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Abstract

In this paper, the one-dimensional equation for the transversal vibrations of
an elastoplastic beam is derived from a general three-dimensional system. The
plastic behavior is modeled using the classical three-dimensional von Mises plas-
ticity model. It turns out that this single-yield model leads after a dimensional
reduction to a multi-yield one-dimensional hysteresis model, given by a hystere-
sis operator of Prandtl-Ishlinskii type whose density function can be determined
explicitly. This result indicates that the use of Prandtl-Ishlinskii hysteresis op-
erators in the modeling of elastoplasticity is not just a questionable phenomeno-
logical approach, but in fact quite natural. In addition to the derivation of the
model, it is shown that the resulting partial differential equation with hystere-
sis can be transformed into an equivalent system for which the existence and
uniqueness of a strong solution is proved. The proof employs techniques from
the mathematical theory of hysteresis operators.

2000 Mathematics Subject Classification: 74C05, 74N30, 35Q72, 34C55, 47J40.
Keywords and Phrases: Elastoplasticity, beam equation, hysteresis operators,
Prandtl-Ishlinskii model, von Mises model.

!This work has been supported by the DFG Research Center MATHEON “Mathematics for key
technologies” in Berlin.



1 Introduction

The use of hysteresis operators in the modeling of the hysteretic stress-strain relations
that are commonplace in nonlinear elastoplasticity, dates back to at least the early 20th
century. Back in 1928, Prandtl in his pioneering work [9] introduced the input-output
relation that was independently studied by Ishlinskii in [3] in the 1940’s and nowadays
is called the Prandtl-Ishlinskii operator. It describes the time-evolution of the relation
between strain & (input) and stress o (output) in one-dimensional elastoplasticity in
the form

o(t) = / " 0@ lE)(1) da. (L1)

Here, t denotes the time variable, ¢ is some nonnegative weight function that satisfies
the growth condition

/000(1 +q) ¢(q) dg < 400, (1.2)

and s, denotes the one-dimensional stop operator or Prandtl’s elastic-perfectly plastic
element with thresholds £¢q, which is a basic hysteresis operator whose dynamic input-
output behavior is described in Fig. 1.
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Figure 1: Hysteretic input-output behavior of s, .

Between the thresholds +¢, the behavior is linear elastic (with elasticity modulus 1),
while along the upper (lower) threshold +¢ (—¢) we have irreversible plastic yielding
and can only move to the right (left). The operator s, is a special one-dimensional
case of the abstract stop operator &, in a separable Hilbert space X associated with
a closed and convex set Z C X containing 0. This operator is defined in the following
way: for a given input function v € W1(0,T; X), consider the variational inequality

xt)ez vielo,T], x(0)=xo,
(x(t) —0(t),z—x(t)) >0 VzeZ, fora.e te(0,T). (1.3)

Here, and throughout the paper, the superimposed dot stands for differentiation with
respect to time, and (-, -) is a scalar product in X . The investigation of such problems
goes back to [8], and the existence and uniqueness of a solution x € W1(0,T; X) for
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any given initial value xo € Z is obtained as a special case of the general theory. This
allows us to define the corresponding solution operator &, as

S, ZxWH(0,T; X) — WH(0,T; X),  [xo,v] — X. (1.4)

It is proved in [5, Section 1.3] that this operator is continuous and, if Z has non-empty
interior, admits a continuous extension to

S, :ZxC(0,T); X)— C(]0,T]; X) .

In the case X = R', we set s, = &_,,. Notice that since z = 0 € Z, we obtain
from (1.3) the fundamental energy dissipation inequality

1d .
> q 1Sz [x0, V()" < (Szlx0, v](t), ve(t)), a.e.in (0,T). (1.5)
In this paper, we restrict ourselves to the canonical choice of initial conditions

Xo = Projz(v(0)), (1.6)

where Proj, : X — Z is the orthogonal projection onto Z. We then simply write
X = &z[v] instead of x = Sz[xo,v]. The operator

B, =1-6, (1.7)

where I denotes the identity mapping, is called the vector play operator associated
with Z. We similarly denote p, = P_, ;. The stop and play operators form the corner
stones of the mathematical theory of hysteresis operators. In the 1D case in particular,
every hysteresis relation with the so-called “return point memory” (which is a common
property of hysteresis relations in plasticity, ferromagnetism, piezoelectricity, etc.) can
be represented by some functional on the one-parametric play system {pq ;g >0}, see
|1, Theorem 2.7.7|. The Prandtl-Ishlinskii operators (1.1) correspond in this respect
to linear functionals. For a thorough treatment of their analytical and geometrical
properties, we refer the reader to the monographs [1, 4, 5, 10]. Some important facts
concerning s,, which will be needed in the analysis below, are collected in Propositions
3.4, 3.5 in Section 3.

Although the Prandtl-Ishlinskii operator is easily understood and rather intuitive,
its use in the physical and engineering literature is still nonstandard. The main reasons
are the following: on the one hand, the operator appears to be entirely phenomeno-
logical, and its weight function ¢ is a priori unknown and must be identified; on the
other hand, other well-established three-dimensional plasticity models like those by
von Mises or Tresca are available.

