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1 Introduction
Phase-�eld models have been designed to describe the evolution of the state variables
θ > 0 and χ , representing the absolute temperature and a scalar order parame-
ter, respectively, during temperature-induced phase transitions in a body Ω ⊂ RN

(N = 3 , for instance) if no mechanical motion takes place. For example, in a simple
melting-solidi�cation process, χ attains its values in the interval [0, 1] , where {χ = 0}
characterizes the solid phase, {χ = 1} the liquid, and {0 < χ < 1} is the liquid
fraction in a mixture of both phases. Solid-solid phase transitions between two crys-
tallographic variants with di�erent mechanical properties (martensite and austenite,
say) may also exhibit a similar behavior provided the experiment is uniaxial and is
carried out under constant strain. Then the stress may play the role of an order pa-
rameter characterizing the phase, but no natural restriction on the admissible order
parameter range is necessary.

We deal here with an integrodi�erential model for volume preserving nonisother-
mal phase transitions that takes into account long-range interactions between parti-
cles. The physical relevance of nonlocal interaction phenomena in phase separation
and phase transition models was already described in the pioneering papers [28] and
[8]; however, only recently both isothermal and nonisothermal models containing non-
local terms have been analyzed in a more systematic way (cf., e. g., [2]�[3], [9]�[21],
[26]). The di�erence between local and nonlocal models consists in a di�erent choice
of the particle interaction potential in the free energy functional. The nonlocal con-
tribution to the free energy has typically the form

∫
Ω
k(x, y) |χ(x) − χ(y)|2 dy with

a given symmetric kernel k(x, y) ; its classical local Ginzburg-Landau counterpart
has the form (ν/2)|∇χ(x)|2 as, e. g., in [7], with a positive parameter ν , and can
be obtained as a formal limit as m → ∞ from the nonlocal one with the choice
k(x, y) = mN+2K(|m(x − y)|2) , where K is a nonnegative function with support in
[0, 1] . This follows from the formula

∫

Ω

mN+2K(|m(x− y)|2) |χ(x)− χ(y)|2 dy =

∫

Ωm(x)

K(|z|2)
∣∣∣∣∣
χ

(
x+ z

m

)− χ(x)
1
m

∣∣∣∣∣

2

dz

m→∞−→
∫

RN

K(|z|2) 〈∇χ(x), z〉2 dz =
ν

2
|∇χ(x)|2

for a su�ciently regular χ , where we denote ν = 2
∫
RN K(|z|2)|z|2 dz and Ωm(x) =

m(Ω − x) . Let us also mention the �Penrose-Fife� potential (ν/2) θ |∇χ(x)|2 , see
[6, 25]. Its nonlocal version might also deserve appropriate attention (cf. [21]), but we
do not consider this issue here.

The passage from a nonlocal to a local potential changes dramatically the prop-
erties of the model. For example, the maximum principle is lost in the limit, and in
general it is not possible to guarantee without additional hypotheses that the absolute
temperature remains positive during the process.

We pursue here the investigations begun in [19] and consider a local free energy
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of the form

(1.1) F [θ, χ] = cV (χ)θ(1− log θ) + θσ(χ) + λ(χ) + (β + θ)ϕ(χ) +B[χ] ,

where σ and λ are smooth functions describing the local dependence on χ of the
entropy and of the latent heat, respectively; β > 0 is a constant parameter, B[χ] is a
nonlocal operator of the form

(1.2) B[χ](x, t) :=

∫

Ω

k(x, y)G(χ(x, t)− χ(y, t)) dy

with a bounded, symmetric kernel k : Ω × Ω → R and an even smooth function G ;
ϕ is a general proper, convex, and lower semicontinuous function. Its domain D(ϕ)
may be bounded or unbounded, depending on the speci�c model situation. The main
novelty here is that the speci�c heat cV may depend on the order parameter χ . In the
solid-liquid system mentioned above, for example, we may have di�erent values c0V in
the solid and c1V in the liquid. Assuming that their dependence on temperature can
be neglected in each phase, we may de�ne cV (χ) = c0V + χ(c1V − c0V ) , cf. [27, Section
IV.4]. The value of χ can be kept between 0 and 1 by setting in this case ϕ = I[0,1]

(the indicator function of [0, 1]).
With the above free energy, we associate the local internal energy E and entropy

S according to the formulas

(1.3) S = −∂F
∂θ

, E = F + θS ,

that is,

(1.4)
{

S[θ, χ] = cV (χ) log θ − σ(χ)− ϕ(χ) ,

E[θ, χ] = cV (χ)θ + λ(χ) + βϕ(χ) +B[χ] .

The temperature dynamics is governed by the internal energy balance over an arbitrary
control volume Ω′ ⊂ Ω ,

(1.5) d

dt

∫

Ω′
E[θ, χ] dx+

∫

∂Ω′
〈q,n〉 ds = Ψ(Ω′) ,

where q is the heat �ux vector, n is the unit outward normal to ∂Ω′ , and Ψ(Ω′)
is the energy exchange through the boundary of Ω′ due to the nonlocal interactions.
The order parameter dynamics is assumed in the form

(1.6) µ(θ)χt ∈ −δχF [θ, χ]

with a factor µ(θ) > 0 , where we denote

F [θ, χ] =

∫

Ω

F [θ, χ] dx ,

and where δχF stands for the variational derivative of F with respect to the variable
χ . The inclusion sign in (1.6) accounts for the fact that F may contain components
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that are not Fréchet di�erentiable, but are convex, and the derivative can be inter-
preted as the subdi�erential, which may be multivalued. Condition (1.6) is based on
the assumption that the system tends to move towards local minima of the free energy
with a speed proportional to 1/µ(θ) . Using (1.1), we can rewrite (1.6) as

(1.7) µ(θ)χt + c′V (χ) θ (1− log θ) + λ′(χ) + θσ′(χ) + (β + θ)∂ϕ(χ) + b[χ] 3 0,

with the notation

(1.8) b[χ](x, t) := 2

∫

Ω

k(x, y)G′ (χ(x, t)− χ(y, t)) dy.

The interaction term Ψ(Ω′) in (1.5) and the constitutive law for the heat �ux have to
comply with the Clausius-Duhem inequality

(1.9) St + div
(q

θ

)
≥ 0 ,

which is understood here almost everywhere in the regularity context of Theorem 2.2.
Assuming θ > 0 (this will have to be justi�ed in the next sections), and using (1.1)
with (1.7) and (1.3), we obtain the identities

θ
(
St + div

(q

θ

))
= Et + div q− Ft − θtS − 〈q,∇θ〉

θ
(1.10)

= Et + div q + µ(θ)χ2
t −

〈q,∇θ〉
θ

+ b[χ]χt −B[χ]t .

We assume the Fourier heat �ux law

q = −κ∇θ ,

with a constant positive heat conductivity κ . Then the right-hand side of (1.10) stays
nonnegative without prescribing any relationship between µ(θ) and B[χ] , provided
that we choose Ψ(Ω′) in (1.5) as

(1.11) Ψ(Ω′) =

∫

Ω′
(−b[χ]χt +B[χ]t) dx .

In agreement with natural expectations, we have Ψ(Ω) = 0 . The di�erential form of
the energy balance (1.5) then reads

(1.12) Et + div q = −b[χ]χt +B[χ]t ,

that is,

(1.13) (cV (χ) θ + λ(χ) + βϕ(χ))t + b[χ]χt − κ∆θ = 0 .

