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Abstract

This paper is concerned with transparent boundary conditions
(TBCs) for the time–dependent Schrödinger equation on a circular
domain. Discrete TBCs are introduced in the numerical simulations
of problems on unbounded domains in order to reduce the computa-
tional domain to a finite region in order to make this problem feasible
for numerical simulations.

The main focus of this article is on the appropriate discretiza-
tion of such TBCs for the two–dimensional Schrödinger equation in
conjunction with a conservative Crank–Nicolson–type finite difference
discretization. The presented discrete TBCs yield an uncondition-
ally stable numerical scheme and are completely reflection–free at the
boundary. Furthermore we prove concisely the stability of the recur-
rence formulas used to obtain the convolution coefficients of the new
discrete TBC for a spatially dependent potential.
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1 Introduction

Schrödinger equation. Consider a circular geometry that appears e.g. in
fiber optics as Fresnel equation. Therefore, the (scaled) transient Schrödinger
equation in R

2 reads in polar coordinates (r, θ):

iψt = −1

2

[1

r
(rψr)r +

1

r2
ψθθ

]

+ V (r, θ, t)ψ, r > 0, 0 < θ < 2π, t > 0,

(1.1a)

ψ(r, θ, 0) = ψI(r, θ), r > 0, 0 < θ < 2π, (1.1b)

ψ(r, 0, t) = ψ(r, 2π, t), r > 0, t > 0, (1.1c)

lim
r→∞

ψ(r, θ, t) = 0, 0 < θ < 2π, t > 0. (1.1d)

We assume that the given potential V is constant outside of the computational
domain [0, R] × [0, 2π]:

V (r, θ, t) = VR ≡ const for r ≥ R,

0 < θ < 2π, t ≥ 0, and that the initial data has a compact support:

suppψI ⊂ [0, R) × [0, 2π].

Discussions of strategies to soften these restrictions could be found in [18,
25, 14].

Equation (1.1a) has also important applications in electromagnetic wave
propagation, [19], in optics (“Fresnel equation”, [24]) and (underwater) acous-
tics (“parabolic equation”, [29]) as a paraxial approximation to the wave
equation in the frequency domain.
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Analytic TBCs. Let us exemplify first analytic TBCs that can be
derived for the Schrödinger equation on a circular domain. In the following
we briefly review the construction of the analytic TBC from [5] and extend it
to the case of a nonzero potential. We remark that a more concise derivation
can be found in [16].

We consider (1.1a) on the exterior domain r > R and denote by ψ̂ =
ψ̂(r, θ, s) the Laplace transform of ψ w.r.t. time:

1

r
(rψ̂r)r +

1

r2
ψ̂θθ + 2i(s+ iVR)ψ̂ = 0, r > R, 0 < θ < 2π. (1.2)

The function ψ̂ is 2π-periodic and assumed to be continuous and thus we use
a Fourier series w.r.t. the angle θ:

ψ̂(r, θ, s) =
∑

m∈Z

ψ̂(m)(r, s) eimθ, r > R. (1.3)

For each mode m ∈ Z the Fourier coefficient ψ̂(m)(r, s) satisfies the ordinary
differential equation

1

r
(rψ̂(m)

r )r +
(

2is− 2VR − m2

r2

)

ψ̂(m) = 0, r > R. (1.4)

This is the Bessel equation for functions of order m. Hence the solution to
(1.4) fulfilling the appropriate decay condition for r → ∞ is given in terms

of the m-th order Hankel function of the first kind H
(1)
m :

ψ̂(m)(r, s) = αm(s)H(1)
m (

√

2is− 2VR r), r > R. (1.5)

The radial derivative of ψ̂(m) is computed as

∂rψ̂
(m)(r, s) = αm(s)

√

2is− 2VRH
(1)′

m (
√

2is− 2VR r)

=
√

2is− 2VR
H

(1)′

m (
√

2is− 2VR r)

H
(1)
m (

√
2is− 2VRR)

ψ̂(m)(R, s),
(1.6)

where we have determined the value of the coefficient αm(s) from (1.5) by
setting r = R. Finally, the TBC is obtained by computing the series (1.3),
using the inverse Laplace transform and setting r = R:

∂
n
ψ(R, θ, t) =

1

2πi

∑

m∈Z

γ+i∞
∫

γ−i∞

√

2is− 2VR
H

(1)′

m (
√

2is− 2VRR)

H
(1)
m (

√
2is− 2VRR)

ψ̂(m)(R, s)est ds eimθ, (1.7)
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where n denotes the outwardly directed unit normal vector to the disc with
radius R and γ is a vertical contour in the complex plane chosen such that
all singularities of the integrand are to the left of it.