The aim of this paper is twofold: first, we demonstrate that in the modeling of
the (one-dimensional) transversal vibrations of an elastoplastic beam the use of the
three-dimensional von Mises model leads (after normalizing all physical constants to
unity) to the following beam equation for the transversal displacement:

Wy — Wagrr + P [wm]m =g. (1.8)
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Here, P is a Prandtl-Ishlinskii operator whose weight function ¢ can be determined
explicitly, and g is given. Observe that the Prandtl-Ishlinskii operator P is (as
most nontrivial hysteresis operators) non-differentiable, so that (1.8) has to be given
a proper meaning.

The existence and uniqueness analysis of the problem is carried out by transforming
(1.8) into a system, in which no differentiation of the hysteresis operator occurs. The
strong solution of this system is then interpreted as a weak solution to (1.8). The proof
employs techniques from the mathematical theory of hysteresis operators; in particular,
the properties of the stop operators s, will play a crucial role in the analysis.

The paper is organized as follows: in Section 2, will derive our model equation from
a three-dimensional model using dimensional reduction. In Section 3, we will state the
main existence and uniqueness result, which will be proved in the last two sections.

2 Derivation of the model

In this section, we derive our model from a general three-dimensional system. We
restrict ourselves to rectangular beams, that is, to sets Q C R3 of the form Q =
(0,L) x w, where L > 0 is the length of the beam, and where, with some h > 0
and b > 0, the set w = (—b,b) x (—h,h) represents its (rectangular) cross section.
We denote by = € (0, L) the longitudinal coordinate, by (y,z) € w the transversal
coordinates, and by ¢ € [0,7] the time, where T" > 0 is given.

In order to compare the resulting equations, we start with the linear elastic isotropic
case (Subsection 2.1), and then pass to the elastoplastic model under further simplify-
ing assumptions (Subsection 2.2). We follow the scaling technique of |2, Sect. 5.4] in
terms of a small parameter o > 0 with the intention to keep only lowest order terms
in « in the resulting equations. In particular, we assume that

hb=0(a), L=0(1).

Let us consider smooth displacements u: Q x (0,7) — R3 decomposed into

Uy u¥ ul?
u=| us = u% + ug = u” +u ,
ug u§ uf

where the superscripts L and H stand for low order and high order components with
respect to a, respectively. We make the following assumptions.

(A1) The low order deformation of the midsurface C = {(z,y) € R?; (z,y,0) € Q} is
independent of y, that is,

v(x,t)
ul(z,y,0,t) = 0 V(z,y)eC, Vte(0,T), (2.1)
w(z,t)

with given functions v,w : (0,L) x (0,7) — R.
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(A2) The low order deformation leaves the cross sections {x} X w perpendicular to
the midsurface, and their deformation is proportional to their distance to it; that
is,

ul(z,y, 2,t) = ub(z,y,0,t) + zn(x,y,t) V(r,y,2,t)€ Q2 x(0,T), (2.2)

where n(z,y,t) is the unit “upward” normal to the deformed midsurface C(t) =
C+ul(C,0,t) at time ¢.

(A3) v, = O(a?), we = O(a).

Under the hypothesis (A3), we can linearize the problem by replacing

1 —wy(z,t)
n(zx,y,t) = 2 2 !
\/(1+Ux<x>t)) +wz($,t) 1+Ux(xvt)
with
—wx(x,t)
Az, y.t) = 0 . (2.3)
1

This is justified, since an elementary computation yields that
[8(z,y, 1) = n(@,y,0)] < (jvalz, )] + [we(2,1)])°
whenever |v,(x,t)] <1, |wg(x,t)] < 1. This enables us to write for every (z,y, z,t) €
Q x (0,T) the low order displacement u(x,y, z,t) as
v(x,t) — zw,(x,t)
ul(z,y,2,t) = 0 ) (2.4)
w(z,t)

The smallness assumptions ensure in particular that the deformation

x
F(z,y,z,t) = | y | +u(z,y,z2,1) (2.5)
z

is a local homeomorphism. We further compute

Ve (2, 1) — 2Wap(x,t) 0 —wy(x,t)
vul(z,y, z,t) = 0 0 0 , (2.6)
Wy (z, 1) 0 0

and the low order strain tensor e = (Vul + (Vu*)7)/2 becomes

Uz (2, 1) — 2 W (x,t) 0 0
el(z,y, 2,t) = 0 00 |. (2.7)
0 0 0



2.1 Small elastic deformations

We denote by “ : 7 the canonical scalar product in the space of (3 x 3)-tensors, i.e.,
3
E:n=> &ing, YE=(&), n=(ny), i,j=123. (2.8)
ij=1

Moreover, we define for any given (3 x 3)-tensor & its (trace-free) deviator d(&) by

d€) =€ - 5 (6:0)5. (2.9

where & = (6;;) denotes the Kronecker tensor.

