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Abstract

Quasi-Newton methods based on least change secant updating formu-
las that solve linear equations Ax = b in n = dim(x) = dim(b) steps
can be expected to solve corresponding smooth nonlinear systems n-step
quadratically, i.e. with an r-order of ρ = 21/n = 1 + 1/n + O(1/n2). The
best rate one can possibly expect on general problems is given by the
positive root ρn of ρn(ρ− 1) = 1, for which ρn − 1 = ln(n)/n + O(1/n2).
To show that this upper bound is actually achieved one usually has to
impose a priori some kind of linear independence condition on the se-
quence of steps taken by the quasi-Newton iteration in question. Without
any such assumptions we establish in this paper the convergence order
ρn for the two-sided rank one formula proposed by Schlenkrich et al in
[SGW06]. It requires the evaluation of adjoint vectors, is invariant with
respect to linear transformations on the variable domain and combines
the properties of bounded deterioration and heredity.

Keywords: nonlinear equations, R-order, quasi-Newton methods, ad-
joint based update, Automatic Differentiation

1 Convergence of quasi-Newton methods

For the iterative solution of a system of nonlinear equations

F (x∗) = 0,

where F : Rn → Rn is continuously differentiable and F ′ is Lipschitz-continuous
in x∗ ∈ Rn, we consider the following general algorithm:
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Algorithm 1 (Quasi-Newton Algorithm) Suppose F : Rn → Rn, {Ai}i∈N0 ⊂
Rn×n with Ai non-singular, x0 ∈ Rn, and x∗ ∈ Rn with F (x∗) = 0 are given,
then the algorithm

si = −A−1
i F (xi)

xi+1 = xi + si
for i = 0, 1, 2, . . .

is called a full-step quasi-Newton iteration to locate x∗.

Here the matrix Ai is an approximation to the Jacobian F ′(xi). There
are several approaches for choosing Ai. To avoid the repeated evaluation and
factorization of an approximated Jacobian, low-rank least-change secant updates
are of particular interest. For general nonlinear problems Broyden’s update
formula [Bro65] is well studied. Burmeister (cf. [Sch79, B. 5.5.1.]) and Gay
[Gay79] proved for this method 2n-step q-quadratic convergence for smooth
nonlinear problems. That corresponds to an r-order of 2n

√
2 = 1 + 1/(2n) +

O(1/n2). The same result with 2n replaced by m can be expected for any
method that depends smoothly on function values and solves linear problems
exactly in at most m steps. For example this would be true with m = n for direct
generalizations of the one-dimensional secant method that ensure uniform linear
independence of the last n steps. By enforcing the validity of the last n secant
conditions simultaneously one then finds that Ai − F ′(x∗) = O(‖xi−n − x∗‖),
which can be shown to imply that the r-order of the sequence of errors {‖xi−x∗‖}

ρ ≡ lim inf i
√
| log ‖xi − x∗‖|

is no less than the positive root ρn of the polynomial ρn+1 = ρn + 1. In
general one has exactly ρ = ρn and it is hard to imagine how any rank one
updating method could converge faster, since its Jacobian must still be effected
by function information from n steps back. We will therefore refer to ρn as the
maximal r-order. To prove that it is actually attained one usually has to assume
that the steps are in some sense uniformly linearly independent. To enforce this
property requires a considerable extra computational effort and introduces more
scaling dependence, which is usually avoided in quasi-Newton methods.

In the case of unconstrained minimization, Ai is an approximation to a Hes-
sian and is therefore maintained to be symmetric. In particular the symmetric
rank-2 update formulas of the (restricted) Broyden class can be applied. These
methods have the property of heredity on strongly convex quadratic problems,
provided the line-searches are exact. The previous secant conditions remain
valid. In [Sto75] Stoer proved for these methods, combined with an asymp-
totically exact line search, an r-order of at least n

√
2. Furthermore Schuller

[Sch74] proved for the BFGS method under the assumptions, that the steps
are uniformly linear independent that the maximal order ρn is in fact attained.
[Sch74].