The TBC (1.7) is non–local both in time and in space. A strategy to
derive a spatially localized version of (1.7) by an asymptotic expansion of
the Hankel functions and their derivatives according to s can be found in [5].

Due to the nonlocality of the TBC (1.7), its numerical implementation
requires to store the boundary data ψ̂(m)(R, .) of all the past history and for
all modes m ∈ Z. Moreover, the discretization of the TBC (1.7), even in one
space dimension, is not trivial at all and has attracted lots of attention. For
the many proposed strategies of discretizations of the TBC (1.7) in 1D (as
well as semi–discrete approaches), we refer the reader to [3, 4, 10, 11, 21, 23,
24] and references therein. We remark also that inadequate discretizations
may introduce strong numerical reflections at the boundary or render the
discrete initial boundary value problem only conditionally stable, see [14] for
a detailed discussion.

Difference equations. We consider a Crank–Nicolson finite difference
scheme, which is one of the commonly used discretization methods for the
Schrödinger equation. With the possibly nonuniform radial grid {rj, j ∈ N0}
with rj+1 > rj > 0, the uniform azimuthal grid points θk = k∆θ (where
K∆θ = 2π and the artificial boundary at r = R is located between the
grid points with indices j = J − 1 and J), tn = n∆t, the approximation

ψ
(n)
j,k ∼ ψ(rj, θk, tn), j = −1, 0, 1, . . . , J , 0 ≤ k < K, n ∈ N0, and the

abbreviation ψ
(n+1/2)
j,k :=

(

ψ
(n+1)
j,k + ψ

(n)
j,k

)

/2 this scheme reads:

− 2i

∆t
(ψ

(n+1)
j,k − ψ

(n)
j,k )

=
1

rj

1

∆rj

[rj+1/2(ψ
(n+1/2)
j+1,k − ψ

(n+1/2)
j,k )

∆rj+1/2

−
rj−1/2(ψ

(n+1/2)
j,k − ψ

(n+1/2)
j−1,k )

∆rj−1/2

]

+
1

r2
j

ψ
(n+1/2)
j,k+1 − 2ψ

(n+1/2)
j,k + ψ

(n+1/2)
j,k−1

∆θ2
− 2V

(n+1/2)
j,k ψ

(n+1/2)
j,k ,

(1.8)

j ∈ N0, 0 ≤ k ≤ K − 1, n ≥ 0, with the index k considered as k mod K.
The potential term is given by

V
(n+1/2)
j,k = V (rj, θk, tn+1/2).
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In (1.8) we have introduced the notation rj+1/2 := (rj+1 + rj)/2, j ∈ N0 amd
the abbreviation ∆rj+1/2 = rj+1 − rj, j ∈ 1

2
+ N0. Note that for consistency

we shall assume that ∆rj is a smoothly varying function (for ∆rj → 0).

Remark (Treatment of singularity at the origin). It is apparent that (1.1a)
has a singularity at r = 0. However, this singularity is only due to the
representation of the Schrödinger equation in polar coordinates. As a stan-
dard numerical strategy we used a radial offset grid rj. At j = 0 we have

r−1/2 = 0 and therefore the coefficient of the (auxiliary) value ψ
(n+1/2)
−1,k is zero,

i.e. the scheme (1.8) does not need any extrapolation or special treatment

for ψ
(n+1/2)
−1,k . Here, rj is not necessaily an equidistant grid; only the property

r−1/2 = 0 must be ensured.

2 The Discrete TBC

Transparent boundary conditions (TBCs) are obtained by explicit solution
of the equation in the exterior domain r ≥ R. Now we want to use this
strategy to derive a TBC directly for the numerical scheme (1.8), i.e. on a
purely discrete level. In other words we construct the discrete Dirichlet-to-
Neumann map to eliminate the exterior problem.