In real materials, the dependence of cV on the phase may be very strong (the spe-
ci�c heat in water is considerably higher than both in ice and in vapor, for instance).
Introducing the term cV (χ) into the above system may however create substantial
di�culties from both the physical and mathematical viewpoints, which can again
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be illustrated on the two-phase system mentioned above. More speci�cally, consider
the thermodynamically insulated (i. e., with homogeneous Neumann boundary con-
ditions) relaxed Stefan problem corresponding to the choice ϕ = I[0,1] , λ′(χ) = L ,
σ′(χ) = −L/θc , B[χ] ≡ 0 , where L and θc are positive constants (the latent heat and
phase transition temperature, respectively), c′V (χ) = c̄ := c1V − c0V . Thermodynamic
equilibria are located on the curve

∂I[0,1](χ) 3 c̄ θ(log θ − 1) +
L

θc

(θ − θc) ,

or, equivalently,
χ ∈ H

(
c̄ θ(log θ − 1) +

L

θc

(θ − θc)
)
,

where H is the maximal monotone extension of the Heaviside function. We see that if
c1V < c0V , like in the water-vapor system, then the only (stable!) equilibrium for both
very high and very low temperatures is χ = 0 , which is an obvious physical paradox.
Between water and ice, this contradiction does not occur.

We focus here on mathematical problems arising in connection with this model.
On the boundary of Ω , we prescribe nonhomogeneous mixed boundary conditions.
Our main results include the proof of existence and uniqueness of a global strong
solution (θ, χ) to (1.7) and (1.13) on the whole time axis (0,+∞) . We also prove
that θ is uniformly bounded from above and below on (0,+∞) , with the intention to
study the asymptotic behavior t → +∞ in the future. Note that there are only few
works in the literature dealing with the convergence of trajectories towards equilibrium
for nonlocal phase-�eld systems. The case of analytic potentials ϕ has been solved
�rst in [11] and then in [17] for a time-relaxed model and in [13] for a time-discrete
scheme. The nonsmooth case is not straightforward even if the nonlocal term is absent,
see [23], and deserves special attention.

The paper is organized as follows. The main results are stated in Section 2.
Section 3 is devoted to some auxiliary results on a class of di�erential inclusions, on
maximum principles for parabolic equations with nonconstant coe�cients and non-
homogeneous mixed boundary conditions, and on L∞ -estimates based on Moser-type
iterations. Uniqueness is proved in Section 4, existence and global boundedness in
time in Section 5.

2 Main results
Consider a bounded domain Ω ⊂ RN , N ≥ 1 , and the time interval [0,∞) . For
T ∈ (0,∞] (∞ included) we denote by QT = Ω× (0, T ) the open space-time cylinder,
and by ΣT its lateral boundary ∂Ω × (0, T ) . We use, for the sake of simplicity, the
same symbol H for both L2(Ω) and L2(Ω ; RN) , and H1 for H1(Ω) .

We rewrite the system (1.13), (1.7), putting, for simplicity and without loss of
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generality, κ = 1 , in the form

(cV (χ)θ + λ(χ) + βϕ(χ))t + b[χ]χt −∆θ = 0 ,(2.1)
µ(θ)χt + c′V (χ)θ (1− log θ) + λ′(χ) + θσ′(χ) + (β + θ)∂ϕ(χ) + b[χ] 3 0 ,(2.2)

to be satis�ed a. e. in Q∞ , with b[χ] de�ned in (1.8), and prescribe the boundary and
initial conditions

∂nθ + γ (θ − θΓ) = 0 a. e. on Σ∞ ,(2.3)
θ(0) = θ0, χ(0) = χ

0 a. e. in Ω,(2.4)

where ∂n denotes the outward normal derivative, and the data ful�l the following
hypothesis.

Hypothesis 2.1. We �x positive constants β , c0 , θ̄Γ , µ∗ , C0 , θ∗ , and assume that:

(i) γ ∈ L∞(∂Ω) is a nonnegative function.

(ii) There exist constants ψ∗ > ψ∗ > 0 such that ψ∗ ≥ ψ1(x) ≥ ψ∗ a. e., where
ψ1 ∈ H1 is the eigenfunction with unit H -norm corresponding to the smallest
eigenvalue λ1 ≥ 0 of the elliptic problem

(2.5) −∆ψ1 = λ1ψ1 in Ω, ∂nψ1 + γψ1 = 0 on ∂Ω .

(iii) ϕ : R→ [0,+∞] is a proper, convex, and lower semicontinuous function, D(ϕ)
is its domain, and 0 ∈ ∂ϕ(0) .

(iv) σ, λ ∈W 2,∞(D(ϕ)) .

(v) G ∈ W 2,∞(D(ϕ) − D(ϕ)) , G(z) = G(−z) for all z ∈ (D(ϕ) − D(ϕ)) , k ∈
L∞(Ω× Ω) , k(x, y) = k(y, x) a. e. in Ω× Ω .

(vi) cV ∈ W 2,∞(D(ϕ)) , cV (z) ≥ c0 > 0 for all z ∈ D(ϕ) .

(vii) θΓ ∈ L∞(Σ∞), (θΓ)t ∈ L2
loc(Σ∞), θΓ ≥ θ̄Γ > 0 a. e. in Σ∞ .

(viii) µ is locally Lipschitz in R+ , µ(τ) ≥ µ∗(1 + τ) for all τ ∈ R+ .

(ix) For any C > 0 set DC(ϕ) = {χ ∈ D(ϕ) ; ∂ϕ(χ) ∩ [−C,C] 6= ∅} , and assume
that χ0 ∈ L∞(Ω) , χ0(x) ∈ DC0(ϕ) a. e. in Ω .

(x) θ0 ∈ H1 ∩ L∞(Ω) , θ0(x) ≥ θ∗ a. e. in Ω .

If γ vanishes on some part of ∂Ω , then (2.3) is a mixed Neumann-Robin bound-
ary condition. Below in Remark 2.3, we will show some su�cient conditions for Hy-
pothesis 2.1 (ii) to hold. Note also that by [5, Example 2.3.4], ∂ϕ is maximal monotone,
hence DC(ϕ) is a closed (possibly unbounded or degenerate) interval for every C > 0 .

We are in the position of stating the existence theorem.
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Theorem 2.2. Let Hypothesis 2.1 hold. Then there exists at least one pair (θ, χ)
which solves the system (2.1�2.4), and such that

θ ∈ L∞(Q∞) , θt,∆θ ∈ L2
loc(0,∞ ; L2(Ω)) ,(2.6)

θ(x, t) > 0 a. e. in Q∞ ,(2.7)
χ ∈ L∞loc(Q∞), χ

t ∈ L∞(Q∞); ∃C > 0 : χ(x, t) ∈ DC(ϕ) a. e. in Q∞ .(2.8)

Moreover, there exist two positive constants θ and θ (independent of t) such that the
following uniform upper and lower bounds hold:

(2.9) θ < θ(x, t) < θ for a. e. (x, t) ∈ Q∞.
Remark 2.3. Hypothesis 2.1 (ii) is ful�lled for example if γ ≡ 0 . Then λ1 = 0 and
ψ1 is a constant function. Another easy case is when Ω = (a1, b1)× · · · × (aN , bN) is
an orthogonal parallelepiped with γ constant on each side. As a last example, let us
mention the case that both ∂Ω and γ are of class C∞ . The �rst eigenfunction ψ1 is
de�ned as a minimizer of the Rayleigh functional

R(u) =

∫

Ω

|∇u|2 dx+

∫

∂Ω

γu2 ds

on the set S1
1 := {u ∈ H1; |u|H = 1} , and λ1 is given as λ1 = min{R(u) ; u ∈ S1

1} .
The function ψ1 thus satis�es the variational equation

(2.10)
∫

Ω

〈∇ψ1,∇w〉 dx+

∫

∂Ω

γψ1w ds = λ1

∫

Ω

ψ1w dx

for every w ∈ H1 . Choosing w = ψ+
1 , w = ψ−1 (the positive and negative parts of

ψ1 , respectively), we see that both ψ+
1 , ψ−1 , as well as |ψ1| = ψ+

1 + ψ−1 , satisfy the
variational equation (2.10). Then |ψ1| is a weak solution of the problem

(2.11) −∆|ψ1| = λ1|ψ1| in Ω , ∂n|ψ1|+ γ|ψ1| = 0 on ∂Ω .

