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1 Introduction
Phase-�eld models for temperature-induced phase transitions in a physical body Ω
consist in deriving equations for the temperature θ (we will consider the absolute
temperature θ > 0 here) and the order parameter χ which characterizes the physical
state of the material. For example, in a simple melting-solidi�cation process, χ takes
values in the interval [0, 1] , where χ = 0 corresponds to the solid, χ = 1 to the liquid,
and 0 < χ < 1 is the liquid fraction in a mixture of both phases. The mathematical
model we consider below may or may not contain a restriction on the domain of
admissible values of χ .

The general scheme in phase-�eld modeling is based on de�ning a suitable free
energy functional F [θ, χ] . In the spatially non-local setting, the state variables θ
and χ cannot be treated as numbers any more, but as functions of the space variable
x ∈ Ω . Consequently, the symbol δθ in the de�nition of entropy

(1.1) S[θ, χ] = −δθF [θ, χ] ,

has to be understood as the variational derivative with respect to the function θ(x) ,
and the brackets in the expression for the internal energy

(1.2) E [θ, χ] = F [θ, χ] + 〈S[θ, χ], θ〉
denote the duality pairing in the corresponding function spaces (e. g. L2(Ω)).

The evolution of the process is governed by the energy conservation principle

(1.3) d

dt
E [θ, χ] = 0 ,

and the order parameter evolution equation

(1.4) µ(θ)
∂χ

∂t
∈ −δχF [θ, χ] ,

which expresses the tendency of the system to move towards local minima of the free
energy with speed proportional to 1/µ(θ) . The inclusion sign in (1.4) denotes the fact
that F may contain components which are not Fréchet di�erentiable, but are convex,
and the derivative can be interpreted as the subdi�erential which may be multivalued.

To account for interactions between neighbouring points in Ω , the classical
Ginzburg-Landau free energy (cf. [4]) contains a term (ν/2)|∇χ(x)|2 with a positive
parameter ν . A non-local alternative is suggested e. g. in [1, 2, 5, 6, 7, 8, 9, 10] in
the form of integral

∫
Ω
k(x, y) |χ(x)−χ(y)|2 dy with a given symmetric kernel k(x, y) .

We follow these lines and allow the kernel to depend additionally on the temperature.
More speci�cally, we consider a total free energy given by the formula

F [θ, χ] =

∫

Ω

(
cV θ(x)(1− ln θ(x)) + θ(x)σ(χ(x)) + λ(χ(x)) + (β + θ(x))ϕ(χ(x))(1.5)

+

∫

Ω

K(θ(x) + θ(y), x, y)G(χ(x)− χ(y)) dy
)
dx,
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where cV > 0 is the speci�c heat, σ and λ are smooth functions describing the local
dependence on χ of the entropy and of the latent heat, respectively, ϕ is a general
proper, convex, and lower semicontinuous function, β > 0 is a constant parameter,
K : R+ × Ω × Ω → R is a su�ciently regular symmetric kernel describing nonlocal
interactions, and G is an even smooth function having some boundedness properties
on the domain of ϕ that we specify below.

We consider the evolution system (1.3�1.4) in a �xed time interval t ∈ [0, T ]
and denote QT := Ω × (0, T ) . The state variables θ and χ in (1.5) will therefore
depend also on t . In order to keep the formulæ as simple as possible, we will not
explicitly mention the dependence on t . We however preserve, in order to emphasize
the non-local character of the problem, the dependence on the spatial variable. In
other words, for x, y ∈ Ω and t ∈ [0, T ] we write θ(x), θ(y) instead of θ(x, t), θ(y, t) ,
while θt(x), θt(y) will denote the partial derivative with respect to t of θ(x, t), θ(y, t)
etc. With this convention, we derive in the next section from (1.3�1.5) the following
system of equations for (x, t) ∈ QT ,

cV θt(x)− 2θ(x)

∫

Ω

Kττ (τ, x, y)
∣∣
τ=θ(x)+θ(y)

(θt(x) + θt(y))G(χ(x)− χ(y)) dy(1.6)

= κ∆θ(x) + 2θ(x)

∫

Ω

Kτ (τ, x, y)
∣∣
τ=θ(x)+θ(y)

G′(χ(x)− χ(y))(χt(x)− χ
t(y))dy

− (λ(χ(x)) + βϕ(χ(x)))t − 2χt(x)

∫

Ω

K(θ(x) + θ(y), x, y)G′(χ(x)− χ(y))dy,

µ(θ(x))χt(x) + θ(x)σ′(χ(x)) + λ′(χ(x))(1.7)

+ 2

∫

Ω

K(θ(x) + θ(y), x, y)G′(χ(x)− χ(y)) dy ∈ −(β + θ(x))∂ϕ(χ(x)),

which we couple with boundary and initial conditions

∂nθ(x, t) = 0, on ∂Ω× (0, T ),(1.8)
χ(x, 0) = χ

0(x), θ(x, 0) = θ0(x) in Ω,(1.9)

where ∆ is the Laplace operator, the subscripts t and τ denote partial derivatives,
κ > 0 is a constant which stands for the heat conductivity, ∂n denotes the normal
derivative, and χ

0, θ0 are given initial con�gurations.
Under technical assumptions on the data, we prove that the above system ad-

mits a strong solution, the absolute temperature remains positive if it is initially
positive, and the Clausius-Duhem inequality (Second Principle of Thermodynamics)
is satis�ed in a distributional sense. The problem of uniqueness still seems to be open.

The paper is organized as follows. In Section 2 we derive in detail the equations
(1.6�1.9) from the above considerations, show the thermodynamic consistency of the
model, and state the main results. We postpone the proofs of existence to Section 4.
Section 3 is devoted to some auxiliary results, namely an analysis of the solution
operator which with each given θ associates the solution χ to (1.7), and a maximum
principle for Eq. (1.6).
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2 Main results

2.1 Thermodynamic consistency

We �rst specify formally the way from (1.3�1.4) to (1.6�1.7) with the choice (1.5) of
the free energy. Let us consider a test function h(x) and compute according to (1.1)
the entropy as the Fréchet derivative of F with respect to θ , which in direction h
yields

〈S[θ, χ], h〉 = − 〈δθF [θ, χ], h〉 =

∫

Ω

(
(cV ln θ(x)− σ(χ(x))− ϕ(χ(x)))h(x)(2.1)

−
∫

Ω

Kτ (τ, x, y)
∣∣
τ=θ(x)+θ(y)

(h(x) + h(y))G(χ(x)− χ(y)) dy
)
dx .

