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Abstract

For the solution of nonlinear equation systems, quasi-Newton methods
based on low-rank updates are of particular interest. We analyze a class
of TR1 update formulas to approximate the system Jacobian. The local
q-superlinear convergence for nonlinear problems is proved for a particu-
lar subclass of updates. Moreover we give an estimate of the r-order of
convergence. Numerical results comparing the TR1 method to Newton’s
and other quasi-Newton methods are presented.
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1 Introduction

Many computational tasks involve the solution of a set of nonlinear simultaneous
equations. This can be expressed as finding x∗ ∈ Rn with F (x∗) = 0 ∈ Rn for
a function F : Rn → Rn. Since F is assumed to be nonlinear, frequently an
iterative method has to be applied to compute a solution.

With reasonable assumptions on F a solution is found by Newton’s method
for any initial iterate sufficiently close to x∗, see e.g. [DS96]. The rate of conver-
gence is quadratic. However Newton’s method requires the repeated evaluation
and factorization of the Jacobian F ′ at the state iterates. This can cause dif-
ficulties for example if a computational description of F ′(x) is not available.
Furthermore for functions with a dense Jacobian, the effort for the computation
of a new iterate is of cubic order in the dimension n, which is often unacceptable
especially for large numbers of n.
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Quasi-Newton methods avoid the repeated evaluation and factorization of
the Jacobian by maintaining a possibly factorized approximation of the Jaco-
bian. One very simple approach is to freeze Ai and its factorization, for instance
by setting Ai = A := F ′(x0). This enables a very fast computation of iterates
within a small multiple of n2 operations (depending on the factorization used).
However, the rate of convergence is at most linear as long as A 6= F ′(x∗).
Another approach is to update Ai by a low-rank matrix and improve the ap-
proximation successively. Of particular interest is Broyden’s update formula
[Bro65] or the method of Gay and Schnabel using projected updates [GS78].
These rank-1 updates produce q-superlinear convergent iterations. Since they
add a rank-1 matrix to an existing factorized approximation, the new factor-
ization can be computed within O(n2) operations. Important features of these
update methods are that they obey secant conditions and the so-called least
change property.

The forward and reverse mode of Automatic Differentiation (AD) provide the
possibility to compute F ′(x)u and vT F ′(x) exact within machine accuracy for
given vectors x, u, and v. The computational effort for each of these products
is equal to the evaluation of F times a constant c ≤ 4 independent of the
dimension n of the state space. For further details on AD we refer to [Gri00]
or www.autodiff.org. In this paper, the vector-Jacobian and Jacobian-vector
products will be used, such that the considered rank-1 updates may also fulfill
tangent conditions. For this purpose we analyze an alternative quasi-Newton
update method proposed first in [GW02] in the context of equality constrained
optimization. A similar update procedure was also considered in [Hab04] for a
parameter estimation problem.

This paper has the following structure: Section 2 describes the update for-
mula. In Section 2.1 we introduce the new class of adjoint tangent rank-1
updates. Based on the bounded deterioration property, we show local linear
convergence in Theorem 8. Furthermore we can prove a transposed Dennis-
Moré property in Lemma 11. For an important subclass, characterized by the
residual property, we show q-superlinear convergence in Theorem 13. Section
2.3 illustrates the relation between the adjoint tangent rank-1 update and the
TR1 update. With additional assumptions on the iteration we characterize the
convergence more precisely and estimate the r-order of convergence in Theorem
17. Examples for adjoint tangent rank-1 updates are discussed in Section 2.4.
In Section 3 some implementation details of the new methods are described.
Furthermore numerical results comparing the adjoint tangent rank-1 updates
to Newton’s and other quasi-Newton methods are shown. Finally we give some
concluding remarks in Section 4.

2 Local convergence with the TR1 update

A general framework for solving F (x) = 0 using a quasi-Newton approximation
of F ′(x) is given in the following algorithm.
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Algorithm 1 (Quasi-Newton Algorithm) Suppose F : Rn → Rn, {Ai}i∈N0 ⊂
Rn×n with Ai non-singular, x0 ∈ Rn, and x∗ ∈ Rn with F (x∗) = 0 are given,
then the algorithm

si = −A−1
i F (xi)

xi+1 = xi + si
for i = 0, 1, 2, . . .

is called quasi-Newton method to find x∗.

2.1 The TR1 update formula

The two-sided rank-1 (TR1) update formula was introduced in [GW02] as a
generalization of the symmetric rank-1 (SR1) update formula [CGT91] which
is used in optimization to approximate Hessians. In a general form, the TR1
update formula is given by:

Definition 2 (TR1 update) Let F : Rn → Rn be differentiable, xi+1 ∈ Rn.
For a given matrix Ai ∈ Rn×n and given directions si, σi ∈ Rn, the formula

Ai+1 = Ai +
(F ′(xi+1)−Ai)siσ

T
i (F ′(xi+1)−Ai)

σT
i (F ′(xi+1)−Ai)si

(1)

is called ’two-sided rank-1 update’ (TR1 update) of Ai.

This general definition is valid for any pair of primal and dual directions si

and σi for which the denominator σT
i (F ′(xi+1)−Ai)si is nonzero. Even though

it is rarely exactly equal to zero ([CGT91]), the choice of si and σi should guard
against numerical instability.

We wish to remark that the definition of the TR1 formula in this paper
differs slightly from that in [GW02]. In [GW02] a combination of a secant and
a tangent condition is considered applying for example AD to provide exact
derivative information. While most other quasi-Newton update methods fulfill
the secant condition

Ai+1si = F (xi+1)− F (xi) = F ′(xi+1)si + O(‖si‖2),

the approximation with the TR1 formula considered here satisfies a direct
and adjoint tangent condition and thus agrees exactly with the new Jacobian
F ′(xi+1) in certain directions.

Remark 3 The TR1 update Ai+1 as given in Definition 2 fulfills the ’direct
tangent condition’

Ai+1si = F ′(xi+1)si

and the ’adjoint tangent condition’

σT
i Ai+1 = σT

i F ′(xi+1).

3



Similar to the SR1 update method the TR1 update maintains the validity
of previous tangent conditions, if the function F is affine, i.e., we have

Aisj = F ′(xi)sj and σT
j Ai = σT

j F ′(xi)

for all j < i. This property is called heredity In contrast the good and bad
Broyden formulas like most least change updates do not share this property.
The heredity yields convergence of the TR1 update for affine problems F after
at most n steps, provided none of the denominators happen to vanish exactly.
This can be proved in analogy to the SR1 update method [NW99].