By [24, Chap. 2, Thm. 5.1], we have, denoting Hr = W r,2(Ω) , H0 = H , that

(2.12)
∣∣|ψ1|

∣∣
H2+r ≤ Cr

(∣∣λ1|ψ1|
∣∣
Hr +

∣∣|ψ1|
∣∣
H1+r

)

for every integer r ≥ 0 with some constants Cr > 0 provided the right-hand side is
well de�ned. This is the case for r = 0 , hence we may iterate in (2.12) for r = 1, 2, . . .
until we obtain |ψ1| ∈ C2(Ω̄) taking r su�ciently large. The function |ψ1| does not
vanish in Ω , by virtue of Maximum Principle I in [4, Part II, Chap. 2]. Assuming that
there exists x ∈ ∂Ω such that |ψ1(x)| = 0 , also leads to a contradiction. Indeed, we
�nd a ball lying entirely in Ω and touching ∂Ω at the point x . Maximum Principle
III in [4, Part II, Chap. 2] then yields that ∂n(|ψ1(x)|) < 0 , which contradicts (2.11).
Hence ψ1 does not vanish in Ω̄ . This argument also shows that this is the unique
eigenfunction of the problem (2.5) up to a constant multiple.

To conclude this section, we state a result on uniqueness and continuous data
dependence for (2.1�2.4).
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Theorem 2.4. Let Hypothesis 2.1 hold, and let (θ1, χ1) , (θ2, χ2) be solutions to
(2.1�2.4) in the sense of Theorem 2.2 associated with respective boundary and initial
data θΓ1, θ01, χ01 and θΓ2, θ02, χ02 . Put θ̂ = θ1 − θ2 , χ̂ = χ

1 − χ
2 , θ̂Γ = θΓ1 − θΓ2 ,

χ̂
0 = χ

01 − χ
02 , θ̂0 = θ01 − θ02 . Then for every T > 0 there exists a constant CT > 0

such that
∫ T

0

∫

Ω

|θ̂(x, t)|2 dx dt+ max
t∈[0,T ]

∫

Ω

|χ̂(x, t)|2 dx(2.13)

≤ CT

(
|θ̂0|2H + |χ̂0|2H +

∫ T

0

∫

∂Ω

γθ̂2
Γ(x, t)ds dt

)
.

3 Auxiliary results
In this section we provide some auxiliary results that are used in the remainder of the
paper. The �rst part of this section deals with the continuity of solution operators to
general di�erential inclusions, while the second one recalls some parabolic maximum
principle results and a variant of the Moser iteration scheme.

3.1 Solution operators to di�erential inclusions

Consider a functional ϕ as in Hypothesis 2.1 (iii). For a given initial condition χ
0 ,

a �xed �nal time T > 0 , and a given function θ ∈ L1(QT ) , we solve the following
di�erential inclusion:

(3.1) α(θ)χt + ∂ϕ(χ) 3 f [χ, θ] a. e. in QT , χ(x, 0) = χ
0(x) a. e. in Ω,

where α : R→ R is a given function, and f : L1(QT )× L1(QT ) → L1(QT ) is a given
continuous operator satisfying the following hypothesis.

Hypothesis 3.1. There exist positive constants α0, L, C such that:

(i) α0 ≤ α(θ) for all θ ∈ R .
(ii) |α(θ1)− α(θ2)| ≤ L|θ1 − θ2| for all θ1, θ2 ∈ R .
(iii) |f [χ, θ](x, t)| ≤ C a. e. in QT for all χ, θ ∈ L1(QT ) such that χ(x, t) ∈ D(ϕ)

a. e. in QT .

(iv) |f [χ1, θ]− f [χ2, θ]|L1(Qt) ≤ L|χ1 − χ
2|L1(Qt) for all χ1, χ2, θ ∈ L1(QT )

and t ∈ [0, T ] .

This is slightly di�erent from [19, Subsection 3.1], where f is assumed to be
Lipschitz continuous also with respect to θ . Here, f is only continuous, and we
therefore only get the following weaker result.
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Proposition 3.2. Let Hypothesis 3.1 hold, and let DC(ϕ) be as in Hypothesis 2.1.
Then, for every θ ∈ L1(QT ) , and for every χ

0 ∈ L∞(Ω) , χ0(x) ∈ DC(ϕ) a. e. in Ω ,
there exists a unique solution χ ∈ L∞(QT ) to Eq. (3.1) such that χt ∈ L∞(QT ) , and
we have

(3.2) χ(x, t) ∈ DC(ϕ) , |f [χ, θ](x, t)− α(θ(x, t))χt(x, t)| ≤ C a. e. in QT .

Moreover, let {θ(n)} be a sequence that converges strongly in L1(QT ) to θ , let χ(n)
0 ∈

L∞(Ω) be initial conditions such that χ(n)
0 (x) ∈ DC(ϕ) a. e. in Ω and χ(n)

0 → χ
0 in

L1(Ω) , and let χ(n), χ be the respective solutions to (3.1). Then χ(n) → χ , χ(n)
t → χ

t

strongly in L1(QT ) .

Remark 3.3. As a complement to the above Proposition, notice that the strong
continuity L1(QT ) → Lp(QT ) of the solution mapping for 1 ≤ p < ∞ follows from
the uniform L∞ -bound (3.2). Indeed, testing (3.1) by χ

t , we obtain the identity

(3.3) ϕ(χ)t = −α(θ)χ2
t + f [χ, θ]χt a. e. in QT .

If θ(n), θ, χ(n), χ are as in Proposition 3.2, the L∞ -bounds (3.2) yield that χ(n) → χ ,
χ(n)

t → χ
t , ϕ(χ(n))t → ϕ(χ)t , strongly in any Lp(QT ) for 1 ≤ p <∞ .

The proof of Proposition 3.2 is based on properties of the corresponding space-
independent problem. For a given initial condition χ

0 ∈ D(ϕ) and a given function
θ ∈ L1(0, T ) , we consider the di�erential inclusion

(3.4) α(θ(t)) χ̇(t) + ∂ϕ(χ(t)) 3 g(t) a. e. in (0, T ), χ(0) = χ
0,

where α : R→ R is as in Hypothesis 3.1 and g ∈ L∞(0, T ) is such that

(3.5) |g(t)| ≤ C a. e. in (0, T ).

We recall from [19, Proposition 3.4] the following result.

Proposition 3.4. Let Hypotheses 3.1 (i�ii) and (3.5) hold. Then, for every θ ∈
L1(0, T ) and every χ

0 ∈ DC(ϕ) , there exists a unique solution χ ∈ W 1,∞(0, T ) to
Eq. (3.4), and we have

(3.6) χ(t) ∈ DC(ϕ) ∀t ∈ [0, T ] ,
∣∣g(t)− α(θ(t)) χ̇(t)

∣∣ ≤ C a. e. in (0, T ) .

Moreover, there exists a positive constant R depending only on C , α0 , and L , such
that the solutions χ1, χ2 ∈ W 1,∞(0, T ) associated with χ

01, χ02 ∈ DC(ϕ) , θ1, θ2 ∈
L1(0, T ) , and g1, g2 ∈ L∞(0, T ) with the constraint (3.5), satisfy the inequality

(3.7) |χ̇1 − χ̇
2|(t) +

d

dt
|χ1 − χ

2|(t) ≤ R
(
|θ1 − θ2|(t) + |g1 − g2|(t)

)
a. e. in (0, T ).

We now use (3.7) to prove the convergence statement in Proposition 3.2.

