fℓ;x = ∂
∂xFℓ, Fℓ;ẋ,...,x(k+1) = [ ∂

∂ẋFℓ · · · ∂
∂x(ℓ+1) Fℓ ].

A corresponding notation is also used for partial derivatives of other functions.
In order to analyze existence and uniqueness of solutions, we introduce the solution set of the

nonlinear algebraic equation associated with the derivative array Fµ for some integer µ, given by

Lµ = {zµ ∈ I × R
n × R

n × . . . × R
n | Fµ(zµ) = 0}.

We make the following hypothesis, see [21].

Hypothesis 1 Consider the general system of nonlinear differential-algebraic equations (1).
There exist integers µ, r, a, d, and v such that Lµ is not empty and for every point

(t0, x0, ẋ0, . . . , x
(µ+1)
0 ) ∈ Lµ there exists a (sufficiently small) neighborhood in which the following

properties hold:
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1. We have rankFµ;ẋ,...,x(µ+1) = (µ + 1)n − a on Lµ such that there exists a smooth full rank
matrix function Z2 of size (µ + 1)m × a satisfying

ZT
2 Fµ;ẋ,...,x(µ+1) = 0

on Lµ.

2. We have rankZT
2 Fµ;x = a on Lµ such that there exists a smooth full rank matrix function

T2 of size n × (n − a) satisfying
ZT

2 Fµ;xT2 = 0.

3. We have rankFẋT2 = d = n− a such that there exists a smooth full rank matrix function Z1

of size n × d satisfying
rankZT

1 FẋT2 = d.

As in [19, 21], we call the smallest possible µ for which Hypothesis 1 is valid the strangeness
index of (1). Systems with vanishing strangeness index are called strangeness-free.

It has been shown in [20] that Hypothesis 1 implies locally (via the implicit function theorem)
the existence of a reduced system such that the solutions are in one-to-one correspondence and
the differential and algebraic part contained in the given DAE are separated. This result can be
globalized when we start with a solution x in the sense that we have path

(t, x(t),P(t)) ∈ Lµ+1 for all t ∈ I.

In the present context, where stability questions are concerned, we must take care that the in-
volved transformations do not alter the behavior of the solution as t → ∞. We therefore sketch
the construction of the reduced system along the lines of [21] and pay special attention to the
conservation of the stability properties of the given DAE.

Due to Hypothesis 1 there exist

Z2 ∈ C0(I, R(µ+1)n,a), T2 ∈ C0(I, Rn,n−a), Z1 ∈ C0(I, Rn,d),

with the described properties. Since Gram-Schmidt orthonormalization is a smooth process, we
may assume without loss of generality that the columns of these matrix functions are pointwise
orthonormalized. Let then

Z ′

2 ∈ C0(I, R(µ+1)n,(µ+1)n−a), T ′

2 ∈ C0(I, Rn,a), Z ′

1 ∈ C0(I, Rn,n−d),

be such that
[ Z ′

2 Z2 ], [ T ′

2 T2 ], [ Z ′

1 Z1 ]

are pointwise orthogonal. Furthermore, there exist

T1 ∈ C0(I, R(µ+1)n,a), T ′

1 ∈ C0(I, R(µ+1)n,(µ+1)n−a)

such that
[ T ′

1 T1 ]

is pointwise orthogonal and

Z ′

2(t)
T Fµ;ẋ,...,x(µ+1)(t, x(t),P(t))T1(t) = 0 for all t ∈ I.

If we define a function H via

H(t, x, p, φ) =

[

Fµ(t, x, p) + Z2(t)φ
T1(t)

T (p − P(t))

]

,

then
(a) H(t, x(t),P(t), 0) = 0,

(b) Hp,φ(t, x(t),P(t), 0) =

[

Fµ;ẋ,...,x(µ+1)(t, x(t),P(t)) Z2(t)
T1(t)

T 0

]

.
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By construction Hp,φ(t, z(t),P(t), 0) is nonsingular for all t ∈ I. Thus we can locally solve for p
and φ as

φ = F̂2(t, x), p = P̂(t, x).

It can then be shown that the equation

F̂2(t, x) = 0 (4)

is just the requirement that x satisfies all constraints that are contained in (1) for time t.
With the change of variables

x = T2x1 + T ′

2x2, x1 = T T
2 x, x2 = T ′

2
T
x

the equation (4) turns into
F̂2(t, T2(t)x1 + T ′

2(t)x2) = 0. (5)

Note that this transformation and the corresponding back-transformation preserve the Euclidian
norm of the unknown functions at every point t ∈ I. If we set x1(t) = T T

2 (t)x(t), x2(t) = T ′

2(t)
T x(t)

then it follows that for all t ∈ I

(a) F̂2(t, T2(t)x1(t) + T ′

2(t)x2(t)) = 0,

(b) F̂2;x(t, x(t))T ′

2(t) is nonsingular.

Thus, we can solve (5) for x2 as x2 = R(t, x1) and we have

x2(t) = R(t, x1(t)) for all t ∈ I. (6)

Besides (6) we have
p2(t) = Rt(t, x1(t)) + Rx1(t, x1(t))p1(t), (7)

where we use the partition

[ In 0 · · · 0 ]P̃ =

[

p1(t)
p2(t)

]

,

compare the proof of Theorem 4.13 in [21]. We then obtain

Z1(t)
T F (t, T2(t)x1(t) + T ′

2(t)ẋ2(t), Ṫ2(t)x1(t) + T2(t)p1(t) + Ṫ ′

2(t)x2(t) + T ′

2(t)x2(t)) = 0
for all t ∈ I,

(8)

in which we can eliminate x2, p2 via (6) and (7), respectively. If we define

F̂1(t, x1, p1) = Z1(t)
T F (t, T2(t)x1 + T ′

2(t)R(t, x1),

Ṫ2(t)x1 + T2(t)p1(t) + Ṫ ′

2(t)R(t, x1) + T ′

2(t)(Rt(t, x1) + Rx1(t, x1)p1)),

then (t, x1(t), x1(t)) solves F̂1(t, z1, p1) = 0. Furthermore,

F̂1;p1(t, x1(t), p1(t)) = Z1(t)
T Fẋ(t, x(t), p(t))(T2(t) + T ′

2(t)Rx1(t, x1(t))),

where [ In 0 · · · 0 ]P = p. To determine Rx1(t, x1(t)) one observes that from

F̂2(t, T2(t)x1(t) + T ′

2(t)Rx1(t, x1(t))) = 0 for all t ∈ I,

it follows that
F̂2;x(t, x(t))(T2(t) + T ′

2(t)Rx1(t, x1(t))) = 0 for all t ∈ I

and hence, using (4) we obtain

Z2(t)
T Fµ;x(t, x(t),P(t))(T2(t) + T ′

2(t)Rx1(t, x1(t))) = 0 for all t ∈ I.
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By the construction of Z2, T2, and T ′

2, we immediately obtain that

Rx1(t, x1(t)) = 0 for all t ∈ I

and that F̂1;p1(t, x1(t), p1(t)) is nonsingular for all t ∈ I. Thus, we can solve F̂1(t, x1, p1) for p1

according to
p1 = L(t, x1).

If we require that x1 is continuously differentiable and that that the part p1 of P satisfies p1(t) =
ẋ1(t) for all t ∈ I, then we see that the given x solves the DAE

(a) ẋ1 = L(t, x1),
(b) x2 = R(t, x1).

(9)

Summarizing the above construction, we observe that we only have applied one transformation of
the variable x. This transformation together with its inverse are pointwise orthogonal such that
it preserves the behavior of the solution as t → ∞. For the applications of the implicit function
theorem, however, we must require that the corresponding neighborhoods do not shrink to a point
as t → ∞. Sufficient for this is the additional assumption that there exists a set V ⊆ I×Rn×· · ·×Rn

such that (t, x(t),P(t)) ∈ V for sufficiently large t and that the implicit function theorem can
always applied in the whole set V. Note that this condition is trivially satisfied when we study an
equilibrium solution x of (1) given by the property that x(t) = x∗ ∈ Rn and (t, x∗, 0) ∈ Lµ+1 for
all t ∈ I. Instead of (1) we can then concentrate on the investigation of (9) due to the fact that
under mild assumptions the solutions of (1) and (9) are locally in one-to-one correspondence, see
[21].

In the special case of a linear DAE

E(t)ẋ = A(t)x + f(t), (10)

where E, A ∈ C0(I, Rn,n) and f ∈ C0(I, Rn) are sufficiently smooth, the corresponding reduced
DAE (9) is linear as well and of the form

(a) ẋ1 = A11(t)x1 + f1(t),
(b) x2 = A21(t)x1 + f2(t).

(11)

This also shows that if the DAE belonging to a pair (Ê, Â) of matrix functions is strangeness-free
then there is a pointwise nonsingular matrix function P ∈ C0(I, Rn,n) and a pointwise orthogonal
matrix function Q ∈ C1(I, Rn,n) such that

PÊQ =

[

Id 0
0 0

]

, P ÂQ − PÊQ̇ =

[

A11 0
A21 −Ia

]

. (12)

2.3 Stability concepts for ODEs

In this section, we briefly recall classical stability concepts for ordinary differential equations

ẋ = f(t, x), t ∈ I. (13)

See e.g. [17, 35] for more details on this topic. We include proofs when we need the notation and
parts of them when we discuss similar results for DAEs.

Definition 2 A solution x : t 7→ x(t; t0, x0) of (13) is called

1. stable if for every ε > 0 there exists δ > 0 such that

(a) the initial value problem (13) with initial condition x(t0) = x̂0 is solvable on I for all
x̂0 ∈ Rn with ‖x̂0 − x0‖ < δ;

(b) the solution x(t; t0, x̂0) satisfies ‖x(t; t0, x̂0) − x(t; t0, x0)‖ < ε on I.
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2. asymptotically stable if it is stable and there exists ̺ > 0 such that

(a) the initial value problem (13) with initial condition x(t0) = x̂0 is solvable on I for all
x̂0 ∈ Rn with ‖x̂0 − x0‖ < ̺;

(b) the solution x(t; t0, x̂0) satisfies limt→∞ ‖x(t; t0, x̂0) − x(t; t0, x0)‖ = 0.

