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Abstract. Flux coupling analysis is a method to identify blocked and
coupled reactions in a metabolic network at steady state. We present
a new approach to flux coupling analysis, which uses a minimum set
of generators of the steady state flux cone. Our method does not re-
quire to reconfigure the network by splitting reversible reactions into
forward and backward reactions. By distinguishing different types of re-
actions (irreversible, pseudo-irreversible, fully reversible), we show that
reaction coupling relationships can only hold between certain reaction
types. Based on this mathematical analysis, we propose a new algorithm
for flux coupling analysis.

1 Introduction

Constraint-based methods for network-based metabolic pathway analysis have
attracted growing interest in recent years [6]. The constraints that have to hold
in a metabolic network at steady state include stoichiometry and thermodynamic
irreversibility. These two classes of constraints not only determine all the possible
flux distributions over the metabolic network at steady state. They also induce
different dependencies between the reactions. For example, some reactions, which
are called blocked reactions [1] or strictly detailed balanced reactions [9], may be
incapable of carrying flux under steady state conditions. Another possibility are
coupled reactions [1], where a zero flux through one reaction implies a zero flux
through other reactions. Since a zero flux through some reaction corresponds to
the deletion of the corresponding gene, such dependencies also link the metabolic
to the gene regulatory network.

The elucidation of blocked and coupled reactions helps to better understand
metabolic interactions within cellular networks. In this context, the Flux Cou-
pling Finder (FCF) framework [1] has been developed to identify blocked and
coupled reactions in metabolic networks. Maximizing the flux through a reac-
tion under stoichiometric and thermodynamic constraints allows one to decide
whether this reaction is blocked. Similarly, comparing flux ratios is the basis to
determine whether two reactions are coupled.
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The FCF framework [1] requires a reconfiguration of the metabolic network.
All reversible reactions are split into a forward and a backward reaction, which
both are constrained to be non-negative. This implies that the number of vari-
ables and constraints increases. Since FCF uses linear fractional programming to
identify the maximum and minimum flux ratios for every pair of metabolic fluxes,
a very big number of linear optimization problems has to be solved. Therefore,
FCF may not scale well for genome-scale models of complex microorganisms
which involve a large number of reactions. Furthermore, as a consequence of the
network reconfiguration, FCF cannot compute directly coupling relationships
for reversible reactions. Since all reversible reactions are split into a forward and
a backward reaction, FCF only computes interactions between reaction direc-
tions (see Fig. 1). A post-processing step is needed to deduce reaction couplings
involving reversible reactions in the original network.

The goal of this work is to develop a new method to identify blocked and
coupled reactions in a metabolic network at steady state. The organization of
the paper is as follows. We start in Sect. 2 with some basic facts from polyhedral
theory and the definition of the steady state flux cone of a metabolic network.
This leads to a classification of reactions according to their reversibility type.
In Sect. 3, we show mathematically that coupling relationships depend on the
reversibility type of the reactions. Our main result is that reaction couplings can
only hold between certain reaction types and that they can be computed using a
minimum set of generating vectors of the flux cone. In Sect. 4, we propose a new
algorithm to identify blocked and coupled reactions. Finally, some computational
results are given to compare the new method with the original FCF framework.

2 The steady state flux cone of a metabolic network

2.1 Polyhedral cones

We start with some basic facts about polyhedral cones (see e.g. [8]). A set C ⊆ R
n

is called a (convex) cone if αx + βy ∈ C, whenever x, y ∈ C and α, β ≥ 0. A
cone C is polyhedral, if C = {x ∈ R

n | Ax ≥ 0}, for some real matrix A ∈ R
m×n.

In this case, lin.space(C) = {x ∈ R
n | Ax = 0} is called the lineality space

of C. A cone C is finitely generated if there exist x1, . . . , xs ∈ R
n such that

C = cone{x1, . . . , xs}
def
= {α1x

1 + . . . + αsx
s | α1, . . . , αs ≥ 0}. A fundamental

theorem of Farkas-Minkowski-Weyl asserts that a convex cone is polyhedral if
and only if it is finitely generated. In the sequel, we will consider only polyhedral
cones.