Reduction to 1D–Problem. In order to reduce the problem to the
simpler 1D case, the discrete Fourier method is used in θ–direction. Due to
the periodic BCs we have

ψ
(n)
j,0 = ψ

(n)
j,K , j ∈ N0, n ≥ 0, (2.9)

(and ψ
(n)
0,k = ψ

(n)
0,0 , ∀k) and hence, use the discrete Fourier transform of ψ

(n)
j,k

in θ–direction:

ψ
(m,n)
j :=

1

K

K−1
∑

k=0

ψ
(n)
j,k exp

(

2πikm

K

)

, m = 0, . . . ,K − 1. (2.10)

5



The scheme (1.8) in the exterior domain j ≥ J − 1 then transforms into:

− 2i

∆t
(ψ

(m,n+1)
j − ψ

(m,n)
j )

=
1

rj

1

∆rj

[rj+1/2(ψ
(m,n+1/2)
j+1 − ψ

(m,n+1/2)
j )

∆rj+1/2

−
rj−1/2(ψ

(m,n+1/2)
j − ψ

(m,n+1/2)
j−1 )

∆rj−1/2

]

− 2V
(m)
j ψ

(m,n+1/2)
j ,

V
(m)
j := VR +

1 − cos 2πm
K

r2
j∆θ

2
, 0 ≤ m ≤ K − 1, n ≥ 0.

The modes ψ(m), m = 0, . . . ,K − 1 are independent of each other in the
exterior domain r ≥ R since the potential V is constant there. Therefore we
can continue our analysis for each fixed mode separately.

Thus, by omitting in the sequel the superscript m in the notation, we will
consider in the exterior domain a discrete 1D–Schrödinger equation of the
following form:

− i
2∆rj∆rj+1/2

∆t
(ψ

(n+1)
j − ψ

(n)
j )

=
1

rj

[

rj+1/2(ψ
(n+1/2)
j+1 − ψ

(n+1/2)
j ) − rj−1/2

∆rj+1/2

∆rj−1/2

(ψ
(n+1/2)
j − ψ

(n+1/2)
j−1 )

]

− 2∆rj∆rj+1/2Vjψ
(n+1/2)
j , j ≥ J − 1,

(2.11)

with Vj = VR +C/(j+ 0.5)2, C = (1− cos 2πm
K

)/(∆r2∆θ2) for an equidistant
offset grid. We remark that the radial discretization on the computational
interval [0, R] can be nonuniform (e.g. adaptive in time) for our subsequent
analysis.

Mass conservation property. There are two important advantages of
this second order (in ∆r and ∆t) scheme (2.11): it is unconditionally stable,
and it preserves the discrete L2–norm in time:

Lemma 2.1. For the scheme (2.11) holds:

‖ψ(n)‖2
2 := ∆rj

∑

j∈N0

|ψ(n)
j |2rj

is a conserved quantity in time.
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Proof. This conservation property can be seen by a discrete energy estimate.
First we multiply (2.11) by ψ̄

(n)
j rj and its complex conjugate by ψ

(n+1)
j rj:

− 2i

∆t

(

ψ
(n+1)
j ψ̄

(n)
j − |ψ(n)

j |2
)

rj

= ψ̄
(n)
j D0

(

rjD
0ψ

(n+1/2)
j

)

− 2Vjψ
(n+1/2)
j ψ̄

(n)
j rj, j − 0, 1, . . . , (2.12a)

2i

∆t

(

|ψ(n+1)
j |2 − ψ̄

(n)
j ψ

(n+1)
j

)

rj

= ψ
(n+1)
j D0

(

rjD
0ψ̄

(n+1/2)
j

)

− 2Vjψ̄
(n+1/2)
j ψ̄

(n+1)
j rj, j − 0, 1, . . . , (2.12b)

with the abbreviation of the centered difference quotient

D0 = D0
∆rj

2

, i.e. D0ψnj =
ψnj+1/2 − ψnj+1/2

∆rj
.

Next we subtract (2.12a) from (2.12b)

2i

∆t

(

|ψ(n+1)
j |2−|ψ(n)

j |2
)

rj

= ψ
(n+1)
j D0

(

rjD
0ψ̄

(n+1/2)
j

)

− ψ̄
(n)
j D0

(

rjD
0ψ

(n+1/2)
j

)

− Vj
(

|ψ(n+1)
j |2 − |ψ(n)

j |2
)

rj, j − 0, 1, . . . ,

sum from j = 0 to ∞, and apply summation by parts:

2i

∆t

∞
∑

j=0

(

|ψ(n+1)
j |2 − |ψ(n)

j |2
)

rj

= −
∞

∑

N0+
1
2

(

D0ψ̄
(n+1/2)
j

)(

D0ψ
(n+1)
j

)

rj −
(

D0ψ̄
(n+1/2)

−
1
2

)

ψ
(n+1)
0 r

−
1
2

+
∞

∑

N0+
1
2

(

D0ψ
(n+1/2)
j

)(

D0ψ̄
(n)
j

)

rj −
(

ψ
(n+1/2)

−
1
2

)

ψ̄
(n)
0 r

−
1
2

−
∞

∑

j=0

Vj
(

|ψ(n+1)
j |2 − |ψ(n)

j |2
)

rj,

(2.13)
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Now, the boundary terms in (2.13) vanish since r
−

1
2

= 0 and we can write

2i

∆t

∞
∑

j=0

(

|ψ(n+1)
j |2 − |ψ(n)

j |2
)

rj

= −
∞

∑

N0+ 1
2

(

|D0ψ̄
(n+1)
j |2 −D0ψ̄

(n)
j |2

)

rj −
∞

∑

j=0

Vj
(

|ψ(n+1)
j |2 − |ψ(n)

j |2
)

rj,

(2.14)

Finally, taking imaginary parts one obtains the desired result.