3. exponentially stable if it is stable and exponentially attractive, i.e. if there exist δ > 0,
L > 0, and γ > 0 such that

(a) the initial value problem (13) with initial condition x(t0) = x̂0 is solvable on I for all
x̂0 ∈ Rn with ‖x̂0 − x0‖ < δ;

(b) the solution satisfies the estimate ‖x(t; t0, x̂0) − x(t; t0, x0)‖ < Le−γ(t−t0) on I.

Note that we can transform the ODE (13) in such a way that a given solution x(t; t0, x0) is mapped
to the trivial solution by simply shifting the arguments according to

˙̃x = f̃(t, x̃) = f(t, x̃ + x(t; t0, x0)) − ∂
∂tx(t; t0, x0). (14)

When studying the stability of a selected solution, we may therefore assume without loss of
generality that the selected solution is the trivial solution. This also applies to DAEs. In the
following, we will concentrate on equilibrium solutions x∗, i.e. solutions with x(t; t0, x0) = x∗

independent of t, although we may simply set x∗ = 0.
We will also study further concepts which are not related to a selected solution such as con-

tractivity and dissipativity.

Definition 3 The ODE (13) is called contractive if for any two solutions x, y the scalar func-
tion d : I → R

+
0 defined by d(t) = ‖x(t) − y(t)‖2

2 is monotonically non-increasing. It is called
exponentially contractive if d decays exponentially.

Definition 4 The ODE (13) is called dissipative if there exists a bounded set B ⊆ Rn with the
property that for any bounded set E ⊆ R

n there exists t̂ ≥ t0 with x(t; t0, x̂0) ∈ B for all x̂0 ∈ E

and t > t̂. In this case the set B is called absorbing.

We start our survey of stability results with the special case of linear ODEs. In view of (14) it
is sufficient to study homogeneous equations

ẋ = A(t)x. (15)

Since we obtain (15) no matter which solution we want to look at, the stability properties of
Definition 2 are merely properties of the given linear ODE. In particular, the initial value problem

∂
∂tΦ(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = In.

possesses a solution t 7→ Φ(t, t0) on I, so-called fundamental solution, and the solution x of (15)
with x(t0) = x0 can be written as x(t) = Φ(t, t0)x0. The following characterizations are then
straightforward.

Theorem 5 The trivial solution of the linear homogeneous ODE (15)

1. is stable if and only if there exists a constant L > 0 with ‖Φ(t, t0)‖ ≤ L on I;

2. is asymptotically stable if and only if ‖Φ(t, t0)‖ → 0 for t → ∞;

3. is exponentially stable if exists L > 0 and γ > 0 such that ‖Φ(t, t0)‖ ≤ Le−γ(t−t0) on I.

In the general nonlinear case, we can only expect sufficient conditions that guarantee the specific
stability properties. The classical result is given in the so-called Lyapunov stability theorems, see
e.g. [17].
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Definition 6 Let U be an (open) neighborhood of an equilibrium solution x∗ of the ODE (13). A
function V ∈ C1(I × U, R+

0 ) is called Lyapunov function associated with x∗ if

1. V (t, x∗) = 0 for all t ∈ I,

2. V̇ (t, x) ≤ 0 for all (t, x) ∈ I × U, where V̇ (t, x) = Vx(t, x)f(t, x) + Vt(t, x),

3. there exists a continuous function W : U → R
+
0 with W (x) > 0 for all x ∈ U \ {x∗} and

V (t, x) ≥ W (x) for all (t, x) ∈ I × D.

Theorem 7 Let V be a Lyapunov function associated with an equilibrium solution x∗ of (13).
Then x∗ is stable.

Theorem 8 Let V be a Lyapunov function associated with an equilibrium solution x∗ of (13)
satisfying

1. for all ε < 0 there exists δ > 0 such that V (t, x) < ε for all t ∈ I and all x ∈ U with
‖x − x∗‖ < δ;

2. there exists a continuous function W̃ : U → R
+
0 with W̃ (x) > 0 for all x ∈ U \ {x∗},

W̃ (x∗) = 0, and V̇ (t, x) ≥ −W̃ (x) for all (t, x) ∈ [t0,∞) × D.

Then x∗ is asymptotically stable.

In the linear case (15), one looks for Lyapunov functions of the form

V (t, x) = xT X(t)x

with pointwise symmetric X ∈ C1(I, Rn,n). By definition, we then have

V̇ (t, x) = Vx(t, x)f(t, x) + Vt(t, x)

= xT A(t)T X(t)x + xT X(t)A(t)x + xT Ẋ(t)x

= xT (Ẋ(t) + A(t)T X(t) + X(t)A(t))x.

such that V̇ (t, x) = −x(t)T Y (t)x(t) with the so-called Lyapunov differential equation

Ẋ(t) + A(t)T X(t) + X(t)A(t) + Y (t) = 0 (16)

Hence, a Lyapunov function can be constructed if one can find appropriate X and Y solving (16).
In particular, we have the following result.

Corollary 9 Let X ∈ C1(I, Rn,n) and Y ∈ C0(I, Rn,n) solve the Lyapunov differential equation
(16). The trivial solution of the linear homogeneous ODE (15)

1. is stable if there is w > 0 such that X(t) ≥ wIn and Y (t) ≥ 0 on I.

2. is asymptotically stable if there are w, ŵ, w̃ > 0 such that ŵIn ≥ X(t) ≥ wIn and Y (t) ≥ w̃In

on I.

We turn now to stability properties which are not associated with a particular solution. All
proofs are based on the following auxiliary result known as Gronwall’s lemma.

Lemma 10 Let z ∈ C1(I, R) satisfy

ż(t) ≤ az(t) + b for all t ∈ I,

with constants a, b ∈ R. Then on I we have that

z(t) ≤
{

ea(t−t0)z(t0) + b
a (ea(t−t0) − 1) for a 6= 0,

z(t0) + b(t − t0) for a = 0.
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Recall for the following that we assume that f ∈ C0(I×U, Rn) is sufficiently smooth. Moreover,
we suppose that the interesting domain U is sufficiently large.

Theorem 11 Let f ∈ C0(I × U, Rn) satisfy a one-sided Lipschitz condition with constant c ∈ R,
i.e. let

〈f(t, x) − f(t, y), x − y〉 ≤ c‖x − y‖2
2 for all t ∈ I and x, y ∈ U.

If c = 0, then (13) is contractive. If c < 0, then (13) is exponentially contractive.

Proof. For two solutions x, y of (13), we have

1
2

d
dt‖x(t) − y(t)‖2

2 = 〈ẋ(t) − ẏ(t), x(t) − y(t)〉
= 〈f(t, x(t)) − f(t, y(t)), x(t) − y(t)〉 ≤ c‖x(t) − y(t)‖2

2.

Setting d(t) = ‖x(t) − y(t)‖2
2, this relation reads ḋ(t) ≤ 2cd(t) and Lemma 10 yields

d(t) ≤ e2c(t−t0)d(t0)

in both cases.

Theorem 12 Let f ∈ C0(I × U, Rn) satisfy

〈f(t, x), x〉 ≤ α − β‖x‖2
2 for all t ∈ I and x ∈ U,

with constants α ≥ 0 and β > 0. Then the ODE (13) is dissipative with absorbing set B =
B(0,

√

α/β + ε) for arbitrary ε > 0.

Proof. Let x be a solution of (13). Since

1
2

d
dt‖x(t)‖2

2 = 〈f(t, x(x)), x(t)〉 ≤ α − β‖x(t)‖2
2,

Lemma 10 yields

‖x(t)‖2
2 ≤ α/β + e−2βt(‖x(t0)‖2

2 − α/β) ≤ max{‖x(t0)‖2
2, α/β}

such that
‖x(t)‖2 ≤ max{‖x(t0)‖2,

√

α/β}.
Hence, B is positive invariant, i.e.

x(t; t0, x̂0) ∈ B for all t ≥ t0, x̂0 ∈ B.

Let
R = sup

x̂0∈E

‖x̂0‖2.

The estimate
‖x(t)‖2 ≤ α/β + e−2βt(R2 − α/β) ≤ α/β + ε

finally gives

e−2βt̂(R2 − α/β) ≤ ε

as condition on t̂ in Definition 4.

Theorem 13 Let f ∈ C0(I × U, Rn) satisfy

〈f(t, x), x〉 < 0 for all t ∈ I and x ∈ U with ‖x‖2 > R.

Then the ODE (13) is dissipative with absorbing set B = B(0, R + ε) for arbitrary ε > 0.
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Proof. A solution x of (13) satisfies

1
2

d
dt‖x(t)‖2

2 = 〈f(t, x(x)), x(t)〉.

If x(t) ∈ Rn \ B, then d
dt‖x(t)‖2 < 0 and therefore

‖x(t)‖2 < max{‖x(t0)‖2, R + ε} for all t > t0.

Hence, B is positive invariant. Let

r > max{ sup
x̂0∈E

‖x̂0‖2, R + ε}

and let B̂ = B(0, r). Because of B̂ ⊇ B we have Rn \ B̂ ⊆ Rn \ B and therefore d
dt‖x(t)‖2

2 < 0

as long as x(t) ∈ B̂ \ B. Hence, B̂ is positive invariant as well. Moreover, B̂ \ B in compact and

〈f(t, x(x)), x(t)〉 < 0 on B̂ \ B. Due to the continuity of f there exists δ > 0 with

d
dt‖x(t)‖2

2 < −δ on B̂ \ B

as long as x(t) ∈ B̂ \ B. For x̂0 ∈ E it then follows that

x(t; t0, x̂0) ∈ B for all t > t̂ = (r2 − (R + ε)2)/δ,

with t̂ as required in Definition 4.

3 Stability results for DAEs

In this section we generalize the classical ODE stability results that we have reviewed in Section 2.3
to DAEs.

The key idea to obtain these analytical results is to consider first the transformation to the
reduced system (9) which has the same solution set and consider the stability results in this
framework. After this has been done we then transform back to the original system.