An inequality aT x ≥ 0, a ∈ R
n\{0}, is valid for C if C ⊆ {x ∈ R

n | aT x ≥ 0}.
The set F = C ∩ {x ∈ R

n | aT x = 0} is then called a face of C. Let t be the
dimension of the lineality space of C. A minimal proper face of C is a face of
dimension t + 1.

If we select for each minimal proper face Gk, k = 1, . . . , s, a vector gk ∈
Gk \ lin.space(C), and a vector basis b1, . . . , bt of lin.space(C), then for all v ∈ C,
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Fig. 1. The reversible reaction 2 in Fig. 1(a) is split into a forward and backward
reaction 2+ and 2−. According to FCF, a zero flux through reaction 3 (resp. 4) implies
a zero flux through reaction 2+ (resp. 2−), i.e., a negative (resp. positive) flux through
the reversible reaction 2. However, neither a zero flux through reaction 3 nor a zero
flux through reaction 4 implies a zero flux through reaction 2.

there exist αk, βl ∈ R, αk ≥ 0 such that

v =

s∑

k=1

αkgk +

t∑

l=1

βlb
l. (1)

2.2 The steady state flux cone

Mathematically, the stoichiometric and thermodynamic constraints that have to
hold in a metabolic network have the form [5]

Sv = 0, vi ≥ 0, for i ∈ Irr . (2)

Here, S is the m × n stoichiometric matrix of the network, with m metabo-
lites (rows) and n reactions (columns), and v ∈ R

n is the flux vector. The
set Irr ⊆ {1, . . . , n} defines the irreversible reactions in the network, while
Rev = {1, . . . , n} \ Irr is the set of reversible reactions. The set of all solu-
tions of the constraint system (2), which corresponds to the set of all possible
flux distributions through the network at steady state, defines a polyhedral cone,

C = {v ∈ R
n | Sv = 0, vi ≥ 0, i ∈ Irr} (3)

which is called the steady state flux cone.

Example 1. Consider the hypothetical network ILLUSNET depicted in Fig. 2.
It consists of thirteen metabolites (A, . . . , O), and nineteen reactions (1, . . . , 19).
The steady state flux cone is defined by C = {v ∈ R

19 | Sv = 0, vi ≥ 0 for all i ∈
Irr}, with the stoichiometric matrix S and the set of irreversible reactions Irr =



{1, 2, 3, 4, 5, 6, 7, 8}. Fig. 2 shows four pathways

g1 = (2, 2, 1, 0, 0, 0, 0, 0, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0),
g2 = (0, 0, 1, 2, 0, 0, 0, 0, 0, 0, −1, −1, 2, 0, 0, 0, 0, 0, 0),
g3 = (0, 0, 0, 0, 1, 1, 1, 0, −1, −1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
g4 = (0, 0, 0, 0, 1, 1, 0, 1, −1, −1, 0, 0, 0, 0, 1, 1, 0, 0, 0).

representing the four minimal proper faces Gk, k = 1, 2, 3, 4 of the network. The
lineality space lin.space(C) = {v ∈ C | vi = 0, i ∈ Irr} has dimension 2. It can
be generated by the pathways

b1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1, 1, 1, 1, 0, 0, 0),
b2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1, 1, 0, 0, 1, 1, 0).

An arbitrary pathway v ∈ C can be written in the form combination v =∑4

k=1 αkgk +
∑2

l=1 βlb
l, for some αk ≥ 0 and β1, β2 ∈ R.
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Fig. 2. Network example (ILLUSNET) with representative pathways

2.3 Reaction classification

A reversible reaction j ∈ Rev is called pseudo-irreversible [4] if vj = 0, for all
v ∈ lin.space(C). A reversible reaction that is not pseudo-irreversible is called
fully reversible.

Inside each minimal proper face, the irreversible and the pseudo-irreversible
reactions take a unique direction. More precisely, we have the following proper-
ties.



Theorem 1 ([4]). Let G be a minimal proper face of the flux cone C and let
j ∈ {1, . . . , n} be a reaction.

– If j ∈ Irr is irreversible, then vj > 0, for all v ∈ G \ lin.space(C), or vj = 0,
for all v ∈ G. Furthermore, vj = 0, for all v ∈ lin.space(C).