2.2 Local convergence for nonlinear problems

So far, we have not specified the relation between the directions si and σi. In
analogy to Broyden’s and the SR1 method we define the directions si for the
direct tangent condition by the current step si = xi+1−xi. However, the choice
of the direction σi used in the adjoint tangent condition is not that obvious.
Two approaches for the choice of σi are discussed in [SWG05]. One choice in
[SWG05] ensures that the directions of steepest descent of the sum of squares
residual of the function and the linear model generated by the quasi-Newton
method are equal. The other choice in [SWG05] ensures invariance with respect
to linear transformations of the state space. Unfortunately so far we could not
prove local convergence for these approaches.

Broyden, Dennis and Moré [BDM73] showed that a quasi-Newton method
is locally linear convergent if it exhibits the property of bounded deterioration.
Considering this property we define the following class of updates:

Definition 4 (Adjoint tangent rank-1 update) Let F : Rn → Rn be dif-
ferentiable, xi+1 ∈ Rn. For a given matrix Ai ∈ Rn×n and a given direction
σi ∈ Rn, the formula

Ai+1 = Ai +
σiσ

T
i

σT
i σi

(F ′(xi+1)−Ai) (2)

is called ’adjoint tangent rank-1 (ATR1) update’ of Ai.

In this general form the update has less in common with the the TR1 up-
date in Definition 2. However, the methods, which are of particular interest,
are indeed closely related to the TR1 update. Here we want to present three
approaches for the choice of σi:

(A) σi = (F ′(xi+1)−Ai)si (transposed tangent Broyden update),

(B) σi = F (xi+1), and

(C) σi = (F (xi+1) − F (xi))/αi − Aisi for a sequence {αi} ⊂ (0, 1] with
limi→∞ αi = 1 (transposed secand Broyden update).

4



Method (A) is the TR1 update and Method (B) is an approximation to (A) of
order o(‖si‖). Method (C) can be interpreted as a generalization of (B). Here
the factor αi may be given by a line search strategy. For a closer discussion of
these approaches we refer to Section 2.4.

The formula (2) has the advantageous property that as long as σi 6= 0, the
update is well defined since σT

i σi > 0. If σi = 0, the update can be skipped.
Similar to Broyden’s method we have for the adjoint tangent rank-1 update (2)
and an arbitrary B ∈ Rn×n with σT

i B = σT
i F ′(xi+1)

Ai+1 −Ai =
σiσ

T
i

σT
i σi

(F ′(xi+1)−Ai) =
σiσ

T
i

σT
i σi

(B −Ai).

Thus for any two matrix norms ‖ · ‖a and ‖ · ‖b with ‖A ·B‖a ≤ ‖A‖b · ‖B‖a for
A,B ∈ Rn×n and ‖ vvT

vT v
‖b = 1 for 0 6= v ∈ R we have

‖Ai+1 −Ai‖a ≤
∣∣∣∣∣∣∣∣σiσ

T
i

σT
i σi

∣∣∣∣∣∣∣∣
b

‖(B −Ai)‖a = ‖(B −Ai)‖a.

Choosing for instance for ‖ · ‖a the Frobenius norm and for ‖ · ‖b the l2 norm
gives

‖Ai+1 −Ai‖F ≤ ‖B −Ai‖F . (3)

Defining Q := {B ∈ Rn×n : σT
i B = σT

i F ′(xi+1)} yields that Ai+1 is the
solution of minB∈Q ‖B − Ai‖F . This solution is unique since Q is an affine
subset of Rn×n and ‖ · ‖F is strictly convex.

To analyze the local convergence properties we consider a general nonlinear
function F : Rn → Rn that complies the following two general assumptions.

Assumption 5 Let F : Rn → Rn be differentiable and F ′ Lipschitz-continuous
at x∗ ∈ Rn with Lipschitz-constant L < ∞.

Assumption 6 Suppose F (x∗) = 0 and F ′(x∗) is non-singular.

From now on, ‖ · ‖ will be used to denote an arbitrary norm, where as
‖ · ‖2 denotes the l2-norm and ‖ · ‖F the Frobenius norm. The bound on the
approximation is described in the following lemma.

Lemma 7 (Bounded deterioration) Suppose the Assumption 5 holds for the
function F . Then the adjoint tangent rank-1 update (2) has the property

‖Ai+1 − F ′(x∗)‖2 ≤ ‖Ai − F ′(x∗)‖2 + L‖xi+1 − x∗‖2.

Proof:

Ai+1 − F ′(x∗) = Ai − F ′(x∗) +
σiσ

T
i

σT
i σi

(F ′(xi+1)−Ai + F ′(x∗)− F ′(x∗))

=
[
I − σiσ

T
i

σT
i σi

]
[Ai − F ′(x∗)] +

σiσ
T
i

σT
i σi

[F ′(xi+1)− F ′(x∗)] . (4)
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With the identities ∣∣∣∣∣∣∣∣I − σiσ
T
i

σT
i σi

∣∣∣∣∣∣∣∣
2

=
∣∣∣∣∣∣∣∣σiσ

T
i

σT
i σi

∣∣∣∣∣∣∣∣
2

= 1

we obtain the estimate

‖Ai+1 − F ′(x∗)‖2 ≤ ‖Ai − F ′(x∗)‖2 + ‖F ′(xi+1)− F ′(x∗)‖2.

Finally, since F ′ is assumed to be Lipschitz-continuous, we have

‖Ai+1 − F ′(x∗)‖2 ≤ ‖Ai − F ′(x∗)‖2 + L‖xi+1 − x∗‖2.

�
This gives immediately the following local convergence result.

Theorem 8 (Local linear convergence) Suppose the Assumptions 5 and 6
hold for the function F . Then for the quasi-Newton Algorithm 1 with the adjoint
tangent rank-1 update (2) and any r ∈ (0, 1) there exist ε(r) > 0 and δ(r) > 0
such that if ‖x0 − x∗‖ < ε(r) and ‖A0 − F ′(x∗)‖ < δ(r) the sequence {xi} is
well defined and converges to x∗. Furthermore, one has

‖xi+1 − x∗‖ ≤ r‖xi − x∗‖ for i = 0, 1, 2, . . . (5)

and ‖Ai‖ and ‖A−1
i ‖ are uniformly bounded.

