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ABSTRACT. A primal-dual interior point method for state-constrained parabolic optimal con-
trol problems is considered. By a Lavrentiev type regularization, the state constraints are
transformed to mixed control-state constraints which, after a simple transformation, can be
handled as control constraints. Existence and convergence of the central path are shown.
Moreover, the convergence of a short step interior point algorithm is proven in a function space

setting. The theoretical properties of the algorithm are confirmed by numerical examples.
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1. INTRODUCTION

In this paper, we extend our investigations on interior point methods for elliptic state-
constrained optimal control problems in [18] and [14] to the parabolic case.

The main difficulty of the numerical analysis of interior point methods for such problems
is the lack of regularity of Lagrange multipliers associated with the state constraints. There-
fore, it is helpful to improve the properties of the multipliers have to be improved by suitable
regularization techniques.

For instance, this task can be accomplished by discretization and subsequent application of
interior point methods. We mention the work by Bergounioux et al. [2], who carefully compare
the performance of primal-dual active set strategies and interior point methods for elliptic

problems, Grund and Résch [7], who handle such problems with maximum norm functional,
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and Maurer and Mittelmann [17], who solve several state-constrained elliptic control problems
by standard interior point codes.

To consider the interior point algorithm in function space, we suggested in [18], [14] a Lavren-
tiev type regularization. The Lavrentiev regularization of elliptic problems was introduced in
[15]. This method ensures regular Lagrange multipliers and preserves, in some sense, the struc-
ture of a state-constrained control problem. Moreover, compared with a direct application of
interior point methods to state-constrained problems, the regularization improves the perfor-
mance of the algorithm, [14].

In [24, 25|, primal-dual interior point methods are analyzed for ODE problems in an infi-
nite dimensional function space setting, and their computational realization by inexact path-
following methods has been suggested. In [18], this method is extended to the optimal control
of linear elliptic PDEs with regularized pointwise state constraints, where the analysis is per-
formed in L*°-spaces. Nonlinear equations are considered in the recent paper [22]. In particular,
the convergence of primal-dual interior point methods is shown in LP-spaces with p < oo for
the control-constrained case.

Today, there exist also several papers on the numerical analysis of interior point methods
for parabolic optimal control problems. For instance, trust-region interior point techniques
were considered by M. Ulbrich, S. Ulbrich, and Heinkenschloss [23] for the optimal control of
semilinear parabolic equations in a function space setting. Affine-scaling interior-point methods
are presented for semilinear parabolic boundary control in [21]. Sachs and Leibfritz [12, 11, 10]
considered interior point methods in the context of SQP-methods for parabolic optimization
problems.

In our paper, we are able to prove the convergence of a conceptual primal interior point
method in function space. We confine ourselves to a problem with linear equation and an
objective functional with observation at the final time. This seems to be more challenging in
the analysis than functionals of tracking type.

The analysis is very similar to the one for the elliptic case that was discussed in [18]. There-
fore, we concentrate on those parts of the proofs that need essential modifications for parabolic
problems. For parts of the theory that are completely analogous to elliptic problems, we refer

to [18].



In the parabolic case, the presence of pointwise state constraints causes stronger restrictions
on the dimension of the spatial domain than for elliptic equations. We do not impose control
constraints. Therefore, the natural control space is of type L2. To derive first-order necessary
optimality conditions of Karush-Kuhn-Tucker type, the state functions should be continuous.
This restricts the theory to distributed problems in one-dimensional domains.

This obstacle is completely overcome by our Lavrentiev regularization, which is crucial for
the analysis. After regularization, we obtain Lagrange multipliers for any dimension of the
domain. Moreover, we do not need constraint-qualifications. This remarkable advantage of our
regularization is worth mentioning.

The paper is organized as follows: After defining our problem and introducing our main
assumptions in Section 2, Section 3 is devoted to recall known results concerning the parabolic
equation. In particular, we regard the properties of the control-to-state mapping.

In Section 4, we introduce the Lavrentiev type regularization. We motivate why the Lagrange
multipliers are regular and show that the optimal control of the regularized problem converges
towards the optimal control of the original problem. Section 5 is devoted to existence and
convergence of the central path defined by the interior point method. In Section 6, we discuss
the convergence of a simple interior-point algorithm in function space and finally, in Section 7,

we confirm our theory by some numerical examples.

2. PROBLEM SETTING

We consider the optimal control problem

. 1 K
(1) min J(y,u) = S [[y(T) — yallé, + 5 lullg
2 2
subject to the parabolic initial boundary value problem

y—V-(AVy)+cy = v  inQ,
(2) Oy+ay = 0  inY,
y(0) = 0 in Q,

and to the pointwise state constraints

(3) Ya(z, 1) < y(z,t) < yb(x3, t) forall (z,t) € Q.



In this setting, @ C RN, N > 1 is a bounded domain with C'*-boundary I', and (0,7) is a
fixed time interval. We define @) := 2 x (0,7") and X :=1T x (0,7).
A = (a;j(x)), 4,7 = 1,..., N, is a symmetric matrix with a;; € C*(Q), v € (0,1). It is

assumed to satisfy the following condition of uniform ellipticity: There is an m > 0 such that
MA@)A > m|A? forall A € RY and all 2 € Q.

Moreover, functions ¢y € L™(Q), yq € L>®(Q) and ¥,, y, from C(Q) are given that satisfy
Yo, 1) < yp(x,t) for all (z,t) € Q.

By the continuity of y, and y,, there is some ¢ > 0, such that it holds

(4) up(x,t) — ya(x,t) => cq V(z,t) € C.

Notations: By || - || Lr(ar), M € {Q, %, Q} we denote the standard norm of LP(M). By (-,-)r2()
inner product of L?(M) is denoted. In L?*(Q), the norm and the inner product are written
without subscript, i.e. ||| := || - ||z2(@) and (-,-) = (-,-)r2(@) the associated inner product
of L?(Q). We use ||Bl|y_w for the norm of a linear continuous operator B : V. — W. If

V =W = L*(Q) we just write || B||. Throughout the paper, c is a generic positive constant. To

shorten the notation, we write e.g. B + — fya instead of B + fya I, although B is an operator

and —£— is a function.
W—Ya

3. SOME FACTS ABOUT THE PARABOLIC EQUATION

In this section, we recall some known facts about the parabolic equation defined in (2). For
the proof, we refer to [4] and [9], or to the survey in [20].

By W(0,T), we denote the Hilbert space of functions y € L?(0,T; V) with time derivative 3’
in L?(0,T;V*), endowed with its standard norm, c.f. [13]. For the notion of a weak solution to

(2) we refer to [9] or [13].

Theorem 3.1. The control-to-state mapping u +— y is linear and continuous from L*(Q) to

W (0, 7).

With the linearity of the parabolic PDE, we can write y = Ggu, where the control-to-

state mapping Gg : L*(Q) — W(0,T) is continuous in view of Theorem 3.1. The mapping
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u — y(T), considered from L?(Q) to L*(f2), the "observation” of y at T, is denoted by S. Define
Er:W(0,T) — L*(Q) by Er : y +— y(T). Then S is given by S = ErGg.