One particular member of the unrestricted Broyden class update, the sym-
metric rank-1 (SR1) update is a rank one update that preserves previous secant
conditions for quadratic problems without any line search. However, it does not
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share the least change property of the members in the restricted class. Conse-
quently updating must be suspended or severely damped when some denomi-
nator becomes small or zero and even proofs of mere superlinear convergence
assume uniform linear independent steps [CGT91] or combine the updating with
a trust-region algorithm [BKS96]. An estimation of the r-order of convergence
is not yet available.

In this paper, we consider the adjoint tangent rank-1 (ATR1) update, that
combines the fixed scale least change property with heredity. It was introduced
in [SGW06] and is given below:

Definition 2 (Adjoint tangent rank-1 update) Let F : Rn → Rn be dif-
ferentiable, xi+1 ∈ Rn. For a given matrix Ai ∈ Rn×n and a given direction
σi ∈ Rn, the formula

Ai+1 = Ai +
σiσ

T
i

σT
i σi

(F ′(xi+1)−Ai) (1)

is called ’adjoint tangent rank-1 (ATR1) update’ of Ai. Particular choices of σi

are

(i) σi = F (xi+1) as Residual update and

(ii) σi = (F ′(xi+1)−Ai)si for a tangent direction si ∈ Rn \ {0} as transposed
tangent Broyden update.

We suppose that the tangents F ′(x)s and gradients σT F ′(x) are evaluated
exactly. This can be done, for example, by using the forward and reverse mode
of Automatic Differentiation (AD). Details on AD are described in [Gri00]. For
the quasi-Newton algorithm with ATR1 updates, given by Definition 2 (i) and
(ii), one can verify the following properties:

Lemma 3 Let F : Rn → Rn be differentiable and F ′ Lipschitz-continuous in
x∗ ∈ Rn with constant L < ∞. Suppose F (x∗) = 0 and F ′(x∗) is non-singular.
Then for the quasi-Newton Algorithm 1 with ATR1 updates (i) and (ii) holds:

(i) For any r ∈ (0, 1) there are constants ε, δ > 0, so that if ‖x0−x∗‖ < ε and
‖A0−F ′(x∗)‖ < δ then the sequence {xi} is well defined and converges to
x∗. Moreover

‖xi+1 − x∗‖ ≤ r ‖xi − x∗‖

and ‖Ai‖ and ‖A−1
i ‖ are uniformly bounded.

(ii) If the sequence {xi} converges to x∗, so that
∑∞

i=0 ‖xi − x∗‖ < ∞, then

lim
i→∞

‖(Ai − F ′(xi))si‖
‖si‖

= 0,

i.e., {xi} converges q-superlinear.
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(iii) For any sequence {xi} and any previous quasi-Newton step sj with j < i,
we have non-linear heredity, i.e., for a constant C < ∞

‖(Ai − F ′(x∗))sj‖
‖sj‖

≤ C

i∑
k=j

‖xk − x∗‖. (2)

Here, in particular C equals the Lipschitz-constant L.

For a proof of these statements we refer to [SGW06].
Since the left side of inequality (2) depends only on the direction of sj

but not on its length, we consider from now on s̃i = si/‖si‖. Moreover, we
set δi = ‖(Ai − F ′(x∗))s̃i‖, and εi = ‖xi − x∗‖. If the direction s̃i, can be
represented as a linear combination of previous directions s̃j with j < i, i.e,

s̃i =
∑
j<i

λi,j s̃j ,

we get from (2), that

δi ≤
∑
j<i

|λi,j | ‖(Ai − F ′(x∗))s̃j‖ ≤
∑
j<i

|λi,j |L
i∑

k=j

εk.

Since we are interested in the asymptotic rate of convergence, we assume,
that the sequence {xi}, generated by Algorithm 1 already converges to x∗, so
that

∑i
k=j εk ≤ C0 εj for any pair of indices j and i. This is in particular the

case, if εi converges q-linear as ensured by Lemma 3. Then we derive that

δi ≤ LC0

∑
j<i

|λi,j | εj , where s̃i =
∑
j<i

λi,j s̃j . (3)

This estimation of δi is crucial for the proof in the following section. Since (3)
holds for any linear combination, the idea is to consider (3) as a constrained
minimization problem.

