
Convex risk measures and the dynamics of
their penalty functions
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Abstract

We study various properties of a dynamic convex risk measure for bounded random
variables which describe the discounted terminal values of financial positions. In particular
we characterize time-consistency by a joint supermartingale property of the risk measure and
its penalty function. Moreover we discuss the limit behavior of the risk measure in terms
of asymptotic safety and of asymptotic precision, a property which may be viewed as a
non-linear analogue of martingale convergence. These results are illustrated by the entropic
dynamic risk measure.
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1 Introduction

Starting with the introduction of coherent risk measures in Artzner et al. [1], the problem of
quantifying the risk associated to a financial position given the available information has emerged
as a key topic in Mathematical Finance. The theory of coherent and, more generally, of convex
risk measures is now well developed; see, e.g., Delbaen [7] and [8] for the coherent case and
Föllmer and Schied [13], Frittelli and Rosazza Gianin [14] for the convex case.

Financial positions are usually described as random variables X on some probability space. A
convex risk measure ρ is then defined as a real-valued convex functional on a suitable space of
such positions. Under some regularity conditions, the duality theory of the Fenchel-Legendre
yields a robust representation of the form

ρ(X) = sup
Q

(
EQ[−X]− α(Q)

)
.
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Thus the risk of a position is evaluated as the worst expected loss, suitably modified, under
a whole class of probabilistic models. These alternative models are described by probability
measures Q on the underlying set of scenarios. But they are taken seriously at a different degree,
and this is made precise by the non-negative penalty function α(Q).

In this formulation, however, the role of information is not yet visible. Suppose that the infor-
mation available at time t is described by a σ-field Ft. The updated risk assessment at time
t is then described by a conditional risk measure ρt which associates to each position X an
Ft-measurable random variable ρt(X). In this conditional setting, the expectations appearing in
the robust representation of a convex risk measure are replaced by conditional expectations, the
penalty function α(Q) becomes an Ft-measurable random variable αt(Q), and the supremum is
understood as an essential supremum with respect to the reference measure P . Such representa-
tions for conditional risk measures were discussed in Riedel [18], Arztner et al. [2], Detlefsen [10],
Detlefsen and Scandolo [11], Frittelli and Rosazza Gianin [15], Bion-Nadal [3], [4], Cheridito et
al. [6], Burgert [5], and Klöppel and Schweizer [16].

In this paper we study a dynamic risk measure, given by a sequence (ρt)t=0,1,... of conditional
convex risk measures adapted to some filtration (Ft)t=0,1,... on the underlying probability space.
In sections 2 and 3 we review and refine the robust representation of conditional convex risk mea-
sures. These two sections are mostly expository, but we include the proofs in order to introduce
some technical modifications and to give a self-contained presentation.

A key question in the dynamical setting is how the conditional risk assessments at different times
are related among each other. Several notions of time-consistency have been discussed in the
literature; see [2], [11], [4], [6], [5] and references therein, and also Tutsch [19]. In section 4 we
focus on the strong form of time-consistency which amounts to the recursion ρt(−ρt+1) = ρt. Our
aim is to review and to clarify the corresponding properties of the process of penalty functions. In
particular we show that time-consistency is equivalent to a combined supermartingale property
of the risk measure and its penalty function under any reasonable model Q, in analogy to results
of Föllmer and Kramkov [12] on the optional decomposition under convex constraints; see also
Chapter 9 in Föllmer and Schied [13]. This extends results of [2] from the coherent to the convex
case.

In section 5 we study the asymptotic behavior of a time-consistent dynamic risk measure. As
shown by example 5.5, not every time-consistent sequence (ρt)t=0,1,... is asymptotically safe in
the sense that the limiting capital requirement ρ∞(X) covers the actual final loss −X. Theorem
5.4 gives criteria for asymptotic safety in terms of the asymptotic behavior of acceptance sets and
penalty functions. We also discuss the case where ρ∞(X) is exactly equal to −X. This property
of asymptotic precision may be viewed as a non-linear analogue of martingale convergence, and
Proposition 5.11 provides a sufficient condition in terms of the initial risk measure ρ0.

In the final section 6 we illustrate the general results of sections 4 and 5 by describing the
corresponding properties of the entropic dynamic risk measure.

2 Conditional convex risk measures and their robust represen-
tation

We consider a discrete-time multiperiod information structure given by a filtered probability
space (Ω,F , (Ft)t=0,...,T , P ), F0 = {∅,Ω}, F = FT , where the time horizon T might be finite or
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infinite. The set of all financial positions will be L∞ = L∞(Ω,F , P ). By L∞t we denote the set
of all Ft-measurable P -a.s. bounded random variables. All inequalities and equalities applied to
random variables are meant to hold P -a.s. .

We define a conditional convex risk measure as in [11]:

Definition 2.1. A map ρt : L∞ → L∞t is called a conditional convex risk measure if it satisfies
the following properties for all X, Y ∈ L∞:

• Conditional cash invariance: For all Xt ∈ L∞t ρt(X + Xt) = ρt(X)−Xt

• Monotonicity: X ≤ Y ⇒ ρt(X) ≥ ρt(Y )

• Conditional convexity: For all λ ∈ L∞t , 0 ≤ λ ≤ 1:

ρt(λX + (1− λ)Y ) ≤ λρt(X) + (1− λ)ρt(Y )

• Normalization: ρt(0) = 0.