If we consider G with range in L?(Q), then we denote this operator by G, i.e. G = EG,
where FE is the embedding operator from W (0,T) to L*(Q).

Corollary 3.2. The mapping S : u — y(T) is continuous from L*(Q) to L*(2).

Summarizing up, we have introduced the mappings

Go : L*Q)— W(0,T)
G : L*Q) — L*Q)

S L*Q) — L*(9).

Remark 3.3. Although we have fixed the spaces of L2-type, where G and S are defined, we shall

consider them also in other spaces without changing their notation, as in the next theorem.

Theorem 3.4. Let Q C RY be a bounded C''-domain and assume f € L™(Q) withr > N/2+1,

g € L*(X) for s > N+ 1 and yo € C(Q2). Then the weak solution y of

vy — V(AVY) +coy = f inQ
oy+ay = g on X

y(0) = yo in Q)
belongs to C(Q) and there is a constant independent of u, such that

||y||C(Q) < c (Hf”L’“(Q) + HgHLS(Z) + ||yo||C(Q)) .

Proof. We refer to [3], or [19], cf. also [20], Lemma 7.10. O

For a spatial dimension of N = 2, we need r > 2 and for N = 3 we need r > 5/2 to satisty

the assumptions.



Remark 3.5. We present the theory for homogeneous boundary data and zero initial value.

Problems with fixed inhomogeneous data in the parabolic equation,

yy— V- (AVy) +cy = u+f in Q
y(0) = o in Q,

where f € L"(Q),r > N/2+1,g € L?(¥), s > N + 1, and yy € C({2) are given, can be easily
transformed to a problem of type (1)—(3). This problem can be simplified in the following
standard way:

With the linearity of the parabolic PDE, we can write y = Gg(u+ f) + Gxg+ Goyo. In view
of Theorem 3.1, the linear operators Gy, Gy are continuous from L*(X) to W(0,T'), and L?(2)
to W(0,T), respectively. We obtain

y(T) = Su+y(T),

where § = Go f + Gxg + Goyo.-

Since y = Ggu + g, we have y(T) — yo = Su — (yq — y(T)) =: Su — y4. In the same way,
the constraints can be transformed to o < Gou < S witha =y, —y and 8 =y, — ¢. If f and
g satisfy the assumptions of the theorem above, then 1y, remains bounded, while «, § remain
continuous. Therefore, we can assume without loss of generality that vy, f, and g are zero. On
the other hand, by transforming back, the theory remains valid also for non-vanishing v, f,

and g.

4. MIXED CONTROL-STATE CONSTRAINTS

In this section we consider the regularized optimal control problem

1

) K
(P) min J(y,u) = iHy(T) — yallg + 5““”22

subject to
w—V-(AVy)+cy = v inQ
oy+ay = 0 onX

y(0) = 0 inQ
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and to the mixed (e-regularized) control-state constraints
(6) Yo <y+eu<y, a.e. inQ.

We are able to show that the optimal control . of this problem tends in L?(Q) to the solution
u of the original problem, provided that a Slater type condition is satisfied for the original one.
The method of proof is analogous to the one in Hintermiiller et al. [8]. We do not prove this
result, since we aim at concentrating on the interior point method for problem (P) rather than
to discuss the relation with the unregularized problem. Following [15], we transform the mixed
control-state constraints into control constraints. Using the operators introduced in Section 3,
we can write

y+eu=Gu+eu=(G+el)u.

We introduce w := y+cu as a new auxiliary control. Then u = D w, where D : L*(Q) — L*(Q)

is defined by
(7) D=(G+el)™n

D is well defined, as the next result shows:

Lemma 4.1. For all € # 0, the operator D exists and is continuous in L?(Q).

Proof. First we show that the kernel of G + €[ is trivial. To see this, consider the equation
Gu +eu = 0.
This is equivalent to u = G(—¢~u). By the definition of G, u solves the system

U — Au—cou = ——u
oyu+au = 0
u(0) = 0.

By taking (—1/¢)u to the other side of the equation we see that u solves a homogeneous

initial-boundary value problem that has only the trivial solution.
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It remains to show that cu + Gu is surjective. Then the Banach theorem on the inverse
operator ensures the continuity of D = (su + Gu)~!. Let w € L?(Q) be given arbitrarily and
consider the equation

eu+ Gu = w.

To solve it, we consider the equation

1

v — Ay —coy = g(w—y)
(8) oy+ay = 0
y(0) = 0.

Taking —%y to the other side, we see that this equation has a unique solution y € W (0, 7).

Now we define

1
(9) u=—(w—y).
€
Then we have y = Gu and hence
1
= —(w — Gu).
U= (w u)
Obviously, this u solves the equation eu + Gu = w and we have shown the surjectivity. O

4.1. Regular Lagrange multipliers. By the technique used in [14] for an elliptic problem,
we will show the existence of regular multipliers. We do not directly need this result for our
convergence analysis. However, it shows how the regularization helps to construct a problem
with better properties. In particular, this explains why our numerical method does not have to
deal with measures as multipliers. First of all, we transform problem (P) with mixed control-
state constraints (6) in a control-constrained problem with new control w := D~'u. With G,

S, and D, we transform problem (P) to one depending on the control w as

: 1 K
(10) min F(w) = 2[[SDw ~ yallfa0) + 21| Do
subject to
(11) Yo < w < yp a.e. in Q.

8



This transformation of our control problem (P) will be used for the analysis of the interior
point algorithm, while all computations are performed with the original form of (P).
The functional F' is continuously Fréchet-differentiable on L*(Q). Its Fréchet derivative is
represented by
F'(w)v = ((SD)*(SDw — yq),v) + £ (D*Dw, v) .

We can identify it with the function
g = (SD)*(SDw — yq) + kD*Dw € L*(Q),

the Riesz representation of the derivative. Using the same arguments as in [14, 15|, we define
Lagrange multipliers by 1, and 7, € L*(Q) by
na(xvt) = g(x,t)+
nb(xvt) = g(l’,t>_
so that g = g+ — g- = 1a — M.
Remark 4.2. In all what follows, a bar as in u, , or w etc. indicates optimality.

The optimal solution w fulfills, together with 7, and 7, the following necessary and (by

convexity) sufficient optimality conditions:
(12) S*(SD@ — ya) + kDo — D" + D", = 0,

together with the complementary conditions

(

(navw - ?/a) = (nb7yb - QD) = Oa

(13) Na(x,t) >0, mp(z,t) >0, a.e. in Q,

\ w(z,t) — ya(x,t) >0, yp(x,t) —w(x,t) >0 ae. in Q.

Following the same steps as in [16], 1,, 7, are verified to be the Lagrange multipliers associated

with the mixed constraints (6).