The internal energy E is given by (1.2), that is,

E [θ, χ] =

∫

Ω

(
cV θ(x) + λ(χ(x)) + βϕ(χ(x))(2.2)

+

∫

Ω

(K(τ, x, y)− τKτ (τ, x, y))
∣∣
τ=θ(x)+θ(y)

G(χ(x)− χ(y)) dy
)
dx .

Assuming that time di�erentiation and space integration can be interchanged in the
energy conservation law (1.3), we obtain, using the symmetry of the kernel K , that

(2.3)
∫

Ω

Ē[θ, χ](x) dx = 0 ,

where we set

Ē[θ, χ](x) := cV θt(x) + (λ(χ(x)) + βϕ(χ(x)))t(2.4)

− 2θ(x)

∫

Ω

Kττ (τ, x, y)
∣∣
τ=θ(x)+θ(y)

(θt(x) + θt(y))G(χ(x)− χ(y)) dy

+ 2χt(x)

∫

Ω

K(τ, x, y)
∣∣
τ=θ(x)+θ(y)

G′(χ(x)− χ(y)) dy

− 2θ(x)

∫

Ω

Kτ (τ, x, y)
∣∣
τ=θ(x)+θ(y)

G′(χ(x)− χ(y))(χt(x)− χ
t(y)) dy .

Formally, by (2.3), there exists a vector function q (the heat �ux) such that q ·n = 0
on ∂Ω (n is the unit outward normal) and

(2.5) Ē +∇ · q = 0.

Assuming now the Fourier law q := −κ∇θ , where κ > 0 denotes the constant heat
conductivity, we obtain (1.6) and (1.8) as energy balance. Note the presence of θt in
non-local form. The parabolicity of the equation (hence the maximum principle) can
be ensured only if the product τ KττG is small with respect to cV . This will follow
from Hypothesis 2.1 below. By the same argument, the internal energy in (2.2) is
bounded from below for θ > 0 provided λ and ϕ are bounded from below.
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The order parameter equation (1.4) is compatible with the Lagrange method
which consists in choosing the multiplier `(x) in order to maximize the augmented
entropy

S`[θ, χ] := 〈S[θ, χ], `〉+ E [θ, χ]

=

∫

Ω

cV (θ(x) + `(x) ln θ(x)) + λ(χ(x))− σ(χ(x))`(x) + (β − `(x))ϕ(χ(x)) dx

+

∫

Ω

∫

Ω

G(χ(x)− χ(y))
[
K(θ(x) + θ(y), x, y)

− (θ(x) + θ(y) + `(x))Kτ (τ, x, y)
∣∣
τ=θ(x)+θ(y)

]
dy dx .

Indeed, the �rst Euler-Lagrange equation for critical points reads

〈δθS`[θ, χ], h〉 =

∫

Ω

cV h(x)

(
1 +

`(x)

θ(x)

)
dx−

∫

Ω

∫

Ω

Kττ (τ, x, y)
∣∣
τ=θ(x)+θ(y)

× (θ(x) + θ(y) + `(x) + `(y))(h(x) + h(y))G(χ(x)− χ(y)) dy dx = 0

for every test function h(x) . Putting h(x) = θ(x)(θ(x) + `(x)) we obtain

0 =

∫

Ω

cV (`(x) + θ(x))2dx−
∫

Ω

∫

Ω

G(χ(x)− χ(y))Kττ (τ, x, y)
∣∣
τ=θ(x)+θ(y)

(2.6)

× (
θ(x) + `(x) + θ(y) + `(y)

)(
θ(x)(θ(x) + `(x)) + θ(y)(θ(y) + `(y))

)
dy dx.

Assume that θ(x) > 0 for almost all x (this will be established in the next sections),
and let Γ > 0 be an upper bound for |τ Kττ G| for all admissible arguments. The
double integral on the right hand side in (2.6), which we denote by J , can be estimated
from above as

|J | ≤ 2

∫

Ω

∫

Ω

∣∣∣G(χ(x)− χ(y))Kττ (τ, x, y)
∣∣
τ=θ(x)+θ(y)

∣∣∣ θ(x)
(
(θ(x) + `(x))2(2.7)

+ |θ(x) + `(x)| |θ(y) + `(y)|) dy dx

≤ 2Γ

∫

Ω

∫

Ω

(
(θ(x) + `(x))2 + |θ(x) + `(x)| |θ(y) + `(y)|) dy dx

≤ 4Γ|Ω|
∫

Ω

|θ(x) + `(x)|2 dx.

It su�ces to require that 4Γ|Ω| < cV (which follows from Hypothesis 2.1 below),
and from (2.6) with (2.7) we get ` = −θ . With this Lagrange multiplier, we have
S`[θ, χ] = −F [θ, χ] , so that Eq. (1.4) can also be interpreted as the postulate that the
evolution of χ runs in the direction δχS`[θ, χ] of increasing augmented entropy. Then
(1.7) just follows from the de�nition (1.5) of F .

To conclude this subsection, we check that the model is compatible with the
Second Principle of Thermodynamics. Assuming again that θ > 0 , let us verify that
for every test function h(x) ≥ 0 we have

(2.8) d

dt
〈S[θ, χ], h〉+

∫

Ω

div

(
q(x)

θ(x)

)
h(x) dx ≥ 0 ,
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that is just the pointwise Clausius-Duhem inequality in the distributional sense.
We �rst di�erentiate (2.1) and obtain

d

dt
〈S[θ, χ], h〉 =

∫

Ω

(
cV
θt(x)

θ(x)
− (σ(χ(x)) + ϕ(χ(x)))t

)
h(x) dx(2.9)

− 2

∫

Ω

h(x)

∫

Ω

Kττ (τ, x, y)
∣∣
τ=θ(x)+θ(y)

(θt(x) + θt(y))G(χ(x)− χ(y)) dy dx

− 2

∫

Ω

h(x)

∫

Ω

Kτ (τ, x, y)G
′(χ(x)− χ(y))(χt(x)− χ

t(y)) dy dx .

Using (1.6) we have
∫

Ω

div

(
q(x)

θ(x)

)
h(x) dx =

∫

Ω

div q(x)

θ(x)
h(x) dx−

∫

Ω

q(x) · ∇θ(x)
θ2(x)

h(x) dx(2.10)

=

∫

Ω

κ |∇θ(x)|2
θ2(x)

h(x) dx− κ

∫

Ω

∆θ(x)

θ(x)
h(x) dx

≥ −
∫

Ω

cV
θt(x)

θ(x)
h(x) dx−

∫

Ω

(λ(χ(x)) + βϕ(χ(x)))t
h(x)

θ(x)
dx

+ 2

∫

Ω

h(x)

∫

Ω

Kττ (τ, x, y)
∣∣
τ=θ(x)+θ(y)

(θt(x) + θt(y))G(χ(x)− χ(y))dy dx

+ 2

∫

Ω

h(x)

∫

Ω

Kτ (τ, x, y)
∣∣
τ=θ(x)+θ(y)

G′(χ(x)− χ(y))(χt(x)− χ
t(y))dy dx

− 2

∫

Ω

χ
t(x)

(∫

Ω

K(θ(x) + θ(y), x, y)G′(χ(x)− χ(y)) dy

)
h(x)

θ(x)
dx.