2 Main Result

In this section we state and prove that the ATR1 formula and all other updates
satisfying the non-linear heredity condition (2) ensure convergence at the maxi-
mal r-order ρn, which is asymptotically equivalent to the expressions 1+ln(n)/n
and n

√
n. In other words we get n-step order n rather than n-step order 2 or√

2, which is obtained for Broyden. The asymptotic equivalence is established
in the following auxiliary result.

Lemma 4 For n ∈ N, be ρn > 1 with ρn
n(ρn − 1) = 1, then

lim
n→∞

ρn − 1
log n

n

= lim
n→∞

ρn − 1
n
√

n− 1
= 1
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Proof: Substituting ηn = ρn − 1 yields

(1 + ηn)nηn = 1 with 1 > ηn > 0 (4)

and we prove, that
lim

n→∞

ηn

log(n)
n

= 1.

Since ηn decreases monotonically and ηn → 0 for n →∞, we have that

lim
n→∞

ηn

log(n)
n

= lim
ηn→0

n ηn

log(n)
.

From equation (4), we get that n = − log(ηn)
log(1+ηn) . Thus using Bernoulli-l’Hospitales

rule yields

lim
ηn→0

n ηn

log(n)
= lim

ηn→0

− log(ηn)
log(n)

· lim
ηn→0

ηn

log(1 + ηn)︸ ︷︷ ︸
=1

= lim
ηn→0

− log(ηn)
log(n)

.

Furthermore log(n) = log(− log(ηn))− log(log(1 + ηn)) and

log(n)
− log(ηn)

=
log(log(1 + ηn))− log(− log(ηn))

log(ηn)
=

log(log(1 + ηn))
log(ηn)

− log(− log(ηn))
log(ηn)

.

Applying again Bernoulli-l’Hospitales rule gives

lim
ηn→0

log(log(1 + ηn))
log(ηn)

= lim
ηn→0

ηn

log(1 + ηn)(1 + ηn)
= 1

and

lim
ηn→0

log(− log(ηn))
log(ηn)

= lim
ηn→0

1
log(ηn)

= 0,

which finally yields limηn→0
− log(ηn)

log(n) = 1 and

lim
n→∞

ρn − 1
log n

n

= 1.

To prove the second part consider a differentiable positive function g(x) with
limx→∞ g(x) = 0. Then Bernoulli-l’Hospitale yields

lim
x→∞

g(x)
eg(x) − 1

= lim
x→∞

g′(x)
g′(x)eg(x)

= 1.

This holds in particular for g(x) = log(x)/x. With x1/x = elog(x)/x it follows,
that

lim
n→∞

log(n)/n
n
√

n− 1
= lim

x→∞

log(x)/x

x1/x − 1
= 1.
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Thus, with the first part of the proof, we also get that

lim
n→∞

ρn − 1
n
√

n− 1
= 1,

which concludes the proof. �
The main convergence result is given in the following theorem:

Theorem 5 Suppose Algorithm 1 is applied to find x∗ ∈ Rn with F (x∗) = 0,
F is Lipschitz continuously differentiable at x∗, and F ′(x∗) is non-singular. If
the sequence {xi} converges q-linearly and the sequence {Ai} satisfies the non-
linear heredity property (2) then the rate of convergence is q-superlinear with an
r-order of

ρ = lim inf
i→∞

i
√
| log ‖xi − x∗‖| ≥ ρn,

where ρn is the positive root of ρn(ρ− 1) = 1.

Proof: The proof consists of four parts. In the first part we consider the con-
strained minimization problem as in (3) and bound the optimal solution. This
is followed by an auxiliary result in the second part. The third part uses the
previous results to estimate the current error by a product of previous errors.
Finally in the fourth part we derive the r-order of convergence.

Part 1 Analogously as for the ATR1 updates in the previous section, we
define s̃i = si/‖si‖, δi = ‖(Ai−F ′(x∗))s̃i‖, and εi = ‖xi−x∗‖. Without loss of
any generality we may assume that the first n steps are linearly independent.
For example we may precede the actual quasi-Newton iteration by n conceptual
steps along the coordinate axes, which may or may not be used to update the Ai.
In any case we can compute corresponding quantities δi and εi for i = 1 . . . n,
which may be quite large but do not effect the asymptotic rate of convergence
of course. Then we have, that for a positive constant C3 < ∞,

δi ≤ C3

∑
j<i

|λi,j | εj , where s̃i =
∑
j<i

λi,j s̃j .

