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We extend earlier work on scenario reduction by relying directly on Fortet-Mourier metrics
instead of using upper bounds given in terms of mass transportation problems. The importance
of Fortet-Mourier metrics for quantitative stability of two-stage models is reviewed and some
numerical results are also provided.
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1. Introduction

In the papers [2,5] a stability-based methodology is developed for reducing the set of
scenarios in convex stochastic programming models. Such a reduction may be desirable
in some situations when the underlying optimization models already happen to be large
scale and the incorporation of a large number of scenarios might lead to huge programs
and, hence, to high computation times. The idea of the scenario reduction framework in
[2,5] is to compute the (nearly) best approximation of the underlying discrete probability
distribution by a measure with smaller support in terms of a probability metric which
is associated to the stochastic program in a natural way. Such “natural” (or canonical)
metrics for probability measures are known for (linear) two-stage stochastic programs:
the r-th order Fourier-Mourier metrics, where the choice of r ≥ 1 depends on the specific
structure of the programs (see Section 3 and [10,11]).

However, the strategies for scenario reduction developed in [2,5] are not based on
Fourier-Mourier metrics, but on their upper bounds in form of certain mass transporta-
tion problems which enjoy specific properties and representations. In the present note
we remove this drawback and develop scenario reduction algorithms that are rigorously
based on Fortet-Mourier metrics. The key step in this direction is that we do no longer use
the (generalized) distances c for scenarios as in [2,5], but so-called reduced distances (or
costs) ĉ which, indeed, are distances in the finite-dimensional scenario space and represent
infima of certain optimization problems.

Our paper is organized as follows. In Section 2 we discuss distances of (multivariate)
probability measures that are based on mass transportation problems. We review some
of their topological properties, duality results and representations that are needed in the
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sequel. Section 3 reviews stability properties of multiperiod two-stage stochastic programs
with respect to the distances introduced in the previous section. In Section 4 we extend
our earlier theory and heuristic algorithms for optimal scenario reduction to the relevant
metrics. Finally, we present some numerical experience for the new forward algorithm of
scenario reduction. It is tested on realistic data from electricity portfolio management.

2. Distances of probability distributions

Let P(Ξ) denote the set of all Borel probability measures on a closed subset Ξ of Rs.
Let µ̂c and

◦
µc denote the Monge-Kantorovich and Kantorovich-Rubinstein functionals,

respectively ([6,8]), on P(Ξ)× P(Ξ). They have the form

µ̂c(P,Q) := inf

{∫

Ξ×Ξ

c(ξ, ξ̃)η(dξ, dξ̃) : η ∈ P(Ξ× Ξ), π1η = P, π2η = Q

}
, (1)

◦
µc (P,Q) := inf

{∫

Ξ×Ξ

c(ξ, ξ̃)η(dξ, dξ̃) : η ∈ M(Ξ× Ξ), π1η − π2η = P −Q
}
, (2)

whereM(Ξ×Ξ) denotes the set of all finite measures on Ξ×Ξ and π1 and π2 denote the
projections onto the first and second components, respectively.
We assume that the cost function c : Ξ×Ξ→ R is nonnegative, symmetric and continuous
and satisfies the properties:
(i) c(ξ, ξ̃) = 0 if and only if ξ = ξ̃,
(ii) sup{c(ξ, ξ̃) : ξ, ξ̃ ∈ B, ‖ξ − ξ̃‖ ≤ δ} tends to 0 as δ → 0 for each bounded B ⊆ Ξ,
(iii) c allows the estimate c(ξ, ξ̃) ≤ λ(ξ) +λ(ξ̃) for all ξ, ξ̃ ∈ Ξ with a measurable function
λc : Ξ→ R+ that is bounded on bounded subsets of Ξ.
Both functionals are finite if we assume that the probability measures P , Q belong to

Pc(Ξ) :=

{
Q ∈ P(Ξ) :

∫

Ξ

λc(ξ)Q(dξ) <∞
}
. (3)

An important example for cost functions is

cr(ξ, ξ̃) := max{1, ‖ξ − ξ0‖r−1, ‖ξ̃ − ξ0‖r−1}‖ξ − ξ̃‖ (ξ, ξ̃ ∈ Ξ), (4)

for some r ≥ 1 and ξ0 ∈ Ξ. In this case, we set λcr(ξ) := 2‖ξ − ξ0‖max{1, ‖ξ − ξ0‖r−1}
and know that Pcr(Ξ) coincides with the set of all probability measures having absolute

moments of order r. We also use the notation Pr(Ξ) for Pcr(Ξ),
◦
µr for

◦
µcr etc.