3.1 Linear DAEs

We begin our analysis with linear DAEs (10) with variable coefficients. The stability analysis for
such equations has been studied for systems of tractability index up to 2 in [14, 15, 16, 27, 39],
we study here the general case.

In the case of linear DAEs, the reduced system has the form (11) with

x = Q

[

x1

x2

]

, Q = [ T ′

2 T2 ] (17)

according to the notation of Section 2.2. For the homogeneous system

E(t)ẋ = A(t)x, x(t0) = x0 (18)

with consistent x0 we then have an explicit representation of the solution x as

x(t) = Q(t)

[

Id

A2,1(t)

]

Φ̂(t, t0)
[

Id 0
]

Q(t0)
T x0,

where Φ̂(t, t0) is a fundamental solution of the so-called inherent ODE associated with (10) given
by

ẋ1 = A1,1(t)x1(t). (19)

10



In particular, Φ̂(t, t0) solves the linear matrix differential equation

∂
∂t Φ̂(t, t0) = A1,1(t)Φ̂(t, t0), Φ̂(t0, t0) = Id.

It follows that the fundamental solution Φ(t, t0) of the homogeneous case (18) in the sense that
the solution x can be written as x(t) = Φ(t, t0)x0 is given by

Φ(t, t0) = Q(t)

[

Id

A2,1(t)

]

Φ̂(t, t0)
[

Id 0
]

Q(t0)
T ,

with

‖Φ(t, t0)‖2 =

∥

∥

∥

∥

[

Id

A2,1(t)

]

Φ̂(t, t0)
[

Id 0
]

∥

∥

∥

∥

2

,

since Q is pointwise orthogonal. Thus, we have

‖Φ(t, t0)‖2 ≥ ‖Φ̂(t, t0)‖2,

and the implications

‖Φ(t, t0)‖2 ≤ L =⇒ ‖Φ̂(t, t0)‖2 ≤ L,

‖Φ(t, t0)‖2 → 0 =⇒ ‖Φ̂(t, t0)‖2 → 0,

‖Φ(t, t0)‖2 ≤ Le−γ(t−t0) =⇒ ‖Φ̂(t, t0)‖2 ≤ Le−γ(t−t0)

hold. From this, it is clear that for the different stability concepts to extend to DAEs it is necessary
that the inherent ODE (19) satisfies the corresponding stability concepts in the classical sense.

On the other hand, since

‖Φ(t, t0)‖2
2 ≤

∥

∥

∥

∥

[

Id

A2,1(t)

]∥

∥

∥

∥

2

2

‖Φ̂(t, t0)‖2
2 ≤ (1 + ‖A2,1(t)‖2

2) ‖Φ̂(t, t0)‖2
2,

we have the implications

‖Φ̂(t, t0)‖2 ≤ L, ‖A2,1(t)‖2 ≤ c =⇒ ‖Φ(t, t0)‖2 ≤
√

1 + c2L,

‖Φ̂(t, t0)‖2 → 0, ‖A2,1(t)‖2 ≤ c =⇒ ‖Φ(t, t0)‖2 → 0,

‖Φ̂(t, t0)‖2 ≤ Le−γ(t−t0), ‖A2,1(t)‖2
2 ≤ c(t − t0)

k =⇒ ‖Φ(t, t0)‖2 ≤ L̃e−γ̃(t−t0),

where k ≥ 0 is an arbitrary integer and L̃, γ̃ > 0 are appropriate constants. We thus have obtained
the following sufficient conditions.

Theorem 14 Consider system (10) and its reduced form (11) with inherent ODE (19).

1. If the inherent ODE is stable and ‖A2,1(t)‖2 ≤ c holds with some constant c > 0 for all t ∈ I,

then (10) is stable in the sense that ‖Φ(t, t0)‖ < L̃ on I for some positive constant L̃.

2. If the inherent ODE is asymptotically stable and ‖A2,1(t)‖2 ≤ c holds for some constant
c > 0 for all t ∈ I, then (10) is asymptotically stable in the sense that Φ(t, t0) → 0 as
t → ∞.

3. If the inherent ODE is exponentially stable and ‖A2,1(t)‖2 ≤ c(t − t0)
k holds for some

constant c > 0 and integer k ≥ 0 for all t ∈ I, then (10) is exponentially stable in the sense
that ‖Φ(t, t0)‖ < L̃e−γ̃(t−t0) on I for some constants L̃, γ̃ > 0.

11



3.2 Nonlinear DAEs

We turn now to the general case of a nonlinear DAE (1) with corresponding reduced problem (9).
As in the linear case, the unknowns are connected by the transformation (17) such that it is again
sufficient to study the reduced problem. Corresponding to the condition ‖A21(t)‖2 ≤ c for all
t ∈ I we require here that the function R is globally Lipschitz continuous on a sufficiently large
domain U for x1, i.e.,

‖R(t, x1) −R(t, y1)‖2 ≤ L‖x1 − y1‖2 for all t ∈ I and all x1, y1 ∈ U, (20)

with some constant L > 0. It is then clear that stability and asymptotic stability of the inherent
ODE ẋ1 = L(t, x1) carry over to the whole reduced DAE (9). In particular, we have the following
result for an equilibrium solution (x∗

1, x
∗

2) of (9).

Corollary 15 Consider the nonlinear DAE (1) and its associated reduced system (9) and assume
that (20) holds.

1. If V satisfies the assumptions of Theorem 7 for the inherent ODE ẋ1 = L(t, x1), then (x∗

1, x
∗

2)
is stable in the sense of Definition 2 with x̂0 restricted to be consistent.

2. If V satisfy the assumptions of Theorem 8 for the inherent ODE ẋ1 = L(t, x1), then (x∗

1, x
∗

2)
is asymptotically stable in the sense of Definition 2 with x̂0 restricted to be consistent.

Contractivity and dissipativity for nonlinear DAEs have been studied for special cases in [15,
16]. In more generality, we obtain the following results.

In view of Theorem 11 we first require that L of the inherent ODE satisfies a one-sided Lipschitz
condition, i.e.

〈L(t, x1) − L(t, y1), x1 − y1〉2 ≤ c‖x1 − y1‖2
2 for all t ∈ I and x1, y1 ∈ U. (21)

Then for two solutions x1, y1 of (19) and their squared difference d1(t) = ‖x1(t)−y1(t)‖2
2 we obtain

1
2

d
dtd1(t) = 1

2
d
dt‖x1(t) − y1(t)‖2

2 = 〈ẋ1(t) − ẏ1(t), x1(t) − y1(t)〉2
= 〈L(t, x1(t)) − L(t, y1(t)), x1(t) − y1(t)〉2 ≤ c‖x1(t) − y1(t)‖2

2.

As in Section 2.3, the relation
ḋ1(t) ≤ 2cd1(t)

yields
ḋ1(t) ≤ e2c(t−t0)d1(t0)

by Lemma 10. Introducing d(t) = ‖x(t) − y(t)‖2
2 = ‖x1(t) − y1(t)‖2

2 + ‖x2(t) − y2(t)‖2
2 and using

(20), we obtain
d(t) ≤ ‖x1(t) − y1(t)‖2

2 + ‖R(t, x1(t)) −R(t, y1(t)))‖2
2

≤ ‖x1(t) − y1(t)‖2
2 + L2‖x1(t) − y1(t)‖2

2

≤ (1 + L2)e2c(t−t0)d1(t0).

Corollary 16 Consider the nonlinear DAE (1) and its associated reduced system (9). Let L ∈
C0(I × U, Rd) satisfy a one-sided Lipschitz condition with constant c ∈ R according to (21) and
let R ∈ C0(I × U, Ra) be Lipschitz continuous according to (20). If c = 0, then (9) is contractive
in the sense that ‖x(t) − y(t)‖2 is monotonically non-increasing for two solutions x, y of (9). If
c < 0, then (9) is exponentially contractive in the sense that ‖x(t) − y(t)‖2 decays exponentially
for two solutions x, y of (9).

To study dissipativity, we first require that

〈L(t, x1), x1〉 ≤ α − β‖x1‖2
2 for all t ∈ I and x ∈ U, (22)
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with α ≥ 0 and β > 0. Then

1
2

d
dt‖x1(t)‖2

2 = 〈ẋ1(t), x1(t)〉 = 〈L(t, x1), x1〉 ≤ α − β‖x1‖2
2,

and as in Theorem 12 we obtain

x1(t) ∈ B(0,
√

α/β + ε) for t > t̂.

With the natural requirement that R is bounded according to

‖x1‖2 < α/β + ε =⇒ ‖x2‖2 < M for t > t̂, (23)

where M > 0 is a suitable constant depending on ε, we obtain

‖x(t)‖2
2 = ‖x1(t)‖2

2 + ‖x2(t)‖2
2 < α/β + ε + M2

and thus
‖x(t)‖2 ∈ B(0,

√

α/β + ε + M2) for t > t̂.

Corollary 17 Consider the nonlinear DAE (1) and its associated reduced system (9). Let L ∈
C0(I × U, Rd) satisfy (22) and let R ∈ C0(I × U, Ra) satisfy (20) and (23). Then the DAE (9)
is dissipative in the sense of Definition 4 with x̂0 restricted to be consistent. An absorbing set is
given by B = B(0,

√

α/β + ε + M2) for arbitrary ε > 0.

Finally, we assume that

〈L(t, x1), x1〉 < 0 for all t ∈ I and x1 ∈ U with ‖x1‖2 > R. (24)

As in Theorem 13 we obtain that

x1(t) ∈ B(0, R + ǫ) for t > t̂,

and we can proceed as for (22).

Corollary 18 Consider the nonlinear DAE (1) and its associated reduced system (9). Let L ∈
C0(I × U, Rd) satisfy (24) and let R ∈ C0(I × U, Ra) satisfy (20) and (23). Then the DAE (9)
is dissipative in the sense of Definition 4 with x̂0 restricted to be consistent. An absorbing set is
given by B = B(0,

√

(R + ε)2 + M2) for arbitrary ε > 0.