– If j ∈ Rev is pseudo-irreversible, then the flux vj through j has a unique
sign in G \ lin.space(C), i.e., either vj > 0, for all v ∈ G \ lin.space(C), or
vj = 0, for all v ∈ G \ lin.space(C), or vj < 0, for all v ∈ G \ lin.space(C).
For all v ∈ lin.space(C), we have again vj = 0.

– If j ∈ Rev is fully reversible, there exists v ∈ lin.space(C) such that vj 6= 0.
We can then find pathways v+, v−, v0 ∈ G\lin.space(C) with v+

j > 0, v−

j < 0

and v0
j = 0.

Example 2. In the ILLUSNET network, the reactions 9, 10, 11 and 12 are pseudo-
irreversible, while reactions 15, 16, 17, 18 are fully reversible. In the context of the
minimal proper face G1, all the pseudo-irreversible reactions become positive,
i.e., vi > 0 for all v ∈ G1 \ lin.space(C), while the pseudo-irreversible reactions
9 and 10 become negative in the context of the faces G3 and G4. The reaction
19 has zero flux in all the minimal proper faces and in the lineality space of the
flux cone.

3 Flux coupling analysis based on the reversibility type

of reactions

For the rest of the paper, we assume that Gk, k = 1, . . . , s, are the minimal
proper faces of the steady state flux cone C, represented by vectors gk ∈ Gk \
lin.space(C), and that bl, l = 1, . . . , t, is a vector basis of lin.space(C). Based on
Theor. 1, we define the following decomposition of the reaction set {1, . . . , n},
which reflects that pseudo-irreversible reactions taking the same direction in all
minimal proper faces behave like irreversible reactions.

– Irev = Irr ∪ {i | i is pseudo-irreversible and vi ≥ 0, for all v ∈ C or vi ≤
0, for all v ∈ C}.

– Prev = {i | i is pseudo-irreversible and there exist v+, v− ∈ C such that
v+

i > 0, v−

i < 0},
– Frev = {i | i is fully reversible}.

Definition 1. A reaction i ∈ {1, . . . , n} is blocked if vi = 0, for all v ∈ C.
Otherwise, the reaction i is unblocked.

First, we characterize blocked reactions using generators of the cone. The
following proposition follows directly from (1).

Proposition 1. For any reaction i ∈ {1, . . . , n}, the following are equivalent:

1. The reaction i is blocked.
2. gk

i = 0, for all k = 1, . . . , s, and bl
i = 0, for all l = 1, . . . , t.



In our analysis, we will first compute the blocked reactions using Prop. 1.
Afterwards, we will identify coupled reactions based on the subsequent results.
Here, it is enough to consider only unblocked reactions. The proofs of these
properties can be found in Appendix A.

Definition 2 ([1]). Let i, j be two unblocked reactions. The coupling relation-

ships
=0
→,

=0
↔,vλ are defined in the following way:

– i
=0
→ j if for all v ∈ C, vi = 0 implies vj = 0.

– i
=0
↔ j if for all v ∈ C, vi = 0 is equivalent to vj = 0.

– i v
λ j if there exists λ ∈ R such that for all v ∈ C, vj = λvi.

Obviously, i v
λ j implies i

=0
↔ j. Moreover, i

=0
↔ j is equivalent to (i

=0
→ j and

j
=0
→ i). The next results shows that the relations i

=0
→ j, i

=0
↔ j, i v

λ j cannot
hold for arbitrary pairs of reactions.

Theorem 2. Let i, j be two unblocked reactions such that at least one of the

relations i
=0
→ j, i

=0
↔ j or i v

λ j is satisfied. Then either (a) or (b) holds:

(a) i and j are both (pseudo-)irreversible: i, j ∈ Irev ∪ Prev.
(b) i and j are both fully reversible: i, j ∈ Frev.

In the following, we study the coupling relationships for the different types
of reactions. We first consider the case i ∈ Prev .

Proposition 2. Suppose i, j are unblocked, i ∈ Prev and j ∈ Irev ∪Prev. Then
the following are equivalent:

1. i
=0
→ j

2. i
=0
↔ j

3. i v
λ j

4. gk
j = λgk

i , for all k = 1, . . . , s.

In each of these cases, j ∈ Prev.

Next, we characterize the case i ∈ Frev.