Discrete TBCs. Discrete transparent boundary conditions (DTBCs) for
the 1D Schrödinger equation with Vj = const in the exterior domain were
introduced by Arnold in [6]. Here we want to derive a DTBC for a spatially
varying potential Vj in the exterior domain j ≥ J − 1 (cf. (2.11)) and obtain
the DTBC of Arnold as the limiting case j → ∞.

We use the Z–transform of the sequence {ψ(n)
j }, n ∈ N0 (with j considered

fixed) which is defined as the Laurent series, see [13]:

Z{ψ(n)
j } = ψ̂j(z) :=

∞
∑

n=0

ψ
(n)
j z−n, z ∈ C, |z| > Rψ̂j

, (2.15)

and Rψ̂j
denotes the convergence radius of the series. Now the transformed

exterior scheme (2.11) reads

− iρj
z − 1

z + 1
ψ̂j(z)

=
1

rj

[

rj+1/2

(

ψ̂j+1(z) − ψ̂j(z)
)

− rj−1/2

∆rj+1/2

∆rj−1/2

(

ψ̂j(z) − ψ̂j−1(z)
)

]

− 2∆rj∆rj+1/2Vjψ̂j(z), j ≥ J − 1,

(2.16)

with the mesh ratio ρj = 4∆rj∆rj+1/2/∆t and Vj = VR +C/j2. Thus we ob-
tain a homogeneous second order difference equation with varying coefficients
of the form

ajψ̂j+1(z) + bj(z)ψ̂j(z) + cjψ̂j−1(z) = 0, j ≥ J − 1, (2.17)
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with

aj =
rj+1/2

rj
, (2.18a)

bj(z) = − 1

rj

[

rj+1/2 + rj−1/2

∆rj+1/2

∆rj−1/2

]

+iρj
z − 1

z + 1
− 2∆rj∆rj+1/2Vj, (2.18b)

cj =
rj−1/2

rj

∆rj+1/2

∆rj−1/2

. (2.18c)

Remark (uniform offset grid). In the special case of a uniform radial offset
grid rj = (j + 1

2
)∆r, j ≥ J − 1, we obtain

aj =
j + 1

j + 1
2

, j ≥ J − 1, (2.19a)

bj(z) = −2 + iρ
z − 1

z + 1
− 2∆r2VR − 2

1 − cos 2πm
K

(j + 1/2)∆θ2
, j ≥ J − 1, (2.19b)

cj =
j

j + 1
2

, j ≥ J − 1. (2.19c)

For the formulation of the Z–transformed DTBC at j = J we regard the
ratio ℓ̂j(z) of the solutions at two adjacent points:

ℓ̂j(z) =
ψ̂j(z)

ψ̂j−1(z)
, j ≥ J, (2.20)

and get from (2.17) the equation

ℓ̂j(z)
(

aj(z)ℓ̂j+1(z) + bj(z)
)

+ cj = 0, j ≥ J. (2.21)

In order to find a solution to (2.21) we use the method of series. Let us
consider the Laurent series for ℓ̂j(z):

ℓ̂j(z) = ℓ
(0)
j + ℓ

(1)
j z−1 + · · · + ℓ

(n)
j z−n + . . . , |z| ≥ 1. (2.22)

Define the auxiliary functions

αj(z) :=
bj(z)

aj
,

αj := lim
z→∞

αj(z),

βj :=
cj
aj
,

γj = αj − ᾱj.

(2.23)
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Then (2.21) reads

ℓ̂j(z)
(

ℓ̂j+1(z) + αj(z)
)

+ βj = 0, j ≥ J. (2.24)

Substituting (2.22) for (2.24) we get

(

ℓ
(0)
j + ℓ

(1)
j z−1 + · · · + ℓ

(n)
j z−n + . . .