A conditional convex risk measure is called a conditional coherent risk measure if it has in
addition the following property:

• Conditional positive homogeneity: For all λ ∈ L∞t , λ ≥ 0:

ρt(λX) = λρt(X).

Remark 2.2. 1. For t = 0 we have L∞t = R, and so we recover the usual definition of a
convex risk measure; cf. [13]

2. In [11] a conditional convex risk measure is called regular, if ρt(IAX) = IAρt(X) for all
A ∈ Ft and X ∈ L∞. It was shown in [11] Corollary 1 that any normalized conditional
convex risk measure is regular. In [6] a local property of a conditional convex risk measure
is defined as ρt(IAX + IAcY ) = IAρt(X) + IAcρt(Y ) for all A ∈ Ft and all X, Y ∈ L∞.
Proposition 3.3 of [6] shows that monotonicity and cash invariance imply this local property.
For a normalized conditional convex risk measure regularity and the local property are
equivalent, as shown in Proposition 1 in [11].

3. A weaker definition of a conditional convex risk measure is given in [16], where normal-
ization is not required and conditional convexity is replaced by regularity and by convexity
only for constant coefficients.

4. If ρt is a convex conditional risk measure, then −ρt defines a monetary concave utility
functional on L∞ in the sense of [6], [16].

5. In the dynamic setting it is also possible to define risk measures for payoff streams, i.e.
for stochastic processes instead of random variables, as it is done in [18], [6]. The results
obtained in this more general setting clearly apply to our present situation.

With a conditional convex risk measure ρt we associate its acceptance set

At :=
{

X ∈ L∞
∣∣ ρt(X) ≤ 0

}
.
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At is conditionally convex, solid and such that ess inf
{

X ∈ L∞t
∣∣ X ∈ At

}
= 0 and 0 ∈ At, as

shown in Proposition 3 in [11]. Moreover, ρt is uniquely determined through its acceptance set,
since

ρt(X) = ess inf
{

Y ∈ L∞t
∣∣ X + Y ∈ At

}
. (1)

A conditional convex risk measure can thus be viewed as a conditional capital requirement
needed to make a financial position acceptable at time t.

Conversely, one can use acceptance sets to define conditional convex risk measures: If At ⊆ L∞t
satisfies the conditions above, then the functional ρt : L∞ → L∞t defined via (1) is a conditional
convex risk measure; cf. Proposition 3 in [11]. A characterization of acceptance sets in a more
general setting can be found in Proposition 3.6 of [6].

By M1(P ) we denote the set of all probability measures on (Ω,F) which are absolutely con-
tinuous with respect to P , and by Me(P ) the set of all probability measures on (Ω,F), which
are equivalent to P on F . It is well known that an unconditional convex risk measure which is
continuous from above is of the form

ρ(X) = sup
Q∈M1(P )

(EQ[X]− α(Q))

with some penalty function α : M1(P ) → R ∪ {+∞}, see [13] for details.

Analogous representations for conditional convex risk measures were obtained in [10], [5], [11],
[16] and in [6]. In the rest of this section we will state and prove a robust representation result
from [11], introducing some technical modifications which we well need later on. Let us define
the sets

Pt :=
{

Q ∈M1(P )
∣∣ Q ≈ P on Ft

}
and

Qt :=
{

Q ∈M1(P )
∣∣ Q = P on Ft

}
.

The penalty function will be given by a map αt from some set P ⊆ Pt to the set of Ft-measurable
random variable with values in R ∪ {+∞} such that

ess sup
Q∈P

(−αt(Q)) = 0.

In our setting the typical form of a penalty function will be

αmin
t (Q) = ess sup

X∈At

EQ[−X | Ft ]. (2)

Note that this penalty function is well defined for Q ∈ Pt. We will say that ρt has a robust
representation if

ρt(X) = ess sup
Q∈P

(EQ[−X | Ft ]− αt(Q)) for all X ∈ L∞

with some set P ⊆ Pt and some penalty function αt on P.

The next theorem relates robust representations to some continuity properties of conditional
convex risk measures. It is a version of Theorem 1 in [11] and Theorem 2.27 in [10], cf. also
Theorem 3 in [3], Theorem 3.6 in [5], Theorem 3.16 in [16] and Theorem 3.16 in [6].

Theorem 2.3. For a conditional convex risk measure ρt the following are equivalent:

4



1. ρt has the robust representation

ρt(X) = ess sup
Q∈Qt

(EQ[−X | Ft ]− αmin
t (Q)), X ∈ L∞, (3)

where the penalty function αmin
t is given by (2).

2. ρt has the robust representation

ρt(X) = ess sup
Q∈Pt

(EQ[−X | Ft ]− αmin
t (Q)), X ∈ L∞, (4)

where the penalty function αmin
t is given by (2).

3. ρt has a robust representation.

4. ρt has the “Fatou-property”: For any bounded sequence (Xn) which converges P -a.s. to
some X,

ρt(X) ≤ lim inf
n→∞

ρt(Xn) P -a.s..

5. ρt is continuous from above, i.e.

Xn ↘ X P -a.s. =⇒ ρt(Xn) ↗ ρt(X) P -a.s.

for any sequence (Xn) ⊆ L∞ and X ∈ L∞.

Proof. 2) ⇒ 3) is obvious.