Proposition 3. Suppose i, j are unblocked and i ∈ Frev is fully reversible. Then
the following are equivalent:

1. i
=0
→ j

2. i
=0
↔ j

3. i v
λ j

4. gk
j = λgk

i , for all k = 1, . . . , s, and bl
j = λbl

i, for all l = 1, . . . , t.

In each of these cases, j ∈ Frev.

Finally, we have to consider i ∈ Irev .



Proposition 4. Suppose i, j are unblocked, i ∈ Irev and j ∈ Irev ∪ Prev. Then
the following are equivalent:

1. i
=0
→ j holds in the flux cone C.

2. i
=0
→ j holds in all minimal proper faces Gk, k = 1, . . . , s.

3. gk
i = 0 implies gk

j = 0, for all k = 1, . . . , s.

If also j
=0
↔ i or i v

λ j, then j ∈ Irev.

Corollary 1. Suppose i, j are unblocked and i, j ∈ Irev. Then we have:

a) i
=0
↔ j iff gk

i = 0 is equivalent to gk
j = 0, for all k = 1, . . . , s.

b) i v
λ j iff gk

j = λgk
i , for all k = 1, . . . , s.

Table 1 summarizes the different possible coupling relationships. Note that

i
=0
→ j, i

=0
↔ j and i v

λ j are equivalent for i, j ∈ Prev or i, j ∈ Frev .

Irev Prev Frev

i/j
=0
→

=0
↔ v

λ =0
→

=0
↔ v

λ =0
→

=0
↔ v

λ

Irev Prop.4 Cor.1 Cor.1 Prop.4

Prev Prop.2 Prop.2 Prop.2

Frev Prop.3 Prop.3 Prop.3
Table 1. Reaction coupling cases
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Fig. 3. Coupled reactions in ILLUSNET

Example 3. Fig. 3 shows all coupled reactions in the network from Fig. 2. We see
that many reactions depend on reaction 3. A zero flux for this reaction implies
a zero flux for the reactions 1, 2, 4, 11 and 12. Thus, reaction 3 plays a crucial
role in the network. Reaction 19 is blocked, because it is involved neither in the
definition of the minimal proper faces nor in the definition of the lineality space.



4 Identifying blocked and coupled reactions

4.1 Improving the FCF prodecure

It follows from Sect. 3 that coupling relationships depend on the reversibility
type of the reactions. Irreversible and pseudo-irreversible reactions cannot be
coupled with fully reversible reactions. According to Table 1, to detect coupling
relationships, we do not have to explore exhaustively all possible reaction pairs.
We can improve the FCF procedure significantly by applying linear-fractional
programming only in those cases where coupling relationships can occur. All the
possible cases are given in Table 1. An empty entry indicates that the corre-
sponding coupling relationship is not possible. Note that the reversibility type
of a reaction can be identified without computing a set of generating vectors of
the flux cone. However, this improved version of FCF still requires a network
reconfiguration, which leads to a large number of linear optimization problems
that have to be solved.

4.2 A new algorithm

The results in Sect. 3 also suggest a new algorithm to identify blocked and cou-
pled reactions. This method does not require any reconfiguration of the metabolic
network. It is only based on the reversibility type of the reactions and a mini-
mum set of generators of the flux cone. The basic steps of this new algorithm
are as follows. First, we compute a set of generators of the flux cone C using
existing software for polyhedral computations. Second, we classify the reactions
according to their reversibility type. This classification allows us to determine
whether a coupling between two reactions is possible. Finally, we apply the re-
sults from Sect. 3 to identify blocked and coupled reactions. For a more detailed
description, see Algorithm 1.

4.3 Computational results

Both our new algorithm and the FCF algorithm have been implemented in the
Java language. The FCF procedure was realized using CPLEX 9.0 (a state-of-
the-art solver for linear and integer programming problems) accessed via Java.
To compute a set of generating vectors of the steady state flux cone, our algo-
rithm uses the software cdd [2], which is a C++ implementation of the Double
Description method of Motzkin et al. for general convex polyhedra in R

n.
To compare the two approaches, we computed blocked and coupled reactions

for some genome-scale networks. The computations were performed on a Linux
server with a AMD Athlon Processor 1.6 GHz and 2 GB RAM. We present
computation times for models of the human red blood cell [13], the human
cardiac mitochondria [12], the central carbon metabolism of E. coli [3, 10], the
E. coli K-12 (iJR904 GSM/GPR) [7], and the H. pylori (iIT341 GSM/GPR)
[11]. We refer to [1] for a discussion of the biological aspects of flux coupling
analysis.