The following dual representation and characterizations of Monge-Kantorovich and Kanto-
rovich-Rubinstein functionals are of special interest here. The results are derived in [9,
Section 2], [8, Section 4.3] and [6, Theorems 6.2.5 and 6.3.1].

Proposition 2.1 For all probability measures P,Q ∈ Pc(Ξ) the Kantorovich-Rubinstein

functional
◦
µc admits the dual representation

◦
µc (P,Q) = sup

f∈Fc

∣∣∣∣
∫

Ξ

f(ξ)P (dξ)−
∫

Ξ

f(ξ)Q(dξ)

∣∣∣∣ , (5)

where Fc is the class of all functions f : Ξ → R satisfying f(ξ) − f(ξ̃) ≤ c(ξ, ξ̃) for all
ξ, ξ̃ ∈ Ξ.
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Proposition 2.2 Let Ξ be compact. Then every Kantorovich-Rubinstein functional with
cost function c coincides with a Monge-Kantorovich functional with reduced cost ĉ. More
precisely, it holds
◦
µc (P,Q) =

◦
µĉ (P,Q) = µ̂ĉ(P,Q) ≤ µ̂c(P,Q), (6)

where the real-valued function ĉ on Ξ× Ξ is given by

ĉ(ξ, ξ̃) := inf
{ n−1∑

i=1

c(ξi, ξi+1) : n ∈ N, ξi ∈ Ξ, ξ1 = ξ, ξn = ξ̃
}
. (7)

The function ĉ is a metric on Ξ with ĉ ≤ c and coincides with c if c satisfies the triangle
inequality.

Proposition 2.3 The Kantorovich-Rubinstein functional
◦
µr is a metric on Pr(Ξ) and

the estimate∣∣∣∣
∫

Ξ

‖ξ‖rP (dξ)−
∫

Ξ

‖ξ‖rQ(dξ)

∣∣∣∣ ≤ r
◦
µr (P,Q) (8)

holds for all P,Q ∈ Pr(Ξ).
Convergence of a sequence (Pn) of probability measures in this metric space to some limit
P is equivalent to any of the following conditions:

(a) (µ̂r(Pn, P )) tends to 0 as n→∞,

(b) (Pn) converges weakly to P and the r-th order absolute moments of Pn converge to
those of P .

The distance
◦
µr is also called Fortet-Mourier metric of order r. Such metrics were first

studied in [3] and introduced by its dual representation (5). The compactness assumption
in Proposition 2.2 is not restrictive here since it will be used for probability measures with
finite support. Its importance in the present context is due to the fact that Kantorovich-
Rubinstein functionals are appropriate for stability issues (see Section 3), but Monge-
Kantorovich functionals, i.e., mass transportation problems, allow special representations.

Now, let us consider the case of two discrete probability measures P and Q having
finitely many scenarios ξi (with probabilities pi), i = 1, . . . , N , and ξN+j = ξ̃j (with
probabilities qj), j = 1, . . . ,M , respectively. Then we have

µ̂c(P,Q) = inf

{
N∑

i=1

M∑

j=1

ηijc(ξi, ξ̃j)

∣∣∣∣∣ηij ≥ 0,
M∑

j=1

ηij = pi,
N∑

i=1

ηij = qj

}
,

i.e. µ̂c(P,Q) is the optimal value of a linear transportation problem, and

◦
µc (P,Q) = inf

{
N+M∑

i,j=1

c(ξi, ξj)ηij

∣∣∣∣∣ηij ≥ 0,
N+M∑

j=1

ηij −
N+M∑

j=1

ηji = P ({ξi})−Q({ξi})
}
,

i.e.
◦
µc (P,Q) is the optimal value of a minimum cost flow problem and can be reformu-

lated as a linear transportation problem with reduced cost ĉ according to Proposition 2.2.