4.2. Transformation in terms of PDEs. By D' = ¢/ + G we can write (12) as follows

S*(SDw — yg) + kDw + (g — na) + G*(my —na) = 0.
9



Re-substituting Dw = u, and defining an adjoint state p by
(14) p = G —na) +S"(SU—ya),
we obtain the optimality conditions

(15) y = Gu,
(16) p+ru = £(Ng—m),

together with the complementary conditions (13), where we re-substitute w := eu + y. The

adjoint state p defined by (14) is the unique solution of the following adjoint equation:

—pe—V-(AVp) = m—n. nQ,
(17) Op+ap = 0 on X,

p(T) = y(T) —ya in

This can be easily confirmed, cf. [20], Section 3.6.4. The adjoint equation has, for every pair a

unique solution p € W(0,7T). It holds

Ipllwor < ew (1m = 1allr2@) + 19(T) = yall2(0))

with some c,, not depending on the given data.

This follows from Theorem 3.1 after the transformation of time 7 := T — t.

Remark 4.3. The case ¢ = 0 is formally covered by the optimality system (13)-(16), too. Here,
possibly, 7,(0), 17,(0) belong to M (Q), the space of regular Borel measures defined at (. Then
equation (17) is a parabolic PDE with measures on the right-hand-side, which may even appear
in the boundary condition, we refer to Casas [4]. In this case, our theory does not work, since

the operator D is unbounded and not defined on the whole space L*(Q).
In summary, we have derived the following theorem:

Theorem 4.4. For all ¢ # 0, problem (P) has a unique optimal control u. with associated state
y.. There exist non-negative Lagrange multipliers n, € L*(Q) and n, € L*(Q) and an associated

adjoint state p € W(0,T), such that the optimality system (13)—(16) is satisfied.
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Remark 4.5. The existence of the optimal control follows in particular from the fact that the
equation cu + Gu = y, is solvable for all nonzero . Therefore, the admissible set is never
empty.

Due to the convexity of the objective functional F', the necessary optimality conditions are

also sufficient for optimality.

5. INTERIOR-POINT METHOD IN FUNCTION SPACE

By the interior point method, the constrained problem (10)—(11) is transformed into a for-
mally unconstrained problem by adding a logarithmic penalty term to the objective functional
F. In this section, we show that the transformed problems are solvable and that the associated
central path exists.

In terms of PDE, the problem (P) is converted to the following one:

| 1 ;
min J, (1) = 5 [ly(T) = vallf, + 5 llully

—u//ln(y—ir&?u—ya)—|—1n(yb—eu—y)dxdt
Q

subject to the equation (2).
Let us first state the associated necessary optimality conditions. In a standard, but slightly

formal way, we obtain the adjoint equation

T f

—pt — V- (AVp) +cop = — + in Q,
Y+Eeu—"9Y, Yp—EU—Y
(18) op+ap = 0 on X,
p(T) = y(T) = ya in ©,
and the gradient equation
(19) P+ Ku — H + A = 0 a.einQ.

y+teu—9yY, Yp—Eu—yY

The solution (u,,, y,,p,), if it exists, is expected to converge to the solution of Problem (P). We

prove the existence of the solution and the optimality conditions by considering the problem
11



(10)—(11), i.e.,
) 1 9 K 9
©) min Fy(w) = 5[1SDw = yally + 5| D

—u//ln(w—ya)+1n(yb—w)dwdt,
q

where 1 > 0 is a path parameter that will tend to zero. This is a formally unconstrained
problem, but the logarithmic penalty term can only be well defined for w € L*(Q) with y, <
w < yp a.e. in Q. Therefore, the admissible set of (Q) is open in some sense. Notice that F),(w)
is a convex functional.

To prove the existence of a solution of problem (Q), we apply a method that has been
introduced in [18]. It considers the minimization of F), in a closed subset and, at the same
time, finally permits to show that the solution w, has some positive distance to the bounds:

We have y, + 7 < w, <y, — 7 for some sufficiently small 7 > 0 that depends on .

5.1. Existence. For fixed 7 > 0, we consider the auxiliary problem

(Aux) min  F,(w).

Ya+T<w<yp—T

In contrast to (Q), the admissible set of this problem is closed.

We define the following admissible sets:

(20) W = {wel*Q)|y, <w <y ae. in Q},

(21) W, = {wel*(Q)|ys+7<w<y,—7ae in Q}.

Theorem 5.1. For every 0 < 7 < cq/3, and for all p > 0, problem (Auz) has a unique solution

wr,. There is a bound c not depending on 7 and p such that it holds ||w. | L=g) < c.

Proof. 1t is clear that W, is non-empty, convex, closed and bounded. F}, is strictly convex and
continuous on W, and hence weakly lower semicontinuous. Therefore, standard arguments
show the existence of a unique solution of (Aux). The uniform boundedness of the solution is

an obvious consequence of the boundedness of W, C W in L*®(Q). O
12



In the case of one-sided constraints y + cu < y. or y. <y + cu, Theorem 5.1 cannot be
shown in this way, since the associated W, is not bounded. Here, the following Lemma applies

that can be shown completely analogous as Lemma 3.2 in [18].

Lemma 5.2. For all > 0, it holds that F,(w) — oo if |Jw| — oo and w < y. or w > y,,

respectively.

The function F), is directionally differentiable at w, , in all directions w — w, with w € W..

The optimality of w, , gives
F(wr)(w—wry) > 0 Ywe W,

where Fl; denotes the directional derivative of F},. According to the definition of F},, we obtain

the variational inequality

(22) (g’r,uv w — wT,,u)Q Z 0

for all w € W, where the function g. , € L*(Q) is defined by

(23) Gry = (SD)*(SDw;,, — ya) + kD*Dw, , — a + H

wTuU' o yCL yb - anu‘

Next, we define two auxiliary functions, namely
Pry = (SD)*(SDw., —yq4) and 6., :=kD*"Duw,,.

We show that they are bounded in L>°(()), uniformly with respect to 7 and p. To this aim, we

need the following result.
Lemma 5.3. The operators D and D* are continuous in L>(Q) for any dimension N.

Proof. To find u = Dw, we have to solve the equation eu + Gu = w. In view of (8) and (9),
this is equivalent to the following two steps: We solve first (8) to find y. Next, we obtain u by
formula (9). Thanks to Theorem 3.4, the mapping w — y is linear and continuous in L*(Q).
Therefore, the same holds true for the mapping u +— 71 (w — y(w)). This shows the continuity
of D.

The proof for D* is analogous, since G* is related to an adjoint parabolic equation that has

the same properties as equation (8). O
13



The following Lemma asserts the L*°-boundedness of p and 6.

Lemma 5.4. There is a positive constant c,g such that

[prullzoe + 107 lloe < cpo
holds true for all 0 < 7 < cq/3 and all > 0.