3) ⇒ 4) Dominated convergence implies that EQ[Xn|Ft] → EQ[X|Ft] for each Q ∈ Pt, and
lim inf ρt(Xn) ≥ ρt(X) follows by using a robust representation of ρt as in the unconditional
setting, see, e.g., Lemma 4.20 in [13].

4) ⇒ 5) Monotonicity implies lim sup ρt(Xn) ≤ ρt(X), and lim inf ρt(Xn) ≥ ρt(X) follows by
4).

5) ⇒ 1) The inequality

ρt(X) ≥ ess sup
Q∈Pt

(EQ[−X | Ft ]− αmin
t (Q)) ≥ ess sup

Q∈Qt

(EQ[−X | Ft ]− αmin
t (Q)) (5)

follows immediately from the definition of αmin
t and Qt ⊆ Pt.

In order to prove the equality we will show that

EP [ρ(X)] ≤ EP [ess sup
Q∈Qt

(EQ[−X | Ft ]− αmin
t (Q))].

To this end, consider the map ρP : L∞ → R defined by ρP (X) := EP [ρt(X)], X ∈ L∞. It is
easy to check that ρP is a convex risk measure which is continuous from above. Hence Theorem
4.31 in [13] implies that ρP has the robust representation

ρP (X) = sup
Q∈M1(P )

(EQ[−X]− α(Q)) X ∈ L∞,

where the penalty function α(Q) is given by

α(Q) = sup
X∈L∞,ρP (X)≤0

EQ[−X].
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Next we will prove that Q ∈ Qt if α(Q) < ∞. Indeed, let A ∈ Ft and λ > 0. Then

−λP [A] = EP [ρt(λIA)] = ρP (λIA) ≥ EQ[−λIA]− α(Q),

so
P [A] ≤ Q[A] +

1
λ

α(Q) for all λ > 0,

and hence P [A] ≤ Q[A] if α(Q) < ∞. The same reasoning with λ < 0 implies P [A] ≥ Q[A], thus
P = Q on Ft if α(Q) < ∞. Moreover,

EP [αmin
t (Q)] ≤ α(Q) (6)

holds for every Q ∈ Pt, which can be seen as follows. As we will prove in Lemma 2.6 below,

EP [αmin
t (Q)] = sup

Y ∈At

EP [−Y ].

Since ρP (Y ) ≤ 0 for all Y ∈ At, inequality (6) follows from the definition of the penalty function
α(Q).

Finally we obtain

EP [ρt(X)] = ρP (X) = sup
Q∈M1(P ),α(Q)<∞

(EQ[−X]− α(Q))

≤ sup
Q∈Qt,EP [αmin

t (Q)]<∞
(EQ[−X]− α(Q))

≤ sup
Q∈Qt,EP [αmin

t (Q)]<∞
EP [EQ[−X|Ft]− αmin

t (Q)]

≤ EP

[
ess sup

Q∈Qt,EP [αmin
t (Q)]<∞

(
EQ[−X|Ft]− αmin

t (Q)
)]

(7)

≤ EP

[
ess sup
Q∈Qt

EQ[−X|Ft]− αmin
t (Q)

]
,

proving equality (3).

1) ⇒ 2) Follows immediately from inequality (5). �

A closer look at the proof of Theorem 2.3 yields the following corollary, which will be useful
later on.

Corollary 2.4. A conditional convex risk measure ρt is continuous from above if and only if
for any P ∗ ∈Me(P ) it is representable in the form

ρt(X) = ess sup
Q∈Qf

t (P ∗)

(EQ[−X | Ft ]− αmin
t (Q)), X ∈ L∞, (8)

where
Qf

t (P ∗) :=
{

Q ∈M1(P )
∣∣ Q = P ∗ on Ft, EP ∗ [αmin

t (Q)] < ∞
}

.

Proof. The inequality
ρt(X) ≥ ess sup

Q∈Qf
t (P )

(EQ[−X | Ft ]− αmin
t (Q))
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follows from (5) since Qf
t (P ) ⊆ Pt, and (7) proves the equality for Qf

t (P ). Moreover, since the
definition of a conditional convex risk measure and the continuity property only depend on the
zero sets of P , the same reasoning works for any P ∗ ∈Me(P ). �

In the coherent case we obtain the following representation result:

Corollary 2.5. A conditional coherent risk measure ρt is continuous from above if and only if
for any P ∗ ∈Me(P ) it is representable in the form

ρt(X) = ess sup
Q∈Q0

t (P ∗)

EQ[−X | Ft ], X ∈ L∞, (9)

where
Q0

t (P
∗) :=

{
Q ∈M1(P )

∣∣ Q = P ∗ on Ft, αmin
t (Q) = 0 Q-a.s.

}
.

Proof. Due to positive homogeneity of ρt the penalty function αmin
t (Q) can only take values 0 or

∞ for all Q ∈ Pt. Indeed, for A := {αmin
t (Q) > 0}, X ∈ At and all λ > 0 we have λIAX ∈ At,

and hence

αmin
t (Q) = ess sup

X∈At

EQ[−X|Ft]

≥ ess sup
X∈At

EQ[−λIAX|Ft]

= λIAαmin
t (Q),

where the lower bound converges to ∞ with λ → ∞ on A. Thus αmin
t (Q) = ∞ on A and

αmin
t (Q) = 0 on Ac. If Q ∈ Qf

t (P ∗) for some P ∗ ≈ P , the inequality EP ∗ [αmin
t (Q)] < ∞ implies

P [A] = 0, hence Q ∈ Q0
t (P

∗). Thus (8) is equivalent to (9). �

The following lemma was used in the proof of the Theorem 2.3. Similar arguments are used in
the proofs of Theorem 2.27 in [10], Theorem 1 in [11], Theorem 3.5 in [5], Theorem 3.16 in [16],
and Theorem 3.16 in [6].