Hence, for discrete measures with finite support the functionals µ̂c and
◦
µc are computa-

tionally accessible.
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3. A review of stability for two-stage models

If the second stage of a linear stochastic program with recourse models a (stochastic)
dynamical decision process, as is the case in a variety of applications, the two-stage
problem takes on the form

min

{∫

Ξ

f0(ξ, x)P (dξ) : x ∈ X
}
, (9)

where X is a polyhedral subset of Rm, Ξ a closed subset of Rs, P is a Borel probability
measure on Ξ and the integrand f0 is of the form

f0(ξ, x) = 〈c, x〉+ inf

{∑̀

j=1

〈qj(ξ), yj〉 : Wjyj = hj(ξ)− Tj(ξ)yj−1, yj ∈ Yj, j = 1, . . . , `

}

with c ∈ Rm, polyhedral subsets Yj of Rmj , recourse costs qj(ξ) ∈ Rmj , right-hand sides
hj(ξ) ∈ Rrj , technology matrices Tj ∈ Rrj×mj−1 and recourse matrices Wj ∈ Rrj×mj
for j = 1, . . . , ` and some ` ∈ N; the vectors qj(·), hj(·) and the matrices Tj(·) are
(potentially) stochastic and affine functions of ξ. Then the second stage program has
separable block structure and the recourse variable y has the form y = (y1, . . . , y`). When
rewriting the model as a two-stage stochastic programming model with recourse decision
y = (y1, . . . , y`), the recourse matrix has separable block structure with W1, . . . ,W` and
the matrices T1(ξ), . . . , T`(ξ) appearing as its main and lower diagonal blocks.

The following stability result for optimal values v(P ) and ε-approximate solution sets
Sε(P ) of (9) is derived in the recent paper [11].

Proposition 3.1 Let P ∈ P`+1(Ξ) and the solution set S(P ) of (9) be nonempty and
bounded. Assume that hj(ξ) − Tj(ξ)x ∈ Wj(Yj) holds for each j = 1, . . . , ` and all pairs
(ξ, x) ∈ Ξ × X (relatively complete recourse). Moreover, assume ker (Wj) ∩ Y ∞j = {0}
for j = 1, . . . , `− 1, where Y ∞j denotes the (polyhedral) horizon cone to Yj.
Then there exist constants L > 0 and ε̂ > 0 such that for any ε ∈ (0, ε̂) the estimates

|v(P )− v(Q)| ≤ L
◦
µ`+1 (P,Q)

dl∞(Sε(P ), Sε(Q)) ≤ L

ε

◦
µ`+1 (P,Q)

hold whenever Q ∈ P`+1(Ξ) and
◦
µ`+1 (P,Q) < ε. Here, dl∞ denotes the Pompeiu-

Hausdorff distance on closed and bounded subsets of Rm.

The case ` = 1 corresponds to the situation of linear two-stage models with fixed recourse
(see [10, Theorem 24]). Hence, together with the results in [7,10], we have that the number
r ≥ 1 should be selected as

r =





1 , if either costs or right-hand sides in (9) are random
2 , if only costs and right-hand sides are random in (9)

` + 1 , if, in addition, all technology matrices are random.
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4. Optimal scenario reduction

Let P be a discrete probability distribution with scenarios ξi and probabilities pi, i =
1, . . . , n. If the number n of scenarios is large, one might wish to delete scenarios of P
in a best possible way, i.e., such that the original problem or, more precisely, its optimal
value admits minimal changes. To make this requirement precise, we denote by QJ a
discrete distributon whose support consists of a subset of scenarios ξj, j ∈ {1, . . . , n} \ J ,
of P having probabilities qj, j 6∈ J . Hence, it is of interest to determine a subset J of
{1, . . . , n} and probabilities qj, j 6∈ J , such that the distance |v(P ) − v(QJ)| of optimal
values is minimal with respect to all subsets of given cardinality. But, in general, this
distance is difficult to handle. According to Proposition 3.1 we know, however, that,
for two-stage models, |v(P ) − v(QJ)| can be estimated by a multiple of some metric or
functional µ of P and QJ . Hence, one might consider µ(P,QJ) instead and arrives at the
principle of optimal scenario reduction: Fix k ∈ N, k < n, and determine a solution of
the minimization problem

min

{
µ(P,QJ)|J ⊂ {1, . . . , n},#J = n− k, qj ≥ 0,

∑

j 6∈J
qj = 1

}
. (10)

In a first step, it is of interest to fix J and to determine the optimal weights qj, j 6∈ J ,
such that QJ is a probability measure, i.e., to solve the best approximation problem.

min

{
µ(P,QJ) | qj ≥ 0,

∑

j 6∈J
qj = 1

}
. (11)

The next result asserts that the latter problem (11) is solvable and provides an explicit

representation of the infimum in case µ =
◦
µc.