From this, we derive with Cauchy-Schwartz

δ2
i ≤ C2

3 i
∑
j<i

λ2
i,j ε2

j .

By combining λi = (λi,0, . . . , λi,i−1)T ∈ Ri, Si = [s̃0, . . . , s̃i−1] ∈ Rn×i, and
Ei = diag(ε0, . . . , εi−1) ∈ Ri×i, we get that

δ2
i ≤ C2

3 · i · λT
i E2

i λi, where s̃i = Si λi.

This can be considered as equality constrained quadratic program

min
λi

1
2
λT

i E2
i λi s.t. s̃i = Si λi.
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The first-order necessary optimality condition yields the system[
E2

i ST
i

Si 0

] [
λi

ηi

]
=
[

0
s̃i

]
, (5)

for a Lagrange-multiplier ηi ∈ Rn. Since εi > 0, the matrix E2
i is positive

definite. Moreover, since we may assume without loss of generality the first n
steps to be linear independent, we get that for i ≥ n, the matrix Si has full
row-rank. Therefore there is a unique solution of the system (5) and

λi = −E−2
i ST

i ηi and Si λi = s̃i.

Thus, we find that −SiE
−2
i ST

i ηi = s̃i. With the same arguments as before, this
system has a unique solution. Therefore we get, that ηi = −(SiE

−2
i ST

i )−1s̃i

and
λi = E−2

i ST
i (Si E−2

i ST
i )
−1

s̃i.

This yields, that

λT
i E2

i λi = s̃T
i (Si E−2

i ST
i )
−1

Si E−2
i E2

i E−2
i ST

i (Si E−2
i ST

i )
−1

s̃i

= s̃T
i (Si E−2

i ST
i )︸ ︷︷ ︸

Mi

−1
s̃i

and thus
δ2
i ≤ C2

3 i s̃T
i M−1

i s̃i. (6)

Before considering the third part of the proof, we state and proof an auxiliary
result.

Part 2 Let S = [s1, . . . , sn] ∈ Rn×n with ‖sk‖ ≤ 1, D = diag(d1, . . . , dn) ∈
Rn×n be positive definite, and c > 0. Then

det
[
SDST + cI

]
≤ det [nD + cI] . (7)

Without loss of generality we may assume that the elements of D are in de-
scending order. Then there is an orthogonal matrix Q ∈ Rn×n, so that S̃ = QS
is an upper triangular matrix with the first row being [ρ, rT ]. So we have

S̃DS̃T + cI =

[
ρ2d1 + rT D′r + c rT D′S′

T

S′D′r S′D′S′
T + cI

]
,

where S̃′ = [s̃′1, . . . , s̃
′
n−1] ∈ R(n−1)×(n−1) is the matrix S̃ without the first

row and column. Hence S̃′ is also an upper triangular matrix and ‖s̃′k‖ ≤ 1.
Moreover D′ = diag(d2, . . . , dn) ∈ R(n−1)×(n−1). Since SDST + cI is positive
definite and Q is orthogonal we have

det
[
SDST + cI

]
= det

[
S̃DS̃T + cI

]
7



and
[
S̃DS̃T + cI

]
is positive definite. Omitting S′D′r and its corresponding

transposed increases the determinant (see for example [Ber05, Fact 2.13.4]).
Moreover, since the norm of the columns of S̃ is less or equal to one, so is the
absolute value of each element in [ρ, rT ] and thus

det
[
SDST + cI

]
≤ (ρ2d1 + rT D′r + c) det

[
S′D′S′

T + cI
]

≤ (nd1 + c) det
[
S′D′S′

T + cI
]
.

By induction follows now that

det
[
SDST + cI

]
≤

n∏
k=1

ndk + c = det[nD + cI].

With this, we continue with the next part of the proof of Theorem 5.