Proof. We have
[Prullzee@) + 10l @) < [[(SD) (SDw — ya)ll1=(q) + &l D*Dw|| 1(q).-

In view of Theorem 3.4 and Lemma 5.3, all operators appearing in this formula are continuous
in L*°-spaces on associated domains. Moreover, we have assumed that y; € L>°(Q2). Therefore,

the result of the Lemma is an immediate conclusion. O

The main result of this section, the existence of the central path, can be shown completely
analogous to the elliptic case discussed in [18]. Nevertheless, we briefly sketch the proof for

convenience of the reader. To this aim, we define the sets

M+(7-’ :u) = {(Z‘,t) €Q ’ gﬂM(iE,t) > O}a
M_(7,p) = {(z,t) € Qlgrulz,t) <O},
MO(Tv :u) = {(.l’,t) €Q | gT7M<x7t) = 0}

Lemma 5.5. For all 1 > 0, there are positive numbers T, (u) and 7_(n) such that, for all

0<7<7(p):=min{ry(u),7_(n)}, the sets M, (1) and M_(7) have measure zero.
Proof. A standard evaluation of (22) yields for almost all (x,t) € @) that

ws o (2,1) = vz, )+ 7,  (,t) € Mo(T, )
H w(z,t) —7,  (z,t) € M_(1,p).

Almost everywhere on M, (7, 1), Lemma 5.4 implies

p 0
0 < grulx,t) = pru(a,t) + 0, ,(x,t) — =+
7M( ) M< ) M( ) T yb<x7t) - ya(xat) -7

< o Pyl
T CQ
14



For 7 | 0, the right hand side tends to —oo, a contradiction for all sufficiently small 7 > 0, say

7 < 74 (p). Consequently, M (7, ) is of measure zero for these 7. Analogously, M_(7, 1) can

be handled. 0

Now we can formulate the main result of this section.

Theorem 5.6. For all 1 > 0 and all 0 < 7 < 7(p) = min{7(n), 7—(n)}, the solution w,, of

(Aux) is the unique solution w,, of problem (Q).

Proof. Since Q = My(7) U My (7) UM_(7) and the set M, (1) U M_(7) has measure zero for

0 <7 <min{ry(p), 7— (1)}, we have

QT,H(SC,t) =0 a.e. in Q

Therefore, it holds that

/

E(wr )b = // Grp(m,t) Wz, t) dedt =0 Vh € L*(Q),
Q

and hence w;,, satisfies the necessary optimality condition for problem (Q). By convexity, the
necessary conditions are sufficient for optimality. Strong convexity yields uniqueness (notice

that x > 0). In view of this, w, , is the unique solution w,, of (Q). O
Corollary 5.7. For all j1 > 0, the solution w, of (@) satisfies

(24) Yo(z,t) +7(1) <wy(z,t) <yp(z,t) — (1), ae inQ.

where T(p) > 0 is given by Theorem 5.6.

Proof. By Theorem 5.6, we have w,, = w, for all 0 < 7 < 7(p). By the definition of (Aux),

w,,, satisfies
ya<x7t) + T(,“/) S IUM(ZL', t) S yb(%t) - T(:U’)

for all 7 < 7(u), i.e., inequality (24) is satisfied. O

After having solved the problem of existence, let us verify and re-formulate the optimality

conditions (18)—(19). We denote by u,, the optimal control with state y,, given by cu,,+y, = w,.
15



The associated adjoint state is p,. Define 7, , and 7, by

1t [

(25) Na,p = y Moy = —""_ -
g yu+€uu_ya : Yp — EUL — Yu

Multiplying (23) by (D*)~! = (¢I + G*), we obtain in view of Dw, = u, and Su, = y, that

(26) S* (y,u(T) - yd) + Ku + g(nb,,u - na,,u) + G* (nb,u - na,u) = 0.
We set
(27) Pu = S*Wu(T) — ya) + G (Mo — Nap)-

Then, analogous to (17), p,, Y, u, solve the adjoint equation (18). Moreover, (26) becomes

Pu+ KU+ (Mo — Nap) = 0.
This is equivalent to (19). Summarizing up, we get the optimality system

v — V(AVy)+cy = uinQ,

(28) Oy +ay = 0 onX,
y(0) = 0 in Q,
—pt = V(AVD) +coy = —Tayu + Moy in Q,
(29) Op+ap = 0 on X,
p(T) = y—ya in Q,
(30) p+ KU+ e(—Na, +m,) = 0Oae inQ,

Nap >0, y+eu—y, >0, nouy+eu—y,) = p ae inQ,
(31)

Moy >0, yp —eu—y >0, My —eu—y) = p  ae in Q.

Notice that (25) can be rewritten as ;1 = 14, (Y, + €Uy — Ya), 1 = Mo, (Up — Y — €1y,).

5.2. Convergence. In Section 5.1 we established the existence of the central path p — w, for

all fixed p© > 0. Now we proceed with proving the continuity of the mapping ;. — w, and the
16



convergence towards a solution w of (10)—(11). We implicitly differentiate the function F' with
respect to u and estimate the arc length of the central path in the L°°-Norm.

The unique minimizer w, of (Q) is the solution of

H(wy;p) == (SD)"(SDwy, —ya) + kD" Dw,, — w Aiy - Yo fw
p = Ya H

P m
Wy — Ya Yp — Wy,

= (D*S*SD + kD*D)w, — D*S*yq —

= 0.

By Corollary 5.7, we have w, —y, > 7(n) and y, —w,, > 7(u) for all sufficiently small ;¢ > 0.
H is Fréchet-differentiable in all directions w € L>(Q)) for all y > 0. Let 0,H denote the

derivative of H with respect to 1 and let 0,H be the derivative of H with respect to w. The

derivative 0, H is

P m

32 OwH (w; = D*S*SD + xD*D + .
(32) (wip) w—u) | Gh—w)

It satisfies the estimate

(v, 0,H(w; p)v) = (SDv,SDv), + k (Dv, Dv)

+“wa%wa%0

1
+u( v )zm—frﬂv
=) m—w)) = "D

By Lemma 5.3, 9,,H is continuous in L>*(Q) for all w € L*(Q) with y, < w < y; a.e. in Q.

I

We show the boundedness of the inverse (9,,H)™' in L=(Q).

Theorem 5.8. For all ;1 > 0, the mapping O, H (w;p) : L®(Q) — L*(Q) is a bijection. Its

wnverse is uniformly bounded for all i > 0; i.e. there exists a c;n, > 0 such that
10w H (w; 1) || oo < Cing for all > 0 and for all w € W.

The proof is the same as the one for Lemma 4.1 in [18], cf. the argumentation there.

17



Theorem 5.9. For u — 0, w, converges towards the solution w of (10)—(11). There is a

constant ¢ > 0, such that

[w, = @lle@) < eV
holds for all sufficiently small p.

The proof is analogous to the one of Theorem 4.3 in [18] for the elliptic case with a bilateral
constraint. However it is more technical in view of our bilateral constraints. Therefore, we

present the full proof for convenience of the reader.