)

·
·
(

(

ℓ
(0)
j+1 + ℓ

(1)
j+1z

−1 + · · · + ℓ
(n)
j+1z

−n + . . .
)

+ αj(z)
)

+ βj = 0. (2.25)

Taking |z| → ∞ we have the following recurrence equation for ℓ
(0)
j :

ℓ
(0)
j

(

ℓ
(0)
j+1 + αj

)

+ βj = 0. (2.26)

We shall solve this equation starting from an index J∞ to j = J , i.e. putting
a boundary value ℓ

(0)
J∞

:= ℓ
(0)
∞ and running the recursion from J∞ to J :

ℓ
(0)
j =

−βj
ℓ
(0)
j+1 + αj

, j = J∞ − 1, J∞ − 2, . . . , J. (2.27)

Note that a very large index J corresponds to a very large radius rJ∞ ; there-

fore we can use the 1D plane case coefficient ℓ(0), see [9], as the value ℓ
(0)
∞ .

The stability of the recurrence relations.

Theorem 2.1. Let |αj| ≥ 2 > βj + 1. Then:

a) |ℓ(0)
j | < βj < 1; and

b) the recurrence formulas (2.27) are stable with respect to small perturba-
tions.

Proof. The item a) is proved by induction. Suppose |ℓ(0)
j+1| < βj+1. Hence

|ℓ(0)
j+1 + αj| − βj ≥ |αj | − |ℓ(0)

j+1| − βj > 1 − |ℓ(0)
j+1| > 0.

Therefore |ℓ(0)
j | < 1. Furthermore we have:

|ℓ(0)
j | =

βj

|ℓ(0)
j+1 + αj|

<
βj

2 − |ℓ(0)
j+1|

< βj. (2.28)
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To prove b) and establish the stability we suppose that we have a pertur-

bation ℓ
(0)
j+1+δj+1 instead of ℓ

(0)
j+1 with |δj+1| < 1. Let us look at the evolution

of δj by comparing (2.27) with

ℓ
(0)
j + δj =

−βj
ℓ
(0)
j+1 + δj+1 + αj

, j = J∞ − 1, J∞ − 2, . . . , J.

Evidently we obtain:

δj =
−βj

ℓ
(0)
j+1 + δj+1 + αj

− −βj
ℓ
(0)
j+1 + αj

= δj+1

−ℓ(0)
j

ℓ
(0)
j+1 + δj+1 + αj

= δj+1

−ℓ(0)
j

−βj/ℓ(0)
j + δj+1

.

Therefore we get

|δj | = |δj+1|
|ℓ(0)
j |

|βj/ℓ(0)
j + δj+1|

< |δj+1|
|ℓ(0)
j |2

βj − |ℓ(0)
j ||δj+1|

< |δj+1|
|ℓ(0)
j |2
βj

1

1 − |δj+1|
,

and hence
|δj|
|δj+1|

∼
|ℓ(0)
j |2
βj

< βj < 1, (2.29)

for |δj+1| < 1. Thus the recursion (2.27) is stable with respect to small
perturbations (e.g. for truncation errors or for an ”incorrect” initial guess

ℓ
(0)
J∞

:= ℓ
(0)
∞ ).

Remark. The theorem condition |αj | ≥ 2 > βj + 1 is valid for definitions
(2.18).

Remark. The estimate (2.29) permits to explain a fast convergence of the

recursion (2.27) to the correct value ℓ
(0)
J while taking an ”incorrect” initial

guess ℓ
(0)
J∞

:= ℓ
(0)
∞ , see the numerical examples in Section 3. Indeed due to

(2.29) we can hope for the exponential decay of |δj | with the factor |ℓ(0)
j |2/βj ∼

|ℓ(0)
j |. For instance the value |ℓ(0)

j | is estimated from the case of the ”frozen”
coefficients at J∞:

|ℓ(0)
j | ∼ |ℓ(0)

∞
|,

11



where |ℓ(0)
∞ | < 1 is the root of the square equation

ℓ(0)
∞

=
−βJ∞

ℓ
(0)
∞ + αJ∞

.