Lemma 2.6. For Q ∈ Pt and 0 ≤ s ≤ t,

EQ[αmin
t (Q)|Fs] = ess sup

Y ∈At

EQ[−Y |Fs],

and in particular
EQ[αmin

t (Q)] = sup
Y ∈At

EQ[−Y ].

Proof. First we claim that the set {
EQ[−X|Ft]

∣∣ X ∈ At

}
is directed upward for any Q ∈ Pt. Indeed, for X, Y ∈ At we can define Z := XIA +Y IAc , where
A := {EQ[−X|Ft] ≥ EQ[−Y |Ft]} ∈ Ft. Conditional convexity of ρt implies that Z ∈ At, and by
definition of Z

EQ[−Z|Ft] = max (EQ[−X|Ft], EQ[−Y |Ft]) .

Hence there exists a sequence (XQ
n ) in At such that

αmin
t (Q) = lim

n
EQ[−XQ

n |Ft] P -a.s.., (10)
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and by monotone convergence we get

EQ[αmin
t (Q)|Fs] = lim

n
EQ

[
EQ[−XQ

n |Ft]
∣∣Fs

]
≤ ess sup

Y ∈At

EQ[−Y |Fs].

The converse inequality follows directly from the definition of αmin
t (Q). �

Remark 2.7. The penalty function αmin
t (Q) is minimal in the sense that any other penalty

function αt in a robust representation of ρt satisfies

αmin
t (Q) ≤ αt(Q) P -a.s.

for all Q ∈ Pt. An alternative formula for the minimal penalty function is given by

αmin
t (Q) = ess sup

X∈L∞
(EQ[−X | Ft ]− ρt(X)) for all Q ∈ Pt. (11)

This follows as in the unconditional case; see e.g. Theorem 4.15 and Remark 4.16 in [13].

3 Sensitivity

In this section we will show that under an assumption of sensitivity with respect to the reference
measure P it is sufficient to use only equivalent probability measures in the robust representations
of risk measures. This is more convenient for technical reasons, and it allows us to drop the
dependence on time t for the representing set of measures.

Definition 3.1. We call a conditional convex risk measure sensitive or relevant, if

P [ρt(−εIA) > 0] > 0 (12)

holds for all ε > 0 and for any A ∈ F such that P [A] > 0.

Remark 3.2. 1. For coherent risk measures it is sufficient to require

P [ρt(−IA) > 0] > 0, (13)

since (13) and (12) are equivalent under the assumption of positive homogeneity. This
corresponds to the definition of relevance for coherent risk measures given in [7] for the
unconditional case. For a convex risk measure, condition (12) is stronger than (13).

2. Several slightly different definitions of relevance can be found in the literature. In [16]
relevance is defined as in (13). In [6] the stronger property A ⊆ {ρt(−εIA) > 0} for all
ε > 0 is required in a more general setting. The arguments used in this section are similar
to those in [16] and [6] up to some technical details.

In the sequel we will assume that a conditional convex risk measure ρt has a robust represen-
tation. First we prove a “σ-pasting property” of the penalty functions which also appears in
Lemma 3.12 of [16].
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Lemma 3.3. Let (Qn) be a sequence in Qt and (An) a sequence of pairwise disjoint events in
Ft such that ∪nAn = ΩP -a.s.. Then

Z̃ :=
∞∑

n=1

IAn

dQn

dP

defines a density of a probability measure Q̃ ∈ Qt such that

αmin
t (Q̃) =

∞∑
n=1

IAnαmin
t (Qn)

(here we define IAnαmin
t (Qn) := 0, if P [An] = 0).

Proof. We will prove the first part of the lemma more generally for any sequence (λn) in L∞t with
0 ≤ λn ≤ 1 and

∑∞
n=1 λn = 1 P -a.s.. Let Zn := dQn/dP and Z̃ :=

∑∞
n=1 λnZn. By monotone

convergence,

E[Z̃|Ft] = lim
n

n∑
k=1

λkE[Zk|Ft] = 1,

and so Z̃ is indeed the density of a probability measure Q̃ ∈ Qt. Since

|
n∑

k=1

λkZkX| ≤ Z̃ ‖X‖∞ ∈ L1(P ) for all n,

the dominated convergence theorem implies

E eQ[X|Ft] =
∞∑

n=1

λnEQn [X|Ft] (14)

for any X ∈ L∞. From the definition of the minimal penalty function we obtain immediately

αmin
t (Q̃) ≤

∞∑
n=1

λnαmin
t (Qn).

In particular if λn := IAn for a sequence (An) as above we obtain

ess sup
X∈At

E eQ[−X|Ft] = ess sup
X∈At

( ∞∑
n=1

IAnEQn [−X|Ft]

)

=
∞∑

n=1

IAn ess sup
X∈At

EQn [−X|Ft]

so

αmin
t (Q̃) =

∞∑
n=1

IAnαmin
t (Qn).