Recall that the domain U must be sufficiently large to ensure that x(t) does not leave the
domain of definition in finite time, i.e. one has to assume that the solution exists at least until t̂
and that the desired absorbing set is contained in U. Besides these technical assumptions we
can observe that also in the nonlinear case the various stability concepts for DAEs require the
corresponding properties to hold for the inherent ODE and sufficient conditions are obtained under
natural assumptions on the algebraic constraints.

4 A test equation for DAEs

In this section we propose and investigate a new test equation for differential-algebraic equations.
To get an idea how a suitable test equation should look like, we must understand the reasons for
the instabilities in Example 1.

Suppose that we discretize the linear homogeneous problem (18) with the implicit Euler
method, i.e.,

(Ei − hAi)xi = Eixi−1,

where Ei = E(ti), Ai = A(ti), and xi is an approximation to x(ti). If we scale the equation by a
pointwise nonsingular matrix function P ∈ C0(I, Rn,n) and the solution by a pointwise nonsingular
matrix function Q ∈ C1(I, Rn,n), then the transformed equation reads

Ẽ(t) ˙̃x = Ã(t)x̃, (25)
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where
Ẽ = PEQ, Ã = PAQ − PEQ̇, x = Qx̃.

Setting Pi = P (ti), Qi = Q(ti), Q̇i = Q̇(ti), and defining x̃i by xi = Qix̃i, we obtain the following
sequence of equivalent formulations

Pi(EiQi − hAiQi)x̃i = PiEiQi−1x̃i−1,

(Ẽi − hÃi − hEiQ̇i)x̃i = ẼiQ
−1
i Qi−1x̃i−1,

(Ẽi − hÃi − hẼiQ
−1
i Q̇i)x̃i = ẼiQ

−1
i Qi−1x̃i−1.

Since Qi−1 = Qi − hQ̇i + O(h2), we can rewrite this as

(Ẽi − hÃi − hẼiQ
−1
i Q̇i)x̃i = ẼiQ

−1
i (Qi − hQ̇i + O(h2))x̃i−1,

(Ẽi(I − hQ−1
i Q̇i) − hÃi)x̃i = Ẽi(I − hQ−1

i Q̇i + O(h2))x̃i−1

If we would directly discretize the equation (25), then we would instead obtain

(Ẽi − hÃi)x̃i = Ẽix̃i−1.

Example 1 shows that these perturbations to Ẽi may have the effect that the numerical method is
unstable even though the DAE itself is asymptotically stable. Obviously, to have an effect on the
solution behavior, the perturbation hẼiQ

−1
i Q̇i must be reasonably large. In order to simulate this

behavior in a test equation, we consider for x1 the classical test equation (3), which is (allowing
here as usual for complex solutions) asymptotically stable if Re(λ) < 0.

As we have seen in Section 3, we still obtain asymptotic stability if in (9) the entry A2,1 is
bounded. In the simplest case we can choose A2,1(t) = 1. In order to simulate the effect that the
kernel of E(t) is changing and, therefore, to have a nontrivial transformation with a derivative
that depends on a parameter that can be used to control the rate of change, we will choose

R(t) =

[

1 ωt
0 1

]

, (26)

with a real parameter ω.

Remark 1 It should be noted that Q(t) in (26) is not pointwise orthogonal. An orthogonal
variation of this transformation would be to choose

R(t) =
1√

1 + ω2t2

[

1 ωt
−ωt 1

]

or the case of a rotation with frequency ω

R(t) =

[

sin(ωt) cos(ωt)
− sin(ωt) cos(ωt)

]

.

The problem with these two orthogonal transformations is that the analysis of the stability regions
of different numerical methods becomes very technical analytically. Numerical tests, however, show
that there is no essential difference in the corresponding stability regions.

In the following we, therefore, consider the test equation
[

1 −ωt
0 0

] [

ẋ1

ẋ2

]

=

[

λ ω(1 − λt)
−1 1 + ωt

] [

x1

x2

]

, (27)

with coefficients

E(t) = Ẽ(t)R(t)−1 =

[

1 0
0 0

] [

1 −ωt
0 1

]

=

[

1 −ωt
0 0

]

,

A(t) = Ã(t)R(t)−1 − Ẽ(t) d
dt(R(t)−1)

=

[

λ 0
−1 1

] [

1 −ωt
0 1

]

−
[

1 0
0 0

] [

0 −ω
0 0

]

=

[

λ ω(1 − λt)
−1 1 + ωt

]

.
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With initial data x1(0) = 1, x2(0) = 1, equation (27) has the solution

x(t) =

[

1 ωt
0 1

] [

eλt

eλt

]

=

[

(1 + ωt)eλt

eλt

]

.

Since we will need it later in the course of this paper, we describe the transformation of (27) to
the reduced form corresponding to (11). With

Q(t) =
1√

1 + ω2t2

[

1 ωt
−ωt 1

]

, Q̇(t) =
ω

(1 + ω2t2)3/2

[

−ωt 1
−1 −ωt

]

, (28)

according to (17) we obtain that

EQ =
1√

1 + ω2t2

[

1 + ω2t2 0
0 0

]

,

AQ − EQ̇ =
1√

1 + ω2t2

[

λ − ω2t(1 − λt) λωt + ω(1 − λt)
−1 − ωt(1 + ωt) −ωt + (1 + ωt)

]

− ω

(1 + ω2t2)3/2

[

0 1 + ω2t2

0 0

]

=
1√

1 + ω2t2

[

λ − ω2t + λω2t2 0
−1 − ωt − ω2t2 1

]

,

and thus, by scaling with a diagonal matrix from the left, the pair (E, A) is equivalent to the pair

(Ẽ, Ã) =

([

1 0

0 0

]

,

[

λ − ω2t
1+ω2t2 0

1 + ωt + ω2t2 −1

]

)

, (29)

which is the required reduced form (11) of the test equation (27).
Note that there is an important difference between this new test equation and the standard

test equation (3) for ODEs. Due to the requirement that the new test equation must involve a
changing kernel of E, it cannot be autonomous. As a consequence, the difference equation for
the numerical solution which is typically obtained by discretization will explicitely include time
positions.

5 DAE integration methods and DAE stability functions

To demonstrate the properties of the test equation (27) let us apply some of the well-known DAE
integration methods to this equation. In analogy to the classical stability functions R(hλ) = R(z)
for ODEs, see [13], we will introduce DAE stability functions of the form R(hλ, hω) = R(z, w),
using the abbreviations z = hλ, w = hω. We will present several plots of stability functions. In all
cases the plots depict the region given by (z, w) ∈ [−9, 9]2. The color coding is chosen so that the
dark regions are those with |R(z, w)| ≤ 1 and the shading is according to the modulus of R(z, w).

5.1 Implicit Euler method

Applying the implicit Euler method to the test equation (27), we obtain the following iteration
and equivalent formulations.

([

1 −ωti
0 0

]

− h

[

λ ω(1 − λti)
−1 1 + ωti

])[

x1,i

x2,i

]

=

[

1 −ωti
0 0

] [

x1,i−1

x2,i−1

]

,

[

1 − hλ −ωti − ωh(1 − λti)
h −h(1 + ωti)

] [

x1,i

x2,i

]

=

[

1 −ωti
0 0

] [

x1,i−1

x2,i−1

]

,

[

1 − hλ −ωti − ωh + ωhλti)
−1 1 + ωti

] [

x1,i

x2,i

]

=

[

1 −ωti
0 0

] [

x1,i−1

x2,i−1

]

.
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The coefficient matrix on the left side has determinant

D = 1 − h(λ + ω)

and, thus, for D 6= 0 the linear system has a unique solution given by
[

x1,i

x2,i

]

=
1

D

[

1 + ωti ωti + ωh − ωhλti
1 1 − hλ

] [

1 −ωti
0 0

] [

x1,i−1

x2,i−1

]

=
1

D

[

1 + ωti −ωti(1 + ωti)
1 −ωti

] [

x1,i−1

x2,i−1

]

.

Since x1,i−1 = (1 + ωti−1)x2,i−1, we obtain
[

x1,i

x2,i

]

=
1

D

[

1 + ωti −ωti(1 + ωti)
1 −ωti

] [

(1 + ωti−1)x2,i−1

x2,i−1

]

=
1

D

[

(1 + ωti)(1 + ωti−1) − ωti(1 + ωti)
1 + ωti−1 − ωti

]

x2,i−1

=
1

D

[

1 − ωh + ωti(1 + ωti−1 − ωti)
1 − ωh

]

x2,i−1

=
1

D

[

(1 − ωh)(1 + ωti)
1 − ωh

]

x2,i−1

=
1 − ωh

1 − (λ + ω)h

[

0 1 + ωti
0 1

] [

x1,i−1

x2,i−1

]

=

(

1 − ωh

1 − (λ + ω)h

)i [
0 1 + ωti
0 1

] [

x1,0

x2,0

]

.

We see that the stability behavior of the equation depends on the DAE stability function

R(z, w) =
1 − w

1 − z − w
.

Note that for w = 0 the DAE stability function R(z, w) reduces to the stability function R(z) =
(1 − z)−1 of the ODE case. A plot of this function is given in Figure 1.