Proof: The result follows by applying the general convergence result of [BDM73,
Theorem 3.2.] in combination with Lemma 7. �

To prove that the method is even q-superlinear convergent we have to show
that the Dennis-Moré property

lim
i→∞

‖(Ai − F ′(x∗))si‖
‖si‖

= 0 (6)

holds, see e.g. [DM74]. To verify this property for the rank-1 update (2) we
need the following two technical lemmas.

Lemma 9 Suppose the Assumptions 5 and 6 hold for the function F . If the
adjoint tangent rank-1 update (2) is applied in the quasi-Newton Algorithm 1
and if {xi} converges linearly as in (5), there is a τ > 0 with ‖Ai−F ′(x∗)‖2 ≤ τ
for all i ∈ N0.

Proof: With Ei := Ai − F ′(x∗) and ei := xi − x∗ we have from Lemma 7

‖Ei+1‖2 − ‖Ei‖2 ≤ L‖ei+1‖2.

Taking the sum over i gives

‖Ek+1‖2 − ‖E0‖2 =
k∑

i=0

‖Ei+1‖2 − ‖Ei‖2 ≤ L

k∑
i=0

‖ei+1‖2.
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Since ‖ei+1‖2 ≤ r‖ei‖2 with r ∈ (0, 1) and thus
∑k

i=0 ‖ei+1‖2 ≤ r
1−r‖e0‖2 we

obtain

‖Ek+1‖2 ≤ ‖E0‖2 +
r‖e0‖2

1− r
=: τ for all k ∈ N0.

�

Lemma 10 Let σ ∈ Rn be nonzero, and E ∈ Rn×n. Then∣∣∣∣∣∣∣∣E (
I − σσT

σT σ

)∣∣∣∣∣∣∣∣
F

≤ ‖E‖F − 1
2‖E‖F

(
‖Eσ‖2

‖σ‖2

)2

.

Proof: [DS96, Lemma 8.2.5]. �
Using the bounds in the last two lemmas, we can now prove the following

result:

Lemma 11 (Transposed Dennis-Moré property) Suppose the Assumptions
5 and 6 hold for the function F . If the adjoint tangent rank-1 update (2) is ap-
plied in the quasi-Newton Algorithm 1 and if {xi} converges linearly as in (5),
then the update fulfills the transposed Dennis-Moré property

lim
i→∞

‖(Ai − F ′(x∗))T σi‖2

‖σi‖2
= 0.

Proof: Defining Ei := Ai − F ′(x∗) and ei := xi − x∗, we can conclude from (4)
that

‖Ei+1‖F ≤
∣∣∣∣∣∣∣∣(I − σiσ

T
i

σT
i σi

)
Ei

∣∣∣∣∣∣∣∣
F

+
∣∣∣∣∣∣∣∣σiσ

T
i

σT
i σi

(F ′(xi+1)− F ′(x∗))
∣∣∣∣∣∣∣∣

F

≤
∣∣∣∣∣∣∣∣ET

i

(
I − σiσ

T
i

σT
i σi

)∣∣∣∣∣∣∣∣
F

+ ‖F ′(xi+1)− F ′(x∗)‖2

≤ ‖ET
i ‖F − 1

2‖ET
i ‖F

(
‖ET

i σi‖2

‖σi‖2

)2

+ L‖ei+1‖2

= ‖Ei‖F − 1
2‖Ei‖F

(
‖ET

i σi‖2

‖σi‖2

)2

+ L‖ei+1‖2.

Because of the norm equivalence in Rn and Lemma 9 there is a τ̃ > 0 such that
‖Ei‖F ≤ τ̃ . This yields

1
τ̃

(
‖ET

i σi‖2

‖σi‖2

)2

≤ ‖Ei‖F − ‖Ei+1‖F + L‖ei+1‖2

and thus

Sk :=
1
τ̃

k∑
i=0

(
‖ET

i σi‖2

‖σi‖2

)2

≤ ‖E0‖F − ‖Ek+1‖F + L

k∑
i=0

‖ei+1‖2 ≤ τ̃ +
Lr‖e0‖2

1− r
.
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Hence, we obtain limk→∞ Sk < ∞ and therefore

lim
i→∞

‖ET
i σi‖2

‖σi‖2
= 0.

�
We would like to remark that so far we did not have to specify the direction

σi, except σi 6= 0. Hence, the local convergence result in Theorem 8 and in
particular the convergence of the approximation in the adjoint tangent direction
in Lemma 11, i.e. the transposed Dennis-Moré property, do not depend on the
choice of σi. As final step to prove superlinear convergence we have to show that
the Dennis-Moré property (6) holds. For this purpose we assume, in addition
to the result of the last lemma, that a specific property holds for the directions
σi.

Assumption 12 (Residual property) For the directions σi in the adjoint
tangent rank-1 update (2), there exists a sequence {λi} ⊂ R \ {0} such that

lim
i→∞

‖λiσi − (F ′(x∗)−Ai)si‖2

‖si‖2
= 0.

This is called ’residual property’.

As we will show in Section 2.3 this residual property has a strong connection
to the direct tangent condition and the heredity property as discussed for the
TR1 update in Section 2.1. In the comming proofs we use for technical reasons
the following equivalent representation of the residual property: There exists a
sequence {λi} ⊂ R \ {0} and a sequence {ci} ⊂ R+ with limi→∞ ci = 0 such
that

λiσi = (F ′(x∗)−Ai)si + ri with ‖ri‖2 ≤ ci · ‖si‖2. (7)

We find that as a consequence of the Cauchy-Schwarz inequality

‖Es‖
‖s‖

≤ ‖ET Es‖
‖Es‖

.

Now, we can prove the main result of this section:

Theorem 13 (Superlinear convergence) Suppose the Assumptions 5 and 6
hold for the function F . Assume that the adjoint tangent rank-1 update (2) is
applied in the quasi-Newton Algorithm 1 and σi fulfills the residual property. If
{xi} converges linearly as in (5), then the Dennis-Moré property holds, i.e.

lim
i→∞

‖(Ai − F ′(x∗))si‖2

‖si‖2
= 0.