To motivate the elastoplastic case treated below, we first study the case of linear
isotropic elasticity, in which the strain tensor € and the stress tensor o are related to
each other through the formula

o = 2ue+A(e:6)4, (2.10)

where p, A are the Lamé constants. The main issue is to choose a proper scaling of
0. The component oy; is of the lowest order, which is O(a?) due to (2.7) and (2.10).
Assuming that the motion is “sufficiently slow” and no volume forces act on the body,
we may for scaling purposes refer to the elastostatic equilibrium conditions dive = 0
which, according to the natural scaling of the variables y,z = O(«a), * = O(1) and
due to the symmetry of o, justify the scaling hypothesis

(A4) 019,013 = O(a?), 099,033,093 = O(at).

According to (2.10) and Hypothesis (A4), the high order strain tensor e is scaled as
(A5) efl efl = O(a?), el el = O(a?), el ell = O(a?).

In terms of the high order displacements u” | this corresponds to the scaling uff =

O(a*), ull ull = O(a?), with a vanishing O(a?) component of eZ,.

Let &, & denote the stress and strain components of the order O(a?) at most.
Then
g:0=011=02u+3NE:d=(2u+3)\)(eh + el + k),

hence, by (2.10), o1, = 2uek + \/(2u + 3X\)oy;. In terms of the Young modulus
E = pu(2p+3X\)/(n+ A) and the Poisson ratio v = A\/(2(u 4+ \)) we thus obtain

L = L
on = Eeyy, €11 = €] = Vp — 2Way,

and
Eel 0 0 el 0 0
a=ul, & = 0 00/, &= 0 —wvell 0 . (2.11)
0 00 0 0 —vek



On the upper boundary, we prescribe the boundary condition o (z,y, h,t)-v3 = f(z,1),
where v3 = (0,0,1)7 is the upward normal vector, and f = (f1,0, f3)7 is a given
external surface load. In component form, this boundary condition reads o3 = f1,
093 = 0, 033 = f3. In agreement with the scaling hypothesis (A4), we require f; =
O(a?), f3 = O(a*). On the rest of the boundary, we assume the vanishing normal
stress boundary conditions o -v = 0, where v is the unit outward normal vector. On
{0} x w, this means in particular

Wee (0, 1) = v,(0,8) =0, w(0,¢) =0, (2.12)

where the latter boundary condition is added in order to eliminate possible rigid body
displacements and corresponds to a simply supported beam. An analogous choice of
the boundary conditions is made at the right surface {L} x w. In accordance with
these boundary conditions, we consider the Sobolev space

V ={(v,w) € H(0,L) x H*(0,L); w(0) = w(L) = 0}. (2.13)
Finally, suppose that the initial conditions
v(x,0) = 0(z), v(z,0)=0v'(2), wlx,0)=uw’z), wz,0)=w (), (2.14)

are given. As in [7], we write the momentum balance equation in variational form

/putt-ﬁdxdydz—i-/a:édxdydz = / (o-v)-uds, (2.15)
Q Q G9)

with the unknown vector u and tensor o, for all admissible displacements 1 and
strains & of the form (2.11); i.e., we have

0(x) — 2z, (x) £ (x) 0 0
u(x,y,z) = 0 , E(x,y,z) = 0 —véy(x) 0 ,
12)(1‘) 0 0 —l/én(l‘)

(2.16)
with é17 = 0,(x) — 2 W, (z), where (0,w) varies over the space V. It follows from
the choice of the boundary conditions that

L
/(0'~1/)-f1ds _ 2b/ (1 (6= hady) + fo ) de
[2)9] 0

L L
= ([ podes [0+ ).

Keeping on the left-hand side of (2.15) only terms of the lowest order in a/, we may
replace (u,o) by (@,d) from (2.11). The test functions v, @ are independent of each
other, and a straightforward calculation shows that (2.15) decouples into the system

p/o vtt(x,t)@(x)dx—l—E/O vz (x,t) Op(z) de = /0 g1(z,t)v(x)dx, (2.17)

L h2 E ]’L2 L
p/ <wtt(x,t)u§(x) + watt(x,t) u?x(x)>d:c + 3 /wm(x,t) Wp () d
0 0

_ /0 oo, ) () da (2.18)



where we have set
1 1
gl(xvt) = ﬁfl(x7t>7 g2(x7t) = ﬁ(ffi(xat)—i_h(fl)I(x?t)) : (219)
The variational system (2.17), (2.18) leads formally to the partial differential equations

puy — Evge = g1, (2.20)

ph? Eh?
P Wy — wa:ctt + wax:c:c = g2, (221)

which describe the longitudinal (Eq. (2.20)) and transversal (Eq. (2.21)) vibrations
of a straight elastic beam.

2.2 Transversal elastoplastic oscillations

We now turn our interest to elastoplasticity. We make further hypotheses.

(B1) The strain tensor € is decomposed in elastic and plastic components € = e°+¢€P.