�

In particular, for any A ∈ Ft and Q1, Q2 ∈ Qt,

Z̃ := IA
dQ1

dP
+ IAc

dQ2

dP
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defines a density of a probability measure Q̃ ∈ Qt with

αmin
t (Q̃) = IAαmin

t (Q1) + IAcαmin
t (Q2). (15)

This finite pasting property of the penalty functions, which corresponds to the local property of
the risk measure, also appears in Remark 3.13 of [6].

It follows from (15) that the set
{

αmin
t (Q)

∣∣ Q ∈ Qt

}
is downward directed, and hence there

exists a sequence (Qn) in Qt such that

αmin
t (Qn) ↘ ess inf

Q∈Qt

αmin
t (Q) = 0 P -a.s.. (16)

For ε > 0 we consider the set

Qε
t :=

{
Q ∈ Qt

∣∣ αmin
t (Q) < ε P -a.s.

}
,

and we use the same notation for the corresponding set of densities:

Qε
t =

{
dQ

dP

∣∣ Q ∈ Qt, αmin
t (Q) < ε P -a.s.

}
.

We now show that the set Qε
t is non-empty. Moreover, it contains an equivalent probability

measure as soon as the risk measure is sensitive; this part is similar to Lemma 3.22 in [6].

Lemma 3.4. For any ε > 0 the set Qε
t is nonempty. For a sensitive conditional convex risk

measure there exists a probability measure P ∗ ≈ P such that P ∗ ∈ Qε
t .

Proof. For ε > 0 and a sequence (Qn) as in (16) with densities (Zn) we define an Ft-measurable
N-valued random variable

τ ε := min
{

n
∣∣ αmin

t (Qn) < ε
}

.

It follows from (16) that τ ε < ∞ P -a.s.. Thus the sets An := {τ ε = n} (n = 1, 2, . . .) form a
disjoint partition of Ω with An ∈ Ft for all n. By Lemma 3.3

Zτε :=
∞∑

n=1

ZnI{τε=n}

defines a density of a probability measure Qε ∈ Qt with

αmin
t (Q̃) =

∞∑
n=1

IAnαmin
t (Qn) < ε P -a.s.,

which proves Qε ∈ Qε
t .

Next we use a standard exhaustion argument to conclude thatQε
t contains an equivalent measure

P ∗ under the assumption of sensitivity. Let

c := sup
{

P [Z > 0]
∣∣ Z ∈ Qε

t

}
and take a sequence (Zn)n∈N in Qε

t such that P [Zn > 0] → c. Then

Z∗ :=
∞∑

n=1

1
2n

Zn

10



belongs to the set Qε
t by Lemma 3.3, and

{Z∗ > 0} = ∪n{Zn > 0}.

Hence P [Z∗ > 0] = c. Next we show that c = 1, and so the probability measure P ∗ defined
via dP ∗/dP := Z∗ has the desired properties. Suppose by way of contradiction that the set
A := {Z∗ = 0} has positive probability. Sensitivity implies P [ρt(−εIA) > 0] > 0, where

ρt(−εIA) = ess sup
Q∈Qt

(
EQ[εIA|Ft]− αmin

t (Q)
)
.

Hence there exists Q̃ ∈ Qt such that the set B := {αmin
t (Q̃) < E eQ[εIA|Ft]} ∈ Ft satisfies

P [B] > 0. In particular is αmin
t (Q̃) < ε on B. By Z̃ we denote the density of Q̃ with respect

to P . Without loss of generality we assume that Q̃ ∈ Qε
t ; otherwise we can simply switch to a

probability measure Q̂ defined via dQ̂/dP := IBZ̃ + IBcZ, where Z is an arbitrary element of
Qε

t . Then Q̂ is in Qε
t by (15) and Q̂ and Q̃ coincide on B.

Next we will show that the set {Z̃ > 0} ∩A has positive probability. Indeed, it follows from the
definition of B and αmin

t (Q̃) ≥ 0, that

E[Z̃IBIA] = E eQ[IBIA] = E eQ[IBE eQ[IA|Ft]] > 0,

which implies P [{Z̃ > 0}∩A∩B] > 0 and in particular P [{Z̃ > 0}∩A] > 0. Thus the probability
measure Q̂ defined via

dQ̂

dP
:= Ẑ :=

1
2
Z∗ +

1
2
Z̃,

belongs to Q̂ ∈ Qε
t , and we have

P [Ẑ > 0] = P [Z∗ > 0] + P [{Z̃ > 0} ∩A] > P [Z∗ > 0],

in contradiction to the maximality of P [Z∗ > 0]. �

Our next aim is to obtain a robust representation for a conditional convex risk measure in
terms of equivalent probability measures. The following lemma shows that this is possible if
there exists some equivalent probability measure such that its penalty function is a.s. bounded.
Similar arguments are used in Proposition 3.22 of [16] and Theorem 3.22 of [6]. In the second
part of the lemma we reduce the class of the representing measures even further, and this reduced
representation will be useful in our discussion of time-consistency.