Proof. First, we establish an L?- estimate of 9,H, then we infer an L>-bound from that. In
a third step, we estimate a bound for the distance between two points on the central path.
Finally, we check the first order optimality conditions.

The derivative of w,, with respect to y is given by

(33) w, = —0uH(w;p) 0, H (w; ),

N

with

-1
O H (w; 1) ™" = (D*S*SD+/{D*D+ r vt )2)
and

1 1
34 0, H(w;pu) =— .
( ) 123 (w,,u) w_ya+yb_w

In preparation of the proof, we introduce the following operator splitting. From D = ¢~ (I —

DG) and D* = ¢ 1(I — G*D*) we get

* 1 * * * *
(35) D'D = 5(1+G'D'DG ~(G"D" + DG)).

Let us define the operator K as

(36) K = D*S*SD+ —(G"D*DG — (G*D* + DG)).
€

Now we can write (32) as

K 1 u
(37) OwH(wy;p) = K+ 5_2] + — +



(i)  L*-bound. We introduce the diagonal preconditioning operator

(38) o) = \/ AR vl T

g2 ((wu — Ya) (Yo — wu))2

It is clear, that ¢(u) > ¢ = “/TE > 0. From Corollary 5.7 we know, that there is some constant

o

c=c(p) =,/&5+ Cr(u)‘* > 0, ¢ = ¢(Ya, Yp), such that for fixed p the function ¢(u) is bounded:

0 <c< () <¢< oo. Pre-conditioning w,; by (38), we get

S, = (¢<M)_l (K + 5% * (w,, /j Ya)? i (v —uwu)Q) ¢(M)_l>_1

(39) )™ (w—lya - (ybl—w)
= (o) Ko(u) " + 1) ()" ( e mn - w> '

W — Yq

Obviously, ¢(u) satisfies

V(W —ya)* + (g — w)?

e A

O<g§¢(u) and 0 <./p

1 — Ya — .
hence ()™t < °_ and dlp) ™t < — (w = 4a)(gp =) ~. We estimate

VE T V(w0 = ya)? + (g —
o5 - H R

(w—ya)*(gp —w)* (g —w) — (W — ya)
(w—=ya)? + (o —w)* (W —ya)(p — w)

(w—ya)*(gp —w)* (W —ya) + (o — W)
(W=9a)®+ (o —w)* (W —ya)(yp —w)

A (w—ye) + (g —w)

VIV (w = ya)? + (g — w)?

Since ¢~ ' K¢~'+1 is a positive definite operator (in fact, it is nothing else then ¢='0,, H (w; )¢ ™'),

we have |[(¢7 ' K¢~ + 1)7|| < cx|Q] with some cx > 0 and

(w— ) + (95— w)
N e e
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holds for all w —y, > 0, y, —w > 0 a.e. in () , we may estimate

wwmmsqw@@%

and finally
lw ll = Nl (welmw,l < 167 (l|¢()w,|
5CK\/§| Q| L _ L
(40) < — i C\/ﬁ'

(ii) L*°-bound. Using the splitting (36), we get from (33) the representation

(= p LN g
(41) ( I+ + )2) Kw,.
We define the set
Q= {(z,t) € Q| yal,t) + 7(1) < wylx,t) < yolx,t) — (1)}

Obviously, Q C Q and by Corollary 5.7 {Q\Q} has measure zero. In the following, we use the
Young inequality in the form ax + g > 2v/ab.
Let

1 1 R
) ) t
A= A.t) = w0 €0

0 else .

By its definition, it holds A € L*°(Q) and

1 1 1
Az, t) > 3 (wu(x,t) m yb—wu(x,t)) a.e. in ()
We define a splitting of () by
1
(42) Qo = {(%ﬂGQM(%t):m},
(43) Q = Q\Qu,

20



e.a A = —— on Q,. Furthermore, we have

Yp—w
K p 1 (& p -
Bry + ) < (—I + 7)
(52 (W —Ya)?*  (yp — wyu)? e (Wy — Ya)?

-1 ~1
K 1% 2 K 1%
—1 + + > < (—] + 4)
(52 (wu - ya)2 (yb - wu)2 g2 (yb - wu)Q

a.e in (). We will estimate ||w;|| L=(Q) on @, and @), separately. On (), we have by its definition

and

A = —L—. We obtain from (41)

W—Ya ’

-1
: K 1 1
Jw, =@ = H(—[+ + )2)

L>(Q)
K 1 u !
< [(Lrs ¥ )
H (52 (W = Ya)?  (yp — wy)?
1 1 ,
( + — Kwu)
Wp = Yo Yo = W L=(Q)
~1
< (—21 +1 £ )2) (21— Kw, )
€ w a
wo Y L=(Q)
K B\t 2\ !
< (—1+ A) A —(—I+u)\) Kuw
2% 2 ’ =)
K -1 2
c =@ IF L=(Q)
NG
By Young’s inequality, we estimate + P\ > _,u Finally, we obtain

282\ 2 €

€ ’
+ — 1K 200w, 2

’ K -1
ldime < (35 + )

Analogously, we get the same result on @),. Both inequalities give us

’ C

44 [ P —
(44) pll=@ = 2%

a.e. in Q.



(iii)  Distance to the limit point. Having now estimate (44) for ||w;||, the distance between

two points on the central path is bounded by
M2
' c
[0 = Whallze@) =< / lwlle=@dn < 5(v/i2 = /i)
H1

for 0 < p1 < po. Therefore, for any sequence (puy)reny With i, — 0, the corresponding sequence
(wy, Jken of points on the central path forms a Cauchy-sequence and hence, the central path

converges towards some limit point w. Pass to the limit p; | 0 verifies the error bound

o, — wolli~@ < Vi

(iv)  First order necessary conditions. Using the Lagrange multiplier approximations 7, , =

. /
w%ya and 7, = yb%w, we write F' (w,) = 1q, — M. From Lemma 5.4 we know,

Hna,u - 77b,uHL°°(Q) < “puHL"O(Q) + ||‘9#||L°°(Q) < Cpo-

Defining the sets

M, = &%m%@ﬁguwﬂﬂg%@ﬂ;%@ﬂ}
M, = {(a:,t) ‘ Ya(2,?) ;yb(x’t) < wy(x,t) < yb(:r,t)} = Q\M,,

we observe 7, ,(x,t) — my (2, t) < ¢p9 on M,, hence

I

0 < Napl(z,t) < cpo+ mu(z,t) =cpo+ a.e. in Q.
N( ) P M( ) g4 yb(ﬂ:’t) _ wu(ﬂf’t)
By yp(x,t) — ya(x,t) > co a.e. in @), we can estimate
Ya(z,t) +y(z,t) 1 ¢
yb(x7t) - w#(xvt) > yb(‘rvt) - 9 = E(yb - ya) > EQ,
hence
2
nb,u(xat) = o < —“

22



On the other hand, 7, is bounded by
2u .
Nau(T, 1) < Cpo + — <29 =c a.e. in ()
Q

for sufficiently small x. In summary, we have on M, that n, , — 0if © — 0 and 7, is bounded
by some constant c. By the same argumentation, we get on M, that n,, — 0if 4 — 0 and 7,
is bounded by some constant, hence |74, Q) < ¢ [|Mpullze@) < c

From 7, ,,(w, — ya) = p and ny,(ys — w,) = p a.e. in @, we observe that

M|Q| = (na,uawu - ya) = (nb,,uayb - w,u)~

By the boundedness of 7,, and 7,,, we can assume that subsequences are weakly converging
in L?(Q)). Without loss of generality, we can assume 7, ,, — 740, Moy — Mo in L*(Q). Along

with strong convergence w, — wy in L*(Q), we obtain

0 = (90,0, Wo — Ya) = (M0, Yp» — Wo)-

Obviously, 1,0 > 0 and 7,0 > 0, and hence the necessary optimality conditions hold. By

uniqueness of the optimal control, it holds wy = w.