Part 3 Considering the matrix Mi ∈ Rn×n, we find, that Mi =
∑i−1

j=0 s̃j s̃
T
j /ε2

j

or recursively Mi+1 = Mi + s̃is̃
T
i /ε2

i . For i ≥ n the matrices Mi are non-singular
and we get by Sherman Morrison

det(Mi+1) = det(Mi)
(

1 +
s̃T

i M−1
i s̃i

ε2
i

)
= det(Mn)

i∏
j=n

(
1 +

s̃T
j M−1

j s̃j

ε2
j

)
.

Combining this with the estimate in (6) yields

det(Mi+1) ≥ det(Mn)
i∏

j=n

(
1 +

δ2
j

C2
3 j ε2

j

)
︸ ︷︷ ︸

tj

.

For the further derivation we have to consider the term tj . Since {xi} converges
to x∗, there are, according to [DS96] and [SGW06, Lemma 19], an index i0 and
constants C4 and C5, so that for all j ≥ i0

εj+1 ≤ C4 δj (εj + εj+1) + C5 (εj + εj+1)2 ≤ (C4 δj + C5 εj) εj .

Choosing a C < ∞, we have that either εj ≤ Cδj or δj < 1
C εj . In the latter

case, we get in particular, that εj+1

ε2
j

< ∞. This yields for tj , that there is a
constant C3,1, so that

tj ≥ 1 ≥ 1
C3,1 · j

·
ε2

j+1

ε4
j

.

In the case that εj ≤ Cδj , we get εj+1 ≤ (C4 + C5C) δj εj , which gives

δ2
j

ε2
j

≥ 1
C3,2

ε2
j+1

ε4
j

,
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for a constant C3,2. With C6 = max{C3,1, C3,2}, we have in any case, that

det(Mi+1) ≥ det(Mn)
i∏

j=n

1
C6 j

ε2
j+1

ε4
j

= det(Mn)
ε2

i+1

ε2
n

i∏
j=n

1
C6 j

1
ε2

j

. (8)

To bound det(Mi+1) above, we fix the index i and split Mi+1 into

Mi+1 =
n−1∑
k=0

s̃i−ks̃T
i−k

ε2
i−k︸ ︷︷ ︸

SDST

+Mi−n+1.

Here S = [s̃i, . . . , s̃i−n+1], D = diag(1/ε2
i , . . . , 1/ε2

i−n+1), and SDST as well as
Mi−n+1 are positive semidefinite. Thus with [Ber05, C.s 8.4.2 and 8.4.10]

det(Mi+1) ≤ det(SDST + ‖Mi−n+1‖I) ≤ det(SDST + trace(Mi−n+1)I).

With the element-wise representation of the normalized quasi-Newton directions
s̃j = (s̃1

j , . . . , s̃
n
j )T , we have for variable but fixed i

trace(Mi+1) =
n∑

k=1

i∑
j=0

[
s̃k

j

]2
ε2

j

=
i∑

j=0

1
ε2

j

n∑
k=1

[
s̃k

j

]2
=

i∑
j=0

1
ε2

j

‖s̃j‖2 =
i∑

j=0

1
ε2

j

.

Since we assume q-linear convergence, this gives that

i∑
j=0

1
ε2

j

=
1
ε2

i

i∑
j=0

ε2
i

ε2
j

=
1
ε2

i

i∑
j=0

r2j ≤ 1
1− r2

1
ε2

i

.

This yields

det(Mi+1) ≤ det
(

SDST +
1

(1− r2)ε2
i−n

I

)
.

Applying the result (7) of Part 2 gives

det(Mi+1) ≤
n−1∏
k=0

n

ε2
i−k

+
1

(1− r2)ε2
i−n

≤
n−1∏
k=0

1
ε2

i−k

(
n +

ε2
i−k

(1− r2)ε2
i−n

)
and thus

det(Mi+1) ≤
(

n +
r2

(1− r2)

)n

·
n−1∏
k=0

1
ε2

i−k

(9)

Combining now the results of (8) and (9) yields that

det(Mn)
ε2

i+1

ε2
n

i∏
j=n

1
C6 j

1
ε2

j

≤ det(Mi+1) ≤
(

n +
r2

(1− r2)

)n

·
n−1∏
k=0

1
ε2

i−k

.