Now we consider the calculation of ℓ
(1)
j . We have from (2.18):

αj(z) := αj − γj(z
−1 − z−2 + z−3 − . . . ), (2.30)

where γj is defined in (2.23). From (2.25) and (2.30) we can write

(

ℓ
(0)
j + ℓ

(1)
j z−1 + O(z−2)

)

·
·
(

(

ℓ
(0)
j+1 + ℓ

(1)
j+1z

−1 + O(z−2)
)

+
(

αj − γjz
−1 + O(z−2)

)

)

+ βj = 0. (2.31)

Annihilating leading terms subjected to (2.26) we collect terms with factor
z−1 and obtain after multiplying by z and considering |z| → ∞:

ℓ
(0)
j ℓ

(1)
j+1 − ℓ

(0)
j γj + ℓ

(1)
j ℓ

(0)
j+1 + ℓ

(1)
j αj = 0. (2.32)

Therefore the recursion is defined by

ℓ
(1)
j = −

ℓ
(0)
j ℓ

(1)
j+1 − ℓ

(0)
j γj

ℓ
(0)
j+1 + αj

, j = J∞ − 1, J∞ − 2, . . . , J, (2.33)

with a boundary value ℓ
(1)
J∞

:= ℓ
(1)
∞ .

The case of ℓ
(n)
j with n ≥ 2 is considered similarly by truncating terms of

O(z−n−1) in (2.31); we get the following recursion formula:

ℓ
(n)
j = −

n−1
∑

k=0

ℓ
(k)
j ℓ

(n−k)
j+1 + γj(−1)n−kℓ

(k)
j

ℓ
(0)
j+1 + αj

, j = J∞ − 1, J∞ − 2, . . . , J, (2.34)

with a boundary value ℓ
(n)
J∞

:= ℓ
(n)
∞ that can be taken from the 1D plane case:

ℓ
(n)
∞ ≡ ℓ(n). Notice that (2.33) is a particular case of (2.34) at n = 1 .

Theorem 2.2. Under conditions of Theorem 2.1 |αj| ≥ 2 > βj + 1 the
recurrence formulas (2.34) are stable with respect to small perturbations.
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Proof. Let us write (2.34) in the resolution form with respect to index n:

ℓ
(n)
j =

ℓ
(0)
j

ℓ
(0)
j+1 + αj

ℓ
(n)
j+1 + F

(

{ℓ(n1<n)
j }, {ℓ(n1<n)

j+1 }
)

, j = J∞ − 1, J∞ − 2, . . . , J,

(2.35)
where the function F contains remaining terms with indexes n1 < n. Suppose
that the coefficients {ℓ(n1)

j }, n1 = 0, 1, . . . , n − 1, j = J∞ − 1, J∞ − 2, . . . , J
are exact (or they are known with a good accuracy). Then the stability of
(2.34) is, evidently, determined by the magnitude of the multiplier

ℓ
(0)
j

ℓ
(0)
j+1 + αj

.

We have from (2.28):

|ℓ(0)
j |

|ℓ(0)
j+1 + αj|

<
βj

|ℓ(0)
j+1 + αj|

<
βj

2 − |ℓ(0)
j+1|

< βj < 1.

Remark. The proof of Theorem 2.2 is made by induction with respect to
n = 1, 2, . . . at the assumption that the previous coefficients for n1 < n
are correct. In the practice, while calculating the coefficients ℓ

(n)
j we must fix

some value J∞ and take an ”incorrect” boundary value ℓ
(n)
J∞

:= ℓ
(n)
∞ This could

give a numerical instability. However, due to sufficiently fast convergence of
ℓ
(0)
j to its correct value, say after several first steps J0 of the recursion (2.27),

we can start the recursion run of ℓ
(1)
j a little bit later, i.e. with the delay:

j = J∞ − J0. Similarly for ℓ
(1)
j the initial index can be j = J∞ − 2J0, etc. In

our numerical tests the usual value is J0 = 2 – 5, see the numerical examples
in Section 3.

Implementation of the DTBC. The DTBC is calculated in Fourier
transformed space, for all modes m = 1, . . . ,K:

ψ̂nj,m :=
1

K

K
∑

k=1

e
2πi(m−1)(k−1)

K ψnj,k, m = 1, . . . ,K. (2.36)

13



From (2.21) we have for m = 1, . . . ,K

ℓ̂j,m(z) =
ψ̂j,m(z)

ψ̂j−1,m(z)
(2.37)

for j ≥ J + 1. Calculating the inverse Z–transformation we get the discrete
convolution

ψ̂
(n)
j,m = ℓ̂

(n)
j,m ∗ ψ̂(n)

j−1,m (2.38)

⇒ ψ̂
(n)
j,m − ℓ̂

(0)
j,mψ̂

(n)
j−1,m =

n−1
∑

p=0

ℓ̂
(n−p)
j,m ψ̂

(p)
j−1,m (2.39)