6. AN INTERIOR POINT ALGORITHM

A conceptual interior point algorithm in function space can be described by the following

steps.

Algorithm IP
Choose 0 < 0 < 1, 0 < eps, and an initial function w® € L™ such that y, + 7 < w’ <y — 7
holds for some T > 0 and take ;i° > 0. Set k = 0.
while y* > eps do {
U= gk
korl — _an(wk;'ukJrl)le(wk; MkJrl)
W — L g
k =k+1

The code-sequence in the while-loop performs one classical Newton step for solving the equa-

tion H(w**!; uk+1) = 0 for fixed py 1.
23



In the following, we denote the solutions of (Q) associated with the parameter p; by sub-
scripts, i.e. wy, is a point on the central path and solves H (w,, ; jtx) = 0. On the other hand, let
wh , k= 1,2, ... denote the iterates of Algorithm IP associated with the parameter 1. Figure

1 illustrates the situation.

wlﬁk—1

w

FIGURE 1. Some iterates of Algorithm IP and the associated points on the central path.

Under our assumptions, the Newton method provides for fixed x4, a unique solution w,, . It

=1} is sufficiently close

converges quadratically, if the starting point (in the Figure, we choose w
to wy, .

To prove the convergence of our method in function space, we show that
|w® —w,, || <cv/pF and |w® —w|| < cof

holds for some constant ¢ > 0. Clearly, it holds that

WL — ok = gE

In contrast to the Algorithm 5.1 in [18], the Newton corrector is assumed to be exact for
simplicity, i.e. we assume to compute d**! exactly. Certainly, this is not realistic for a practical
implementation. However, we do not aim at estimating here all errors that occur in a real
computation.

In Section 5, we have estimated the distance of two points on the central path in the L*-
and L*°-norm. In this section, we make use of the Newton-Mysovskikh theorem to estimate

the distance between w* and Wy, -
24



6.1. Scaled norms. Local norms are a valuable tool in the context of interior point methods.

Here we will use the scaled norm

lwlly = lle(wwllz=q)

where ¢(u) is defined in (38). For the theory of affine scaled norms, we refer to [5]. First, we

provide some results on this scaled norm.
Lemma 6.1. For all w € L>(Q), the norm | - ||, satisfies the estimate

€
lwllze@ < \/—EHwH#-

Proof. Tt holds by the definition of || - ||, and ¢(u) that

K
lwlly = llo(wwli=@ = lly/2 Sl = \ zllvllz=@

O

The following counterpart of Theorem 5.8 for the scaled norm can be shown completely

analogous to Lemma 5.3 in [18].

Lemma 6.2. There is some constant c4, 1 < ¢, < 00, independent of i, such that

10uH (wiwml < collo(n) mlliei V€ L¥(Q)

holds true for all w € B(w,;0./it) := {w € L*(Q) : ||lw—w,|, < 0/} with some 0 < 1.

Proof. The proof is analogous to the one of Lemma 5.3 in [18]. We get the estimate

10w H (w; )" ol = (600 H (w; 1)~ 1| =)
< (14 =Kl ) 6 Dl
B aval® g
which gives us the constant cy. 0

Lemma 6.3. For all w € B,(w,;0\/1t) and all 0 < 0 < 1, the following estimates hold true

w—=Ya > (1 = 0)(wy = va)
25



and

o —w = (1= 0)(yy — wy).

Proof. By its definition, the diagonal preconditioner ¢(u) satisfies

< ¢(u
(wu Ya)? ()
and
m
< o(u
(o — wu>2 ()
for all y, < w, < ys.
For all w € B,,(w;0./jt) we obtain
e I
Wu = Ya ll 1) VIV (W= Ya)? [l 1 g
1
< —= llo(u)(w — wp)| o
7 16 (1) <)
1
= —|lw—w,|, <8<l
\/,E MR

From w, — y, > 0 a.e. in () we get therefore
+(w —w,) < 0(w, —y,) a.e. in Q,
hence, by multiplying the minus-version by (—1) and adding on both sides (w, — ya),
W=y > (1 —0)(w, — ya).
By the same argumentation we can estimate

yo —w = (1= 0)(yp — wp).

Lemma 6.4. (Lipschitz-Condition) For oall 0 < 0 < 1, 0 sufficiently small, and all w, w0 €
B,(w,,0.\/1t), the following Lipschitz condition holds:

(45) 10 H (w; 10) ™ (0w H (w; 1) — O H (05 1)) (w — )|, < lw — ][

107 yn
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Proof. The main idea of the proof is analogous to the proof of Lemma 5.5 in [18] for unilateral
constraints. The difficulty here is the more complicated structure of ¢(u), what results in a
more technical proof. For convenience of the reader, we perform it here in detail.

Using Lemma 6.2, we obtain

100 H (w3 10) = (0w H (w; 1) — O H (05 1)) (w — )|

< colldp (OuwH (w; ) — Oy H (15 ) (w — )| oo

(e e )

(w_ya

)

L>=(Q)

where the constant parts of 0, H (w; u) are compensated by the constant parts of 0, H (w; ),
cf. the definition of 0,,H (w; i) in (32) or (37), respectively. By Lemma 6.3 we obtain w — y, >
(1—-0)(w, —v,) and yp, — w > (1 — 8)(yp, — w,). Using the fact, that the Lipschitz constant of

272 for x > a > 0 is given by 2a~3, we can estimate

10w H (w; 1)~ (0 H (w; 1) — 8y H (15 1)) (w — ) | .

-1 20 2/ — )2
S%PW QLWW%—%P+O—W%—MWyw )

1>(Q)
. 20¢ I L , o
=i | e * s ) e
20¢ U L o
= =00 || 60 (wn — v 600 (o — w,)? L(Q) o =0l
20¢ H [ o
S <H¢ —Ya)* = () G = wa) Loo@)) oo = ol

We show that H P and H

are bounded by c,/u. First, we

yb wu)

L>(Q) L>=(Q)

have

(wu — Ya)? (yp — wu)Q

S(1)*(wy = ya)* = <\/£(wu PRI )L y“)2>

v
2
\-CAJ
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and from that we get H T < p/pd? = 1/,/n. With the same argumentation,

|
)3 (wp—ya)? L>(Q)

we get Hm < 1/,/in. Altogether, this yields the Lipschitz condition

4C¢

(46) 10w H (w; 1)~ (0w H (w; 1) — 8y H (15 1)) (w — ) |, < a=opyn

lw — ][5
0

With this Lipschitz constant at hand, we are able to prove the convergence of Algorithm IP.