Thus xi converges q-superlinearly to x∗.
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Proof: One has that

‖λiσi‖2
2 = (sT

i (F ′(x∗)−Ai)T + rT
i )λiσi

= sT
i (F ′(x∗)−Ai)T λiσi + rT

i λiσi

≤ |λi|‖si‖2‖(F ′(x∗)−Ai)T σi‖2 + |λi|ci‖si‖2‖σi‖2.

Division by |λi|‖σi‖2‖si‖2 yields

|λi|
‖σi‖2

‖si‖2
≤ ‖(Ai − F ′(x∗))T σi‖2

‖σi‖2
+ ci. (8)

Furthermore we have

‖(Ai − F ′(x∗))si‖2

‖si‖2
≤ |λi|

‖σi‖2

‖si‖2
+ ci. (9)

Inserting (8) into (9) finally yields

‖(Ai − F ′(x∗))si‖2

‖si‖2
≤ ‖(Ai − F ′(x∗))T σi‖2

‖σi‖2
+ 2ci.

With Lemma 11 and limi→∞ ci = 0 this gives

lim
i→∞

‖(Ai − F ′(x∗))si‖2

‖si‖2
= 0.

�

2.3 Heredity

The above results are established using the least change property with respect
to a fixed scale matrix norm of the ATR1 update. It is somewhat surprising
that it also has the heredity property described in Lemma 15. We will show,
that the residual property of the directions σi relates the adjoint tangent rank-1
update with the TR1 update. First of all we can show that the residual property
in Assumption 12 is equivalent to an approximate direct tangent condition.

Lemma 14 (Approximate tangent condition) Suppose the Assumption 5
holds for the function F . The adjoint tangent rank-1 update (2) is applied in the
quasi-Newton Algorithm 1. Then σi satisfies the residual property, if and only
if the resulting updated matrix Ai+1 satisfies the approximate tangent condition

‖(Ai+1 − F ′(x∗))si‖2

‖si‖2
≤ L‖ei+1‖2 + ci (10)

with limi→∞ ci = 0.
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Proof: For any λi 6= 0 and any ri ∈ Rn with λiσi = (F ′(x∗)−Ai)si + ri we have
from (2) that

Ai+1si = Aisi +
σiσ

T
i

σT
i σi

(F ′(xi+1)−Ai)si

= Aisi +
σiσ

T
i

σT
i σi

(F ′(x∗)−Ai)si +
σiσ

T
i

σT
i σi

(F ′(xi+1)− F ′(x∗))si

= Aisi +
σiσ

T
i

σT
i σi

(λiσi − ri) +
σiσ

T
i

σT
i σi

(F ′(xi+1)− F ′(x∗))si

= Aisi + λiσi −
σiσ

T
i

σT
i σi

ri +
σiσ

T
i

σT
i σi

(F ′(xi+1)− F ′(x∗))si

= Aisi + (F ′(x∗)−Ai)si +
(

I − σiσ
T
i

σT
i σi

)
ri +

σiσ
T
i

σT
i σi

(F ′(xi+1)− F ′(x∗))si

= F ′(x∗)si +
(

I − σiσ
T
i

σT
i σi

)
ri +

σiσ
T
i

σT
i σi

(F ′(xi+1)− F ′(x∗))si.

Subtracting F ′(x∗)si, taking the norm, and dividing by ‖si‖2 gives

‖(Ai+1 − F ′(x∗))si‖2

‖si‖2
≤ ‖ri‖2

‖si‖2
+ L‖ei+1‖2.

Thus, by denoting ci = ‖ri‖2
‖si‖2 , equation (10) with limi→∞ ci = 0 holds, if and

only if Assumption 12 holds. �
The following lemma shows, that the approximate direct tangent condition

(10) holds in a generalized form for any previous step, too. Thus the adjoint tan-
gent rank-1 update with the residual property yields heredity in this generalized
fashion.

Lemma 15 (Heredity) Suppose Assumption 5 holds for the function F . The
adjoint tangent rank-1 update (2) is applied in the quasi-Newton Algorithm 1
and σi fulfills the residual property, then the estimate

‖(Ai − F ′(x∗))sj‖2

‖sj‖2
≤ L

i∑
k=j+1

‖ek‖2 + cj

is valid for all j ∈ N0 with j < i.

Proof: The assertion is proved by induction on i. For i = 1 and j = 0 we get
the assertion from the approximate direct tangent condition. Now suppose the
assertion holds for i. For i + 1 and and j = i the assertion is proved again by
the approximate direct tangent condition (10). If j < i we obtain from (2)

Ai+1 − F ′(x∗) =
(

I − σiσ
T
i

σT
i σi

)
(Ai − F ′(x∗)) +

σiσ
T
i

σT
i σi

(F ′(xi+1)− F ′(x∗)).
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Thus

‖(Ai+1 − F ′(x∗))sj‖2 ≤ ‖(Ai − F ′(x∗))sj‖2 + ‖(F ′(xi+1)− F ′(x∗))sj‖.

With the induction hypothesis this yields

‖(Ai+1 − F ′(x∗))sj‖2 ≤ L

i∑
k=j+1

‖ek‖2‖sj‖2 + cj‖sj‖2 + L‖ei+1‖2‖sj‖2

and thus finally

‖(Ai+1 − F ′(x∗))sj‖2

‖sj‖2
≤ L

i+1∑
k=j+1

‖ek‖2 + cj .

�
In this context we remark that the estimate only depends on the direction

of the steps and is independent of their lengths, i.e.

‖Eλs‖
‖λs‖

=
‖Es‖
‖s‖

for 0 6= s ∈ Rn and 0 6= λ ∈ R.

The heredity in combination with the least change property (3) distinguishes
the update formula (2) from other update formulas as, e.g., Broyden’s or the
SR1 method. Each of the latter update methods has only one of these two
properties. Furthermore we can exploit the heredity to show even stronger
convergence results. However, we have to assume that the current step si can
be represented as a linear combination of previous steps in the following fashion.