9



Proof of Proposition 3.2. For given θ ∈ L1(QT ) and χ
0 ∈ L∞(Ω) , χ0(x) ∈ DC(ϕ)

a. e., we obtain the existence of a unique solution to (3.1) by the Banach contraction
argument in the same way as in the proof of [19, Proposition 3.2]. To prove the
continuity of the solution mapping, consider the sequences χ(n)

0 , θ(n), χ(n) as above. For
almost all x ∈ Ω , we use (3.7) with θ1(t) = θ(x, t) , θ2(t) = θ(n)(x, t) , χ1(t) = χ(x, t) ,
χ

2(t) = χ(n)(x, t) , g1(t) = f [χ, θ](x, t) , g2(t) = f [χ(n), θ(n)](x, t) . Integrating over
Ω× (0, t) for t ∈ (0, T ] , and using Hypothesis 3.1, we obtain that

∫ t

0

∫

Ω

|χt − χ(n)
t |(x, s) dx ds+

∫

Ω

|χ− χ(n)|(x, t) dx− |χ0 − χ(n)
0 |L1(Ω)(3.8)

≤ R

∫ t

0

∫

Ω

(|θ − θ(n)|+ L|χ− χ(n)|) (x, s)dx ds

+R

∫ t

0

∫

Ω

|f [χ, θ]− f [χ, θ(n)]|(x, s) dx ds ,

and Gronwall's argument yields
∫ t

0

∫

Ω

|χt − χ(n)
t |(x, s) dx ds+

∫

Ω

|χ− χ(n)|(x, t) dx ≤ eRLt
(
|χ0 − χ(n)

0 |L1(Ω)(3.9)

+ R

∫ t

0

∫

Ω

(|θ − θ(n)|+ |f [χ, θ]− f [χ, θ(n)]|) (x, s) dx ds
)
,

which concludes the proof. ¥

3.2 The maximum principle and Moser iteration

We modify here an elementary maximum principle result from [19, Prop. 3.5, 3.6] to
the case of more general boundary conditions. For a �xed �nal time T > 0 , we consider
in QT , for given functions a : QT → R , uΓ : ΣT → R , u0 : Ω → R , R : QT ×R→ R ,
the evolution problem
(3.10)



∫

Ω

autw dx+

∫

Ω

〈∇u,∇w〉 dx+

∫

∂Ω

γ(u− uΓ)w ds =

∫

Ω

R(x, t, u)w dx ∀w ∈ H1

u(x, 0) = u0(x) a. e.

under the following hypothesis.

Hypothesis 3.5. The data in (3.10) have the following properties.

(i) a ∈ L∞(QT ) , a(x, t) ≥ a∗ > 0 a. e.

(ii) γ ∈ L∞(∂Ω) , γ ≥ 0 a. e.

(iii) ∃h ∈ L∞(0, T ) : |R(x, t, u1)−R(x, t, u2)| ≤ h(t)|u1 − u2| a. e. ∀u1, u2 ∈ R .

(iv) R(·, ·, 0) ∈ L2(QT ) , R(x, t, 0) ≤ 0 a. e.
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(v) uΓ ∈ L2(ΣT ) , (uΓ)t ∈ L2(ΣT ) , uΓ ≤ 0 a. e.

(vi) u0 ∈ H1 , u0 ≤ 0 a. e.

Proposition 3.6. Let Hypothesis 3.5 hold. Then Problem (3.10) admits a unique
solution u ∈ L2(QT ) such that ut ∈ L2(QT ) , ∆u ∈ L2(QT ) , ∇u ∈ C([0, T ];H) .
Moreover, we have u(x, t) ≤ 0 a. e. in QT .

Sketch of the proof. For a su�ciently large discretization parameter n ∈ N , we
consider the time-discrete problem with time step δ = T/n ,

1

δ

∫

Ω

ak(uk − uk−1)w dx+

∫

Ω

〈∇uk,∇w〉 dx+

∫

∂Ω

γ(uk − uΓk)w ds(3.11)

=

∫

Ω

gk(uk, x)w dx ∀w ∈ H1 k = 1, . . . , n ,

where u0 is de�ned as in (3.10), and where ak(x) , gk(·, x) , for x ∈ Ω , uΓk(x) , for
x ∈ ∂Ω , are the integral means of the corresponding functions in (3.10) over the time
interval [(k − 1)δ, kδ] . The existence of uk ∈ H1 with ∆uk ∈ H is obtained e. g.
from the Lax-Milgram Lemma, recursively for k = 1, . . . , n , whenever n > T |h|∞/a∗ .
Choosing w = u+

k (the positive part of uk ) in (3.11), and assuming that uk−1 ≤ 0
a. e., we obtain that

(3.12)
∫

Ω

ak

δ
|u+

k |2 dx+

∫

Ω

|∇u+
k |2dx+

∫

∂Ω

γ|u+
k |2 ds ≤ |h|∞

∫

Ω

|u+
k |2 dx .

We have ak(x) ≥ a∗ , hence uk ≤ 0 a. e. for all k = 1, . . . , n . Choosing now w =
uk − uk−1 in (3.11), we derive in a standard way a priori estimates that enable us
to pass to the limit as n → ∞ and prove the existence of a nonpositive solution to
(3.10). To check that this solution is unique, consider two solutions u1, u2 and set
ū = u1 − u2 . We now test the di�erence of Eqs. (3.10), written for u1 and u2 , by a
suitable regularization of ūt , Galerkin for instance, choosing basis functions from the
complete orthonormal system {ψk ; k ∈ N} in H of eigenfunctions of the problem

(3.13) −∆ψk = λkψk in Ω, ∂nψk + γψk = 0 on ∂Ω .

Passing to the limit in the Galerkin approximations, we obtain that

(3.14) a∗

∫ t

0

∫

Ω

|ūt|2dx dτ ≤ |h|∞
∫ t

0

∫

Ω

|ūūt|dx dτ ,

hence ū = 0 by Gronwall's Lemma. ¥

Corollary 3.7. Let Hypotheses 3.5 (i)�(iii) hold, and let (iv)�(vi) be replaced by

(iv)' R(·, ·, 0) ∈ L2(QT ) , R(x, t, 0) ≤ R∗ a. e.

(v)' uΓ ∈ L2(ΣT ) , (uΓ)t ∈ L2(ΣT ) , uΓ ≤ u∗Γ a. e.

(vi)' u0 ∈ H1 , u0 ≤ u∗ a. e.
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with some positive constants R∗, u∗Γ, u∗ . Set K = max{u∗, u∗Γ} , consider some con-
stant B1 ≥ R∗/K , and for t ∈ [0, T ] put

H(t) =
1

a∗

∫ t

0

(B1 + h(τ)) dτ .

Then Problem (3.10) has a unique solution with the regularity from Proposition 3.6
such that

(3.15) u(x, t) ≤ K eH(t) a. e.

Proof. For (x, t) ∈ QT and v ∈ R set vΓ(x, t) = uΓ(x, t) − KeH(t) , R̃(x, t, v) =
R(x, t, v + KeH(t)) − KḢ(t)a(x, t)eH(t) . Then R̃ ful�ls the conditions 3.5 (iii)�(iv),
since R̃(·, ·, 0) ∈ L2(QT ) and

R̃(x, t, 0) = R(x, t,KeH(t))−KḢ(t)a(x, t)eH(t)

≤ R(x, t, 0) +KeH(t)
(
h(t)− a(x, t)Ḣ(t)

)

≤ R∗ +KeH(t)
(
h(t)− a(x, t)Ḣ(t)

)

≤
(

1− a(x, t)

a∗

) (
R∗ +Kh(t)eH(t)

) ≤ 0 .

A function v on QT with appropriate regularity is a solution to the equation
(3.16)∫

Ω

avtw dx+

∫

Ω

〈∇v,∇w〉 dx+

∫

∂Ω

γ(v − vΓ)w ds =

∫

Ω

R̃(x, t, v)w dx ∀w ∈ H1

with initial condition v(x, 0) = v0 := u0(x)−K if and only if u(x, t) := v(x, t)+KeH(t)

is a solution to Problem (3.10). Since R̃ , a , γ , vΓ , and v0 ful�l Hypothesis 3.5, from
Proposition 3.6 it follows that v is uniquely determined and v(x, t) ≤ 0 a. e. Hence u
is uniquely determined and satis�es the desired growth condition (3.15). ¥

Corollary 3.8. Let Hypotheses 3.5 (i)�(iii) hold, and let (iv)�(vi) be replaced by

(iv)� R(·, ·, 0) ∈ L2(QT ) , R(x, t, 0) ≥ 0 a. e.