6.2. Estimation of the error ||w" — w||1~(q). To prove the convergence of the interior point

method defined by Algorithm IP, we have to show, that [|w* — @| 1 (g) — 0 for k& — oo.

Theorem 6.5. Let |[uw’ — w,, ||, <0/100 and 0 < o < 1. Then the iterates w* of Algorithm

IP converge linearly towards the solution w of problem (P):
|w* — || =gy < co®.
Proof. We have

[w* — @ o) = [Jw* = wp, +wy, — Bl 1=(q)
(47) < lw® = wp | L) + [, — @l

< k= wp s + W — 0] ().
-~ \/E ME 1k ME

The second part of (47) can be estimated by the length of a segment of the central path: using
Theorem 5.9 yields ||w,, — @] 1=y < c\/ix = c\/Hoo"/?. Now we have to show, that the norm
of the first part of (47) can be bounded by c\/u* with a constant ¢ < co. We interpret w” as

the first iterate of the Newton method for the problem
(48) H(w; ) =0

with some starting point w*~! close enough to w,, , where w,, is the solution of (48). To show
the bound, we use the refined Newton-Mysovskikh theorem, provided in [6], Theorem 1.5. First,

we have by Lemma 6.4 the affine covariant Lipschitz condition

(w) = H (@) (w — @), < wl|w =,
28
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that holds for all w, w with w = (1_‘26)3 7 From Theorem 1.5 in [6], we get

4C¢

— Wy ||y, < T=0p /i

k k=1

[w ™ = w, [l

From our assumption we deduce by induction that

"™t =Wl < vk = /oo™,

This gives us

|| wk 40(19 2 4C¢

Together with (47), we arrive at

_ 4c
[w* — ]|y < (ﬁci\/uwrc\/uo) ot/

This proves the convergence w* — .

Corollary 6.6. For every ¢ > 0, the sequences of states y* := SDw* and of controls u* :

Lot

7. NUMERICAL EXAMPLES

2 _ 2 k/2
= Wy, = A0yt = 1= 6)30k\/1700 :

— y*) converge linearly to the optimal state ij and the optimal control u, respectively.

O

7.1. Discretization of the optimality system. In Section 5.1, we have introduced the opti-

mality system (28)—(31) for our problem. In view of our test examples, we will use the extended

form (5) of our problem, for which the theory works as well, cf. Remark 3 in Section 3. Using

(31), we write 1, = — +Z_ya and 7, = yb—l;u—y and we have to solve the optimality system
w—V-(AVy) +cy = u+f in @,
(49) ohy+ay = g on ¥,
y(0) = o in Q,
—pe =V (AVp) +ap = ——F— 4 —F
EU+Y —Ya Yp—EU—Y

y(0) = y(T) = ya
29



(51) Ku~+p— = + o =0 a.e. in Q.
EUtY —Ya Yp—EU—Y

Our test examples are defined in one-dimensional domains 2 = (a,b). Let 0 = t; < t; <
... < t, =T be a partition of [0, 7], and denote by 0, = ) — t;_1 the time step sizes. Define
e = y(te)s we = s t), pre = (o te)s (Wa)k = Ya(o k), (Wo)k = us(tk), b = 0,1,...,n. Using
an implicit Euler scheme for discretizing (49) and (50) in time, we have to solve a sequence of

elliptic problems

1+ dxr1c 1
—V - (AVYiy1) + e Oyk:-i-l = — Yk + U1 + frr1s
Okt1 Ok+1
(52) OnYk+1 + QY1 = Gkt
for k =0,...,n — 1, starting at
y('> O) = Yo

To get a fully discrete system, we use linear finite elements to discretize the elliptic subproblems.
Let a = 29 < 21 < ... < 2, = b be a partition of (a,b) = Q C R with mesh sizes h; = z;11 — x;,
i =0,...,n — 1. By using standard hat functions with ¢;(x;) = 6;; i,j € I, where I C N is
the set of indices of the nodes x;, we can identify the coefficients of the FEM approximation
of a function by the values of the function f in the nodes f(x) ~ > .., f(xi)@:i(x). In all what
follows, we identify the functions f, y, u, etc. by their coefficient vectors (f(x;)), (y(z;)), (u(x;))
and denote them by the same notifiers, i.e., we will write f instead (f(z;)) etc.

By the stiffness matrix

K= (K), K= /Q(Cbijv%‘) (V) dz,

mass matrices
1 + 0p41c0

j idx7
DI

M1 = (Mij)es1, Mijp = /
Q

M = (M;;), M;;= / ©pjp; dx,
Q

and the matrices associated with the boundary T,

Q= (Qij)a Qij = /FOKSOj(PidSa
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r

the FEM representation of the elliptic subproblems is given by

vo = y(0)
1 =
(53) (K4+Mip1 +Qyprr = KMyk + G
11

+M(ug1 + fet1),

for k=0,1,...,n— 1.

Analogously, the adjoint equation is discretized by

o u
(K+Mk+Q)pk - M(yk+£uk—(ya)k)

] ’ 1
54 —-M + —M
(54 ((yb)k — Yk — €Uk:> O Pl

fork=n-—1,...,0 and

Pn = Yn — Ya.

The vectors

are defined by

u I
n
Yrt+eur—(Ya)k and (Yo), —Yr—€uL

e R =y
Uk +eur — Wa)i ), (k)i +(ur)i — (Ya)r)i

and

(=)~ =0
o)k —yr —eur ), ((W)r)i — (Yr)i — e(up)s’

respectively.

These equations are coupled through the discrete version of the gradient equation

el el
55 KU + pr + — =0,
( ) Br — Yk — Ur  Yi + UL —

for k=0,...,n.

We arrange the coefficient vectors as follows:

T T T ,T T T, T T

71T
= |:y07y1a"'>yn>u0>u17"'aun7p0ap1a'--apn:|
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Algorithm PCAG

(i) Define equidistant initial partitions T¢ = {to,to + 0, ...,7'} of [0,7] and Qy = {a =
xo,xo+h,...,x, = b} of Q = (a,b), where 6, and h are the fixed initial stepsizes in time
and space, respectively.

(ii) Choose 2y = (yl,ul,pl)" feasible, e.a. y, < yo + cup < y, and py can be taken
arbitrarily.

(iii) Assemble the matrices K, M, M, @, and the vector G.

(iv) Choose pp > 0. Compute a solution of

F(z;p0) =0

by the Newton Method.

(v) Refine the space and time discretization by suitable methods.