Assumption 16 Assume that the sequence {s̃i}, defined by s̃i = si/‖si‖2 com-
plies the following property: There exist i0 ∈ N, c > 0, and k ∈ N, such that for
all i ≥ i0

s̃i =
i−1∑

j=i−k

λj s̃j with |λj | ≤ c. (11)

Clearly the requirements on the steps in Assumption 16 are mathematically
not desirable. They can be compared to the assumption of uniformly linear
independence of the iteration steps. This property is in particular required to
prove convergence of the SR1 method in [CGT91]. However we would like to
point out, that Assumption 16 is a considerably weaker consequence of uniformly
linear independence. Thus we do not require to be k ≥ n. On the contrary linear
dependent steps and a small number of k are favorable for the analysis as shown
in the following lemma.

In the following proof, the number k is of particular relevance. It depends on
the problem and describes, how far we have to go back in the iteration history to
represent the current iterate as a linear combination of previous iterates which
are sufficiently linear independent. Since si ∈ Rn it is reasonable to assume
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that k ≈ n. This coincides with observations reported in [CGT91]. However
as stated in [CGT91] there are cases for which fewer successive iteration steps
may become linear dependent. While this contradicts the precondition of the
convergence result in [CGT91], it is favorable for the analysis in Theorem 17 (iii),
hence small values of k increase the lower bound of the r-order of convergence.
For the definition of r-order of convergence we refer to [OR00]. An equivalent
representation is given in [Pot89] as

r = lim inf
i→∞

|log ‖xi − x∗‖|1/i = lim inf
i→∞

∣∣∣∣ log ‖xi − x∗‖
log ‖x0 − x∗‖

∣∣∣∣1/i

(12)

provided xi 6= x∗. Hence r may be interpreted as the geometrical average of the
sequence of values

∣∣∣ log ‖xi−x∗‖
log ‖xi−1−x∗‖

∣∣∣.
Theorem 17 Suppose the Assumptions 5 and 6 hold for the function F and
{xi} converges linearly as in (5). The adjoint tangent rank-1 update (2) is
applied in the quasi-Newton Algorithm 1 and σi satisfies the residual property
(7) with ci ≤ cmax‖ei‖2 (0 ≤ cmax < ∞). Furthermore let the iteration steps
comply Assumption 16. Then there exist constants C1, C2 > 0 independent of i
and indices i1, i2 ∈ N, such that

(i) for all i ≥ i1
‖(Ai − F ′(x∗))si‖2

‖si‖2
≤ C1‖ei−k‖2, (13)

(ii) for all i ≥ i2
‖ei+1‖2 ≤ C2 ‖ei‖2 ‖ei−k‖2, (14)

and this yields

(iii) for the r-order of convergence R = R(k) of the iteration

R(k) ≥ 1 + ηk with lim
k→∞

ηk

log(k)
k

= 1. (15)

Proof of Theorem 17 (i): Defining as before Ei := Ai−F ′(x∗), we have according
to the proposition for i ≥ i0

Eis̃i = Ei

i−1∑
j=i−k

λj s̃j =
i−1∑

j=i−k

λjEis̃j .

This gives

‖Eisi‖2

‖si‖2
= ‖Eis̃i‖2 ≤

i−1∑
j=i−k

|λj |‖Eis̃j‖2 =
i−1∑

j=i−k

|λj |
‖Eisj‖2

‖sj‖2
.

12



From Lemma 15 we get ‖Eisj‖2
‖sj‖2 ≤ L

∑i
l=j+1 ‖el‖2 + cj where el := xl − x∗.

Using |λj | ≤ c from Assumption 16 yields

‖Eisi‖2

‖si‖2
≤ c

i−1∑
j=i−k

L

 i∑
l=j+1

‖el‖2

 + cj .

From equation (5) we have that ‖ei+1‖2 ≤ r‖ei‖2 with r ∈ (0, 1). Thus

i∑
l=j+1

‖el‖2 ≤ ‖ej+1‖2

i−j−1∑
l=0

rl = ‖ej+1‖2
1− ri−j

1− r
≤ 1

1− r
‖ej+1‖2.

Accordingly we have from the assumptions that cj ≤ cmax‖ej‖2 with 0 ≤ cmax <
∞. This yields

i−1∑
j=i−k

cj ≤ cmax

i−1∑
j=i−k

‖ej‖2 ≤
cmax

1− r
‖ei−k‖2.

This leads to

‖Eisi‖2

‖si‖2
≤ c

i−1∑
j=i−k

L

1− r
‖ej+1‖2 + cj =

cL

1− r

i−1∑
j=i−k

‖ej+1‖2 + c

i−1∑
j=i−k

cj

≤ cL

(1− r)2
‖ei−k+1‖2 +

c cmax

1− r
‖ei−k‖2

≤
(

cLr

(1− r)2
+

c cmax

1− r

)
︸ ︷︷ ︸

C1

‖ei−k‖2.

�
To prove Theorem 17 (ii), we first state the following result [DS96, Lemma

4.1.15/16].

Lemma 18 If the Assumption 5 holds for the function F , one has for any
u, v ∈ Rn, that

‖F (v)− F (u)− F ′(x∗)(v − u)‖ ≤ L

2
(‖v − x∗‖+ ‖u− x∗‖) ‖v − u‖.

If additionally the Assumption 6 holds for the function F , then there exist ε > 0,
0 < α < β, such that for all u, v ∈ Rn with max{‖v − x‖, ‖u− x‖} ≤ ε

α‖v − u‖ ≤ ‖F (v)− F (u)‖ ≤ β‖v − u‖.

Furthermore, one can show the following result:
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Lemma 19 Suppose the Assumptions 5 and 6 hold, {xi} converges linearly as
in (5), and the adjoint tangent rank-1 update (2) is applied in the quasi-Newton
Algorithm 1. Then there exists an i0 ∈ N, α > 0 such that for all i ≥ i0 and
ei := xi − x∗

‖ei+1‖ ≤
‖(Ai − F ′(x∗))si‖

‖si‖
‖ei‖+ ‖ei+1‖

α
+

L

2α
(‖ei‖+ ‖ei+1‖)2 . (16)

Proof:

0 = Aisi + F (xi)
= (Ai − F ′(x∗))si + F (xi) + F ′(x∗)si

−F (xi+1) = (Ai − F ′(x∗))si + [−F (xi+1) + F (xi) + F ′(x∗)si]

Using Lemma 18 and ‖si‖ ≤ ‖ei‖ + ‖ei+1‖ yields that there exists an i0 ∈ N
such that for all i ≥ i0

‖F (xi+1)‖ ≤ ‖(Ai − F ′(x∗))si‖+ ||−F (xi+1) + F (xi) + F ′(x∗)si||

≤ ‖(Ai − F ′(x∗))si‖
‖si‖

‖si‖+
L

2
(‖ei‖+ ‖ei+1‖)‖si‖

α‖ei+1‖ ≤ ‖(Ai − F ′(x∗))si‖
‖si‖

(‖ei‖+ ‖ei+1‖) +
L

2
(‖ei‖+ ‖ei+1‖)2 .