Input : Sets Irev ,Prev ,Frev ⊆ {1, . . . , n};
for each minimal proper face Gk, k = 1, . . . , s, a generating vector
gk ∈ Gk \ lin.space(C);
a vector basis b1, . . . , bt of lin.space(C).

Output: Blocked reactions: Φ = {i | i is blocked};
Coupled reactions: A = {(i, j) | i v

λ j, 1 ≤ i < j ≤ n},

B = {(i, j) | i
=0
↔ j, 1 ≤ i < j ≤ n, (i, j) 6∈ A},

C = {(i, j) | i
=0
→ j, (i, j) 6∈ A ∪ B, (j, i) 6∈ A ∪ B}.

Initialization: Φ := ∅, A := ∅, B := ∅, C := ∅.

/* Blocked reactions */

foreach i ∈ {1, . . . , n} do /* Proposition 1 */

if (bl
i = 0, ∀l = 1, . . . , t) and (gk

i = 0, ∀k = 1, . . . , s) then
add(i, Φ);

end

end

/* Coupled reactions */

Irev := Irev \ Φ, Prev := Prev \ Φ;

foreach i, j ∈ Prev with i < j do /* Proposition 2 */

if ∃λ ∈ R such that gk
j = λgk

i , ∀k = 1, . . . , s then add((i, j), A);
end

foreach i, j ∈ Frev with i < j do /* Proposition 3 */

if ∃λ ∈ R such that bl
j = λbl

i, ∀l = 1, . . . , t, and gk
j = λgk

i , ∀k = 1, . . . , s
then add((i, j), A);

end

foreach i ∈ Irev , j ∈ Irev ∪ Prev do /* Proposition 4 */

if gk
i 6= 0 or gk

j = 0, ∀k = 1, . . . , s then add((i, j), C);
end

foreach (i, j) ∈ C with i, j ∈ Irev and i < j do /* Corollary 1 */

if (j, i) ∈ C then
remove((i, j), C), remove((j, i), C));
if ∃λ ∈ R such that gk

j = λgk
i , ∀k = 1, . . . , s then add((i, j), A);

else add((i, j), B);
end

end

Algorithm 1: Blocked and coupled reactions finder



Tab. 2 summarizes our computational results. It shows that flux coupling
analysis can be done extremely fast if a set of generators of the flux cone is
available. Computing such a set is the most time-consuming part in our algo-
rithm. However, it should be noted that this step has an interest in its own.
We obtain similar information as by computing the elementary flux modes or
extreme pathways of the network, see [4] for more information. The overall run-
ning time of the new algorithm is still significantly faster than the original FCF
method.

Table 2. Metabolic systems, with the number of blocked reactions (Blk), the size of
the sets Irev ,Prev ,Frev , the running time (in seconds) of computing a set of generators
(MMB), reaction coupling using this set (FCMMB), and reaction coupling using the
FCF procedure (FCF ).

Metabolic network Blk Irev Prev Frev MMB FCMMB FCF

Red Blood Cell 0 31 14 6 2.32 0.26 110.65
Central metabolism of E. coli 0 92 18 0 214.49 2.55 477.14
Human cardiac mitochondria 121 83 3 9 1262.65 0.34 13426.91
Helicobacter pylori 346 128 15 39 13551.44 0.43 318374.15
E. coli K-12 435 480 49 110 261306.15 5.32 ≥ 1 week

5 Conclusion

In this paper, we have introduced a new method for flux coupling analysis based
on a refined analysis of the steady state flux cone. By distinguishing three types
of reactions (irreversible, pseudo-irreversible, fully reversible), we study mathe-
matical dependencies between coupling relationships and the reversibility type
of the reactions. The results that have been obtained allow improving the flux
coupling finder (FCF) and lead to a new algorithm for identifying blocked and
coupled reactions in a metabolic network.
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Appendix A

Proof of Theorem 2: First suppose i ∈ Irev ∪ Prev and j ∈ Frev . Since
j ∈ Frev , there exists v ∈ lin.space(C) such that vj 6= 0. Since i ∈ Irev ∪ Prev ,

we have vi = 0, so i
=0
9 j.