From (1.7) it follows that there exists some ξ(x) ∈ ∂ϕ(χ(x)) such that

µ(θ(x))χt(x) + θ(x)σ′(χ(x)) + λ′(χ(x))(2.11)

+ 2

∫

Ω

K(θ(x) + θ(y), x, y)G′(χ(x)− χ(y)) dy + (β + θ(x))ξ(x) = 0 .

We have ξ(x)χt(x) = ϕ(χ(x))t a. e. in QT , and using (2.9�2.10), we obtain that

d

dt
〈S[θ, χ], h〉+

∫

Ω

div

(
q(x)

θ(x)

)
h(x) dx ≥

∫

Ω

µ(θ(x))

θ(x)
χ2

t (x)h(x) dx ≥ 0,

which is exactly the desired inequality (2.8).

2.2 Existence of solutions

In this subsection, we state our main results on solvability conditions for the system
(1.6�1.9). Throughout the paper, the following assumptions on the data are supposed
to hold.

Hypothesis 2.1. We consider a bounded domain Ω ⊂ RN with Lipschitzian bound-
ary, N being an arbitrary integer, T > 0 is a �xed �nal time, and for t ∈ [0, T ]
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we denote Qt = Ω × (0, t) . In addition to the �xed positive parameters cV and β
in (1.5), we assume the existence of positive constants S,M,R, ζ, µ∗, µ∗ such that
8|Ω|ζM ≤ cV , and that

(i) ϕ : R → R ∪ {+∞} is a proper, convex, and lower semicontinuous function,
D(ϕ) is its domain;

(ii) σ, λ ∈W 2,∞(D(ϕ)) , max{|σ′(z)|, |λ′(z)|} ≤ S for all z ∈ D(ϕ) ;

(iii) G ∈ W 2,∞(D(ϕ) − D(ϕ)) , G(z) = G(−z) for all z ∈ (D(ϕ) − D(ϕ)) , and the
estimate |G(z1 − z2)| ≤M holds for all z1, z2 ∈ D(ϕ) ;

(iv) the real function K of variables (τ, x, y) ∈ R+ × Ω × Ω and its derivatives
Kτ , Kττ are bounded, continuous in τ for a. e. x, y ∈ Ω , measurable in x, y for
all τ ≥ 0 , and K(τ, x, y) = K(τ, y, x) , |K(τ, x, y)| ≤ R , |τ Kττ (τ, x, y)| ≤ ζ , for
all τ ≥ 0 and a. e. x, y ∈ Ω ;

(v) µ is locally Lipschitz in R+ , µ∗(1 + τ) ≤ µ(τ) ≤ µ∗(1 + τ) for all τ ∈ R+ .

Let us �rst introduce some notation. For any C > 0 we denote

(2.12) DC(ϕ) = {χ ∈ D(ϕ) ; ∂ϕ(χ) ∩ [−C,C] 6= ∅} .

By [3, Example 2.3.4], ∂ϕ is maximal monotone, hence DC(ϕ) is a closed (possibly
unbounded or degenerate) interval for every C > 0 .

We use, for the sake of simplicity, the same symbol H for both L2(Ω) and
L2(Ω ; RN) . We further denote by V the space H1(Ω) , and identify H with a subspace
of the topological dual V ′ to V . The symbol 〈·, ·〉 is used for both the scalar product
in H and the duality pairing between V ′ and V .

We are in the position of stating the existence theorem.

Theorem 2.2. Let the Hypothesis 2.1 hold, let the initial data in (1.9) satisfy the
conditions

(2.13)
θ0 ∈ V ∩ L∞(Ω) , ∃θ∗ > 0 : θ0(x) ≥ θ∗ a. e. in Ω ,

χ
0 ∈ L∞(Ω) , ∃C0 > 0 : χ0(x) ∈ DC0(ϕ) a. e. in Ω .

Then there exists at least one pair (θ, χ) which solves (1.6�1.9) a. e. in QT and such
that

θ ∈ H1(0, T ;H) ∩ L2(0, T ;H2(Ω)) ∩ L∞(QT ) ↪→ C0([0, T ];V ) ,(2.14)
θ(x, t) > 0 a. e. in QT ,(2.15)

χ, χt ∈ L∞(QT ), ∃C > 0 : χ(x, t) ∈ DC(ϕ) a. e. in QT .(2.16)

Remark 2.3. If we compare Hypothesis 2.1 (v) with Eq. (1.7), we see that the phase
transition speed is controlled by the entropy at very large temperatures and by the
latent heat at low temperatures. Furthermore, the global bound for χt is obtained
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by dividing Eq. (1.7) by β + θ . The case ϕ = I[0,1] is somewhat special in the sense
that ∂ϕ remains invariant when multiplied by any positive scalar, so that the question
whether β > 0 or β = 0 is irrelevant similarly as in [12]. For the same reason, only the
lower bound for µ(θ) in Hypothesis 2.1 (v) is needed in this case. A possible growth
in θ of µ(θ) can again be compensated by putting formally in front of ∂ϕ a factor,
say, 1 + θ + µ(θ) . For general potentials ϕ , the situation is analogous to [15], where
the assumption β > 0 also seems to be necessary.

3 Auxiliary results
In this section we provide some auxiliary results that are used in the rest of the paper.
The �rst part of this section deals with the local Lipschitz continuity of solution
operators to general di�erential inclusions, while the second one recalls some parabolic
maximum principle results.

3.1 Solution operators to di�erential inclusions

Consider a functional ϕ as in Hypothesis 2.1 (i). For a given initial condition χ
0 , and

a given function θ ∈ L1(QT ) , we solve the following di�erential inclusion

(3.1) α(θ)χt + ∂ϕ(χ) 3 f [χ, θ] a. e. in QT , χ(x, 0) = χ
0(x) a. e. in Ω,

where α : R → R is a given function, and where f : L1(QT )× L1(QT ) → L∞(QT ) is
a given operator satisfying the following hypothesis.