5.2 Radau IIa method with two stages

Applying the 2-stage Radau IIa method (see e.g. [13]) given by the Butcher tableau

1
3

5
12 − 1

12
1 3

4
1
4

3
4

1
4

to (27), we obtain the iteration

x1,i = x1,i−1 + 3
4hẊ1,1 + 1

4hẊ2,1,

x2,i = x2,i−1 + 3
4hẊ1,2 + 1

4hẊ2,2,

where the stage values and derivatives satisfy

Ẋ1,1 − ω(ti−1 + h
3 )Ẋ1,2 = λX1,1 + ω(1 − λ(ti−1 + h

3 ))X1,2,

0 = −X1,1 + (1 + ω(ti−1 + h
3 ))X1,2,

Ẋ2,1 − ωtiẊ2,2 = λX2,1 + ω(1 − λti)X2,2,

0 = −X2,1 + (1 + ωti)X2,2,

X1,1 = x1,i−1 + 5
12hẊ1,1 − 1

12hẊ2,1,

X1,2 = x2,i−1 + 5
12hẊ1,2 − 1

12hẊ2,2,

X2,1 = x1,i−1 + 3
4hẊ1,1 + 1

4hẊ2,1,

X2,2 = x2,i−1 + 3
4hẊ1,2 + 1

4hẊ2,2.
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Figure 1: DAE stability function for the implicit Euler method

The linear system that we obtain for the vector of stage derivatives is then given by








1 − 5
12hλ −ω(ti−1 + h

3 ) − 5
12ωh(1 − λ(ti−1 + h

3 )) 1
12hλ 1

12ωh(1 − λ(ti−1 + h
3 ))

5
12h − 5

12ωh(1 + ω(ti−1 + h
3 )) − 1

12hλ 1
12h(1 + ω(ti−1 + h

3 ))
− 3

4hλ − 3
4hω(1 − λti) 1 − 1

4hλ −ωti − 1
4hω(1 − λti)

3
4hλ − 3

4h(1 + ωti)
1
4h − 1

4h(1 + ωti)









·









Ẋ1,1

Ẋ1,2

Ẋ2,1

Ẋ2,2









=









λx1,i−1 + ω(1 − λ(ti−1 + h
3 ))x2,i−1

−x1,i−1 + (1 + ω(ti−1 + h
3 ))x2,i−1

λx1,i−1 + ω(1 − λti)x2,i−1

−x1,i−1 + (1 + ωti)x2,i−1









.

Since the Radau IIa methods are stiffly accurate, they yield consistent approximations. Using
therefore x1,i−1 = (1 + ωti−1)x2,i−1 shows that all quantities are multiples of x2,i−1. Gaussian
elimination and simplification finally leads to

x2,i = X2,2 = − 2(2hωhλ + 2hω − hλ − 3)

2hλhω + (hλ)2 − 4hω − 4hλ + 6
x2,i−1.

Thus, the DAE stability function for the 2-stage Radau IIa method reads

R(z, w) =
6 − 4w + 2z − 2zw

6 − 4z − 4w + z2 + 2zw
.

A plot of this function is given in Figure 2.

5.3 Implicit midpoint rule

Applying the implicit midpoint rule, i.e. the Gauß method with s = 1, given by the Butcher
tableau

1
2

1
2

1
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Figure 2: DAE stability function for the Radau IIa method with two stages

see [13], to (27), we obtain the following iteration for the stage values and stage derivatives

Ẋ1 − ω(ti−1 + 1
2h)Ẋ2 = λX1 + ω(1 − λ(ti−1 + 1

2h))X2,

0 = −X1 + (1 + ω(ti−1 + 1
2h))X2,

X1 = xi−1,1 + 1
2hẊ1,

X2 = xi−1,2 + 1
2hẊ2,

xi,1 = xi−1,1 + hẊ1,

xi,2 = xi−1,2 + hẊ2.

Elimination of the stage values gives the linear system

[

1 − 1
2hλ −ω(ti−1 + 1

2h) − 1
2hω(1 − λ(ti−1 + 1

2h))
1
2h − 1

2h(1 + ω(ti−1 + 1
2h))

] [

Ẋ1

Ẋ2

]

=

[

λxi−1,1 + ω(1 − λ(ti−1 + 1
2h))xi−1,2

−1 + (1 + ω(ti−1 + 1
2h))xi−1,2

]

.

Using x1,i−1 = (1+ωti−1)x2,i−1 and, hence, assuming that we work with consistent approximations
(e.g. by projecting in every step), one derives that x2,i = R(z, w)x2,i−1 with

R(z, w) =
2 + z − w

2 − z − w
. (30)

A plot of this function is given in Figure 3.
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Figure 3: DAE stability function for the implicit midpoint rule

5.4 Implicit trapezoidal rule

Applying the implicit trapezoidal rule, i.e. the 2-stage Lobatto method, see [13], given by the
Butcher tableau

0 0 0
1 1

2
1
2

1
2

1
2

to (27), we obtain the relations

Ẋ1,1 − ωti−1Ẋ1,2 = λX1,1 + ω(1 − λti−1)X1,2,

0 = −X1,1 + (1 + ωti−1)X1,2,

Ẋ2,1 − ωtiẊ2,2 = λX2,1 + ω(1 − λti)X2,2,

0 = −X2,1 + (1 + ωti)X2,2,

X1,1 = x1,i−1,

X1,2 = x2,i−1,

X2,1 = x1,i−1 + 1
2hẊ1,1 + 1

2hẊ2,1,

X2,2 = x2,i−1 + 1
2hẊ1,2 + 1

2hẊ2,2
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Figure 4: DAE stability function for the implicit trapezoidal rule

for the stage values and derivatives. Eliminating the stage values, it remains to solve the linear
system









1 −ωti−1 0 0
1 −1 − ω(ti−1 0 0

− 1
2hλ − 1

2hω(1 − λti) 1 − 1
2hλ −ωti − 1

2hω(1 − λti)
1
2hλ − 1

2h(1 + ωti)
1
2h − 1

2h(1 + ωti)

















Ẋ1,1

Ẋ1,2

Ẋ2,1

Ẋ2,2









=









λx1,i−1 + ω(1 − λti−1)x2,i−1

ωx2,i−1

λx1,i−1 + ω(1 − λti)x2,i−1

−x1,i−1 + (1 + ωti)x2,i−1









.

Using as before x1,i−1 = (1 + ωti−1)x2,i−1 under the assumption that we work with consistent
approximations, one derives that x2,i = X2,2 = R(z, w)x2,i−1 with

R(z, w) =
2 + z − w − zw

2 − z − w
.

A plot of this function is given in Figure 4.

5.5 Stiffly accurate Runge-Kutta methods

Applying a general stiffly accurate Runge-Kutta method, see [13], given by the Butcher tableau

c A
bT
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with A invertible and bTA−1e = 1, e = [ 1 · · · 1 ]T , to (27), we obtain the relations

(a) Ẋj,1 − ω(ti−1 + cjh)Ẋj,2 = λXj,1 + ω(1 − λ(ti−1 + cjh))Xj,2,
(b) 0 = −Xj,1 + (1 + ω(ti−1 + cjh))Xj,2,

(c) Xj,1 = x1,i−1 + h
∑s

l=1 aj,lẊl,1,

(d) Xj,2 = x2,i−1 + h
∑s

l=1 aj,lẊl,2

(31)

for j = 1, . . . , s. Obviously, all stage values are consistent due to

Xj,1 = (1 + ω(ti−1 + cjh))Xj,2

and so all numerical approximations due to x1,i−1 = (1 + ωti−1)x2,i−1. Using the vectors of stage
values and derivatives defined by

X1 =







X1,1

...
Xs,1






, X2 =







X1,2

...
Xs,2






, Ẋ1 =







Ẋ1,1

...

Ẋs,1






, Ẋ2 =







Ẋ1,2

...

Ẋs,2






,

the relations (31c,d) yield

Ẋ1 = 1
hA−1(X1 − e x1,i−1), Ẋ2 = 1

hA−1(X2 − e x2,i−1).

Eliminating then Ẋ1, Ẋ2 in (31a) and multiplying by h gives

A−1(X1 − e x1,i−1) −







ωt̂1
. . .

ωt̂s






A−1(X2 − e x2,i−1)

= λX1 +







ω(1 − λt̂1)
. . .

ω(1 − λt̂s)






X2,

with t̂j = ti−1 + cjh, j = 1, . . . , s. Utilizing finally the consistency relations, we obtain the linear
equation










v1,1 − z − w v1,2(1 + w(c2 − c1)) . . . v1,s(1 + w(cs − c1))
v2,1(1 + w(c1 − c2)) v2,2 − z − w . . . v2,s(1 + w(cs − c2))

...
. . .

...
vs,1(1 + w(c1 − cs)) vs,2(1 + w(c2 − cs)) · · · vs,s − z − w





















X1,2

X2,2

...
Xs,2











=











d1(1 − c1w)x2,i−1

d2(1 − c2w)x2,i−1

...
ds(1 − csw)x2,i−1











,

with A−1 = (vj,l) and dj = vj,1 + · · · + vj,s. Since x2,i = X2,s this in particular shows that
x2,i = R(z, w)x2,i−1 with a rational stability function R(z, w) only depending on the parameters
defining the Runge-Kutta method.

5.6 Gauß-Lobatto methods

Applying the Gauß-Lobatto method collocation method, see [23, 24], with k = 1 to (27), we obtain
the iteration

x1,i − x1,i−1

h
− ω(ti − 1

2h)
x2,i − x2,i−1

h
= λ

x1,i + x1,i−1

2
+ ω(1 − λ(ti − 1

2h))
x2,i + x2,i−1

2
,

0 = −x1,i + (1 + ωti)x2,i,
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Figure 5: DAE stability function for the Gauß-Lobatto method with k = 1

which yields
[

(1 + ωti) − ω(ti − 1
2h) − 1

2hλ(1 + ωti) − 1
2hω(1 − λ(ti − 1

2h))
]

x2,i

=
[

(1 + ωti−1) − ω(ti−1 + 1
2h) + 1

2hλ(1 + ωti−1) + 1
2hω(1 − λ(ti−1 − 1

2h))
]

x2,i−1.

Simplifying the bracketed expressions, we obtain x2,i = R(z, w)x2,i−1 with the DAE stability
function

R(z, w) =
4 + 2z − zw

4 − 2z − zw
.