�
Now Theorem 17 (ii) can be proved using the result of the previous lemma.

This is followed by the proof of Theorem 17 (iii), which goes back to a more
general convergence result in [OR00].
Proof of Theorem 17 (ii) and (iii): Applying the result of Theorem 17 (i) to
equation (16) yields for sufficiently large indices i

‖ei+1‖2 ≤ C‖ei−k‖2
1 + r

α
‖ei‖2 +

(1 + r)2

2α
‖ei‖2

2

=
1 + r

α

(
C‖ei−k‖2 +

1 + r

2
‖ei‖2

)
‖ei‖2.

Since k ≥ 1 we have ‖ei‖2 ≤ rk‖ei−k‖2 and thus

‖ei+1‖2 ≤
1 + r

α

(
C +

1 + r

2
rk

)
︸ ︷︷ ︸

C2

‖ei−k‖2 ‖ei‖2.

This proves Theorem 17 (ii).
From [OR00, 9.2.9] we have that if a sequence {εi} ⊂ (0,∞) satisfies for

sufficiently large indices i, that there are a constant C < ∞ and k ∈ N0 such
that εi+1 ≤ C εi εi−k, then the r-order of convergence of {εi} is R = R(k) ≥ τk,
where τk is the unique positive root of τk+1− τk − 1 = 0. Moreover, τk ∈ (1, 2),
τk > τk+1, and limk→∞ τk = 1. Substituting ηk := τk − 1 yields

(1 + ηk)kηk = 1 with 1 > ηk > 0 (17)
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and we prove, that
lim

k→∞

ηk

log(k)
k

= 1. (18)

Since ηk decreases monotonically and ηk → 0 for k →∞, we have that

lim
k→∞

ηk

log(k)
k

= lim
ηk→0

k ηk

log(k)
.

From equation (17), we get that k = − log(ηk)
log(1+ηk) . Thus using Bernoulli-l’Hospitales

rule yields

lim
ηk→0

k ηk

log(k)
= lim

ηk→0

− log(ηk)
log(k)

· lim
ηk→0

ηk

log(1 + ηk)︸ ︷︷ ︸
=1

= lim
ηk→0

− log(ηk)
log(k)

.

Furthermore log(k) = log(− log(ηk))− log(log(1 + ηk)) and

log(k)
− log(ηk)

=
log(log(1 + ηk))− log(− log(ηk))

log(ηk)
=

log(log(1 + ηk))
log(ηk)

− log(− log(ηk))
log(ηk)

.

Applying again Bernoulli-l’Hospitales rule gives

lim
ηk→0

log(log(1 + ηk))
log(ηk)

= lim
ηk→0

ηk

log(1 + ηk)(1 + ηk)
= 1

and

lim
ηk→0

log(− log(ηk))
log(ηk)

= lim
ηk→0

1
log(ηk)

= 0,

which finally yields limηk→0
− log(ηk)

log(k) = 1 and proves (18). This concludes the
proof. �

From Theorem 17 (ii), we get in particular (k+1)-step quadratic convergence
of the iteration. However Theorem 17 (iii) yields a somewhat faster r-order of
convergence then just (k + 1)-step quadratic. The ratio of the corresponding
efficiencies in the sense of Ostrowski [Ost66] is

log(1 + ηk)

log
(
1 + 1

k+1

) ≈ log(k).

If we assume that a full Newton step is q · n times as expensive as our quasi-
Newton step, the latter efficiency is q · log(k) times better than that of Newtons
method. For some values of k, the quantity ηk is displayed it Table 1.

Though Broyden’s update does not share heredity, we may note that it solves
affine problems within 2n iteration steps. This finite termination results, first
formulated by Burmeister (cf. [Sch79, B. 5.5.1.]) and published by Gay [Gay79],
suggests, that on nonlinear but smooth problems the rate of convergence is at
least 2n-step quadratic, which corresponds to an r-order of 1 + 1

2n + O( 1
n2 ) by

binomial expansion.
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Table 1: Comparison of values for k and ηk

k 1 2 3 4 10 100 1000 105

ηk 0.618 0.466 0.380 0.325 0.184 0.0343 0.00526 9.28e-5
log(k)/k 0 0.347 0.366 0.347 0.230 0.0461 0.00690 1.15e-4

ηk

log(k)/k – 1.34 1.04 0.94 0.80 0.75 0.76 0.81

Comparing the computational effort of the ATR1 updates to Broyden’s up-
date, we may state, that in terms of function evaluations an ATR1 update is
at least twice as expensive as Broyden’s update since it requires the evaluation
of the adjoint vector σT

i F ′(xi+1). However concerning the linear algebra, the
update of an existing factorization dominates. Hence the computational effort
of an ATR1 update is approximately equal to Broyden’s update.

2.4 Variants of ATR1 updates

As stated in the previous section, the choice of σi in formula (2) is crucial
for the properties of the ATR1 update method. Especially the approximate
direct tangent condition is important. Thus σi should be a sufficiently good
approximation to (F ′(x∗) − Ai)si = F (xi) + F ′(x∗)si. However to apply the
method, it is essential that σi can be computed with a reasonable computational
effort. In Section 2.2 we proposed three approaches for σi. All of them comply
the residual property in Assumption 12 as shown in the following lemma.

Lemma 20 Suppose Assumption 5 holds for the function F and the adjoint
tangent rank-1 update (2) is applied in the quasi-Newton Algorithm 1. If σi is
defined by

(A), then
‖σi − (F ′(x∗)−Ai)si‖2 ≤ L‖ei+1‖2‖si‖2,

(B), then

‖σi − (F ′(x∗)−Ai)si‖2 ≤
L

2
(‖ei‖2 + ‖ei+1‖2)‖si‖2,

(C), then

‖αiσi−(F ′(x∗)−Ai)si‖2 ≤
L

2
(‖ei‖2 +‖ei+1‖2)‖si‖2 +(1−αi)‖Ai‖2‖si‖2.