Theorem 4.1 For given nonempty subset J of {1, . . . , n} the problem (11) has a solution
Q∗J =

∑
j 6∈J q

∗
j δξj and it holds

DJ :=
◦
µc (P,Q∗J) = min

{
◦
µc (P,QJ) : qj ≥ 0,

∑

j 6∈J
qj = 1

}
=
∑

i∈J
pi min

j 6∈J
ĉ(ξi, ξj) (12)

=
∑

i∈J
pi min

{
m−1∑

`=1

c(ξl`, ξl`+1
) : m ∈ N, l` ∈ {1, . . . , n}, l1 = i, lm = j 6∈ J

}
,

where q∗j = pj +
∑
i∈Jj

pi, ∀j 6∈ J , with Jj := {i ∈ J |j = j(i)} and the index j(i) belonging

to arg min
j 6∈J

ĉ(ξi, ξj), ∀i ∈ J , i.e., the optimal redistribution consists in adding each deleted

scenario weight to that of some of those scenarios being closest w.r.t. ĉ.

Proof: Due to Proposition 2.2 we have the identity

◦
µc (P,QJ) = µ̂ĉ(P,QJ),
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where the reduced cost function ĉ is a metric on the support Ξ of P . Since [2, Theorem 2]
is established for the Monge-Kantorovich functional, it implies the desired representation

min

{
µ̂ĉ(P,QJ) | qj ≥ 0,

∑

j 6∈J
qj = 1

}
=
∑

i∈J
pi min

j 6∈J
ĉ(ξi, ξj).

together with the asserted redistribution rule. �

The preceding result coincides with [2, Theorem 2] if c is a metric. Using the explicit
formula (12), the problem (10) of optimal scenario reduction is of the form

min

{
DJ =

∑

i∈J
pi min

j 6∈J
ĉ(ξi, ξj) |J ⊂ {1, ..., n},#J = n− k

}
, (13)

i.e., it represents a metric k-median problem in the metric space (Ξ, ĉ). The problem is
known to be NP-hard, hence, (polynomial-time) approximation algorithms and heuristics
become important. The approximation algorithms for the metric k-median problem in [1]
and [12, Chapter 25] achieve guarantees of 6 2

3
and 6 times the optimal.

Simple heuristics may be derived by extending the two extremal cases k = n − 1 and
k = 1 of problem (13). These problems correspond to solving

min
l∈{1,...,n}

pl min
j 6=l

ĉ(ξl, ξj) (k = n− 1) and min
u∈{1,...,n}

n∑

i=1
i6=u

piĉ(ξu, ξi) (k = 1).

Their solutions are the index sets J = {l1} and J = {1, . . . , n} \ {u1}, respectively. The
two sets arise from different algorithmic ideas: backward reduction and forward selection.
Both ideas can be extended and lead to backward and forward heuristics for finding
approximate solutions of (13). For example, the forward selection procedure determines
an index set J [k] of deleted scenarios having cardinality n− k.

Algorithm 4.2 (Forward selection)

Step [0]: J [0] := {1, . . . , n}.
Step [i]: ui ∈ arg min

u∈J [i−1]

∑

k∈J [i−1]\{u}
pk min

j 6∈J [i−1]\{u}
ĉ(ξk, ξj),

J [i] := J [i−1] \ {ui} .
Step [k+1]: Optimal redistribution.

This algorithm was first studied in [5] for the case ĉ = c. There it is shown that the
algorithm requires O(k n2) operations. Although the algorithm does not lead to optimality
in general, the performance evaluation of its implementation in [5] is very encouraging.

5. Numerical experience

We consider again the scenario tree in [2,5] representing the increasing uncertainty of
electrical load in a stochastic electrical power production model for a weekly time horizon
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(see [4] for additional information). The scenario tree was obtained by calibrating a time
series model for the electrical load, by simulating a large number of load realizations, and
by constructing an initial ternary load scenario tree based on sample means and standard
deviations of the simulated realizations. The initial load scenario tree represents a discrete
probability distribution P that consists of 36 = 729 uniformly distributed scenarios and
enters a 7-period two-stage stochastic programming model. Table 1 presents our com-
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Figure 1. Load scenarios for one week and mean shifted initial load scenario tree

putational results for optimal scenario reduction of the initial load scenario tree by using
Algorithm 4.2. A comparison with the results in Table 2 shows the improvement of using
◦
µr instead of µ̂r. Both tables display the relative distances between the original load tree
and some of the reduced ones, and the effects of varying the order r of the Kantorovich-