Now suppose that i ∈ Frev and j ∈ Irev ∪ Prev . Since j is unblocked, there
exists w ∈ C such that wj 6= 0. Since i is fully reversible, there exists b ∈
lin.space(C) such that bi 6= 0. Define v = w− (wi/bi) · b. It follows v ∈ C, vi = 0

and vj = wj 6= 0, which implies i
=0
9 j. ¤

Proof of Proposition 2: (3) ⇒ (2) ⇒ (1) is immediate.
(1) ⇒ (4): Let K+ = {k | gk

i > 0} and K− = {k | gk
i < 0}. Since i ∈ Prev ,

there exist v+, v− ∈ C with v+
i > 0 and v−

i < 0. If K+ = ∅ (resp. K− = ∅),
we would have vi ≤ 0 (resp. vi ≥ 0), for all v ∈ C, which is a contradiction.
So both K+ and K− must be non-empty. Let p ∈ K+ and q ∈ K−. Define

w = gp
i · gq − gq

i · gp. Then w ∈ C and wi = 0. Since i
=0
→ j, we get wj =

gp
i gq

j − gq
i gp

j = 0, or gp
j /gp

i = gq
j /gq

i

def
= λ, independently of the choice of p and

q. We conclude gk
j = λgk

i , for all k ∈ K+ ∪ K−. Since i
=0
→ j, this holds for all

k = 1, . . . , s.
(4) ⇒ (3): For all v ∈ C, there exists b ∈ lin.space(C) and αk ≥ 0 such that

v =
∑s

k=1 αkgk + b. Since i ∈ Prev and j ∈ Irev ∪ Prev , we have bi = bj = 0. It
follows that vj =

∑s

k=1 αkgk
j =

∑s

k=1 αkλgk
i = λvi. ¤



Proof of Proposition 3: (3) ⇒ (2) ⇒ (1) and (3) ⇔ (4) are immediate.

To prove (1) ⇒ (3), we suppose i
=0
→ j. Since i is fully reversible, there exists

b ∈ lin.space(C), with bi 6= 0. Given v ∈ C, define w = v − (vi/bi) · b. Then

w ∈ C and wi = 0. Since i
=0
→ j, we get wj = vj − (vi/bi)bj = vj − (bj/bi)vi = 0.

Defining λ = bj/bi, this shows vj = λvi, for all v ∈ C. ¤

Proof of Proposition 4: (1) ⇒ (2) ⇒ (3) is obvious, so we have to prove
only (3) ⇒ (1). For all v ∈ C, there exist b ∈ lin.space(C) and αk ≥ 0 such that
v =

∑s

k=1 αkgk + b. Since i ∈ Irev and j ∈ Irev ∪ Prev , we get bi = bj = 0.
By the definition of Irev , either gk

i ≥ 0, for all k = 1, . . . , s, or gk
i ≤ 0, for all

k = 1, . . . , s. Suppose vi =
∑s

k=1 αkgk
i = 0. It follows gk

i = 0, for k = 1, . . . , s.
Using (3), we obtain gk

j = 0 for k = 1, . . . , s, and so vj =
∑s

k=1 αkgk
j = 0.

Under the hypotheses of Prop. 4, suppose i
=0
↔ j. Clearly, j

=0
→ i. If j ∈ Prev ,

then by Prop. 2, i ∈ Prev , which is a contradiction. So j ∈ Irev . Similarly, if

i v
λ j, then i

=0
↔ j, and again j ∈ Irev . ¤

Proof of Corollary 1: a) Suppose gk
j = 0 is equivalent to gk

i = 0, for all

k = 1, . . . , s. Then gk
i = 0 implies gk

j = 0, and vice versa, for all k = 1, . . . , s.

Since i, j ∈ Irev , we may apply Prop. 4 and get i
=0
→ j and j

=0
→ i. So i

=0
↔ j.

b) Suppose gk
j = λgk

i , for all k = 1, . . . , s. For all v ∈ C, there exist b ∈

lin.space(C) and αk ≥ 0 such that v =
∑s

k=1 αkgk + b. Since i, j ∈ Irev , we have
bi = bj = 0. It follows that vj =

∑s

k=1 αkgk
j =

∑s

k=1 αkλgk
i = λvi. ¤