Proof: The inequality for (A) follows by the Lipschitz continuity of F ′ in x∗.
For (B) we get the inequality by Lemma 18. For (C) the inequality follows by
(B) and the identity Aisi = −F (xi). �

Thus adjoint tangent rank-1 updates using (A), (B), and (C) converge locally
q-superlinear. Additionally we can apply Theorem 17 to Approach (A) and (B).
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Furthermore for (A) we have that it complies Definition 2 of the TR1 update.
Thus, beside the adjoint tangent condition, it fulfills the direct tangent condition
Ai+1si = F ′(xi+1)si, too. With this we can prove, that in Lemma 15 even

‖(Ai − F ′(x∗))sj‖2

‖sj‖2
≤ L

i∑
k=j+1

‖ek‖2 (j < i)

holds. Moreover it is possible to prove even k-step quadratic convergence for
(A). However it requires the additional computation of the directional derivative
F ′(xi+1)si. That can be performed by the forward mode of Automatic Differen-
tiation but causes additional computational effort. Approach (B) neither fulfills
a direct tangent condition nor a secant condition as for example Broyden’s
method. Therefore it avoids the computation of the directional derivative. The
same is valid for (C).

Additionally, an important feature of the methods (A), (B), and (C) is, that
they are invariant with respect to regular linear transformations of the state
space of x. This means, for any regular T ∈ Rn×n and

• F̃ : Rn → Rn with F̃ (x̃) = F (T−1x̃) and

• x̃i = Txi, Ãi = AiT
−1

applied in Algorithm 1 with the update formula (2), we get that

Ãi+1 = Ai+1T
−1 and x̃i+1 = Txi+1.

This property is shared also with Broyden’s bad update formula. In contrast
Broyden’s (good) update is only invariant with respect to regular linear trans-
formations of the range of F . However an often applied norm-dependent line
search destroys this invariance of Broyden’s method. The invariance in the
domain of F is not influenced by such a line search.

Furthermore the adjoint tangent condition of approach (B) yields, as long
as Ai is non-singular, that

−F (xi)T F ′(xi)A−1
i F (xi) = −F (xi)T AiA

−1
i F (xi) = −‖F (xi)‖2

2.

Thus the quasi-Newton direction si = −A−1
i F (xi) is a decent direction in the l2

norm and the decent is the same as for the Newton step s̄ = −F ′(xi)−1F (xi).
This fact can be exploited for a globalization strategy based on a line search
approach. A forthcoming paper will focus on this global convergence analysis.

3 Implementation and numerical results

The ATR1 update methods are applied to nonlinear equation problems of the
Moré test set [MGH81] and two particular test functions. The methods are
compared to Newton’s and other quasi-Newton methods as freezing the Jacobian
and using Broyden’s (good) update method. Since the focus of this paper is
the local convergence behavior we do not involve a line search or trust region
method. Thus the numerical tests of the ATR1 update are performed only for
method (A) and (B).
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3.1 Algorithmic implementation

We use the following standard algorithm to solve the nonlinear equation problem
F (x) = 0:

1. Initialize x := x0, A := F ′(x0)
2. Compute a factorization PLU = A
3. While max{‖F (x)‖, ‖s‖} > ε:

3.1. Solve PLUs = −F (x)
3.2 Compute x := x + s
3.3. Update PLU

4. Set x∗ := x

Here the update procedure used in step 3.3. is determined by the specific
choice of the rank-1 formula. For the comparison to other methods, this step
is modified accordingly. To compute the PLU factorization the LAPACK rou-
tine DGETRF is used. The initialization of the iterations and Newton’s method
requires the Jacobian of F . Additionally the ATR1 update formulas are based
on the terms F ′(x)s and σT F ′(x). To evaluate these derivative information we
use the AD tool ADOL-C [GJU96] for the differentiation of C/C++ codes.

The overall computing effort depends heavily on the factorization used. In
this study a LU factorization with partial pivoting is used. This factorization
is updated according to an algorithm by Bennett [Ben65] without readjustment
of the pivoting. This algorithm is implemented under consideration of efficient
memory access as described in [SGB05]. The update algorithm by Kielbasin-
sky/Schwetlick [KS88] with readjusting the pivoting was tested, too. However
for the test problems considered here, the algorithm had no relevant influence
on the iteration counts but the run time increases by a factor of about 2. As
alternative, one may use the update of a QR factorization, which has very good
stability properties but results in considerably higher computational costs for
the solution of the linear systems as well as for the update.

3.2 Numerical tests

To illustrate the quality of the approximation we applied the ATR1 update
methods to various test problems and compared the number of iterations needed
to reach convergence with a reasonable tolerance. Additionally we state the run
time required for the whole iteration process. For that purpose we compiled
the program using gcc 3.3.2. and executed it on a PC with AMD Athlon(tm)
XP 1.6 GHz (256 KB cache) processor. The results for the higher dimensional
nonlinear equation problems of the Moré test set are displayed in Table 2. The
numbers in the first column refer to the number of the test problem in [MGH81].
If not otherwise stated, these tests are performed for the dimension n = 1000
using the initial iterates as proposed in the test set. The iteration is performed
up to a tolerance of ε = 10−14 in the residual ‖F (xi)‖∞ and in the step size
‖si‖∞.
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Table 2: Iteration counts (a) and run times in seconds (b) of Moré test set
Test problem Newton Method A Method B Broyden frozen J.
(21) (a) 2 3 3 5 4

(b) 1.54 0.682 0.677 0.748 0.624
(22) (a) 47 47 47 67 -

(b) 25.3 3.39 3.16 3.59 -
(26)1 (a) 7 18 19 22 -

(b) 4.34 1.56 1.63 1.57 -
(27)2 (a) 349 349 350 - -

(b) 3.85e-2 3.34e-2 3.33e-2 - -
(28) (a) 3 5 5 5 8

(b) 2.13 0.830 0.810 0.764 0.741
(29) (a) 3 5 5 5 8

(b) 122 34.8 34.6 31.8 32.5
(30) (a) 5 14 14 17 34

(b) 3.17 1.29 1.31 1.30 1.43
(31) (a) 6 21 20 31 104

(b) 4.10 1.77 1.73 2.02 3.28

To compare the behavior of the methods for different dimensions n, we use
additionally the test problem

F : Rn → Rn F (x) = (fi(x))i=1,...,n ,

fi(x) = ξi +
n∑

j=1,j 6=i

ξ2
j and ξi =

xi − (i− 1)
i

. (19)

It has a solution F (x∗) = 0 for x∗ = (0, 1, 2, . . . , n − 1)T and F ′(x∗) = I. As
initial iterate we take x0 = 0. The iteration is computed up to a tolerance of
ε = 10−12 in the residual ‖F (xi)‖∞ and in the step size ‖si‖∞. The results are
given in Table 3.