(B2) The elastic constitutive law is as in (2.11), that is,

011 0 0 5?1 0 0
o= 0 00|, =] 0 —ve, 0 : (2.22)
0 00 0 0 —wve
with
011 = E&fil s (223)

where E,v are the Young modulus and the Poisson ratio, respectively.
(B3) The plastic deformations are volume preserving in the sense that

e:5 = 0. (2.24)

The plastic yield condition is stated in terms of the stress deviator

1
d(o) = 0'—5(0':5)5 = onn,
where
20 0
n=|0 —3 0
1
0 0 —3

The von Mises yield condition reads

(B4) d(0):d(o) < 2R?,



or equivalently
loul < R, (2.25)

where R > 0 is a given yield limit. For the plastic strain, we prescribe the normality
flow rule

(B5) e/:(c—6) > 0 VeeR®Y : d(s):d(e) < 2R?,
and assume for simplicity that
(B6) the motion is only transversal,

that is, the component f; of the external surface load vanishes, and

—zwg(z,t)
uL(x,y, z,t) = 0 , enl(x,y, z,t) = 6{“1(56,3/, 2,t) = —zWe(z,t).
w(z,t)

From (B3) it follows that (B5) can be equivalently written as

2
e:(oun—6) > 0 VeecREPY . d(a):d(e) < 5RQ. (2.26)

Whenever ) # 0, we may choose

. \/5 ey
c=\3t ==
3 el
and obtain from (2.26) that

o1 (ef:m) = R/ei1ef yn:im,
_3 3

whence ef = 3(el;);m. Assuming that we have eP(z,y,2,0) = 5ei,(2,y,2,0)n at
initial time ¢t = 0, we thus obtain

3
a2 0) = Sehlwyzi)n (2.27)
for all admissible values of the arguments. This enables us to rewrite (2.26) in the
form

(61171)75 (E (811 — 8?1) — 5’) >0 Vo e [—R, R] , (228)

under the constraint |e;; —e};| < R/E. At this point, the notion of hysteresis op-
erators comes into play. Suppose that the initial condition €,(z,v, 2,0) is related to
e11(x,y,2,0) by (1.6), that is,

€01(2,v,2,0) = Qr/p(—2Wee(x,0)), where @Q,(s) = max {—r, min {s,r}}
VseR, r>0. (2.29)



We then arrive at the conclusion that

8‘;1(117, Y, z, t) = SR/E [_waz(xa )] (t) ) 8}1)1(1'7 Y, z, t) = pR/E [_Z wﬂm(‘r’ )] (t) ’
(2.30)
where p,., s, are the scalar play and stop operators with threshold r. Using the simple
identity
splau] = a s, [ul
which, with the convention s.[u| := u, holds for all & € R and every input function
u, we rewrite (2.30) as

en (2, 2,t) = =2 8RBl [Wea (2, )] (1), €1(2,, 2, 1) = =2 PRy (pja)) [Wae (2, )] () -
(2.31)
We now aim to derive the momentum balance in the same way as in (2.15) to (2.19).
To this end, we again make the test functions independent of ¥, so that

o = EZQER/(E‘ZD [wm] wm.

Integrating over w we obtain

h
/22 5R/(E|z|) [wfm] dy dz = 2b/ 225R/(E\z|) [wm] dz
w —h

h R\?> [>®
= 4b / 22 5p)(p2) [Wae) dz = 4b (E) / g " s (W] da,
0 R/(Eh)

where

Plu] := /OO q " s,u]dgq (2.32)

R/(Eh)

is a Prandtl-Ishlinskii operator with the weight function

0, if 0<qg< g,
o(q) = .. . (2.33)
g, if qg> 4 -
The counterpart of (2.21) then reads formally
h2 R3
p Wit = 5= Weant + m'P (Wew,w = G2 (2.34)
Here, we have used the abbreviation
82
P Wirlyy (2,1) = 55 P lwe(w, )] (F) - (2.35)

0x?

Remark 2.1. Note that the Prandtl-Ishlinskii initial loading curve o = ®(e) is
bounded and saturation occurs. Indeed, ® is given by the formula (see [1], [5])

R3S [®
De) = —; / ¢ *min{q,e}dg, for e>0, (2.36)
E2h Jr(en)
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so that

2 .
E;‘ €, if e<

) =3 <1 . ) . (2.37)

Y

SE

R
2 ~ 3E2R22 € > Eno

hence Rh/2 is the saturation limit. More general Prandtl-Ishlinskii initial loading
curves describe the cases that the shape of w is no longer a rectangle, but a domain
of the form

w = {(y,2) ER*; —h <z<h, —b(z) <y <b(2)}
with a positive measurable function b. The same equation with a different Prandtl—
Ishlinskii operator also comes out if we let the Young modulus £ depend on z as a
model for a layered beam.

Remark 2.2. Note that (2.44) reduces to (2.21) if we replace s,[u| by u in the
expression (2.42) for Plu| (no plasticity). Also, if we pass to the elastic limit as
r — 0o in (2.44), we recover (2.21) in agreement with natural expectations.

3 Statement of the mathematical results

In what follows, we use the usual notations for the spaces of continuous functions
and for the standard Lebesgue and Sobolev spaces. The L2-norm is always denoted
by |- 1I.