Hypothesis 3.1. There exist positive constants α0, L, C such that

(i) α0 ≤ α(θ) for all θ ∈ R ;
(ii) |α(θ1)− α(θ2)| ≤ L|θ1 − θ2| for all θ1, θ2 ∈ R ;
(iii) |f [χ, θ](x, t)| ≤ C a. e. in QT for all χ, θ ∈ L1(QT ) such that χ(x, t) ∈ D(ϕ)

a. e. in QT ;

(iv) |f [χ1, θ1]− f [χ2, θ2]|L1(Qt) ≤ L(|χ1 − χ
2|L1(Qt) + |θ1 − θ2|L1(Qt))

for all χ1, θ1, χ2, θ2 ∈ L1(QT ) and t ∈ [0, T ] .

The main result of this subsection reads as follows.

Proposition 3.2. Let Hypothesis 3.1 hold, and let DC(ϕ) be as in (2.12). Then for
every θ ∈ L1(QT ) and for every χ

0 ∈ L∞(Ω) , χ0(x) ∈ DC(ϕ) a. e. in Ω , there exists
a unique solution χ ∈ L∞(QT ) to Eq. (3.1) such that χt ∈ L∞(QT ) , and we have

(3.2) χ(x, t) ∈ DC(ϕ) , |f [χ, θ](x, t)− α(θ(x, t))χt(x, t)| ≤ C a. e. in QT .
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Moreover, there exists a positive constant M such that the solutions χ1, χ2 ∈ L∞(QT )
associated with χ

01, χ02 ∈ DC(ϕ) and θ1, θ2 ∈ L1(QT ) satisfy for all t ∈ [0, T ] the
inequality

(3.3) |(χ1)t−(χ2)t|L1(Qt) + |(χ1−χ2)(t)|L1(Ω) ≤ M
(
|χ01−χ02|L1(Ω) + |θ1−θ2|L1(Qt)

)
.

Remark 3.3. The L1 -Lipschitz continuity estimate (3.3) in Proposition 3.2 cannot
be extended to Lp(QT ) for p > 1 , see [11, Example 3], except in the case when
ϕ is a C1 -function with locally Lipschitz continuous derivative. Strong continuity
L1(QT ) → Lp(QT ) of the solution mapping for p < ∞ follows however from the
uniform L∞ -bound (3.2). Indeed, testing (3.1) by χ

t , we obtain the identity

(3.4) ϕ(χ)t = −α(θ)χ2
t + f [χ, θ]χt a. e. in QT .

Let now θ(n), θ be such that θ(n) → θ strongly in L1(QT ) as n→∞ , and let χ(n), χ

be the corresponding solutions to Eq. (3.1). Using Proposition 3.2 and taking into
account the L∞ -bound (3.2), we see that χ(n) → χ , χ(n)

t → χ
t , ϕ(χ(n))t → ϕ(χ)t

strongly in any Lp(QT ) for 1 ≤ p <∞ as a consequence of the Lebesgue Dominated
Convergence Theorem.

Let us start with a space-independent problem. For a given initial condition
χ

0 ∈ D(ϕ) and a given function θ ∈ L1(0, T ) we consider the di�erential inclusion

(3.5) α(θ(t)) χ̇(t) + ∂ϕ(χ(t)) 3 g(t) a. e. in (0, T ), χ(0) = χ
0,

where α : R→ R is as in Hypothesis 3.1 and g ∈ L∞(0, T ) is such that

(3.6) |g(t)| ≤ C a. e. in (0, T ).

We prove the following result.

Proposition 3.4. Let Hypotheses 3.1 (i�ii) and (3.6) hold. Then for every θ ∈
L1(0, T ) and every χ

0 ∈ DC(ϕ) , there exists a unique solution χ ∈ W 1,∞(0, T ) to
Eq. (3.5), and we have

(3.7) χ(t) ∈ DC(ϕ) ∀t ∈ [0, T ] ,
∣∣g(t)− α(θ(t)) χ̇(t)

∣∣ ≤ C a. e. in (0, T ) .

Moreover, there exists a positive constant R depending only on C , α0 , and L , such
that the solutions χ1, χ2 ∈ W 1,∞(0, T ) associated with χ

01, χ02 ∈ DC(ϕ) , θ1, θ2 ∈
L1(0, T ) , and g1, g2 ∈ L∞(0, T ) with the constraint (3.6) satisfy the inequality

(3.8) |χ̇1 − χ̇
2|(t) +

d

dt
|χ1 − χ

2|(t) ≤ R
(
|θ1 − θ2|(t) + |g1 − g2|(t)

)
a. e. in (0, T ).

Proof of Proposition 3.4. We �rst prove the existence of solutions. We �x θ ∈
L1(0, T ) , χ0 ∈ DC(ϕ) and, for n ∈ N and k = 1, . . . , n , de�ne the sequences

(3.9) αk =
n

T

∫ tk

tk−1

α(θ(t)) dt , gk =
n

T

∫ tk

tk−1

g(t) dt ,
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(3.10) χ
k =

(nαk

T
I + ∂ϕ

)−1 (
gk +

nαk

T
χ

k−1

)

corresponding to the partition t0 = 0 , tk = Tk/n , where I(u) = u is the identity
mapping. Assume that for some k ≥ 1 we have

(3.11) ∂ϕ(χk) 3 gk − nαk

T
(χk − χ

k−1) > C .

By hypothesis we have |gk| ≤ C , hence maxDC(ϕ) ≤ χ
k < χ

k−1 by the monotonicity
of ∂ϕ . This yields, if k − 1 > 0 , that

(3.12) gk−1 − nαk

T
(χk−1 − χ

k−2) ≥ gk − nαk

T
(χk − χ

k−1) > C ,

and by induction we obtain maxDC(ϕ) ≤ χ
k < χ

k−1 < · · · < χ
0 which is a contradic-

tion. We obtain a similar contradiction by assuming that gk− (nαk/T )(χk−χk−1) <
−C . Using the fact that αk ≥ α0 , we thus have for all k = 1, . . . , n that

(3.13)
∣∣∣gk − nαk

T
(χk − χ

k−1)
∣∣∣ ≤ C , χ

k ∈ DC(ϕ) , |χk − χ
k−1| ≤ 2CT

nα0

.