Rubinstein distances
◦
µr and Monge-Kantorovich functionals µ̂r, respectively. The relative

distances are computed by dividing all distances by the Kantorovich-Rubinstein distance
between the initial load distribution P and the Dirac measure at the scenario obtained
in the first forward selection step, i.e., by

◦
µr (P, δξu1

). To compute a reduced tree for
r = 1, the running time on a PC equipped with a 3 GHz processor is less than 10 seconds
including about 4 seconds to compute the scenario distances cr(·, ·). For r > 1 about 9
seconds are needed in addition to compute the reduced cost ĉr(·, ·). Figures 2 illustrates
the structure of the reduced scenario trees consisting of 20 scenarios for varying order r.

Recall that approximations of probability distributions with respect to
◦
µr have the prop-

erty that r-th order absolute moments are approximately recovered (see Proposition 2.3).
This leads to the selection of different scenarios for different r with a tendency to outer

scenarios for growing r. Figure 3 illustrates the behaviour of the relative
◦
µr-distances

with respect to the number of reduced scenarios for increasing order r.
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Table 1
Numerical results for optimal scenario reduction based on

◦
µr

Number of Relative
◦
µr-distances

scenarios r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 0.522 0.646 0.684 0.696 0.687 0.682 0.668
10 0.419 0.536 0.589 0.577 0.582 0.556 0.535
20 0.323 0.420 0.469 0.472 0.466 0.431 0.395
50 0.230 0.305 0.335 0.337 0.301 0.256 0.210
100 0.169 0.220 0.242 0.222 0.180 0.133 0.094
150 0.137 0.178 0.185 0.156 0.114 0.077 0.049
200 0.117 0.148 0.143 0.112 0.076 0.045 0.025
300 0.094 0.102 0.085 0.057 0.032 0.016 0.008
400 0.072 0.067 0.049 0.028 0.013 0.006 0.002
500 0.050 0.039 0.024 0.017 0.005 0.002 0.001
600 0.028 0.018 0.009 0.004 0.001 0.000 0.000

Table 2
Numerical results for optimal scenario reduction based on µ̂r
Number of Relative µ̂r-distances
scenarios r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7

1 1.000 1.609 2.354 3.146 3.910 4.627 5.302
5 0.522 0.738 0.940 1.079 1.209 1.217 1.257
10 0.419 0.574 0.713 0.787 0.820 0.803 0.794
20 0.323 0.448 0.538 0.600 0.617 0.601 0.565
50 0.230 0.308 0.359 0.378 0.369 0.331 0.286
100 0.169 0.221 0.253 0.248 0.211 0.168 0.130
150 0.137 0.179 0.192 0.171 0.134 0.097 0.066
200 0.117 0.149 0.147 0.121 0.088 0.058 0.035
300 0.094 0.102 0.088 0.062 0.037 0.021 0.011
400 0.072 0.067 0.050 0.03 0.015 0.007 0.003
500 0.050 0.039 0.025 0.012 0.005 0.002 0.001
600 0.028 0.018 0.009 0.004 0.001 0.000 0.000
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Figure 2. Reduced trees containing k = 20 scenarios obtained by using
◦
µr (left column)

and µ̂r (right column) for r = 1, 2, 4, 7
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Figure 3. Behaviour of the
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théorique, Ann. Sci. Ecole Norm. Sup. 70 (1953), 266–285.

4. Gröwe-Kuska, N.; Römisch, W.: Stochastic unit commitment in hydro-thermal power pro-
duction planning, Applications of Stochastic Programming (S.W. Wallace, W.T. Ziemba
eds.), MPS-SIAM Series in Optimization, 2005, 633–653.

5. Heitsch, H.; Römisch, W.: Scenario reduction algorithms in stochastic programming, Comp.
Optim. Appl. 24 (2003), 187–206.

6. Rachev, S. T.: Probability Metrics and the Stability of Stochastic Models, Wiley, 1991.
7. Rachev, S. T.; Römisch, W.: Quantitative stability in stochastic programming: The method

of probability metrics, Math. Oper. Res. 27 (2002), 792–818.
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