9



This means, there is a positive constant C7, so that

ε2
i+1

n−1∏
k=0

ε2
i−k ≤ C7

i∏
j=n

C6 j ε2
j

and dividing both sides of the inequality by
∏n−1

k=0 ε2
i−k, gives

ε2
i+1 ≤ C7

i−n∏
j=n

C6jε
2
j ·

i∏
j=i−n+1

C6 j︸ ︷︷ ︸
≤Cn

6 in

From this, we get that for sufficiently large i

εi+1 ≤
√

C7 Cn
6 in

i−n∏
j=n

√
C6

√
jεj ≤

√
C7 Ci−n+1

6 in ·
√

(n− 1)!√
(i− n)!

i−n∏
j=n

j εj .

Multiplying both sides by (i + 1) yields

(i + 1)εi+1 ≤
(i + 1)

√
C7 Ci−n+1

6 in ·
√

(n− 1)!√
(i− n)!︸ ︷︷ ︸

fi

i−n∏
j=n

jεj .

Since
√

i! grows more than exponentially, the factor fi tends towards zero and
for sufficiently large i, we have fi ≤ 1. Thus we get for i ≥ i0

(i + 1)εi+1 ≤
i−n∏
j=n

jεj (10)

Part 4 From inequality (10) we may conclude, that for sufficiently large indices
i and for any fixed integer m ∈ {n, . . . , i− n},

− log ((i + 1)εi+1) ≥
i−n∑
j=n

− log (jεj) ≥
i−n∑

j=i−m

− log (jεj) .

Considering the family of difference equations

ε̃i+1 =
i−n∑

j=i−m

ε̃j

with initial conditions ε̃j = − log(jεj) for j = 0, . . . ,m, yields that (for variable
but fixed m)

− log (jεj) ≥ ε̃j > 0.
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The ansatz ε̃j = cmρj
m with ρm > 1 gives that

cmρi+1
m =

i−n∑
j=i−m

cmρj
m = cmρi−n

m

(
1 +

1
ρm

+ . . .
1

ρm−n
m

)
and thus

ρn+1
m =

m−n∑
j=0

1
ρj

m

=
1− 1

ρm−n+1
m

1− 1
ρm

.

For m →∞, we get that

ρn+1 =
ρ

ρ− 1
or ρn(ρ− 1) = 1.

By substituting back, we get that

εi ≤ i εi ≤ e−ε̃ = e−cm(ρi
m)

and thus

lim inf
i→∞

i
√
| log(εi)| ≥ lim inf

i→∞
ρm = lim inf

i→∞
lim

m→∞
ρm = ρ.

�
With this result, we have an r-order of convergence, which equals the r-order

of convergence of a sequence with εi+1 = εi · εi−n. Moreover, we get that for
any a > 1 there is an na ∈ N, so that for n ≥ na always a1/n < 1 + 1

a . Hence

1 > a(a1/n − 1) =
(
a1/n

)n

(a1/n − 1).

Since ρn(ρ− 1) is monotonically increasing for ρ > 1, we get that ρn(ρ− 1) = 1
implies, that ρ > a1/n for n sufficiently large. Hence, in particular for a = 2, we
have ρ > n

√
2 for n > 1.

This rate of convergence is optimal in the sense that it is the same as for
general secant methods [OR00, Theorem 11.3.5]. In this work Ortega and Rhein-
bold showed, that a general secant method that uses values of F at previous
iterates to approximate the system Jacobian may have an r-order of at least ρ
with ρn(ρ − 1) = 1. Hence, a quasi-Newton method based on rank-1 updates
and approximations of the Jacobian in the range of previous steps can not be
expected to be better in the general case.

3 Conclusions

In this paper we showed for quasi-Newton methods, that the combination of
heredity and least change property implies an r-order of convergence at least
equal to ρ, where

ρn(ρ− 1) = 1.

This rate of convergence is the same as for general secant methods in [OR00] and
is therefore considered to be optimal. Here, neither uniform linear independent
quasi-Newton steps nor line searches are required. The assumptions are satisfied
by ATR1 update formulas presented in [SGW06].
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