We now de�ne the interpolates

(3.14) α(n)(t) = αk , g(n)(t) = gk , χ̄(n)(t) = χ
k , χ(n)(t) = χ

k−1 ,

(3.15) χ(n)(t) = χ
k−1 +

n

T
(t− tk−1)(χk − χ

k−1)

for t ∈ [tk−1, tk) , continuously extended to t = T . The functions χ(n) are bounded in
W 1,∞(0, T ) uniformly with respect to n ∈ N . Passing to a subsequence, if necessary,
we �nd χ ∈ W 1,∞(0, T ) such that χ(0) = χ

0 , χ̇
(n) → χ̇ in L∞(0, T ) weakly-star, and

χ(n) → χ uniformly in [0, T ] . Using the inequalities

(3.16) |χ(n)(t)− χ̄(n)(t)| ≤ 2CT

nα0

, |χ(n)(t)− χ(n)(t)| ≤ 2CT

nα0

,

we also see that χ̄(n) → χ , χ(n) → χ uniformly. Using the Mean Continuity The-
orem for functions in L1(0, T ) , we conclude that α(n) converge to α(θ(·)) strongly
in L1(0, T ) , and g(n) converge to g strongly in any Lp(0, T ) for 1 ≤ p < ∞ and
weakly-star in L∞(0, T ) . Let now z ∈ L∞(0, T ) be a test function, z(t) ≥ 0 a. e. in
(0, T ) , and let w ∈ D(ϕ) , ξ ∈ ∂ϕ(w) be arbitrary. By construction, we have

(3.17) (g(n)(t)− α(n)(t) χ̇
(n)

(t)− ξ)(χ̄(n)(t)− w) ≥ 0 a. e. in (0, T ) ,

hence

(3.18)
∫ T

0

(g(n)(t)− α(n)(t)χ̇
(n)

(t)− ξ)(χ̄(n)(t)− w) z(t) dt ≥ 0 .

Passing to the limit as n↗∞ in (3.18) we obtain

(3.19) (g(t)− α(θ(t)) χ̇(t)− ξ)(χ(t)− w) ≥ 0 a. e.
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Since ∂ϕ is maximal monotone, the function χ satis�es Eq. (3.5). Estimate (3.7)
follows from (3.13).

We now prove inequality (3.8) which also implies uniqueness of solutions to
Eq. (3.5). Let χ01, χ02 ∈ DC(ϕ) , θ1, θ2 ∈ L1(0, T ) , and g1, g2 ∈ L∞(0, T ) be functions
satisfying (3.6), and let χ1, χ2 ∈ W 1,∞(0, T ) be corresponding solutions of Eq. (3.5).
For i = 1, 2 and t ∈ (0, T ) put

(3.20) ξi(t) = gi(t)− α(θi(t)) χ̇i(t) .

As ∂ϕ is monotone and ξi(t) ∈ ∂ϕ(χi(t)) for i = 1, 2 a. e. in (0, T ) , we have

(3.21)
(
ξ1(t)− ξ2(t)

) (
χ

1(t)− χ
2(t)

) ≥ 0 a. e.

We test the identity

ξ1(t)− ξ2(t) + α(θ1(t))
(
χ̇

1(t)− χ̇
2(t)

)
= χ̇

2(t)
(
α(θ2(t))− α(θ1(t))

)
(3.22)

+ g1(t)− g2(t) a. e.

by the sign of ξ1(t)− ξ2(t) if ξ1(t) 6= ξ2(t) , or otherwise by the sign of χ1(t)− χ
2(t) .

By virtue of (3.21), this yields

∣∣ξ1 − ξ2
∣∣(t) + α(θ1(t))

d

dt

∣∣χ
1 − χ

2

∣∣(t)(3.23)

≤
∣∣χ̇

2(t)
∣∣ ∣∣α(θ1(t))− α(θ2(t))

∣∣ +
∣∣g1 − g2

∣∣(t) a. e. ,

hence

α(θ1(t))

(∣∣χ̇
1 − χ̇

2

∣∣(t) +
d

dt

∣∣χ
1 − χ

2

∣∣(t)
)

(3.24)

≤ 2
∣∣g1 − g2

∣∣(t) + 2
∣∣χ̇

2(t)
∣∣ ∣∣α(θ1(t))− α(θ2(t))

∣∣ a. e.

Using the estimates

(3.25) α(θi(t)) ≥ α0 for i = 1, 2,
∣∣χ̇

2(t)
∣∣ ≤ 2C

α0

a. e.

and Hypothesis 3.1, we obtain from (3.24) that

∣∣χ̇
1 − χ̇

2

∣∣(t) +
d

dt

∣∣χ
1 − χ

2

∣∣(t)(3.26)

≤ 2

α0

|g1 − g2|(t) +

(
4CL

α2
0

) ∣∣θ1 − θ2

∣∣(t) a. e. ,

that is exactly (3.8). ¥

We now use this result to prove Proposition 3.2.
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Proof of Proposition 3.2. For given θ ∈ L1(QT ) and χ
0 ∈ L∞(Ω) , χ0(x) ∈ DC(ϕ)

a. e. we prove the existence of a unique solution to (3.1) by the Banach contraction
argument. We de�ne the set

(3.27) S :=

{
v ∈ L∞(QT ) :

vt ∈ L∞(QT ) , |vt|L∞(QT ) ≤ 2C/α0 ,

v(x, 0) = χ
0(x) a. e. in Ω

}

as a closed subset of L1(QT ) endowed with the weighted norm

(3.28) |v|RL :=

∫ T

0

e−2RLt

∫

Ω

|v(x, t)| dx dt ,

where R = R(C,α0, L) and L are as in Hypothesis 3.1 and Proposition 3.4. For an
arbitrary χ̃ ∈ S we put g̃(x, t) = f [χ̃, θ](x, t) , and de�ne χ(x, t) as the solution of the
di�erential inclusion

(3.29)
α(θ(x, t))χt(x, t) + ∂ϕ(χ(x, t)) 3 g̃(x, t) a. e. in QT ,

χ(x, 0) = χ
0(x) a. e. in Ω .

For almost every x ∈ Ω , this inclusion is of the form (3.5) with right-hand side
satisfying (3.6). By Proposition 3.4, the function χ belongs to S , and we may de�ne
the solution mapping T : S → S : χ̃ 7→ χ . We check that T is a contraction
with respect to the norm (3.28). Indeed, let us use estimate (3.8) with θ1 = θ2 ,
gi(t) = f [χ̃i, θi](t) for i = 1, 2 . This, thanks to Hypothesis 3.1, leads to

d

dt

∫

Ω

|χ1 − χ
2|(x, t) dx ≤ RL

∫

Ω

|χ̃1 − χ̃
2|(x, t) dx .(3.30)

Now, multiplying both sides of this inequality by e−2RLt , and integrating over [0, T ] ,
we infer that

(3.31) |χ1 − χ
2|RL ≤ 1

2
|χ̃1 − χ̃

2|RL .