We now formulate the main mathematical results of this paper. To this end, we
normalize all physical constants in (2.44) to unity, which has no bearing on the math-
ematical analysis. We thus study the following initial-boundary value problem in Qr,
where Q; := (0,1) x (0,¢) for any ¢t > 0:

Wt — Wegtt + P [wxx]g;x = g in QT7 (31)
w(0,t) = Plwg](0,t) = w(l,t) = Plwe(1,8) = 0, 0<t<T, (3.2)
w(x,0) = z0(x), w(z,0) = 2z(x), 0<z<I1. (3.3)

We make the following general assumptions on the data of the system:

(H1) g€ L*(Qr).

(H2) 2o € H3*(0,1),2; € H?*(0,1), and the following compatibility conditions are
satisfied:

20(0> = ZO,:E:E(O) = Zo(l) = zO,:m:(1> = O, Zl<0> = 21(1) =0. (34)
(H3) The weight function ¢ : (0,00) — [0,00) of the Prandtl-Ishlinskii operator
Pl = [ ela) sl d
0

is measurable and satisfies the growth condition

/OOO (1+¢°) »(q)dg < +oc. (3.5)
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Remark 3.1. Under condition (3.5) the so-called clockwise admissible potential of P,
given by the hysteresis operator

Qlu = [ ela)siluldy, (3.6

is well defined. It then follows from the dissipation inequality (1.5) for the stop operator
that for any input function v € W1(0,T) it holds

(Qlul), (1) = /Ooo ©(q) sq[ul(t) (sqlu]), (t)dg < Plul(t) we(t), for a.e. te(0,T).
(3.7)

We now associate with problem (3.1)—(3.3) the following system of initial-boundary
value problems

U = P lwea) in Qr, (3.8)

Wy — Wepy = —Uge + f2,1) in Qr, (3.9)
u(0,t) =u(l,t) = 0, 0<t<T, (3.10)
w(0,t) =w(l,t) = 0, 0<t<T, (3.11)
u(z,0) = z(x), 0<z<1, (3.12)

w(xz,0) = z(x), 0<z<1, (3.13)

which arises from (3.1)—(3.3) if we put

u(z,t) = z(x / P [wes] (x, ) flz,t) = z(x) +/0 g(x,s)ds.  (3.14)

Conversely, one should expect that a sufficiently smooth solution (u,w) to the system
(3.8)—(3.13) induces a solution to (3.1)—(3.3). We will therefore in the following exam-
ine the solvability of (3.8)—(3.13). It will turn out, however, that we will not be able
to extract enough regularity from the system (3.8)—(3.13) so that the existence of a
strong solution to (3.1)—(3.3) can be guaranteed. Instead, we will show the following
weaker result.

Theorem 3.2. Suppose that the conditions (H1)-(H3) are satisfied. Then the system
(8.8)-(3.13) has a unique solution pair (u,w) having the following properties:

(i) we W2=(0,T;L*(0,1)) N L=(0,T; H2(0,1)) N H'(0,T: H'(0,1)).
(i) w e Whe(0,T; H2(0,1)) N H*(0,T; H'(0,1)).

(iii) Eq. (3.8) is fulfilled pointwise in Qr, and Eq. (3.9) holds almost everywhere in
Qr.

(iv) The initial and boundary conditions (3.10)-(3.13) are satisfied pointwise, and it
holds
Plwes](0,8) = Plwe](1,¢) =0 Vit €[0,7].
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Remark 3.3. We call (u,w) a strong solution to (3.8)—(3.13), and w a weak solution
to (3.1)—(3.3). The meaning of conditions (i), (ii) in Theorem 3.2 is that

Ugty g, Wame € L(0,T; L2(0,1)),
! ' , ( (0. 1) (3.15)
Upt, Wer € L*(Qr) .
By virtue of the boundary conditions and embedding theorems, we then have
Uy Uy, U, W, Wa, Wi, Wy € C(Qr) . (3.16)

Before proving Theorem 3.2 in the next sections, we now collect some well-known
properties of the one-dimensional stop operator that can be found in a more general
form in the monographs [1] or |5], and in the paper [6]. For the reader’s convenience,
we give a brief outline of the proofs.

Proposition 3.4. Let vi,v, € WHH(0,T) be given, x; = sq[vs], pi = v; — Xi = pylvi] ,
1 =1,2. Then

—_

d

(i) Ca(®) = @) (@) —0@) > 5200l —xe(6)”  ae;

[\
QU

(ii) Iz'n(t)—Pz(t)lJr%lxl(t)—m(t)l < o) —oo(B)] aes

(i) |x1(t) — x2(t)] < 2 max |vy(7) —va(1)]  Vt €[0,T];

(iv) [xi(t)] < |os(t)] a.e.