For a numerical estimation of the r-order of convergence, we monitore the
descent of the error in the last five iterations and define

R5 =
(

log ‖eiend
‖2

log ‖eiend−5‖2

) 1
5

.

as an estimation of the r-order of convergence. Numerical results of R5 for
different dimensions n are displayed in Table 4.

A particular field of application for the solution of nonlinear equations are
implicit methods for ODEs and DAEs. Therefore we consider also the solu-
tion of the first implicit Euler step with varying integration step sizes h for

1Initial iterate is chosen with x0 = 1
2
x̂0 with x̂0, proposed in the test set. Otherwise no

convergence was achieved for dimension n = 1000.
2The dimension is chosen with n = 20 to avoid floating point overflow.
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Table 3: Iteration counts (a) and run times in seconds (b) of test function (19)
Dimension Newton Method A Method B Broyden
10 (a) 8 17 17 26

(b) 3.87e-4 8.21e-4 7.78e-4 4.61e-4
100 (a) 12 20 22 36

(b) 4.24e-2 9.27e-3 9.82e-3 9.46e-3
500 (a) 14 23 23 43

(b) 1.48 0.43 0.40 0.53
1000 (a) 15 24 24 51

(b) 8.66 1.87 1.91 2.88
2000 (a) 16 24 25 59

(b) 57.70 9.06 9.32 15.48

Table 4: Estimated r-order of convergence (R5) for test function (19)
n 2 4 10 100 1000
Method (A) 1.802 1.418 1.143 1.114 1.121
Method (B) 1.826 1.385 1.134 1.114 1.136
Broyden 1.395 1.159 1.071 1.027 1.049

the Robertson initial value problem (IVP). The problem describes three chem-
ical reactions with three components. For further details to this IVP and its
integration we refer to [Rob66] and [HW91]. Hence, the dimension of the prob-
lem is only three, the run times for the solution are negligible. However the
iteration counts, displayed in Table 5, nicely illustrate the performance of the
approximation.

Table 5: Iteration counts for first implicit Euler step of Robertson problem
Step size h Newton Method A Method B Broyden frozen J.
10−4 3 3 3 3 4
10−3 5 5 5 7 -
0.01 8 8 9 15 -
0.1 12 13 13 47 -
1 15 27 19 - -
10 19 21 923 - -

Inspecting the results for the Moré test set given in Table 2, one can see, that
as expected Newton’s method requires least iterations in all tests. The ATR1
methods mostly need some more iterations than Newton’s method. Thereby

3The large iteration count may be due to the distance between initial iterate and solution.
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Method (A) and (B) require roughly the same numbers of iteration to converge.
However, the ATR1 methods need significantly less iteration than Broyden’s
method. Convergence of the frozen Jacobian method is rather poor. The run
time for Newton’s method is significantly higher than for the quasi-Newton
methods. Since the computation of the ATR1 update is more expensive than
Broyden’s update the difference in the run time is not that much for these test
problems.

The results in Table 3 for the test problem (19) verify the results of the
iteration counts of the Moré test set. Thereby the iteration counts increase
with the dimension n. Here Newton’s method and the ATR1 methods perform
much better than Broyden’s method. This may be caused by the fact, that
the scaling of the components of x gets worse if the dimension is increased.
The run time of Newton’s method increases significantly faster than that of the
quasi-Newton methods if the value of n grows. Due to the significantly fewer
iterations of the ATR1 methods compared to Broyden’s method, the run times
of the ATR1 methods are less than the run times of Broyden’s method if the
dimension is not too small. For this test problem the frozen Jacobian method
did not converge.

The estimated r-orders of convergence displayed in Table 4 confirme for
n = 2 to n = 100 that the rate of convergence of the quasi-Newton methods
decreases if the number of dimensions increases. The fact, that R5 for n = 1000
is larger than for n = 100 may be due to the choice of F . Furthermore we
see, that, except for n = 10, the values of R5 of the ATR1 update methods are
larger than 1 + ηn, which is predicted as lower bound in Theorem 17, provided
that k = n. Moreover for all dimensions n, the rates of convergence of the
ATR1 updates are significantly larger than the ones of Broyden’s update. The
estimated rates for Broyden’s update for n = 2 to n = 10 are slightly larger than
1 + 1

2n . This confimes the predicted r-order of Broyden’s update in [Gay79].
For the integration of the Robertson problem we can state that the iteration

counts of the ATR1 methods are mostly in the scope of that of Newton’s method.
In contrast to this, convergence of Broyden’s method is rather poor and for larger
integration step sizes it even does not converge. The frozen Jacobian method is
not appropriate for this problem.

4 Conclusion

We analyze a new class of quasi-Newton methods for the solution of nonlinear
equations. Here the TR1 update is related with the class of adjoint tangent
rank-1 updates. We give sufficient conditions for local linear and q-superlinear
convergence of these methods. Additionally we show a heredity property. With
this and reasonable assumptions on the iteration steps we can even prove (k+1)-
step quadratic convergence and estimate the r-order of convergence.

Three specific variants of update formulas are proposed. All of them are in
particular invariant with respect to the scaling of the domain of the nonlinear
function. Numerical results verify the convergence properties of the ATR1 meth-
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ods. Thereby the ATR1 methods converge significantly faster than Broyden’s
method. However the computation of the ATR1 update is slightly more expen-
sive than that of Broyden’s update. Nevertheless the run times of the ATR1
methods are mostly less than the run times of Broyden’s method, especially for
problems which are of higher dimension and badly scaled in the domain.

The considered class of adjoint tangent rank-1 updates combines for the
first time the least change property with heredity. This yields favorable prop-
erties for local convergence. Future work will focus on combining the proposed
update methods with line search and trust region algorithms to ensure global
convergence.
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