Hence T is a contraction on S , and the Banach �xed point theorem yields the existence
and uniqueness of a solution χ ∈ S of the di�erential inclusion (3.1). Estimate (3.2)
follows directly from (3.7). Finally, in order to prove (3.3), take χ

01, χ02 ∈ DC(ϕ) ,
θ1, θ2 ∈ L1(QT ) , and let χ1, χ2 be the corresponding solutions of Eq. (3.1). For almost
all x we use (3.8) with gi(t) = f [χi, θi](x, t) , i = 1, 2 . Integrating over Ω and over
(0, t) for t ∈ (0, T ] , and using Hypothesis 3.1, we obtain that

∫ t

0

∫

Ω

|(χ1)t − (χ2)t|(x, s) dx ds+

∫

Ω

|χ1 − χ
2|(x, t) dx− |χ01 − χ

02|L1(Ω)(3.32)

≤
∫ t

0

∫

Ω

(RL|χ1 − χ
2|(x, s) +R(L+ 1)|θ1 − θ2|(x, s)) dx ds,

and Gronwall's argument yields
∫ t

0

∫

Ω

|(χ1)t − (χ2)t|(x, s) dx ds+

∫

Ω

|χ1 − χ
2|(x, t) dx(3.33)

≤ eRLt

(
|χ01 − χ

02|L1(Ω) +R(L+ 1)

∫ t

0

∫

Ω

|θ1 − θ2|(x, s) dx ds
)
,

which concludes the proof. ¥
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3.2 The maximum principle

We recall for the reader's convenience a maximum principle result for parabolic equa-
tions with non-constant coe�cients. A substantially more general theory can be found
in [13, Chapter 3], but we wish to emphasize the fact that our case can be treated in
an elementary way.

Proposition 3.5. Let ut, ∆u ∈ L2(QT ) , u0 ∈ V , a ∈ L∞(QT ) such that 0 < a0 ≤
a(x, t) ≤ a1 a. e. in QT satisfy

(3.34) a(x, t)ut −∆u ≤ 0 a. e. in QT , u(x, 0) = u0(x) ≤ 0 a. e. in Ω ,

with homogeneous Neumann boundary condition. Then u(x, t) ≤ 0 a. e. in QT .

Proof. Let us assume �rst that |at(x, t)| ≤ ã(t) a. e. in QT , with ã ∈ L1(0, T ) .
Then, testing the inequality (3.34) with the positive part u+ of u , we get

d

dt

∫

Ω

a(x, t) (u+)2 dx ≤ ã(t)

∫

Ω

(u+)2 dx.

Now, integrating over (0, t) we obtain from Gronwall's Lemma that a0

∫
Ω
(u+)2 dx ≤ 0

a. e. in QT , and the assertion immediately follows.
Suppose now that a ∈ L∞(QT ) . Put g := a(x, t)ut−∆u ∈ L2(QT ) . Then g ≤ 0

a. e. in QT . We choose a sequence of smooth functions an such that a0 ≤ an(x, t) ≤ a1 ,
and an(x, t) → a(x, t) a. e. in QT . Now, let un be the solution of

an(x, t)un
t −∆un = g, un(x, 0) = u0(x)

with homogeneous Neumann boundary condition for each n . By the above argument,
we have that un(x, t) ≤ 0 a. e. in QT . Passing to a subsequence, we �nd a function
ũ such that and un

t → ũt , ∆un → ∆ũ weakly in L2(QT ) , un → ũ strongly e. g. in
C([0, T ] ; H) , hence also ũ(x, t) ≤ 0 a. e. in QT . Both u and ũ solve the equation
a(x, t)ut−∆u = g in QT with the same initial and boundary condition, hence u = ũ .
This concludes the proof. ¥

Proposition 3.6. Let a1 > a0 > 0 , u∗ > 0 , γ0 ∈ L1(0, T ) , and u0 ∈ V ∩ L∞(Ω)
be given. Assume that ut, ∆u ∈ L2(QT ) , a ∈ L∞(QT ) , γ ∈ L1(QT ) such that
a0 ≤ a(x, t) ≤ a1 , |γ(x, t)| ≤ γ0(t) a. e. in QT satisfy

(3.35) a(x, t)ut −∆u ≥ γ(x, t) u a. e. in QT , u(x, 0) = u0(x) ≥ u∗ a. e. in Ω

with homogeneous Neumann boundary condition. Then u(x, t) > 0 a. e. in QT . If,
moreover, there exist non-negative functions b, c ∈ L1(0, T ) such that

(3.36) a(x, t)ut −∆u ≤ b(t)u+ c(t) a. e. in QT ,

then there exists a positive constant C depending only on |b|L1(0,T ) , |c|L1(0,T ) , and
|u0|L∞(Ω) such that u(x, t) ≤ C a. e. in QT .
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Proof. For t ∈ [0, T ] we denote by e(t) the solution of the di�erential equation

(3.37) ė(t) = −k(t) e(t) , e(0) = 1 , where k(t) =
γ0(t)

a0

,

(that is, e(t) = exp(− ∫ t

0
k(τ) dτ)) and de�ne the auxiliary functions

p(u, t) = − (u∗e(t)− u)+ ,(3.38)

P (u, t) =
e2(t)

2

(
(u∗e(t)− u)+)2(3.39)

for t ∈ [0, T ] and u ∈ R . We have
∂P

∂u
= e2(t) p(u, t) ≤ 0 ,(3.40)

∂2P

∂u2
= e2(t)H(u∗e(t)− u) ≥ 0 , where H is the Heaviside function ,(3.41)

∂P

∂t
= −k(t) e2(t) (|p(u, t)|2 − u∗e(t) p(u, t)

)
.(3.42)

Put v(x, t) = P (u(x, t), t) . Then
vt = e2(t)

(
p(u, t)ut − k(t)

(|p(u, t)|2 − u∗e(t) p(u, t)
))
,(3.43)

∇v = e2(t) p(u, t)∇u ,(3.44)

∆v = e2(t)H(u∗e(t)− u) |∇u|2 + e2(t) p(u, t) ∆u ,(3.45)
hence

a(x, t) vt −∆v = e2(t) p(u, t) (a(x, t)ut −∆u)(3.46)

− e2(t)H(u∗e(t)− u) |∇u|2 − a(x, t) k(t) e2(t)
(|p(u, t)|2 − u∗e(t) p(u, t)

)

≤ a(x, t) e2(t)

(
u p(u, t)

γ(x, t)

a(x, t)
− k(t)

(|p(u, t)|2 − u∗e(t) p(u, t)
))

= a(x, t) e2(t)

(
− k(t) |p(u, t)|2 +

γ(x, t)

a(x, t)
p(u, t) (u− u∗e(t))

+

(
k(t) +

γ(x, t)

a(x, t)

)
u∗e(t) p(u, t)

)
.