Lemma 3.5. Let ρt be a conditional convex risk measure that is continuous from above, and let
P ∗ be a probability measure such that P ∗ ≈ P and αmin

t (P ∗) < ∞ P -a.s.. Then

ρt(X) = ess sup
Q∈Me(P )

(
EQ[−X|Ft]− αmin

t (Q)
)

(17)

for all X ∈ L∞. Moreover, if EP ∗
[
αmin

t (P ∗)
]

< ∞ then

ρt(X) = ess sup
Q∈Qf,e

t (P ∗)

(
EQ[−X|Ft]− αmin

t (Q)
)

(18)

for all X ∈ L∞, where

Qf,e
t (P ∗) :=

{
Q ∈Me(P )

∣∣ Q = P ∗ on Ft, EP ∗ [αmin
t (Q)] < ∞

}
.
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Proof. By Z∗ we denote the density of P ∗ with respect to P , and for ε ∈ (0, 1) and Q ∈ Qt we
define a probability measure Qε via

dQε

dP
:= (1− ε)

dQ

dP
+ ε

Z∗

E[Z∗|Ft]
.

Then Qε ∈ Qt, Qε ∈Me(P ) and

EQε [X|Ft] = (1− ε)EQ[X|Ft] + εEP ∗ [X|Ft]

for all X ∈ L∞. By definition of the minimal penalty function we obtain

αmin
t (Qε) ≤ (1− ε)αmin

t (Q) + εαmin
t (P ∗).

Thus

ρt(X) = ess sup
Q∈Qt

(
EQ[−X|Ft]− αmin

t (Q)
)

≥ ess sup
Q∈Qt∩Me(P )

(
EQ[−X|Ft]− αmin

t (Q)
)

≥ ess sup
Q∈Qt

(
EQε [−X|Ft]− αmin

t (Qε)
)

≥ ess sup
Q∈Qt

(
(1− ε)EQ[−X|Ft] + εEP ∗ [−X|Ft]− (1− ε)αmin

t (Q)− εαmin
t (P ∗)

)
= (1− ε)ρt(X) + ε

(
EP ∗ [−X|Ft]− αmin

t (P ∗)
)

≥ ρt(X)− ε
(
ρt(X) + ‖X‖∞ + αmin

t (P ∗)
)
, (19)

where the lower bound converges a.s. to ρt with ε → 0. Hence

ρt(X) = ess sup
Q∈Qt∩Me(P )

(
EQ[−X|Ft]− αmin

t (Q)
)
.

On the other hand it follows from the representation (4) that

ρt(X) ≥ ess sup
Q∈Me(P )

(
EQ[−X|Ft]− αmin

t (Q)
)

≥ ess sup
Q∈Qt∩Me(P )

(
EQ[−X|Ft]− αmin

t (Q)
)
,

proving the representation (17).

If EP ∗
[
αmin

t (P ∗)
]

< ∞ we define for Q ∈ Qf
t (P ∗) and ε ∈ (0, 1) a probability measure Qε via

dQε

dP ∗
:= (1− ε)

dQ

dP ∗
+ ε.

Then Qε = P ∗ on Ft, Qε ∈Me(P ) and

EQε [X|Ft] = (1− ε)EQ[X|Ft] + εEP ∗ [X|Ft]

for all X ∈ L∞. This implies

αmin
t (Qε) ≤ (1− ε)αmin

t (Q) + εαmin
t (P ∗)

12



and in particular EP ∗
[
αmin

t (Qε)
]

< ∞, so Qε ∈ Qf,e
t (P ∗). Thus we obtain using Corollary 2.4

ρt(X) = ess sup
Q∈Qf

t

(
EQ[−X|Ft]− αmin

t (Q)
)

≥ ess sup
Q∈Qf,e

t

(
EQ[−X|Ft]− αmin

t (Q)
)

≥ ess sup
Q∈Qf

t

(
EQε [−X|Ft]− αmin

t (Qε)
)

≥ ρt(X)− ε
(
ρt(X) + ‖X‖∞ + αmin

t (P ∗)
)

and the representation (18) follows. �

In view of Lemma 3.4 and Lemma 3.5 we obtain the following corollary:

Corollary 3.6. Any sensitive conditional convex risk measure that is continuous from above is
representable as in (17) and (18).

4 Time-consistency

In this section we consider a sequence of conditional convex risk measures (ρt)t=0,1,.... Such a
sequence (with a finite time horizon) is called a dynamic convex risk measure in [11] or (with
opposite sign) a monetary utility functional process in [6].

A key question in the dynamic setting is how the risk assessments of a financial position in
different periods of time are interrelated. Several notions of time-consistency of dynamic risk
measures have been introduced in the literature; see [2], [11], [6], , [16], [5] and references therein,
and also [19] for a systematic overview.

In this section we will focus on the strong notion of time-consistency defined as follows.

Definition 4.1. A sequence of conditional risk measures (ρt)t=0,1,... is called time-consistent, if
for any X, Y ∈ L∞ and for all t ≥ 0 the following condition holds:

ρt+1(X) = ρt+1(Y ) P -a.s. =⇒ ρt(X) = ρt(Y ) P -a.s.. (20)

Proposition 4.2. For a sequence of conditional convex risk measures time-consistency is equiv-
alent to recursiveness, that is

ρt = ρt(−ρt+s) P -a.s.

for all t, s ∈ {0, 1, . . .}.