(vi) Reassemble all matrices and compose the associated system matrix =. Interpolate z
onto the new grids.

and write the optimality conditions as a nonlinear system
F(zp) =22+ V(z) + P =0,

where = is a large, sparse matrix, essentially build of blocks K + M; + Q on the diagonal and
M on the subdiagonal. U is a function that covers the nonlinearity and ® is a vector that
contains the constant parts of the equations (53)—(55).

One difficulty in the Algorithm IP is how to find a suitable initial function w®. Algorithm
PCAG provide a feasible initial function that can be expected sufficiently close to w,,. More-
over, the time and space discretizations can be adapted during the computations.

The spatial grids may change between the different time steps. After Algorithm PCAG is
finished, the joint refinement of all spatial grids is taken as the fixed spatial grid for Algorithm
IP. The discretized version of Algorithm IP is started with 2y = 2. For all computations, we
used Matlab 7.1.0 R14 on a Pentium IV machine with 1GB memory. The linear subproblems are
solved by direct methods. For refining meshes in Algorithm PCAG, we used for time refinement
odelbs with the setting RelTol = 1e-3, MaxOrder = 1, and BDF=on. For the grid refinement
in space, we used an error indicator function similar to the one described in [1], which detects
the maxima of || f||, where f is the right hand side of a elliptic PDE. The spatial grid is fixed

in all time steps.
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7.2. Examples.

Example 7.1. We tested our method by the problem

) 1 K
min J(y, u) := iHy(T) - de%?(Q) + 5”“”%2(@

subject to

yt_Ay = u iIlQ,
Oy+10y = 0 on X,

y(0) = wyo in Q,
and to the mixed control-state constraints
Y+ eu >y, = max{—100(t(t — 1) + z(x — 1)) — 49.0,0.5}  a.e. in Q.

We choose Q = (0,1) C R', T' = 1. Further, let be y; = 0 and gy, = sin (7z) given. Obviously,
this problem fits in our general setting with o = 10.

In our examples, there is no upper bound y;,, but it is clear that our method covers the
onesided case as well, cf. our comments before Lemma 5.2. In contrast to the next example,
here the exact optimal control @ and the associated functions y, p and 7, are unknown.

The initial function for Algorithm PCAG was wy = 2. The initial stepsizes were h = 0.01
and J; = 0.005. In Algorithm IP, we choose o = 0.8, yy = 1073, and eps = 107°. Figure
2 shows the computed optimal solutions 4, ¥, , p,, and n, = ——~t—— for the regularized

EUp+Yu—Ya
problem with ¢ = 1073 and x = 1073.

Example 7.2. In our second example, we consider the slightly modified problem

. 1 K
min J(y, u) := §H?J(T) - yQH%Q(Q) + 5”“”%2@) + // Yqy dxdt,
Q
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FIGURE 2. Computed solutions to Example 1: (a) control 4, (b) state 7, (c) adjoint state
Py and (d) Lagrange multiplier 7,.

subject to

w—Ay = u+f in@Q

y = 0 on %

and to the mixed control-state constraints
Yo < y+e(u+ f) a.e. in Q).

The last term in the objective function was added to construct an example with explicitly
known optimal solution. This term does not change our theory. We simply have to add its

derivative y¢ to the right hand side of the adjoint equation.
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We construct an optimal solution which fulfils the optimality conditions (49)—(51) for the
unregularized problem, i.e., for ¢ = 0.

The integral [[ yoy dzdt in the objective function leads to the adjoint equation
Q

—pr+Ap = yo— in @
Y—Ya

p = 0 on X

p(T) = y(T) —wyq in Q

instead of (50).

Construction of the optimal solution. We choose 2 = (0,7) and 7" = 1, and we
just define the optimal state by y(z,t) := e 'sin(z). Together with y(-,0) = sin(z) and
y(-,T) = e 'sin (z) we obtain from (49) and y; — Ay = 0 the condition @ + f = 0.

From the gradient equation (51) and ¢ = 0 we get f = %p. Next, we construct the state
constraint such that i touches the bound y, only on a set (t1,t2) X {g} This set has measure
zero, so that we construct a Lagrange-multiplier as a regular Borel measure. We choose t; = 0.3

and t, = 0.6. The bound y, is fixed by y,(x,t) = n(t)n(z) with

(
I el 1 e (0,1)

2tg—t1 t1

n(t) = qet t e (ty,ts)

eI 4 SRt (fa )

and

305 z€(0,7,)
n(z) =
25 -2 ze("2m).

The adjoint state is constructed by the ansatz p = ¢(t)v(z). To this aim, let

—sin? (—=—(t —t1)) t € (t1,ts
o - (b= 1)) € (1)

0 else.

35



The derivative of ¢ is given by the continuous function

/ _t22—7rt1 Cos(tgﬁtl)(t _tl)Sin(Qitl (t_tl)) 13 € (t17t2)

p(t) =
0 else,

which is continuous. Next, we introduce the continuous piecewise linear function

=S

T re|0,%
oy 0.3

2— 2z zelf,m.
The second derivative of v(z) with respect to z is a multiple of the d-distribution: v,, =

—20z (z). The adjoint equation gives us

—Pt — Pz = —HM + Ya,

SO we can set

4
= (t)vgs = _90(75);5 >0

vl

and
!

yo = —¢ (H)v(x).

Obviously, i and y — y, fulfill the complementary slackness conditions

J[w-wdutzt) = o
Q

Yy—1vyYs, > 0ae in@Q

p > 0in Q.

Giving the optimal solutions, we are able to show convergence rates for u, by 1 — 0. We
choose k = 1072, ¢ = 1075, 0 = 0.8, o = 1073, and eps = 1075 fixed. Figure 3 shows the
numerical solutions.

With the given exact solutions for the unregularized problem and our choice of small ¢, we

can show linear convergence in u and y. Figure 4(c) shows the value of the objective function

Ty
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FIGURE 3. Computed solutions to Example 2: (a) control 4, (b) state ¥, (c) adjoint state

t

Py and (d) Lagrange multiplier 7,.

Example 2 for selected values of .

In Table 1, we present the errors of the solutions and the value of the objective function to

[ Ny — 9/ NYN | e — all/Nall | [lp. —I/1Pl | Iy, u; 1)
8.072 2.2954 4.333271 4.333271 7.3130
4398073 | 1.74672 2.973872 2.973872 6.1299
7.378774 | 3.841572 6.623173 6.623473 6.1211
3.022374|  2.09362 4.068473 4.068573 6.1204
9.90357°| 1.3354°2 3.1801°% 3.1799-3 6.1202

TABLE 1. Relative errors of the computed solutions y,,, u,, and p, as well as values of .J,, (y, u)

depending on p.
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7.5

J(y,uw)

0 0.02 0.04 0.06 0.08

FIGURE 4. Relative errors of the computed solutions (a) control u, and (b) state u,, as well
as (c) value of the objective function J,, depending on .
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