We have |γ(x, t)|/a(x, t) ≤ k(t) , p(u, t) ≤ 0 , |p(u, t) (u − u∗e(t))| = |p(u, t)|2 a. e.,
hence the right-hand side of (3.46) is non-positive. By virtue of Proposition 3.5 we
have v(x, t) ≤ 0 a. e. in QT , hence u(x, t) ≥ u∗e(t) which we wanted to prove.

Assume now that (3.36) holds. We de�ne functions f and g as solutions to the
di�erential equations

(3.47)
a0ḟ(t) = −b(t) f(t), f(0) = 1 ,

a0ġ(t) = −c(t) f(t), g(0) ≤ − ess supx∈Ω{u0(x)} ,
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and put w(x, t) = f(t)u(x, t) + g(t) . Then w veri�es a. e. in QT

a(x, t)wt −∆w = f(t) (a(x, t) ut −∆u) + a(x, t)
(
ḟ(t) u+ ġ(t)

)
(3.48)

≤ f(t) b(t) u+ f(t) c(t) + a0 ḟ(t) u+ a0 ġ(t) = 0 .

Moreover, since w(x, 0) ≤ 0 , we get by (3.48) and Proposition 3.5 the bound for u

u(x, t) ≤ |g(t)|
f(t)

≤ C a. e. in QT ,

which completes the proof. ¥

4 Proof of the existence result
This section is devoted to the proofs of the existence result stated in Section 2.2. We
use a standard technique based on approximations, a priori estimates, and passage to
the limit.

4.1 Approximation

Assuming Hypothesis 2.1 and (2.13) to hold, we proceed as follows: �rst solve the
problem corresponding to (1.6�1.9) in which we regularize the coe�cient µ and replace
θ by |θ| at suitable places, and then derive bounds for θ which will allow us to conclude
that the solution of the modi�ed problem satis�es also (1.6�1.9). For some % > 0
su�ciently large, which will be speci�ed later, we introduce for θ ∈ R the function

(4.1) µ%(θ) =

{
µ(|θ|) for |θ| ≤ % ,
µ(%) + µ∗(|θ| − %) for |θ| > % ,

and consider the following

Problem 4.1. For T > 0 �nd a pair (θ, χ) with the regularity (2.14) and (2.16),
solving a. e. in QT the system of equations

cV θt(x)− 2θ(x)

∫

Ω

Kττ (τ, x, y)
∣∣
τ=|θ(x)|+|θ(y)|(θt(x) + θt(y))G(χ(x)− χ(y)) dy(4.2)

= κ∆θ(x) + 2θ(x)

∫

Ω

Kτ (τ, x, y)
∣∣
τ=|θ(x)|+|θ(y)|G

′(χ(x)− χ(y))(χt(x)− χ
t(y))dy

− (λ(χ(x)) + βϕ(χ(x)))t − 2χt(x)

∫

Ω

K(|θ(x)|+ |θ(y)|, x, y)G′(χ(x)− χ(y))dy,

µ%(θ(x))χt(x) + θ(x)σ′(χ(x)) + λ′(χ(x))(4.3)

+ 2

∫

Ω

K(|θ(x)|+ |θ(y)|, x, y)G′(χ(x)− χ(y))dy ∈ −(β + |θ(x)|)∂ϕ(χ(x))

with boundary and initial conditions (1.8�1.9).
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Equation (4.3) is of the form (3.1) with

(4.4) α(θ) =
µ%(θ)

β + |θ| ≥
µ∗(1 + |θ|)
β + |θ| ≥ µ∗ min

{
1,

1

β

}
,

(4.5)
f [χ, θ] = − 1

β + |θ|
(
θσ′(χ) + λ′(χ) + 2

∫

Ω

K(|θ(x)|+ |θ(y)|, x, y)G′(χ(x)− χ(y))dy

)
.

By Hypothesis 2.1 there exists a positive constant Cf such that

(4.6) |f [χ, θ]| ≤ Cf a. e. for all χ, θ ∈ L1(QT ) : χ(x, t) ∈ D(ϕ) a. e. in QT .

The assumptions of Proposition 3.2 are satis�ed with C = max{C0, Cf} , where C0 is
de�ned in (2.13), and with L replaced by some L% dependent on % . We thus may
de�ne the solution mapping

(4.7) A% : L1(QT ) → L∞(QT ) : θ 7→ χ ,

which with each θ ∈ L1(QT ) associates the solution χ of (4.3) with �xed initial
condition χ

0 according to Proposition 3.2.
Problem 4.1 is solved via Faedo-Galerkin approximations. Consider an increas-

ing sequence {Vn} of subspaces of dimVn = n of V such that
⋃
Vn = V . Let

(v1, . . . , vn) be a basis for Vn . Denoting with (·)′ the derivative with respect to time,
we state the approximate Problem 4.1 in the form
Problem 4.2. For n ∈ N �nd θn ∈ H2(0, T ;Vn) solving for all v ∈ Vn the following
system of equations

1

n
〈θ′′n, v〉+ 〈cV θ′n, v〉 − 〈κ∆θn, v〉(4.8)

− 〈2θn

∫

Ω

G(χn(x)− χ
n(y))Kττ (τ, x, y)

∣∣
τ=|θn(x)|+|θn(y)|(θ

′
n(x) + θ′n(y)) dy, v〉

= 〈2θn

∫

Ω

Kτ (τ, x, y)
∣∣
τ=|θn(x)|+|θn(y)|G

′(χn(x)− χ
n(y))(χ′n(x)− χ′

n(y)) dy, v〉
− 〈(λ(χn) + βϕ(χn))′, v〉
− 〈2χ′n

∫

Ω

K(|θn(x)|+ |θn(y)|, x, y)G′(χn(x)− χ
n(y)) dy, v〉 ,

χ
n = A%[θn] ,(4.9)

∂nθn = 0 on ∂Ω× (0, T ) ,(4.10)

θn(·, 0) = θ0, θ′n(·, 0) = 0 a. e. in Ω .(4.11)

Equation (4.8) can be written as a 2n × 2n system of di�erential equations
with a Lipschitz continuous right-hand side (note that ϕ is Lipschitz on DC(ϕ) and
the dependence θn 7→ χ′

n is Lipschitz by virtue of Proposition 3.2), hence it admits
a unique solution for every n ∈ N which can be constructed, e. g., by the Banach
contraction argument.
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4.2 Uniform estimate and passage to the limit

In this subsection we derive some estimates (uniform in % and n) for the solution
(θn, χn) of Problem 4.2 constructed in the previous Subsection 4.1, and then pass to
the limit Problem 4.2 with the intention to �nd a solution to Problem 4.1.

In the sequel, we will denote by c any positive constant which depends on the
data of the problem (but neither on n nor on %) and may vary from line to line.