Proof. We will prove that time-consistency implies recursiveness by induction on s. For s = 1
we have ρt+1(−ρt+1(X)) = ρt+1(X) by cash invariance and the claim follows from (20). Now we
assume that the induction hypothesis holds for each t and all k ≤ s for some s ≥ 1. Then we
obtain

ρt(−ρt+s+1(X)) = ρt(−ρt+s(−ρt+s+1(X)))
= ρt(−ρt+s(X))
= ρt(X),

where we have applied the induction hypothesis to the random variable −ρt+s+1(X). Hence the
claim follows.
The converse implication is obvious. �
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Remark 4.3. 1. The equivalence of time-consistency and ”one-step” recursiveness, that is

ρt = ρt(−ρt+1) P -a.s. for all t = 0, 1, . . . , (21)

was already proved in Proposition 5 of [11].

2. As explained in [2], recursiveness may be viewed as a version of the Bellman principle for
dynamic risk measures.

3. The following definition of time-consistency is given in [2]:

ρt+1(X) ≤ ρt+1(Y ) P -a.s. =⇒ ρt(X) ≤ ρt(Y ) P -a.s. (22)

Using recursiveness it is easy to see that (22) is equivalent to (20).

4. In [5] time-consistency is defined as in (22) but in terms of stopping times. For coherent
risk measures it is shown in [5] that this is equivalent to recursiveness for stopping times.

5. A more general definition of time-consistency in terms of recursiveness for stopping times
is given in [6] for risk measures on stochastic processes. Proposition 4.5 in [6] shows that
this definition is equivalent to recursiveness in the sense of (21) if the time horizon is finite
or if all risk measures are continuous from above.

Proposition 4.4. Let (ρt)t=0,1,... be a time-consistent sequence of conditional convex risk mea-
sures and let ρ0 be sensitive. Then ρt is sensitive for all t ≥ 0.

Proof. Let A ∈ F with P [A] > 0 and ε > 0. Then by monotonicity ρt(−εIA) ≥ 0 P -a.s..
Assume that ρt(−εIA) = 0 P -a.s.. Then recursiveness and normalization imply ρ0(−εIA) =
ρ0(−ρt(−εIA)) = 0 in contradiction to the sensitivity of ρ0. Hence P [ρt(−εIA) > 0] > 0. �

In the sequel we will give alternative characterizations of time-consistency. To this end we in-
troduce some notation. If we restrict a conditional convex risk measure ρt to the space L∞t+s for
some s ≥ 0, the corresponding acceptance set is given by

At,t+s :=
{

X ∈ L∞t+s

∣∣ ρt(X) ≤ 0
}

.

If ρt is continuous from above, then this property holds on L∞t+s, and thus the restriction of ρt

to L∞t+s is representable with the minimal penalty function

αmin
t,t+s(Q) := ess sup

X∈At,t+s

EQ[−X | Ft ], Q ∈ Pt.

Note that At,t = L∞+ (Ft) and αmin
t,t (Q) = 0 Q-a.s. for all Q ∈ Pt.

In our next theorem we will assume that the set

Q∗ :=
{

Q ∈Me(P )
∣∣ αmin

0 (Q) < ∞
}

is nonempty. In view of Lemma 3.4, this assumption is satisfied if ρ0 is sensitive. We will show
that the set Q∗ yields a robust representation of a time-consistent dynamic convex risk measure.

The next theorem, and in particular the equivalence of 1) and 4), is the main result of this
section.
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Theorem 4.5. Let (ρt)t=0,1,... be a sequence of conditional convex risk measures such that each ρt

is continuous from above, and assume that Q∗ 6= ∅. Then the following conditions are equivalent:

1. (ρt)t=0,1,... is time-consistent.

2. At = At,t+s +At+s for all s, t = 0, 1, . . ..

3. αmin
t (Q) = αmin

t,t+s(Q) + EQ[αmin
t+s(Q) | Ft ] for all s, t = 0, 1, . . . and all Q ∈Me(P ).

4. For all Q ∈ Q∗ and all X ∈ L∞, the process

V Q
t (X) := ρt(X) + αmin

t (Q), t ≥ 0

is a Q-supermartingale.

In each case the dynamic risk measure admits a robust representation in terms of the set Q∗,
i.e.,

ρt(X) = ess sup
Q∈Q∗

(
EQ[−X|Ft]− αmin

t (Q)
)

(23)

for all X ∈ L∞ and all t ≥ 0.

Before we begin the proof let us compare Theorem 4.5 to the existing literature. The equivalence
of 1) and 2) is already known: It was proved in a more general setting in Theorem 4.5 in [6] and
also in Lemma 3.25 in [16].
For penalty functions some necessary and sufficient conditions for time-consistency are given
in Theorems 4.19 and 4.22 of [6]. In the more general context of risk measures for stochastic
processes, they involve concatenation of the representing dual functionals. In our setting of
risk measures for random variables, it is natural to identify dual functionals with probability
measures and to use 3) as a necessary and sufficient condition. With a slight modification of 3)
and under the assumption that the risk measures are continuous from below, the equivalence of
the first three properties also appears in [4].
The equivalence of recursiveness and the supermartingale property of the process (ρt)t=0,1,... was
shown in [2] for dynamic coherent risk measures which are given in terms of the same representing
class Q; see also [5]. In the context of dynamic convex risk measures, the equivalence of time-
consistency and the supermartingale property 4) seems to be new.

The proof of Theorem 4.5 will be given in several steps. Note that we may assume that P ∈ Q∗;
otherwise we can simply replace P by some P ∗ ∈ Q∗.