Sketch of the proof. We have by (1.3) that p;(x1 — x2) >0, p2(x2 — x1) > 0 a.e.,
hence

(p1(t) — pa()) a1 (t) — x2()) > 0 a.e., (3.17)

which is nothing but (i). We obtain (ii) from (3.17) whenever xi(t) # x2(t). If
X1(t) = xa2(t) € (—q,q), then pi(t) = pa(t) = 0, while on the set of all ¢ such that
X1(t) = x2(t) = £q, we have

) = t(t) = () —xed] =0 ae.

and (ii) follows. To prove (iii), we fix any ¢ € (0,77, assume for instance that x;(t) >
X2(t), and find a smallest to < ¢ such that x;1(7) > x2(7) for all 7 € (¢y,t]. Then, by
(3.17), pi(7) > pa(7) for a.e. 7 € (ty,t), hence

pi(to) — p2(to) < pi(t) —pa(t) < vi(t) —va(t)

(note that p; + x; = v;). Then either ¢, > 0 with x1(to) = x2(to), or tp = 0 with
Ip1(to) — pa(to)| < |v1(to) — va(to)|. In both cases we have

Ip1(t) — p2(t)] < max{|vi(to) — va(to)l, [v1(t) — va(t)]},
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hence (iii). Part (iv) follows from the obvious identity p;(t) x;(¢) =0 a.e. 0

As a consequence of Proposition 3.4 (i), we obtain for the Prandtl-Ishlinskii operator
P from Hypothesis (H3) the inequality

(Ploa](t) = Ploa](£)) (01 () = 02(2)) = 1d oo@(é])(ﬁq[vl]—5q[vz])2(t)dq (3.18)

for every vy, vo € WH(0,T) and a.e. t € (0,7).

Proposition 3.5. Let v € C(Qr) be such that vy € LY(Qr). For (x,t) € Qr set
X(z,t) = s[v(x,)](t). Then xut € LY(Qr), and

Xe(z,1)] < 2 maxocr<y |va(z, 7))
fora.e. x€(0,1) and all t€[0,T7], (3.19)

|th(l‘,t)| + %|Xx(mvt)| S 2 |vzt<x7t)| a.e. in QT :
If moreover vy € L2(Qr), then for all t € [0,T] we have

[ [ etenvtndear > 5 [0d@n-xwoa. @

Sketch of the proof. By Proposition 3.4 (ii),(iii), we have for all 0 < 27 < 29 < 1
and t > 0 that

IN

_ < _ z2
x(z1,8) = x(z2,)] < 2 max fv(zy, 7) —v(@a, )| < 2, max |va(w, 7)] dz,

xe(@1,t) = xe(@2, )] + Flx(r,8) = (@2, )] < 2[ve(@1,t) — vel@a, 8)]

hence (3.19) holds. To prove (3.20), we first notice that by Proposition 3.4 (i), we have
for each h € (0,1) and t € (0,7] that

[ [ ) vie ),

h

. %/hl<(x(:c,t)—;f(a:—h,t))2_(X(x,O)—Z(x—h,O)f) .

Using e. g. the Mean Continuity Theorem, we pass to the limit as A\, 0+ and obtain
the assertion. 0

4 Proof of existence

In this section, we will prove the existence result of Theorem 3.2. To this end, we use
Faedo-Galerkin approximations. Let {1 }ren denote the system of eigenfunctions to
the eigenvalue problem

=) = Methr, in [0,1],  x(0) = (1) =0, EkeEN,
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normalized with respect to the standard scalar product (-,-) in L?(0,1). Clearly,
A\ = k272 and ¢p(x) = V2 sin(knz), for k € N. We set V,, = span {¢y,...,¥n}.
Then Vi, C Vi1, m € N, and |,y Vin is dense in any of the spaces L*(0,1),
H}(0,1), and H3(0,1) := {v € H3(0,1); v(0) = v"(0) = v(1) = v"(1) = 0}.

For given m € N, we consider approximations for u,w of the form

t) = Zﬂj(t) Yi(z), w"(z,t)= Zm‘(t) V(). (4.1)

Denoting by Q,, the L?(0, 1)-orthogonal projection onto V,,, and using the standard
notation u(t)(z) = u(x,t) for functions of space and time, we consider the system of
Faedo-Galerkin equations

W (e),v) = (P [wis] (0),0) VY EV,, 0<t<T, (42)
Wt = Wi (D, 6) = (—uh®)+ f@.¥) Y EVn, 0SE<T, (43)
W(0) = Qula1), w(0) = Quiz0), (4.4)
which is equivalent to the system

i) = (Plef](®),¢) , 0<U<T, (4.5)
W) = o) b e B, 0<ST, ()
me(0) = (z1,¢), mk(0) = (20,%%), (4.7)

for k=1,...,m. Here, we have used the abbreviation
Plwi] (e,t) = Plugi(e, )] (1) = P|- Zj Ph@|n. @)

Obviously, (4.5)—(4.7) is an initial value problem for a system of 2m ordinary differ-
ential equations whose right-hand side is globally Lipschitz continuous on C ([O,T];
RQ’”). Indeed, owing to Proposition 3.4 (iii) and Eq. (3.5), we have for any wq,us €
C[0,T] the estimate