(v)� uΓ ∈ L2(ΣT ) , (uΓ)t ∈ L2(ΣT ) , uΓ ≥ 0 a. e.

(vi)� u0 ∈ H1 , u0(x) ≥ u∗ψ1(x) a. e.

with some positive constant u∗ , where ψ1 is the positive eigenfunction corresponding
to the smallest eigenvalue λ1 ≥ 0 of (3.13) for k = 1 . Consider any constant B2 ≥ λ1 ,
and for t ∈ [0, T ] put

H(t) =
1

a∗

∫ t

0

(B2 + h(τ)) dτ .

Then Problem (3.10) has a unique solution with the regularity from Proposition 3.6
and such that

u(x, t) ≥ u∗ψ1(x)e−H(t) a. e.
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Proof. For (x, t) ∈ QT and v ∈ R set R̃(x, t, v) = −R(x, t,−v + u∗ψ1(x)e−H(t)) +
u∗e−H(t)(λ1 − aḢ(t))ψ1(x) , vΓ(x, t) = −uΓ(x, t) . Then R̃ ful�ls again the conditions
3.5 (iii)�(iv), since R̃(·, ·, 0) ∈ L2(QT ) and

R̃(x, t, 0) = −R(
x, t, u∗ψ1(x)e−H(t)

)
+ u∗e−H(t)(λ1 − aḢ(t))ψ1(x)

≤ −R(x, t, 0) + u∗ψ1(x)e−H(t)
(
λ1 + h(t)− a(x, t)Ḣ(t)

)

≤ u∗ψ1(x)e−H(t)

(
1− a(x, t)

a∗

)
(λ1 + h(t)) ≤ 0 .

As in the proof of Corollary 3.7, we have a one-to-one correspondence between the
solution v to (3.16) with initial condition v(x, 0) = u∗ψ1(x)− u0(x) and the solution
u(x, t) = u∗ψ1(x)e−H(t)− v(x, t) to Problem (3.10). By Proposition 3.6 we have again
v ≤ 0 a. e., and the assertion immediately follows. ¥

Consider now in QT the problem

(3.17)





∫

Ω

autw dx+

∫

Ω

〈∇u,∇w〉 dx+

∫

∂Ω

γ(u− uΓ)w ds

=

∫

Ω

(r(x, t) + h1(x, t)u + h2(x, t)u | log |u||)w dx ∀w ∈ H1 ,

u(x, 0) = u0(x) a. e.

under Hypotheses 3.5 (i)�(ii), where uΓ has the regularity as in (v), and with given
functions r, h1, h2 ∈ L∞(QT ) , assuming that
(3.18)
0 ≤ r(x, t) ≤ r∗ , 0 ≤ uΓ(x, t) ≤ u∗Γ , |hi(x, t)| ≤ h∗ for i = 1, 2 , u∗ψ1(x) ≤ u0(x) ≤ u∗

a. e. in the respective domains, where r∗, h∗, u∗Γ, u∗, u
∗ are �xed positive constants.

Set

K = max{u∗, u∗Γ} ,
A = max{0, logK,− log(u∗ψ∗)} ,

B = max

{
λ1,

r∗

K

}
+ (2 + A)h∗ ,

C =
1

a∗
(B + h∗) ,

where ψ∗ > 0 is a uniform lower bound for ψ1(x) .

Proposition 3.9. Problem (3.17) has a unique solution, and it holds

(3.19) u∗ψ1(x)e−H(t) ≤ u(x, t) ≤ KeH(t) a. e. ,

where
H(t) =

1

a∗

∫ t

0

(
B + h∗eCτ

)
dτ .
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Proof. For all admissible values of the arguments set

(3.20) R(x, t, u) = r(x, t) + h1(x, t)u+ h2(x, t)umin{| log |u||, A+ eCt} .

Then R(x, t, 0) = r(x, t) ∈ [0, r∗] , and

|∂uR(x, t, u)| ≤ h∗(2 + A+ eCt) a. e.

We thus may apply Corollaries 3.7-3.8 and conclude that the solution to (3.10) satis�es
the estimates (3.19). It remains to check that u is a solution to (3.17). From (3.19)
it follows that

(3.21) log(u∗ψ∗)−H(t) ≤ log u(x, t) ≤ logK +H(t) a. e. ,

hence the constraint A+ eCt in (3.20) is never active, and the assertion follows. ¥

Finally, we derive here a global in time Moser-type estimate (cf. [1]) for non-
homogeneous mixed boundary conditions. We follow in principle the scheme of [22],
showing in addition the explicit dependence upon some parameters of the problem,
which is needed in the proof of Theorem 2.2. We state the result in the space

L∞loc(Q∞) := {u : Ω× (0,∞) → R ; u
∣∣
QT
∈ L∞(QT ) for all T > 0} .

We will also make repeated use of the following well-known interpolation inequality

(3.22) |v|H ≤ A
(
η|∇v|H + η−N/2|v|L1(Ω)

)
,

which holds for every v ∈ H1 and every η ∈ (0, 1) , with a positive constant A that
depends on Ω , but neither on v nor on η .

Proposition 3.10. Given a nonnegative function γ ∈ L1(∂Ω) , consider the problem

a(x, t)ut −∆u = H[u] a. e. on Q∞ ,(3.23)
∂nu(x, t) + γ(x) (h(x, t, u(x, t))− uΓ(x, t)) = 0 a. e. on Σ∞ ,(3.24)
u(x, 0) = u0 a. e. in Ω ,(3.25)

under the assumption that there exist positive constants H0, H1, Ch, a0, a1, A0, U, UΓ,
E0 such that the following holds:

(i) The mapping H : L∞loc(Q∞) → L∞loc(Q∞) has the property that

u(x, t)H[u](x, t) ≤ H1|u(x, t)|+H0|u(x, t)|2 a. e. in Q∞ , ∀u ∈ L∞loc(Q∞) .

(ii) h is a Carathéodory function on Q∞×R such that h(x, t, u)u ≥ Ch u
2 a. e. for

all u ∈ R .

(iii) a, at ∈ L∞(Q∞) are such that a0 ≤ a(x, t) ≤ A0 and |at(x, t)| ≤ a1 a. e. in Q∞ .

(iv) u0 ∈ L∞(Ω) , |u0(x)| ≤ U a. e. in Ω .
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(v) uΓ ∈ L∞(Σ∞) , |uΓ(x, t)| ≤ UΓ a. e. on Σ∞ .

(vi) There exists a solution u ∈ L∞loc(Q∞) ∩ L2
loc(0,∞;H1) to (3.23�3.25) satisfying

the a priori estimate
∫

Ω

|u(x, t)| dx ≤ E0 a. e. in (0,∞) .

Then there exists a positive constant C∗ depending only on A (cf. (3.22)), |Ω| ,
|γ|L1(∂Ω) , Ch , U , UΓ , a0 , and A0 such that

(3.26) |u(t)|L∞(Ω) ≤ C∗ (1 + a1 +H0)
1+N/2 (1 +H1 + E0) for a. e. t > 0.

Proof. We prove Proposition 3.10 under the additional hypothesis

(3.27) U = UΓ = Ch = H1 = E0 = 1 .

The general result is then easily obtained via the transformation

(3.28) γ̃ = Chγ , ũ =
1

K
u , K = max

{
E0, H1, U,

UΓ

Ch

}
.

During the proof we will denote by the symbol Ci , i = 1, 2, . . . , some positive con-
stants depending only on A , |Ω| , |γ|L1(∂Ω) , a0 , and A0 .