⇒ ψ̂
(n)
j,m − ŝ

(0)
j,mψ̂

(n)
j−1,m =

n−1
∑

p=0

ŝ
(n−p)
j,m ψ̂

(p)
j−1,m − ψ̂

(n−1)
j,m , (2.40)

with the summed convolution coefficients given by

ŝ
(0)
j,m := ℓ̂

(0)
j,m,

ŝ
(n)
j,m := ℓ̂

(n)
j,m + ℓ̂

(n−1)
j,m , n ≥ 1. (2.41)

Hence the Fourier transformed DTBC reads

ψ̂
(n)
J+2,m − ŝ

(0)
J+2,mψ̂

(n)
J+1,m =

n−1
∑

p=0

ŝ
(n−p)
J+2,mψ̂

(p)
J+1,m − ψ̂

(n−1)
J+2,m, (2.42)

for m = 1, . . . ,K. The discrete convolution
∑

ŝ
(n−p)
J+2,mψ̂

(p)
J+1,m is calculated in

Fourier space and transformed back by

ConvSumn−1
J+1,k :=

K
∑

m=1

e
−2πi(m−1)(k−1)

K

(

n−1
∑

p=0

ŝ
(n−p)
J+2,mψ̂

(p)
J+1,m

)

, k = 1, . . . ,K

The part ŝ
(0)
J+2,mψ̂

(n)
J+1,m of the left hand side of (2.42) has to be transformed

back into physical space and we get the couplings

(

ŝ
(0)
J+2,mψ̂

(n)
J+1,m

)

∨

J+1,k,l
=

K
∑

m=1

ŝ
(0)
J+2,mψ̂

(n)
J+1,me

−2πi(m−1)(k−1)
K

=
1

K

K
∑

m=1

K
∑

l=1

ŝ
(0)
J+2,me

−2πi(m−1)(k−1)
K e

2πi(k−1)(l−1)
K ψ

(n)
J+1,l,

(2.43)
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for k, l = 1, . . . ,K. Hence the implemented DTBC reads

ψ
(n)
J+1,k −

1

K

K
∑

m=1

K
∑

l=1

ŝ
(0)
J+2,m e

−2πi(m−1)(k−1)
K e

2πi(k−1)(l−1)
K ψ

(n)
J+1,l

= ConvSumn−1
J+1,k − ψ

(n−1)
J+1,k. (2.44)

In order to formulate the DTBC as in (2.20) it is necessary that the
discrete initial condition vanishes at the two adjacent (spatial) grid points
appearing in (2.20). Here, we chose to formulate the DTBC at the boundary
of the computational interval and one grid point in the interior. Hence we
have assumed that the initial condition satisfies ψ

(0)
J−1 = ψ

(0)
J = 0. However,

with only minor changes to our subsequent analysis one could also prescribe
the DTBC at j = J, J + 1.

The use of the formulas (2.44) for calculations permits us to avoid any
boundary reflections and it renders the fully discrete scheme unconditionally
stable (just like the underlying Crank–Nicolson scheme). Note that we need
to evaluate for each mode m just one convolution of (2.44) at each time
step (at the endpoint of the interval [0, tn]). Since the other points of this
convolution are not needed, using an FFT is not practical.

3 Numerical Examples

Example 1

We start with recalling Example 1 from [16], i.e. we consider (1.1) with the
potential

V (r, θ, t) =

{

sin(2πr), r ∈ [0, 1],

0, otherwise,
(3.1)

and the initial data

ψI(r, θ) =

{

1 + cos(πr) + i
(

cos(2πr) − 1
)

, r ∈ [0, 1],

0, otherwise,
(3.2)

which are both independent of the angle θ. Consequently, the solution will
only dependent on r and t. For this initial function and this potential we
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present in Figure 1 the solution of (1.8) with the discretization parameters
∆t = 2 · 10−4, ∆r = 0.02. Since we use the offset grid, the DTBC is given
at r = 1.01, between r = 1 and r = 1 + ∆r. In order to obtain the error of
the DTBC, we furthermore compare the calculated solution ψ on the interval
[0, 1.01] with a (apparently more exact) reference solution ψ2 calculated on
[0, 2.01] with DTBC at r = 2.02. Figure 2 shows the relative error

L(t) =
||ψ(., ., t) − ψ2(., ., t)||l2(Ω)

||ψI(., .)||l2(Ω)

(3.3)

for the same discretization parameters used before.
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(c) T = 1000∆t = 0.2
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Figure 1: Absolute value of the calculated discrete solution of the time-
dependent Schrödinger equation (1.8) with the initial function (3.2) on the
computational domain [0, 1.01] with ∆r = 0.02, ∆t = 2 · 10−4 and the po-
tential as given in (3.1); the DTBC is implemented at r = 1.01.
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Figure 2: Relative error L(t) of the DTBC for the time evolution of ini-
tial function (3.2). We have taken the same discretization parameters as in
Figure 1.