A plot of this function is given in Figure 5.
For the general Gauß-Lobatto collocation method applied to (27), we obtain the relations

1

h

k
∑

l=0

vj,l(Xl,1 − ω(ti−1 + ̺jh)Xl,2 −
k
∑

l=0

uj,l(λXl,1 + ω(1 − λ(ti−1 + ̺jh))Xl,2) = 0,

−Xj,1 + (1 + ω(tj−1 + σjh))Xj,2 = 0,

for j = 1, . . . , k. Here, ̺1, . . . , ̺k denote the Gauß nodes and σ0, . . . , σk the Lobatto nodes with
the corresponding number of stages. If Ll denote the Lagrange polynomials in the Lobatto nodes,
then vj,l = L̇l(̺j) and uj,l = Ll(̺j) for l = 0, . . . , k. Furthermore, x2,i = Xk,2, X0,1 = x1,i−1,
and X0,2 = x2,i−1. Since these methods yield consistent approximations, we have that x1,i−1 =
(1 + ωti−1)x2,i−1. Combining all these, we obtain the following equivalent formulations.

k
∑

l=0

(vj,l − uj,lhλ)Xl,1 −
k
∑

l=0

[

vj,lω(ti−1 + ̺jh) + uj,lhω(1 − λ(ti−1 + ̺jh))
]

Xl,2 = 0,

k
∑

l=0

[

(vj,l − uj,lhλ)(1 + ω(ti−1 + σlh)) − vj,lω(ti−1 + ̺jh) − uj,lhω(1 − λ(ti−1 + ̺jh))
]

Xl,2 = 0,

k
∑

l=0

[

(vj,l − uj,lh(λ + ω) + vj,lhω(σl − ̺j) − uj,lhωhλ(σl − ̺j)
]

Xl,2 = 0.
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The latter relation shows that the values Xl,2, l = 1, . . . , k, satisfy a linear system of equations
with a right hand side containing the factor X0,2 = x2,i−1. Moreover, besides the quantities (z, w)
the relation only contains coefficients describing the specific method. Hence, x2,i = R(z, w)x2,i−1

with a rational stability function R(z, w).

5.7 BDF methods

Applying a BDF method, see e.g. [2, 13], to (27), we obtain the iteration

1

h

k
∑

l=0

αk−lx1,i−l − ωti
1

h

k
∑

l=0

αk−lx2,i−l = λx1,i + ω(1 − λti)x2,i,

0 = −x1,i + (1 + ωti)x2,i.

Due to the latter relation, the BDF method yields consistent approximations. Utilizing, therefore,
that all past approximations are consistent, we obtain

k
∑

l=0

αk−l[(1 + ωti−l) − ωti]x2,i−l = [hλ(1 + ωti) + hω(1 − λti)]x2,i.

On an equidistant grid, this yields the homogeneous difference equation

(αk − hλ)x2,i +

k
∑

l=1

αk−l(1 − lhω)x2,i−l = 0.

Requiring that all solution of the difference equations are bounded is equivalent to requiring that
the associated polynomial

(αk − hλ)̺i +
k
∑

l=1

αk−l(1 − lhω)̺i−l = 0.

satisfies the so-called root condition, namely that all roots are bounded by one in modulus and
those of modulus one are simple, see again [2, 13]. Note that this property only depends on (z, w).
The dark regions in Figure 6 for k = 2 are those points (z, w) where the root condition holds. The
shading is related to the largest modulus of the roots.

5.8 Summary of DAE stability functions

Table 1 summarizes all DAE stability functions that we have obtained by applying classical DAE
one-step methods to the test equation (27). Moreover, we have included some DAE stability
functions for higher order methods which were obtained with the help of a formula manipulation
package.

Obviously, for w = 0 the obtained DAE stability function reduces to the classical stability
function for this method applied to the standard test function (3) for ODEs. As λ describes
eigenvalues in the system, one is interested in complex values of z = hλ. Of course, the above
results are still valid for a parameter z ∈ C. Instead of the plots given in the previous sections, we
can think of stability regions in the complex z-plane parameterized by a real parameter w. Such
objects can be visualized by movies. For the methods discussed here such movies can be found at

http://www.math.uni-leipzig.de/~kunkel/stab.html .

They show the z-plane in the range Re z, Im z ∈ [−9, 9] with the time running over w ∈ [−5, 5].
Comparing the stability domains of the various methods, one recognizes that they behave

differently with the sign of w. In the case of a negative eigenvalue λ in (27), the Radau IIa method
with s = 2 for example stays stable for arbitrary negative w but may exhibit difficulties for a
certain positive w, whereas for the Gauß-Lobatto method with k = 1 it is just the other way
around. It remains, however, unclear how this behavior can be exploited in applications.

23



Figure 6: DAE stability function for the BDF method with k = 2

Table 1: DAE stability functions

Method DAE-stability function R(z, w)

Implicit Euler R(z, w) =
1 − w

1 − z − w

Radau IIa s = 2 R(z, w) =
6 − 4w + 2z − 2zw

6 − 4z − 4w + z2 + 2zw

Radau IIa s = 3 R(z, w) =
60 − 36w + 24z − 18zw + 3z2 − 3z2w

60 − 36w − 36z + 18zw + 9z2 − z3 − 3z2w

Implicit midpoint rule R(z, w) =
2 + z − w

2 − z − w

Gauß s = 2 R(z, w) =
12 − 6w + 6z − 4zw + z2

12 − 6w − 6z + 2zw + z2

Gauß-Lobatto k = 1 R(z, w) =
4 + 2z − zw

4 − 2z − zw

Gauß-Lobatto k = 2 R(z, w) =
24 + 12z − 2zw + 2z2 − z2w

24 − 12z − 2zw + 2z2 + z2w

Implicit trapezoidal rule R(z, w) =
2 + z − w − zw

2 − z − w
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6 Spin-stabilized discretizations

As we have seen in Section 4, numerical schemes may become unstable when they are applied to
DAEs with a spinning kernel of Ê, where Ê in general is the linearization of a reduced formulation
of the given DAE with respect to ẋ. In particular, we expect such effects, when the transforma-
tion Q involved in (12) yields a large term [Id 0]QT Q̇. Example 1 for η = 0 shows that discretizing
a given DAE with the implicit Euler methods actually results in discretizing the inherent ODE
with the explicit Euler method. If in such a case the inherent ODE is stiff, then it is necessary
to apply stable discretization methods. A possibility to overcome these difficulties would be to
determine a smooth transformation Q to get rid of the spinning kernel. Although this could be
performed numerically, see e.g. [3, 6, 18, 32, 40] or [21, Cor. 3.10], such a procedure in general
would be too costly. In the following, we therefore present an alternative approach.

As in the treatment of stiff ODEs, where it is assumed that the stiffness is contained in the
linearized equation, we assume that the spin-effect is covered by the linearization of Q. The idea
then is to use a linear approximation

Q̃(t) = Q(ti+k) + (t − ti+k) ˙̃Q, ˙̃Q ∈ R
n,n (32)

to Q in the i-th step of a k-step method in order to transform the given DAE before we discretize

it. A suitable matrix ˙̃Q can for example be obtained by finite differences

˙̃Q =
1

h
(Q(ti+k) − Q(ti+k−1)).

In the numerical computations, one must be aware that Q is not unique and that we therefore do
not get a smooth representation of Q. This can be avoided e.g. by freezing the pivoting and all
other decisions performed during the computation of Q(ti+k) say by QR-decomposition, when we
determine Q(ti+k−1).

According to [21], we are allowed to restrict ourselves to the case of strangeness-free DAEs. In
the following we also concentrate mainly on linear problems.

6.1 A general convergence result

In the following, we study the convergence properties of methods that are obtained by including
a transformation before a given convergent method is applied. We use the notation of [21, Ch. 5]
but have to slightly modify the general approach given there. As usual we restrict ourselves to
equidistant grids.

Let X̃i represent the numerical approximation and let X̃(ti) represent the corresponding true
solution at time ti = t0 + ih. We start with a basic numerical method given by

X̃i+1 = F̃(ti, X̃i; h) (33)

representing any classical integration method for DAEs. We assume that (33) is consistent of
order p according to

‖X̃(ti+1) − F̃(ti, X̃(ti); h)‖ ≤ Chp+1 (34)

and stable according to

‖Ri+1(F̃(ti, X̃(ti); h) − F̃(ti, X̃i; h))‖ ≤ (1 + hK)‖Ri(X̃(ti) − X̃i)‖. (35)

In the latter estimate, the quantities Ri are matrices which are required to satisfy

(a) ‖Ri‖, ‖R−1
i ‖ ≤ M,

(b) Ri+1R
−1
i = I + O(h).

(36)

Moreover, all involved constants are assumed to be independent of i and h. Then, the estimate

‖Ri+1(X̃(ti+1) − X̃i+1)‖
= ‖Ri+1(X̃(ti+1) − F̃(ti, X̃(ti); h) + F̃(ti, X̃(ti); h) − X̃i+1)‖
≤ MChp+1 + (1 + hK)‖Ri(X̃(ti) − X̃i)‖
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holds and, hence, the method is convergent.
With the help of this basic method, we define a new method by applying in each step first

a transformation, then the integration step by the basic method in the transformed system, and
finally a back-transformation. Thus, the so obtained new method has the form

Xi+1 = F(ti, Xi; h),

with
F(ti, Xi; h) = Qi+1F̃(ti, Q

−1
i Xi; h).

The quantities Qi will describe the mentioned spin-stabilization but at the moment they may
represent any suitable transformations. Note that we omit a subscript i although F is defined
differently in each integration step. According to (36) we require that

(a) ‖Qi‖, ‖Q−1
i ‖ ≤ M,

(b) Qi+1Q
−1
i = I + O(h).

(37)

With the relations X̃i = Q−1
i Xi and X̃(ti) = Q−1

i X(ti), we then have that

‖X(ti+1) − F(ti, X(ti); h)‖
= ‖X(ti+1) − Qi+1F̃(ti, Q

−1
i X(ti); h)‖ = ‖Qi+1X̃(ti+1) − Qi+1F̃(ti, X̃(ti); h)‖

≤ ‖Qi+1‖ ‖X̃(ti+1) − F̃(ti, X̃(ti); h)‖ ≤ MChp+1

and that

‖Ri+1Q
−1
i+1(F(ti, X(ti); h) − F(ti, Xi; h))‖

= ‖Ri+1(F̃(ti, X̃(ti); h) − F̃(ti, X̃i; h))‖
≤ (1 + hK)‖Ri(X̃(ti) − X̃i; h)‖ = (1 + hK)‖RiQ

−1
i (X(ti) − Xi)‖.

Hence, if the basic method is convergent, then the new method that first transforms, then applies
the basic method, and finally transforms back is convergent as well.