For k ∈ N , test equation (3.23) by u|u|2k−2 . Using the boundary conditions in
(3.24), we obtain that

a(x, t)ut u |u|2k−2 = 2−k ∂

∂t

(
a(x, t)|u|2k

)
− 2−kat|u|2k

−
∫

Ω

∆uu |u|2k−2 dx =

∫

Ω

〈
∇u,∇

(
u |u|2k−2

)〉
dx+

∫

∂Ω

γ (h(x, t, u)− uΓ) u |u|2k−2 ds

≥ 2k − 1

22k−2

∫

Ω

∣∣∣∇
(
u |u|2k−1−1

)∣∣∣
2

dx+

∫

∂Ω

γ
(
|u|2k − |u|2k−1

)
ds .

Set Φk = u |u|2k−1−1 . Then we get, using Hölder's and Young's inequalities

2−k d

dt

∫

Ω

a(x, t) |Φk|2 dx+
2k − 1

22k−2

∫

Ω

|∇Φk|2 dx+

∫

∂Ω

γ |Φk|2 ds

≤
(∫

∂Ω

γ |Φk|2 ds
)1−2−k (∫

∂Ω

γ ds

)2−k

+ a12
−k

∫

Ω

|Φk|2 dx

+

∫

Ω

(
H0|Φk|2 + |Φk|2(1−2−k)

)
dx

≤ (
1− 2−k

) ∫

∂Ω

γ |Φk|2 ds+ 2−k

∫

∂Ω

γ ds

+ a1 2−k

∫

Ω

|Φk|2 dx+ (H0 + 1)

∫

Ω

|Φk|2 dx+ 2−k|Ω| .
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Setting H2 := 1 + a1 +H0 and multiplying the above inequality by 2k , we �nd that

(3.29) d

dt

∫

Ω

a(x, t) |Φk|2 dx+ 2

∫

Ω

|∇Φk|2 dx ≤ 2kH2

∫

Ω

|Φk|2 dx+ |Ω|+
∫

∂Ω

γ ds.

We now use the interpolation inequality (3.22) to derive the inequalities
∫

Ω

|Φ1|2 dx ≤ 2A2
(
η2|∇Φ1|2H + η−NE2

0

)
(3.30)

∫

Ω

|Φk|2 dx ≤ 2A2
(
η2|∇Φk|2H + η−N |Φk−1|4H

)
for k > 1 .(3.31)

For k = 1 , we infer from (3.29) and (3.30) that
d

dt

∫

Ω

a(x, t) |Φ1|2 dx+ 2

∫

Ω

|∇Φ1|2 dx

≤ 4H2A
2

(
η2

∫

Ω

|∇Φ1|2 dx+ η−NE2
0

)
+ |Ω|+

∫

∂Ω

γ ds.

Choosing η = 1/(2A
√
H2) , we �nd that

(3.32) d

dt

∫

Ω

a(x, t) |Φ1|2 dx+

∫

Ω

|∇Φ1|2 dx ≤ C1H
1+N/2
2 .

For k > 1 , we choose η = 1/(A
√

2k+1H2) , we conclude from (3.29) and (3.31) that

(3.33) d

dt

∫

Ω

a(x, t)|Φk|2 dx+ |∇Φk|2H ≤ C2

(
1 + (2kH2)

1+N/2|Φk−1|4H
)
.

Using again (3.31) with η = 1/(
√

2A) , it follows for a. e. t > 0 that
d

dt

∫

Ω

a(x, t)|Φ1|2 dx+ |Φ1(t)|2H ≤ C3H
1+N/2
2 ,

d

dt

∫

Ω

a(x, t)|Φk|2 dx+ |Φk(t)|2H ≤ C4

(
1 + (2kH2)

1+N/2|Φk−1(t)|4H
)
.

By assumption, we have a0|Φk(t)|2H ≤ ∫
Ω
a(x, t)|Φk|2dx ≤ A0|Φk(t)|2H , and |Φk(0)|2H ≤

|Ω| . Hence,

|Φ1(t)|2H ≤ C5H
1+N/2
2 ,

|Φk(t)|2H ≤ C6

(
1 + (2kH2)

1+N/2 max
0≤τ≤t

|Φk−1(τ)|4H
)
.

De�ne now
zk(t) = max

0≤τ≤t
|u(τ)|

L2k (Ω)
= max

0≤τ≤t
|Φk(τ)|2−k

H .

Then we have

z1(t) ≤ C7H
(1+N/2)/2
2 ,

zk(t) ≤ C2−k

8

(
2kH2

)(1+N/2)2−k

max{1, zk−1(t)} .
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In particular, putting yk(t) = max{1, zk(t)} , we get

y1(t) ≤ C9H
(1+N/2)/2
2 ,

yk(t) ≤
(
C10H

(1+N/2)
2

)2−k

2k (1+N/2) 2−k

yk−1(t) , for k ≥ 2.

Hence, we conclude that

log yk(t) ≤
k∑

j=1

2−j
(

log
(
C11H

1+N/2
2

)
+ j (1 +N/2) log 2

)

≤ (1 +N/2)
(
C12 + logH2

)
,

independently of k and t > 0 . Thus, it su�ces to choose C∗ = exp(C12 (1 + N/2)) ,
and conclude that

sup
t≥0, k∈N

|u(t)|
L2k (Ω)

≤ C∗H1+N/2
2 = C∗(1 + a1 +H0)

1+N/2 .

Formula (3.26) now follows from (3.27�3.28). ¥

4 Proof of the uniqueness result
We start with the proof of Theorem 2.4. Equation (2.2) is for (almost) all x ∈ Ω of
the form (3.4), with

α(θ) =
µ(θ)

β + θ
,

g = f [θ, χ] = − 1

β + θ
(c′V (χ)θ (1− log θ) + λ′(χ) + θσ′(χ) + b[χ]) .

Within the range θ < θ < θ and χ ∈ DC(ϕ) , χt ≤ C of admissible values for the
solutions (taking indeed θ = min{θ1, θ2} etc.), all nonlinearities in (2.1�2.2) are Lips-
chitz continuous. Using the notation from Theorem 2.4, we obtain, as a consequence
of (3.7), for a. e. (x, t) ∈ Q∞ the estimate

(4.1) |χ̂t(x, t)|+ ∂

∂t
|χ̂(x, t)| ≤ R0

(
|θ̂(x, t)|+ |χ̂(x, t)|+

∫

Ω

|χ̂(y, t)| dy
)
,

with some constant R0 . Let us �x some T > 0 . In what follows, we denote by
R1, R2, . . . suitable constants depending possibly on T , but independent of the solu-
tions. Integrating (4.1) over Ω , we obtain by Gronwall's argument that

(4.2)
∫

Ω

|χ̂(y, t)| dy ≤ R1

(∫

Ω

|χ̂0(y)| dy +

∫ t

0

∫

Ω

|θ̂(y, τ)| dy dτ
)
.

Hence, testing (4.1) by e−R0t , and using (4.2),
(4.3)∫ t

0

|χ̂t(x, τ)| dτ + |χ̂(x, t)| ≤ R2

(
|χ̂0(x)|+

∫ t

0

|θ̂(x, τ)| dτ +

∫ t

0

∫

Ω

|θ̂(y, τ)| dy dτ
)
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for a. e. x ∈ Ω and every t ∈ [0, T ] . In particular,

(4.4)
∫ t

0

∫

Ω

|χ̂t(x, τ)| dx dτ ≤ R3

(∫

Ω

|χ̂0(x)| dx+

∫ t

0

∫

Ω

|θ̂(x, τ)| dx dτ
)
.

We now multiply (4.3) by |χ̂(x, t)| and integrate over Ω to get for all t ∈ [0, T ] that

(4.5)
∫

Ω

|χ̂(x, t)|2 dx ≤ R4

(
|χ̂0|2H +

∫ t

0

∫

Ω

|θ̂(x, τ)|2 dx dτ
)
.

The crucial point is to exploit Eq. (2.1) properly. Notice �rst that we have

(4.6) b[χ]χt(x, t) = 2B[χ]t(x, t) + 2

∫

Ω

k(x, y)G′(χ(x, t)− χ(y, t))χt(y, t) dy .