Uniform estimate. We �rst notice that Proposition 3.2 and Remark 3.3 yield

(4.12) |χn|L∞(QT ) + |χ′n|L∞(QT ) + |ϕ(χn)′|L∞(QT ) ≤ c .

We may take v = θ′n(t) in (4.8) and integrate over (0, t) with t ∈ (0, T ] . Using
Hypotheses 2.1 and (2.13), together with the uniform bounds (4.12), we get that
(4.13)

1

2n
|θ′n(t)|2H +

cV
2

∫ t

0

∫

Ω

|θ′n(s)|2 dx ds+
κ

2
|∇θn(t)|2H ≤ c

(
1 +

∫ t

0

∫

Ω

|θn(s)|2 dx ds
)
.

Now, adding to both sides in (4.13) the term

1

2

∫

Ω

|θn(t)|2 dx =
1

2

∫

Ω

|θn(0)|2 +

∫ t

0

∫

Ω

θ′n(s) θn(s) ds ,

and applying Young's inequality and Gronwall's lemma, we obtain the following uni-
form bounds

(4.14) 1√
n
|θ′n|L∞(0,T ;H) + |θ′n|L2(0,T ;H) + |θn|L∞(0,T ;V ) ≤ c.

Finally, by comparison in (4.8), we also get

(4.15) 1

n
|θ′′n|L2(0,T ;V ′) ≤ c.

Passage to the limit. Thanks to the uniform estimates (4.12) and (4.14�4.15),
Proposition 3.2, Remark 3.3, and standard compactness results (cf. [14, Cor. 4, p. 85]),
we may deduce now that there exist functions θ, χ such that (for a subsequence of
n↗∞) the following convergences hold true

θ′n → θt weakly in L2(0, T ;H),(4.16)
θn → θ weakly star in L∞(0, T ;V ),(4.17)
θn → θ strongly in C0([0, T ];H),(4.18)
(1/n)θ′n → 0 strongly in C0([0, T ];H),(4.19)
χ

n → χ weakly star in L∞(QT ) and strongly in Lp(QT ),(4.20)
χ′

n → χ
t weakly star in L∞(QT ) and strongly in Lp(QT ),(4.21)

ϕ(χn)′ → ϕ(χ)t weakly star in L∞(QT ) and strongly in Lp(QT )(4.22)
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for all p ∈ [1,+∞) . Our aim is now to show that the limit functions (θ, χ) solve
Problem 4.1. Let us �x an arbitrary m ∈ N and, for n ≥ m , take z ∈ Vm and a
smooth test function ψ(t) with compact support in (0, T ) . Note that Vm ⊆ Vn by
construction, hence we can choose v = zψ(t) in (4.8) and integrate over (0, T ) to
obtain for all n ≥ m that

∫ T

0

1

n
〈θ′n(t), zψ′(t)〉 dt+

∫ T

0

〈cV θ′n(t), zψ(t)〉 dt−
∫ T

0

〈κ∆θn(t), zψ(t)〉 dt(4.23)

=

∫ T

0

〈2θn(t)

∫

Ω

G(χn(t, x)− χ
n(t, y))Kττ (τ, x, y)

∣∣
τ=|θn(x)|+|θn(y)|(θ

′
n(t, x)

+ θ′n(t, y)) dy, zψ(t)〉 dt−
∫ T

0

〈(λ(χn(t)) + βϕ(χn(t)))′

+ 2χ′n(t)

∫

Ω

K(|θn(t, x)|+ |θn(t, y)|, x, y)G′(χn(t, x)− χ
n(t, y))dy, zψ(t)〉dt

+

∫ T

0

〈2θn(t)

∫

Ω

Kτ (τ, x, y)
∣∣
τ=|θn(x)|+|θn(y)|G

′(χn(t, x)− χ
n(t, y))(χ′n(t, x)

− χ′
n(t, y)) dy, zψ(t)〉 dt .

Using now the convergences (4.16�4.22), and passing to the limit as n↗∞ in (4.23),
we get (with a slight abuse of notation)

(4.24)
∫ T

0

〈(4.2), zψ(t)〉 dt = 0 .

Since both ψ and z ∈ Vm are arbitrary and m is arbitrarily large, we conclude that
Eq. (4.2) is satis�ed. Using again the convergences (4.16�4.22), we can pass to the limit
also in (4.9�4.11) and get a solution to Problem 4.1. Note that now, by comparison
in (4.2) it follows that θ ∈ L2(0, T ;H2(Ω)) .

To conclude the proof of Theorem 2.2, it remains to prove the positivity and a
uniform upper bound for the θ -component of the solution to (4.2�4.3). To this aim,
we multiply Eq. (4.3) by χ

t and derive the identity (we now for simplicity omit the
argument (x) outside the integral)

− (λ(χ) + βϕ(χ))t − 2χt

∫

Ω

K(|θ(x)|+ |θ(y)|, x, y)G′(χ(x)− χ(y)) dy(4.25)

= µ%(θ)χ
2
t + θσ(χ)t + |θ|ϕ(χ)t

which, inserted in (4.2), yields

cV θt − 2θ

∫

Ω

Kττ (τ, x, y)
∣∣
τ=|θ(x)|+|θ(y)|(θt(x) + θt(y))G(χ(x)− χ(y)) dy(4.26)

= κ∆θ + 2θ

∫

Ω

Kτ (τ, x, y)
∣∣
τ=|θ(x)|+|θ(y)|G

′(χ(x)− χ(y))(χt(x)− χ
t(y)) dy

+ µ%(θ)χ
2
t + θσ(χ)t + |θ|ϕ(χ)t .
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Putting

a(x, t) = cV − 2θ(x)

∫

Ω

Kττ (τ, x, y)
∣∣
τ=|θ(x)|+|θ(y)|G(χ(x)− χ(y)) dy(4.27)

γ(x, t) = 2

∫

Ω

Kττ (τ, x, y)
∣∣
τ=|θ(x)|+|θ(y)|G(χ(x)− χ(y))θt(y) dy(4.28)

+ 2

∫

Ω

Kτ (τ, x, y)
∣∣
τ=|θ(x)|+|θ(y)|G

′(χ(x)− χ(y)(χt(x)− χ
t(y)) dy

+ σ(χ)t + sign(θ(x))ϕ(χ)t

we see that Eq. (4.26) for u = κθ is as in Proposition 3.6, which yields that θ > 0
a. e. in QT . From the estimates (4.12) and (4.14) it follows that the functions b(t)
and c(t) can be chosen independently of % , hence we obtain from Proposition 3.6 the
L∞ -bound for θ independent of % . Choosing % su�ciently large we thus check that
θ, χ satisfy all conditions of Theorem 2.2, and the proof is complete. ¥
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