P lw] () = Plu] ()] < /Ooo P(q) |sq [ua] (1) — 54 [ua] ()] dg

< 2 max |u(s) —uafs I/ q)dg, Vtel0,T],
from which the claim follows. Consequently, the system (4.5)—(4.7) has a unique
(global) solution (g1, ..., fhms M1y - -5 Mm) € CH([0,T]; R*™) that defines the solution
(u™, w™) of (4.2)-(4.4) through Eq. (4.1). We have in fact (p1,..., i, N1, 0m) €
H?(0,T; R*™) as a consequence of Proposition 3.4 (iv). In the following, we derive a
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series of a priori estimates to pave the way for the passage to the limit as m — oo.
To this end, we differentiate Eq. (4.3) with respect to ¢ to obtain

(wip (t) —w, (t),¢) = — (ue, ) + (g(t),v) VeV, forae te(0,7T).
(4.9)
Inserting ¢ = w(t) € V,,, in (4.9), integrating by parts, and employing Young’s
inequality, we find that

S (e OF + @) + (@), wi @) < 3l + 3 lup @) ae.

(4.10)
Now observe that wl%,(t) € V,,, so that it follows from (4.2) that

(uf"(t), Wi () = (Plwi] (8), wi,(t)) a.e. (4.11)

Recalling (3.6) and (3.7), we can infer that

PRl O.uk) > 5 [ Quml@ds ae, (412

where Q [wl’](t) > 0. Hence, integrating (4.10) over [0,¢] for any ¢t > 0, we arrive
at the estimate

lwp* O + Jwii @)l

+2/0 Q[w;';](())dx+/o ||g(s)||2ds+/0 I (s)|2ds.  (4.13)

In the following, we denote by C,, ¢ € N, positive constants that may depend on the
data of the system, but not on m € N. First notice that we have |s,[w!.]| < ¢ for
g > 0. Hence, by (3.5),

/ Qwr](0)dx < / / q) ¢ dgdr < C. (4.14)

Next, observe that

P e O + ez (0)

lwp" ()7 = ) ni(0). (4.15)
Now, in view of (3.14), (4.6), and (4.7),
nk(0) = (21, %) , (4.16)

and it follows from Bessel’s inequality and (H2) that

lwi(0)]* < Z a0 < la® < G (4.17)
Likewise,
Wi (0) ZW (0) = Y k't (21, 00)? < |21l < Cs, (4.18)
k=1
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hence

[ O = = {wi"(0), wiz,(0)) < Ci = /oG (4.19)

Combining the above estimates with (4.13), and invoking Gronwall’s lemma, we
have proved the a priori estimate

max ([l (t)|* + [wi®)F) < Cs. (4.20)

0<t<T

As second step in the proof, we insert ¢ = —w]’, € V,,, in (4.9). Integrating by
parts, and invoking (4.2) and Young’s inequality, we find that

1d

5 2 (WO + IO + (Pme®) () < 5 @I + 3 0l

(4.21)
holds for a.e. t € (0,7"), where

(PLm])a(6), wl / / W (o, N)), (6w dgd . (4.22)

Recalling Proposition 3.5, and integrating (4.21) over [0,¢] for any ¢t € [0, 7], we arrive
at the estimate

[z + w1 + /OOO o(a) [|(sq[wii)), ()] d
< w0 + [wi O0)* + /OOO o(a) || (s4[wis)), ()] dg

1 m
43 | Q@I + lug)?) ds. (4.23)
0
Since 2y satisfies the compatibility conditions (3.4), we have
1 .
<20:wk> kg 3 <20,mcm>wk> VEk € Na (424)

where 1, (z) = —v/2 cos(kmz). Thus,

w0 = Z!zm W KOS < [|20.000 12 (4.25)

k=1

Finally, we employ the property (3.19) of the stop operator s, to deduce that
|(sq[wiz]), (0)] < 2fwi;,(0)] ae., (4.26)

whence it follows that

/0 " @) |[(saun]), O)|f dg < Cs. (4.27)
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On the other hand, we have

IPLr L@ = / /Omm)sq[ ™2, t) dg

< /Ooow(Q)dq /01 /OOOsO(q)(ﬁq[wZ;]x(:r,t))qudx

In conclusion, using also (4.18) and (4.19), we have shown in (4.23) the estimate

max ([lwl(0)* + Wi @ + [Plgl0) < Cr. (4.28)

0<t<T

2

dx

Now observe that Proposition 3.4 (iv) shows that

|(Plwyz]), (z, )] < /000 () [(sglwi)), (z,8)] dg < Cslwiy,(z,t)] a.e in Qr.

Hence, differentiating (4.2) with respect to ¢, inserting ¢ = u}}(t) € V;,,, and invoking
(4.28), we can infer that

max (|[Plwy]i(@)] + luig]) < Co. (4.29)

0<t<T
Moreover, by inserting ¢ = ul.(t) € V,, in (4.3), we directly find that
max |, (1) < Cho. (4.30)

0<t<T

We now use the elementary formula

/0 (i, + fire ) (t) dt = fue(T) pa(T') — 11 (0) 1 (0)

to estimate u; as follows.