We integrate the di�erence of the two equations (2.1), written for (θ1, χ1) and (θ2, χ2) ,
from 0 to t , rewriting the terms b[χi](χi)t according to (4.6). We test the result by
θ̂(x, t) . Using the Lipschitz continuity of all nonlinearities (ϕ is Lipschitz continu-
ous on DC(ϕ) with constant C ), and denoting Θ̂(x, t) =

∫ t

0
θ̂(x, τ)dτ , Θ̂Γ(x, t) =∫ t

0
θ̂Γ(x, τ)dτ , we obtain for each t > 0 that

c0

∫

Ω

|θ̂(x, t)|2 dx+
d

dt

(
1

2

∫

Ω

|∇Θ̂|2dx+
1

2

∫

∂Ω

γΘ̂2ds−
∫

∂Ω

γΘ̂Θ̂Γds

)
+

∫

∂Ω

γΘ̂θ̂Γds

≤ R5

(
|θ̂0|2H + |χ̂0|2H +

∫

Ω

|χ̂(x, t)|2 dx+

∫ t

0

∫

Ω

∫

Ω

k(x, y)|χ̂t(y, τ)||θ̂(x, t)|dx dy dτ
)
.

The last term on the right-hand side of the above inequality can be estimated, using
(4.4), as

∫ t

0

∫

Ω

∫

Ω

k(x, y)|χ̂t(y, τ)||θ̂(x, t)|dx dy dτ ≤ R6

∫

Ω

|θ̂(x, t)|dx
∫ t

0

∫

Ω

|χ̂t(y, τ)|dy dτ

≤ R7

(∫

Ω

|θ̂(x, t)|2dx
)1/2 (∫

Ω

|χ̂0(x)|2 dx+

∫ t

0

∫

Ω

|θ̂(x, τ)|2 dx dτ
)1/2

.

Combining the last two inequalities again with the Gronwall lemma, we obtain for
each t ∈ [0, T ] the estimate

∫ t

0

∫

Ω

|θ̂(x, τ)|2dx dτ +

∫

Ω

|∇Θ̂(x, t)|2dx+

∫

∂Ω

γΘ̂2(s, t)ds(4.7)

≤ R8

(
|θ̂0|2H + |χ̂0|2H +

∫ t

0

∫

∂Ω

γθ̂2
Γ(s, τ)ds dτ +

∫ t

0

∫

Ω

|χ̂(x, τ)|2 dx dτ
)
.

We now multiply (4.7) by 2R4 , add the result to (4.5), and see that Gronwall's argu-
ment can be applied again to arrive at the �nal estimate
(4.8)∫

Ω

|χ̂(x, t)|2 dx+

∫ t

0

∫

Ω

|θ̂(x, τ)|2dx dτ ≤ R8

(
|θ̂0|2H + |χ̂0|2H +

∫ t

0

∫

∂Ω

γθ̂2
Γ(s, τ)ds dτ

)
.

With this, Theorem 2.4 is proved. ¥
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5 Proof of the existence result
This section is devoted to the proof of Theorem 2.2 (i. e. the existence of solutions to
the system (2.1�2.4), (2.6�2.8)). We use a standard technique: we �rst truncate the
system (2.1�2.2), prove existence of solutions to the truncated problem, and �nally
show that the solution of this system is also a solution of original system, removing
the truncation.

5.1 Approximation

Assuming Hypothesis 2.1 to hold, we proceed as follows: �rst solve the problem cor-
responding to (2.1�2.4), in which we regularize the coe�cient µ and the logarithmic
contribution in (2.2), replace θ by |θ| at suitable places, and then derive upper and
lower bounds for θ that will allow us to conclude that the solution of the modi�ed
problem satis�es also (2.1�2.4), (2.6�2.8). For some su�ciently large cut-o� parameter
% > 0 , which will be speci�ed later, we introduce for θ ∈ R the functions

µ%(θ) =

{
µ(|θ|) for |θ| ≤ % ,
µ(%) + µ∗(|θ| − %) for |θ| > % ,

(5.1)

L%(θ) =





0 for θ ≤ 0 ,
log θ for 0 < θ < % ,
log % for θ ≥ % ,

(5.2)

and consider the following problem:

Problem 5.1. For T > 0 �nd a pair (θ, χ) with the regularity (2.6) and (2.8) re-
stricted to the time interval [0, T ] , solving a. e. in QT the system of equations

(cV (χ)θ + λ(χ) + βϕ(χ))t + b[χ]χt −∆θ = 0 ,(5.3)
µ%(θ)χt + c′V (χ)θ (1− L%(θ)) + λ′(χ) + θσ′(χ) + (β + |θ|)∂ϕ(χ) + b[χ] 3 0 ,(5.4)

with boundary and initial conditions (2.3�2.4).

Lemma 5.2. For each �xed % > 0 , there exists at least one solution to Problem 5.1.
Moreover, there exist positive numbers c%,T < C%,T such that c%,T ≤ θ(x, t) ≤ C%,T

a. e.

Proof. Consider the Faedo-Galerkin approximations

θm(x, t) =
m∑

k=1

θk(t)ψk(x) ,

where {ψk ; k ∈ N} is the complete orthonormal system in H of eigenfunctions of the
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problem (3.13), and where θk(t) satisfy the system of equations

∫

Ω

(cV (χ)θm)tψk dx+

∫

Ω

〈∇θm,∇ψk〉 dx+

∫

∂Ω

γ(θm − θΓ)ψk ds

(5.5)

= −
∫

Ω

(
(λ(χ) + βϕ(χ))t + b[χ]χt

)
ψk dx , k = 1, . . . ,m ,

µ%(θ
m)χt + c′V (χ)θm(1− L%(θ

m)) + λ′(χ) + θσ′(χ) + (β + |θm|)∂ϕ(χ) + b[χ] 3 0 ,
(5.6)

with the initial conditions

θk(0) =

∫

Ω

θ0ψk dx ,(5.7)

χ(x, 0) = χ
0(x) .(5.8)

It follows from Proposition 3.2 and Remark 3.3 that Eq. (5.6) de�nes a mapping
that with each θm ∈ L1(QT ) associates continuously χ, χt and ϕ(χ)t in any Lp(QT ) .
Equation (5.5) therefore has the form

(5.9)
∫

Ω

F [θm]θm
t ψk dx+ λk θk =

∫

∂Ω

γθΓψkds+

∫

Ω

H[θm]ψk dx ,

with continuous operators F,H : L1(QT ) → Lp(QT ) for suitably chosen p > 1 , and
such that C̃1 ≥ F [θ](x, t) ≥ c0 , |H[θ](x, t)| ≤ C̃1 a. e. for all θ ∈ L1(QT ) with a
constant C̃1 > 0 independent of θ . The matrix Ajk[θ](t) =

∫
Ω
F [θ](x, t)ψj(x)ψk(x) dx

is symmetric and positive de�nite, hence Lipschitz continuous solutions θ1(t), . . . , θm(t)
to (5.9), (5.7) are well de�ned on [0, T ] . Testing (5.9) by θ̇k , and summing over k ,
yields

∫

Ω

F [θm]|θm
t |2 dx+

d

dt

(
1

2

∫

Ω

|∇θm|2dx+
1

2

∫

∂Ω

γ|θm|2ds−
∫

∂Ω

γ θΓ θ
m ds

)
(5.10)

= −
∫

∂Ω

γ (θΓ)t θ
m ds+

∫

Ω

H[θm] θm
t dx

≤
(∫

∂Ω

γ |(θΓ)t|2 ds
)1/2 (∫

∂Ω

γ |θm|2 ds
)1/2

+ C̃2

(∫

Ω

|θm
t |2 dx

)1/2

.