In the special case of the DAE integration methods that we will consider together with the
spin-stabilization according to (32) for the transformations, we will be in the situation that

Xi =











xi+k−1

xi+k−2

...
xi











, X(ti) =











x(ti+k−1)
x(ti+k−2)

...
x(ti)











(38)

and

Qi =











Q̃(ti+k−1)

Q̃(ti+k−2)
. . .

Q̃(ti)











,

where we again omit a subscript i at Q̃, which also differs from step to step. Since we stay close
to a (continuous) path Q(t) of orthogonal matrices on a compact interval when we deal with
convergence, it is clear that the properties (37) hold.

The numerical method given by F̃ in (33) is then applied to integrate the transformed DAE
with coefficient functions

Ẽ = EQ̃, Ã = AQ̃ − E ˙̃Q.

In the following section we discuss the spin-stabilization approach for two classes of standard DAE
integrators.
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6.2 Spin-stabilized stiffly accurate Runge-Kutta methods

In this section we discuss the use of spin-stabilization within stiffly accurate Runge-Kutta methods
possessing an invertible coefficient matrix A. For this, let a linear DAE (10) be given which is
already strangeness-free such that we do not need to perform an index reduction.

A Runge-Kutta method for the integration of (10) has the form

(a) xi+1 = xi + h
∑s

j=1 βjẊj ,

(b) Xj = xi + h
∑s

l=1 αj,lẊl, j = 1, . . . , s,

(c) EjẊj = AjXj + fj , j = 1, . . . , s,

(39)

with
Ej = E(ti + γjh), Aj = A(ti + γjh), fj = f(ti + γjh).

For convenience, we use the short hand notation

diag(Ej) =







E1

. . .

Es






, col(fj) =







f1

...
fs







which also applies to other arguments. Using the Kronecker product, as it is common in the
treatment of Runge-Kutta methods, we can solve (39b) according to

Ẋ =
1

h
(A−1 ⊗ In)(X − (e ⊗ xi)),

where X = col(Xj) and Ẋ = col(Ẋj). Writing (39c) as

diag(Ej)Ẋ = diag(Aj)X + col(fj),

we can eliminate Ẋ to obtain

diag(Ej)(A−1 ⊗ In)(X − (e ⊗ xi)) = h diag(Aj)X + h col(fj)

and thus

[diag(Ej)(A−1 ⊗ In) − h diag(Aj)]X = diag(Ej)(A−1 ⊗ In)(e ⊗ xi) + h col(fj). (40)

Observing that the leading matrix is invertible for sufficiently small h and that the numerical
solution xi+1 is given by the last block entry of X in the case of stiffly accurate Runge-Kutta
schemes, we obtain

xi+1 = (eT
s ⊗ In)[diag(Ej)(A−1 ⊗ In) − h diag(Aj)]

−1[diag(Ej)(A−1 ⊗ In)(e ⊗ xi) + h col(fj)],

where es = [ 0 · · · 0 1 ]T ∈ Rs. In view of (35), we must consider the matrix

W = (eT
s ⊗ In)[diag(Ej)(A−1 ⊗ In) − h diag(Aj)]

−1 diag(Ej)(d ⊗ In),

where d = A−1e as in Section 5.5. Let Pj , Qj denote matrices that transform (Ej , Aj) to Weierstraß
canonical form, see [2, 21], according to

PjEjQj =

[

Id 0
0 0

]

, PjAjQj =

[

Cj 0
0 Ia

]

.

Then W can represented as

W = (eT
s ⊗ In) diag(Qj)

· [diag(PjEj)(A−1 ⊗ In) diag(Qj) − h diag(PjAjQj)]
−1

· diag(PjEjQj) diag(Q−1
j )(d ⊗ In).
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Utilizing that PjEj has already a vanishing second block row, we see that

diag(PjEj)(A−1 ⊗ In) diag(Qj) − h diag(PjAjQj)

=







v1,1P1E1Q1 − hP1A1Q1 · · · v1,sP1E1Qs

...
. . .

...
vs,1PsEsQ1 · · · vs,sPsEsQs − hPsAsQs







=















v1,1Id − hC1 0 · · · v1,1Id + O(h) O(h)
0 −hIa · · · 0 0
...

...
. . .

...
...

vs,1Id + O(h) O(h) · · · vs,sId − hCs 0
0 0 · · · 0 −hIa















.

(41)

The inverse of this matrix must be applied to

diag(PjEjQj) = diag(J), J =

[

Id 0
0 0

]

.

Because of its zero block rows, in (41) we can replace the entries consisting only of O(h) by zero
and the entries −hIa by vj,lIa without altering the resulting W . Hence,

W = (eT
s ⊗ In) diag(Qj)((A−1 ⊗ In) + O(h))−1 diag(J) diag(Q−1

j )(d ⊗ In)

= Qs(e
T
s ⊗ In)((A⊗ In) + O(h)) diag(J) diag(Q−1

j )(d ⊗ In).

Observing, furthermore, that

diag(J) diag(Q−1
j )(d ⊗ In) = diag(J) diag(Q−1

j ) col(djQjQ
−1
0 + O(h))

= diag(J) diag(djIn) col(Q−1
0 + O(h)) = (d ⊗ In) diag(J) col(In + O(h))Q−1

0 ,

with Q0 belonging to the transformation of (E(ti), A(ti)) to Weierstraß canonical form and using
that eT

s Ad = eT
s AA−1e = 1, we finally arrive at

W = Qs(e
T
s ⊗ In)((A ⊗ In) + O(h))(d ⊗ In) diag(J) col(In + O(h))Q−1

0

= Qs((e
T
s Ad ⊗ In) + O(h)) diag(J) col(In + O(h))Q−1

0

= Qs(In + O(h)) diag(J) col(In + O(h))Q−1
0 .

Comparing with (35) we have stability with

Ri = Q−1
0 , Ri+1 = Q−1

0 .

Together with the known consistency, we get convergence of any transformation method that is
based on stiffly accurate Runge-Kutta methods, in particular of the spin-stabilized stiffly accurate
Runge-Kutta methods.

Theorem 19 A spin-stabilized stiffly accurate Runge-Kutta method based on a stiffly accurate
Runge-Kutta method of order p with invertible A as F̃ together with the transformation (32) is
convergent of order p.

In order to study the stability properties of a spin-stabilized stiffly accurate Runge-Kutta
method concerning its long-time behavior, we apply it to the test equation (27). Let (E, A)
denote the coefficients of the test equation, let P, Q denote matrix functions that transform (E, A)
to the canonical form of (29), and let Q̃ be the stabilizing transformation according to

Q̃(t) = Q(ti+1) + (t − ti+1)
˙̃Q.

Setting x = Q̃x̃, we have to integrate the DAE

E(t)Q̃(t) ˙̃x = (A(t)Q̃(t) − E(t) ˙̃Q)x̃.

28



Using, furthermore, the quantities t̂j = ti + γjh and Q̃j = Q̃(t̂j), the spin-stabilized Runge-Kutta
method has the form

(a) Q̃(ti+1)
−1xi+1 = Q̃(ti)

−1xi + h
∑s

j=1 βjẊj ,

(b) Xj = Q(ti)
−1xi + h

∑s
l=1 αj,lẊl, j = 1, . . . , s,

(c) EjQ̃jẊj = (AjQ̃j − Ej
˙̃Q)Xj , j = 1, . . . , s,

(42)

Due to (42c) and the special form of the test equation, the scaled stage values Q̃jXj are consistent
at time t̂j . Writing down (40) for the present situation, we obtain that

[

diag(EjQ̃j)(A−1 ⊗ In) − h diag(AjQ̃j − Ej
˙̃Q)
]

diag(Q̃−1
j ) col(Q̃jXj)

=
[

diag(EjQ̃j)(A−1 ⊗ In)(e ⊗ In)
]

Q̃(ti)
−1xi

or
[

diag(EjQ̃j)(A−1 ⊗ In) diag(Q̃−1
j ) − h diag(Aj − Ej

˙̃QQ̃−1
j )
]

col(Q̃jXj) = col(djEjQ̃jQ̃(ti)
−1xi).

The diagonal entries of the leading block matrix are given by vj,jEj − h(Aj − Ej
˙̃QQ̃−1

j ), whereas

the off-diagonal entries have the form vj,lEjQ̃jQ̃
−1
l . The third term, which has to be considered

is EjQ̃jQ̃(ti)
−1 in the right hand side. In the treatment of these three terms, we incorporate the

elimination of the first components of xi and Q̃jXj due to the consistency of these quantities at
the corresponding points. We also make use of the transformation (28) to the canonical form (29).

Because of

Q̃jQ̃(ti)
−1 = (Q̃(ti) + γjh

˙̃Q(ti) + O(h2))Q̃(ti)
−1

= I + γjhQ̇(ti)Q(ti)
−1 + O(h2)

=

[

1 0
0 1

]

+ γjh
ω

(1 + ω2t2i )
2

[

−ωti 1
−1 −ωti

] [

1 −ωti
ωti 1

]

+ O(h2)

=

[

1 0
0 1

]

+ γjh
ω

1 + ω2t2i

[

0 1
−1 0

]

+ O(h2),

we obtain that

EjQ̃jQ̃(ti)
−1

[

1 + ωti
1

]

=

[

1 −ωt̂j
0 0

]([

1 + ωti
1

]

+ γjh
ω

1 + ω2t2i

[

1
−(1 + ωti)

]

+ O(h2)

)

=

[

1 + ωti + γjh
ω

1+ω2t2i
+ ωt̂jγjh

ω
1+ω2t2i

(1 + ωti) − ωt̂j

0

]

+ O(h2).

As ti → ∞, the third term in the first component of the latter matrix vanishes, whereas the fourth
term tends to γjhω which cancels ωti − ωt̂j . Hence, the first component tends to one.