Example 2

We recall the Example 2 from [16], i.e. we consider (1.1) with the vanishing
potential V ≡ 0 and the angle–dependent initial data

ψI(r, θ) =
e
2ikxr cos θ+2ikyr sin θ−

(r cos θ)2

2αx
−

(r sin θ)2

2αy

√
αxαy

, (3.4)

with a cutoff at r = 1.5. Then the exact solution to (1.1) is given by the
Gaussian beam

ψ(r, θ, t) =
e
2ikx(r cos θ−kxt)+2iky(r sin θ−kyt)−

(r cos θ−2kxt)2

2(αx+it)
−

(r sin θ−2kyt)2

2(αy+it)

√
αx + it

√

αy + it
. (3.5)

We set αx = αy = 0.04 and let kx = −10, ky = 0. Since the exact solution
(3.5) is known, we calculate the solution on the annulus Ω := [0.375, 1.5] ×
[0, 2π] with DTBC at r = 1.5 and Dirichlet boundary conditions at r = 0.375.
For the discretization parameters we choose ∆r = 0.025, ∆θ = 2π/50, ∆t =
2 ·10−4. We present in Figure 3 the initial function (3.4) on the disc [0, 1.5]×
[0, 2π] and the evolution of the calculated solution ψ on the annulus Ω after
300, 400 and 600 time steps. Like we have done in Example 1, we compare
the calculated solution ψ on Ω with a reference solution ψ2 calculated on
[0.375, 3] × [0, 2π] with DTBC r = 3. Figure 4 shows the relative error (3.3)
for the same discretization parameters as before.

17



−1

0

1

−1

0

1

5

10

15

20

25

|ψinitial|

|ψ
(r

,θ
)|

(a) initial function

−1

0

1

−1

0

1

0

5

10

15

|ψ(r,θ,t)|, t = 300

|ψ
(r

,θ
,t)

|

(b) T = 300∆t = 0.06

−1

0

1

−1

0

1

0

5

10

15

|ψ(r,θ,t)|, t = 400

|ψ
(r

,θ
,t)

|
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Figure 3: Absolute value of the calculated solution ψ of (1.8) with the initial
function (3.4) on the computational domain [0.375, 1.5] × [0, 2π] with ∆r =
0.025, ∆θ = 2π/50, ∆t = 2 · 10−4 and the wavenumbers kx = −10, ky = 0.
The potential equals 0; DTBC are implemented at r = 1.5.

Example 3

We recall the numerical example from [5] and consider (1.1) with the vanish-
ing potential V ≡ 0 and the initial data

ψI(r, θ) = eikxr cos θ−α
2
r2 (3.6)

with kx = −5. The exact solution of (1.1) is a time Gaussian distribution

ψ(r, θ, t) =
1√

1 + iαt
exp

(−αr2 + 2ikxr cos θ − k2
xit

2 + 2iαt

)

. (3.7)
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Figure 4: Relative error L(t) of the DTBC for the time evolution of ini-
tial function (3.4). We have taken the same discretization parameters as in
Figure 3.

Again we calculate a solution ψ of (1.8) on an annulus Ω := [0.3571, 1]×[0, 2π]
and compare it with a reference solution ψ2 calculated on [0.3571, 2]× [0, 2π].
Figure 5 shows the absolute value of the initial function on the disc [0, 1] ×
[0, 2π] and absolute value of solution ψ for the time steps 100, 200, 400. For
this plots we have used the discretization parameters ∆r = 1/70, ∆θ =
70/2π, ∆t = 4 · 10−4, kx = −15, α = 25. Again the DTBC is implemented
at the outer boundary of the annulus, here at r = 1, and Dirichlet boundary
conditions at the inner boundary at r = 0.3571. In Figure 6 we plotted the
relative error L(t) given in (3.3) of ψ and ψ2.
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(c) T = 200∆t = 0.08
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Figure 5: Absolute value of the calculated solution ψ of (1.8) with the initial
function (3.6) on the computational domain [0.3571, 1] × [0, 2π] with ∆r =
1/70, ∆θ = 2π/70, ∆t = 4 · 10−4 α = 25 and the wavenumber kx = −15.
The potential equals 0; the DTBC is implemented at r = 1.
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Figure 6: Relative error L(t) of the DTBC for the time evolution of ini-
tial function (3.4). We have taken the same discretization parameters as in
Figure 5.
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