T m T
/O m@Pd = Y /

k=1

< Z/ K2 ) 1)t + 2 maxzk i) (1)
/[ m 2 /m 1/2
< 7T2/ (Zlﬂk(t)l2> (Z’f4|uk(t)|2> dt
0 \k=1 k=1
- 12/ m 1/2
2 . 2 4 2
+ 27 Jnax, (Z‘Nk(t” ) <Zk |1k (1) )
k=1 k=1
T
= /0 ot () [z ()]t + 2 maaxe g ()]l (£)]
< (i1, (4.31)
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by virtue of (4.29)—(4.30). To estimate w},, we refer to (4.6), which yields for almost
every t € [0,T] and every k= 1,...,m that

; k373 . k
k(D] < o (] + 7oy (). vl
< hrlin(o) + 5 Ho(e), v (4.32)

hence

T m T
| lezopa = =Y [ wiea
0 e Jo
m T 1 m T
27° /l{:Q'Qtdt+— / t), i) dt
DM RLCOLES ) RTORTE

T 1 T
< 2 [ haolars 3 [ lowlPa
0 2 0

< Cp. (4.33)

IN

Combining the above estimates, and possibly selecting a suitable subsequence again
indexed by m, we find that there exist functions wu,w in the appropriate Sobolev
spaces such that the following convergences take place:

m

wt, — w Uy — Uy, U — U
zxt :Snztv tt tty ma:a: TX ) } Weakly—* in LOO(O, T, LQ(O, 1)) :
P[wxx]t — Uy, P[wzz]u’v — Ugt, (434)
Uy — Ugy, Wiy — Wy,  Weakly in L*(Qr) .
Then, by compact embedding,
u™ = u, Ul = U, ut — uy, Plol] — oy, .
’ oo o strongly in C(Qr) . (4.35)

wm —w, w;n — Wy, w;m — We, wgz — Wyt,

The convergences (4.34)—(4.35) entail that the functions u, v have the regularity stated
in Theorem 3.1, and Egs. (3.9)—(3.13) are satisfied in appropriate sense. It remains to
prove that (3.8) holds, that is, u; = P[w,,]. To this end, we apply a variant of Minty’s
trick based on the monotonicity (3.18) of the Prandtl- Ishhnskii operator. We fix an
arbitrary function z € C(Qr), and set Z(z,t) fo z,7)dr. For all § > 0 and
m € N we have, by virtue of (3.18) and of the Llpschltz continuity of the projection
mapping Proj_, ., (see (1.6)), that

/ / Plwys + 0Z)) (Wi — Wage — 02) (x, ) da dl
> ——/ / — 54[Wae + 02])% (2,0) dx dg

> =5 [ @) 1Qulenan) 0l (4.36)
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Letting m — o0, this yields

/T /1 (up — Plwge + 67]) z(z,t)dxdt < 0. (4.37)

We now let § tend to 0 and obtain the desired result. The existence part of Theorem
3.1 is thus proved. 0

5 Proof of uniqueness and concluding remarks

Let us consider two solutions uy, wy, ug, wy to (3.8)—(3.13), with the regularity stated
in Theorem 3.2, and set v = u; — us, w = wy; — wy. We then have

Uy = P [wl,xz] — P [IU27II] in QT y (51)

Wy — Wrgt = —Ugg in QT, (52)
w(0,8) = u(1,t) = 0, 0<t<T, (5.3)
w(0,) = w(1,t) = 0, 0<t<T, (54)
u(z,0) = 0, 0<z<1, (55)

w(xz,0) = 0, 0<z<1. (5.6)

By Proposition 3.4 (i), we have a.e. in Q7 that
(P [wl,mc] - 7) [w2,:m:]> Wt Z Rt )
where

2

We now test Eq. (5.1) by wz.e, Eq. (5.2) by —wy, and sum them up. The regularity
(3.15)—(3.16) enables us to obtain for almost all ¢t € (0,7") that

R(zt) = - /0 " 0l0) (saltn ), 0) = w22, 1) g > 0.

d (! 1 1
& [ (r-jui-3u2) @
1
S / (Ut Wyt -+ Ugy wtt) (‘:Ca t) dx
0

1
- - / (uazt Wyt + Uy wmtt) (‘7;7 t) dx
0

d 1
= i Uz (T, 1) Wy (x, ) dx

d 1
= o i Uz (T, 1) (2, t) do

d 1

= —— [ (w] +wl) (z,t)dz, (5.7)
dt J,
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hence

d [! 1 1

i ), <R+§wt2+ éwit) (x,t)de < 0 a.e. (5.8)
The initial conditions for w; and ws coincide, hence w; = ws in Q7 , and consequently
also u; = uy. This completes the proof of Theorem 3.2. 0

Remark 5.1. The uniqueness of the limit pair (u,w) entails that the convergences
(4.34)—(4.35) hold for the entire sequence {(u™,w™)} and not only for a subsequence.
Hence the Faedo-Galerkin scheme (4.2)—(4.7) constitutes a convergent method to ap-
proximate the solution numerically.
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