Observing that

Q̃jQ̃
−1
l = (Q(ti+1 − (1 − γj)h

˙̃Q)(Q(ti+1 − (1 − γl)h
˙̃Q)−1

= (I − (1 − γj)h
˙̃QQ(ti+1)

−1)(I − (1 − γl)h
˙̃QQ(ti+1)

−1)−1

= (I − (1 − γj)h
˙̃QQ(ti+1)

−1)(I + (1 − γl)h
˙̃QQ(ti+1)

−1 + O(h2))

= I + (γj − γl)h
˙̃QQ(ti+1)

−1 + O(h2)

=

[

1 0
0 1

]

+ (γj − γl)h
ω

(1 + ω2t̂2j)
2

[

−ωt̂j 1
−1 −ωt̂j

] [

1 −ωt̂j
ωt̂j 1

]

+ O(h2)

=

[

1 0
0 1

]

+ (γj − γl)h
ω

1 + ω2t̂2j

[

0 1
−1 0

]

+ O(h2),
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we find that

EjQ̃jQ̃
−1
l

[

1 + ωt̂l
1

]

=

[

1 −ωt̂j
0 0

]

(

[

1 + ωt̂l
1

]

+ (γj − γl)h
ω

1 + ω2t̂2j

[

1
−(1 + ωt̂l)

]

+ O(h2)

)

=

[

1 + ωt̂l − ωt̂j + (γj − γl)h
ω

1+ω2 t̂2j
(1 + ωt̂j(1 + ωt̂l))

0

]

+ O(h2).

As above it follows that the first component also tends to one when ti → ∞. Finally, with

˙̃QQ−1
j =

ω

1 + ω2t̂2j

[

0 1
−1 0

]

+ O(h)

by a similar computation, we get that

(

vj,jEj − h(Aj − Ej
˙̃QQ−1

j )
)

[

1 + ωt̂j
1

]

=

[

vj,j − h(λ + ω) + h ω
1+ω2t̂2j

(1 + ωt̂j + ω2t̂2j)

0

]

+ O(h2).

Here, the third term in the first component tends to hω as ti → ∞.
Since xi+1 coincides with Q̃sXs, we altogether have derived the representation

xi+1,2 = (eT
s (A−1 − hλI)−1d + O(h2))xi,2.

Comparing with Section 5.5, we immediately see that

eT
s (A−1 − hλI)−1d = R(z, 0),

where R(z, w) is the stability function derived there. Moreover, R(z, 0) is nothing else than the
classical stability function for ODEs. Hence, under the assumption that the constant in the
remainder term is small, we see that the influence of the parameter ω on the stability of the
discretization has been removed.

6.3 Spin-stabilized BDF methods

In this section we discuss the use of spin-stabilization within BDF methods. As in the previous
section, we consider a strangeness-free DAE (10).

A BDF method for the integration of (10) has the form

1

h
Ei

k
∑

l=0

αk−lxi−l = Aixi + fi, (43)

with
Ei = E(ti), Ai = A(ti), fi = f(ti).

We assume that the method is normalized to have the leading coefficient αk = 1. The relation
(43) then yields

xi = (Ei − hβkAi)
−1
[

hβkfi − Ei

k
∑

l=1

αk−lxi−l

]

.

In view of (35), we must consider the matrix

W =











−αk−1Di · · · −α1Di −α0Di

In

. . .

In










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with
Di = (Ei − hβkAi)

−1Ei.

Let Pi, Qi transform (Ei, Ai) to Weierstraß canonical form. Then Di has the form

Di = Qi(PiEiQi − kβkPiAiQi)
−1PiEiQiQ

−1
i

= Qi

[

Id − hβkCi 0
0 −hIa

] [

Id 0
0 0

]

Q−1
i

= Qi

[

Id + O(h) 0
0 0

]

Q−1
i ,

implying that

diag(Q−1
i , . . . , Q−1

i )W diag(Qi, . . . , Qi)

=





























−αk−1Id 0 · · · · · · −α1Id 0 −α0Id 0
0 0 · · · · · · 0 0 0 0
Id 0
0 Ia

. . .

. . .

Id

Ia





























+ O(h).

Hence, if the BDF method is D-stable, see [13], then there is a vector norm such that the latter
matrix is bounded by 1 + hK in the corresponding matrix norm with a suitable constant K.
Comparing with (35) and observing (38) we have stability with

Ri = diag(Qi+k, . . . , Qi+k).

Thus, we have the following theorem.

Theorem 20 A spin-stabilized BDF method based on a BDF method of order k, 1 ≤ k ≤ 6
together with the transformation (32) is convergent of order k.

In order to study the stability properties of a spin-stabilized BDF method concerning its long-
time behavior, we apply it to the test equation (27). Let (E, A) denote the coefficients of the test
equation, let P, Q denote matrix functions that transform (E, A) to the canonical form of (29),
and let Q̃ be the stabilizing transformation according to

Q̃(t) = Q(ti) + (t − ti)
˙̃Q.

Setting x = Q̃x̃ and xi−l = Q̃i−lx̃i−l with Q̃i−l = Q̃(ti−l), we have to integrate the DAE

E(t)Q̃(t) ˙̃x = (A(t)Q̃(t) − E(t) ˙̃Q)x̃.

Hence, the spin-stabilized BDF method has the form

1

h
EiQ̃i

k
∑

l=0

αk−lQ̃
−1
i−lxi−l = (AiQ̃i − Ei

˙̃Q)Q̃−1
i xi,

leading to the difference equation

[

Ei − hAi + hEi
˙̃QQ̃−1

i

]

xi + EiQ̃i

k
∑

l=1

αk−lQ̃
−1
i−lxi−l = 0. (44)
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Since the BDF methods yield consistent numerical approximations, we know that

xi =

[

x1,i

x2,i

]

=

[

1 + ωti
1

]

x2,i,

which we assume to hold for every numerical approximation. As already mentioned, we also

assume that ˙̃Q = Q̇(ti) + O(h) with a small involved constant. Using (28) we then have that

(Q̇(ti) + O(h))Q̃−1
i =

ω

(1 + ω2t2i )
3/2

[

−ωti 1
−1 −ωti

]

1

(1 + ω2t2i )
1/2

[

1 −ωti
ωti 1

]

+ O(h)

=
ω

(1 + ω2t2i )
2

[

0 1 + ω2t2i
−1 − ω2t2i 0

]

+ O(h)

=
ω

1 + ω2t2i

[

0 1
−1 0

]

+ O(h),

and, thus,

Ei(Q̇i + O(h))Q̃−1
i xi =

(

ω

1 + ω2t2i

[

1 −ωti
0 0

] [

1
−(1 + ωti)

]

+ O(h)

)

x2,i

=

(

ω

1 + ω2t2i

[

1 + ωti(1 + ωti)
0

]

+ O(h)

)

x2,i.

Furthermore, we observe that

Q̃iQ̃
−1
i−l = Q(ti)(Q(ti) + (ti−l − ti)

˙̃Q)−1

= Q(ti)Q(ti)
−1(I + lhQ̇(ti)Q(ti)

−1) + O(h2)

=

[

1 0
0 1

]

+ lh
ω

1 + ω2t2i

[

0 1
−1 0

]

+ O(h2)

such that

EiQ̃iQ̃
−1
i−lxi−l =

(

[

1 −ωti
0 0

]

[

1 lh ω
1+ω2t2i

−lh ω
1+ω2t2i

1

]

[

1 − ωti − lωh
1

]

+ O(h2)

)

x2,i−l

=

([

1 + lh ω2ti

1+ω2t2i
lh ω

1+ω2t2i
− ωti

0 0

]

[

1 − ωti − lωh
1

]

+ O(h2)

)

x2,i−l

=

([

1 − lωh + lhω2ti(1+ωti)
1+ω2t2i

+ lh ω
1+ω2t2i

0

]

+ O(h2)

)

x2,i−l.

Inserting all relations into the first block row of (44) and utilizing the consistency of all approx-
imations gives a difference equation for the second components only. In the limit ti → ∞ this
difference equation reads

[

(1 + ωti) − ωti − hλ(1 + ωti) − hω(1 − λti) + hω + O(h2)
]

x2,i

+

k
∑

l=1

αk−l(1 + O(h2))x2,k−l = 0

which reduces to

(1 − z + O(h2))x2,i +

k
∑

l=1

αk−l(1 + O(h2))x2,k−l = 0.

But this is nothing else than a perturbation of the difference equation which we obtain when we
apply the BDF method to the standard ODE test equation. Thus, provided the constants involved
in the remainder terms are small, we can expect the same stability properties of the spin-stabilized
BDF methods as in the ODE case.
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Figure 7: Numerical stability region for the standard implicit Euler method

6.4 A numerical experiment

We have implemented the standard implicit Euler method and its spin-stabilized version as pre-
sented in this paper. Using a constant stepsize, we applied both methods to the problem of
Example 1 for a range of parameter values (δ, η) and checked numerically the stability of the
numerical solutions. The results can be seen in Figure 7 for the standard implicit Euler method
and in Figure 8 for the spin-stabilized implicit Euler method. Both figures were obtained with
a stepsize of h = 0.1 and cover the range (δ, η) ∈ [−3, 3]2. The shading is based on a numerical
estimate of the limit factor between the norms of xi and xi+1.

In Figure 7, one can recognize the stability restriction |1 + hδ| < |1 + hη|, whereas Figure 8
shows that the spin-stabilized implicit Euler method is stable in the region δ < η, where the actual
solution is stable. We also see the superstability of the implicit Euler method, i. e. the stability
of the numerical solution of the implicit Euler method in regions where the actual solution is not
stable.

7 Conclusion

We have analyzed the stability properties of general differential-algebraic equations of arbitrary
index and related them to those of the corresponding inherent ordinary differential equation.

We have presented a new test equation for differential-algebraic equations that takes into
account that the kernel of Fẋ may spin along the solution. We have analyzed the stability of
classical numerical integration methods for differential-algebraic equations on the basis of this
new test equation and introduced the concept of DAE stability functions.

In order to deal with rapidly spinning kernels we have derived a new stabilization method
that can be used together with all classical integrators. We have shown that this approach which
in every integration step first transforms the equation, then carries out the integration step by
the given method, and finally transforms back, leads to the same convergence results for stiffly
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Figure 8: Numerical stability region for the spin-stabilized implicit Euler method

accurate Runge-Kutta and BDF methods as for the unstabilized methods, while getting more
appropriate regions of numerical stability. Moreover, we have demonstrated our new approach
with a numerical example.
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