Integrating from 0 to t ∈ (0, T ] , we obtain from Gronwall's argument the estimate

(5.11) |θm
t |L2(QT ) + |∇θm|L∞(0,T ;H) +

∫

∂Ω

γ |θm|2 ds+ |∆θm|L2(QT ) ≤ C̃3 ,

with constants C̃2, C̃3 > 0 independent of m (depending possibly on T , but T is kept
�xed here). Selecting a subsequence, if necessary, we may pass to the limit in (5.5�5.6)
as m→∞ to obtain the existence result.

To derive the bounds for θ , we �rst estimate χ
t using Proposition 3.2 and

equation (5.4), taking into account (3.3). Note that the term |θ(1−L%(θ))| is bounded
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from above independently of t by a constant multiple of 1 + |θ|(1 + log %) . We thus
deduce the following bound on the χ-component of the solution (θ, χ) to Problem 5.1:

(5.12) |χt|L∞(QT ) + |∂ϕ(χ)t|L∞(QT ) ≤ c1 (1 + log %) .

Here, and in the sequel, c1, c2, . . . denote constants independent of % and T . We
rewrite Eq. (5.3) in the form

(5.13) cV (χ)θt −∆θ = µ%(θ)χ
2
t − c′V (χ)χtθ L%(θ) + θσ(χ)t + |θ|ϕ(χ)t .

We are thus in the situation of (3.17�3.18) with the choice u = θ , and

a(x, t) = cV (χ),

r(x, t) =
µ%(θ)

1 + |θ|
χ2

t ,

h1(x, t) = σ(χ)t + sign(θ)
(
ϕ(χ)t +

µ%(θ)

1 + |θ|
χ2

t

)
,

h2(x, t) = −c′V (χ)χt
L%(θ)

| log |θ|| ,
uΓ = θΓ, u0 = θ0, u∗ = θ∗/ψ∗,

and the upper and lower bounds for θ follow from Proposition 3.9. ¥

Remark 5.3. If we examine the proof more closely, we see that the hypothesis on
(θΓ)t can be relaxed using the trace theorem for functions from H1 for N ≥ 2 .
The argument still works for (θΓ)t ∈ L2(0, T ; Lp(∂Ω)) with p ≥ 2(N − 1)/N , or
(θΓ)t ∈ L2(0, T ; H−1/2(∂Ω)) , if ∂Ω is smooth.

The uniqueness and continuous dependence result in Theorem 2.4 holds indeed
for the problem (5.3�5.4), (2.3�2.4) as well. We therefore can extend the solution to
(5.3�5.4), (2.3�2.4) to the whole time interval [0,∞) and obtain the following result.

Corollary 5.4. There exists a solution to (5.3), (5.4), (2.3�2.4) on Q∞ with the prop-
erties (2.7�2.8), and functions θl

%, θ
u
% : (0,∞) → (0,∞) such that θl

% is nonincreasing,
θu

% (T ) is nondecreasing, and θl
%(T ) ≤ θ(x, t) ≤ θu

% (T ) for a. e. (x, t) ∈ QT and for all
T > 0 .

We see in particular that we can remove the absolute values in (5.3�5.4). Our
aim is now to prove that the solution to Problem 5.1 satis�es also (2.1�2.4), (2.6�2.8)
for suitably chosen % . To this end, we derive a uniform upper bound for θ . Then,
choosing % above this bound, we will check that the solution to (5.3�5.4) is the desired
solution to (2.1�2.2).

Equation (5.3) is of the form as in Proposition 3.10, with

u = θ , a(x, t) = cV (χ) , h(x, t, u) = u ,(5.14)
H[u] = −(

λ(χ) + βϕ(χ)
)

t
− b[χ]χt − c′V (χ)χt u .(5.15)
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Referring to Proposition 3.10, we have a0 = c0 , Ch = 1 , and U + UΓ + A0 ≤ c2 . The
other parameters, however, namely a1, H0, H1 , and E0 , do depend on % by virtue of
(5.12). Hypothesis 2.1 and (5.12) yield that

(5.16) a1 +H0 +H1 ≤ c3 (1 + log %) .

It remains to determine the dependence of E0 on % . To do so, we test (5.3) by ψ1

from (2.5). This yields

d

dt

∫

Ω

cV (χ)θ ψ1 dx+

∫

Ω

〈∇θ,∇ψ1〉 dx+

∫

∂Ω

γ(θ − θΓ)ψ1 ds(5.17)

= −
∫

Ω

((λ(χ) + βϕ(χ))t + b[χ]χt)ψ1 dx .

If γ ≡ 0 , we may take ψ1 ≡ 1 , and using the symmetry of B[χ] , we obtain from (5.17)
that

∫

Ω

cV (χ)θ(x, t) dx =

∫

Ω

cV (χ0)θ0 dx+

∫

Ω

(λ(χ0) + βϕ(χ0) +B[χ0]) dx(5.18)

−
∫

Ω

(λ(χ) + βϕ(χ) +B[χ]) (x, t) dx

≤ c4 .

Assume now that
∫

∂Ω
γ ds > 0 . Then λ1 > 0 , and we have

d

dt

∫

Ω

cV (χ)θ ψ1 dx+ λ1

∫

Ω

θψ1 dx

=

∫

∂Ω

γθΓψ1 ds−
∫

Ω

((λ(χ) + βϕ(χ))t + b[χ]χt)ψ1 dx .

From Hypothesis 2.1 and estimate (5.12), we infer that

(5.19) d

dt

∫

Ω

cV (χ)θ ψ1 dx+ c5

∫

Ω

cV (χ)θψ1 dx ≤ c6(1 + log %) .

Hence,
∫

Ω
θ ψ1 dx ≤ c7(1 + log %) , and using Hypothesis 2.1 (ii), we obtain the �nal

estimate

(5.20) E0 ≤ c8 (1 + log %) .

Referring to (3.26) in Proposition 3.10, we �nd that

(5.21) θ(x, t) ≤ c9 (1 + log %)2+N/2

for a. e. (x, t) ∈ Q∞ . Taking now any % such that

% > c9 (1 + log %)2+N/2 ,

we see that the solution to Problem 5.1 is also a solution to (2.1�2.4), (2.6�2.8), and
the upper bound in (2.9) is satis�ed.
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It remains to derive the uniform (in time) lower bound in (2.9). To this end,
let us consider the function

w = log θ − log θ > 0 a. e. in Q∞ ,

with θ de�ned in (2.9). Using (2.2), we rewrite (2.1) as

cV (χ)
θt

θ
− ∆θ

θ
=

µ(θ)

θ
χ2

t + (ϕ(χ) + σ(χ))t − (cV (χ))t log θ .

Then

(5.22) (cV (χ)w)t −∆w = − (ϕ(χ) + σ(χ))t −
µ(θ)

θ
χ2

t −
|∇θ|2
θ2

,

with boundary condition

(5.23) ∂nw + γ

(
θΓ

θ
ew − 1

)
= 0 a. e. on Σ∞ .

We are thus again in the situation of Proposition 3.10, with h(x, t, u) = (θΓ/θ̄)(eu−1)
suitably extended for u < 0 , and it only remains to �nd a uniform L1 -bound for w
as in Proposition 3.10 (vi). We proceed as above and test (5.22) by ψ1 . This yields

d

dt

∫

Ω

(cV (χ)w + ϕ(χ) + σ(χ)) ψ1 dx + λ1

∫

Ω

wψ1 dx

+

∫

∂Ω

γ

(
θΓ

θ
ew − 1− w

)
ψ1 ds ≤ 0.

The case γ ≡ 0 , λ1 = 0 is again straightforward. For λ1 > 0 we notice that (θΓ/θ)ew−
1−w ≥ −c10 , hence a uniform bound for w in L1(Ω) follows again from the uniform
Gronwall lemma. From Proposition 3.10 we conclude that

(5.24) w(x, t) ≤ c11 a. e. in Q∞.

Hence, θ(x, t) ≥ θ̄e−c11 a. e., which completes the proof of Theorem 2.2. ¥
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