The equivalence of 1) and 2) follows from the next lemma, which holds for any sequence of
conditional convex risk measures; here we do not need robust representations and the set Q∗.
The equivalences between set inclusions and inequalities may serve as starting points for various
extensions of the strong notion of time-consistency used in this paper; cf. [19] and [17].

Lemma 4.6. Let (ρt)t=0,1,... be a sequence of conditional convex risk measures. Then the fol-
lowing equivalences hold for all s, t ≥ 0 and all X ∈ L∞:

X ∈ At,t+s +At+s ⇐⇒ −ρt+s(X) ∈ At,t+s (24)
At ⊆ At,t+s +At+s ⇐⇒ ρt(−ρt+s) ≤ ρt P -a.s. (25)
At ⊇ At,t+s +At+s ⇐⇒ ρt(−ρt+s) ≥ ρt P -a.s.. (26)
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Proof.

a) To prove “⇒” in (24) let X = Xt,t+s + Xt+s with Xt,t+s ∈ At,t+s and Xt+s ∈ At+s. Then

ρt+s(X) = ρt+s(Xt+s)−Xt,t+s ≤ −Xt,t+s

by cash invariance, and monotonicity implies

ρt(−ρt+s(X)) ≤ ρt(Xt,t+s) ≤ 0.

The converse direction follows immediately from X = X + ρt+s(X) − ρt+s(X) and X +
ρt+s(X) ∈ At+s for all X ∈ L∞.

b) In order to show ⇒” in (25), take X ∈ L∞. Since X + ρt(X) ∈ At ⊆ At,t+s + At+s, we
obtain

ρt+s(X)− ρt(X) = ρt+s(X + ρt(X)) ∈ −At,t+s,

by (24) and cash invariance. Hence

ρt(−ρt+s(X))− ρt(X) = ρt(−(ρt+s(X)− ρt(X))) ≤ 0 P -a.s..

To prove “⇐” let X ∈ At. Then −ρt+s(X) ∈ At,t+s by the right hand side of (25), and
hence X ∈ At,t+s +At+s by (24).

c) Let X ∈ L∞ and assume At ⊇ At,t+s +At+s. Then

ρt(−ρt+s(X)) + X = ρt(−ρt+s(X))− ρt+s(X) + ρt+s(X) + X ∈ At,t+s +At+s ⊆ At.

Hence
ρt(X)− ρt(−ρt+s(X)) = ρt(X + ρt(−ρt+s(X))) ≤ 0

by cash invariance, and this proves “⇒” in (26). For the converse direction let X ∈
At,t+s +At+s. Since −ρt+s(X) ∈ At,t+s by (24), we obtain

ρt(X) ≤ ρt(−ρt+s(X)) ≤ 0,

hence X ∈ At. �

Proof of 2) ⇒ 3) of Theorem 4.5: For Q ∈ Me(P ) we obtain using the definition of the
minimal penalty function and Lemma 2.6:

αmin
t (Q) = ess sup

X∈At

EQ[−X|Ft]

= ess sup
Xt,t+s∈At,t+s

EQ[−Xt,t+s|Ft] + ess sup
Xt+s∈At+s

EQ[−Xt+s|Ft]

= αmin
t,t+s(Q) + EQ[αmin

t+s(Q) |Ft ]

for all s, t ≥ 0. �

Remark 4.7. In particular it follows from the preceding proofs that time-consistency implies

At = At,t+1 +At+1 (27)
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and
αmin

t (Q) = αmin
t,t+1(Q) + EQ[αmin

t+1(Q) | Ft ] (28)

for all t = 0, 1, . . . and all Q ∈ Me(P ). These “one-step” versions already imply the general
properties 2) and 3) of Theorem 4.5. Indeed, applying (27) and (28) step by step to the time-
consistent sequence (ρn)t≤n≤t+s on the space L∞(Ft+s) for each t ≥ 0 and s ≥ 1 we obtain

At,t+s =
t+s−1∑
n=t

An,n+1

and

αmin
t,t+s(Q) = EQ

[
t+s−1∑
n=t

αmin
n,n+1(Q)

∣∣Ft

]
for all all t, s ≥ 0 and all Q ∈ Me(P ) (note that we have not used that the initial σ-field is
trivial in the preceding proofs).

Remark 4.8. It follows from property 3) of Theorem 4.5 that

EQ[αmin
t+1(Q) |Ft ] ≤ αmin

t (Q) P -a.s. for all Q ∈Me(P ).

This in turn implies that EQ[αmin
t (Q)] < ∞ for all t ≥ 0 and Q ∈ Q∗. Thus the process

(αmin
t (Q))t=0,1,... is a Q-supermartingale for all Q ∈ Q∗. Moreover, equation (28) yields an

explicit description of its Doob decomposition in terms of the “one-step” penalty functions
αmin

t,t+1(Q).

In fact the supermartingale property of the minimal penalty function corresponds to some weaker
notion of time-consistency, so called weak time-consistency; this was noted in Lemma 3.17 in [5].

Definition 4.9. A sequence of conditional risk measures (ρt)t=0,1,... is called weakly time-
consistent, if for any X ∈ L∞ and for all t ≥ 0 the following condition holds:

ρt+1(X) ≤ 0 P -a.s. =⇒ ρt(X) ≤ 0 P -a.s.. (29)

Some characterizations of weak time-consistency are given in [19]. In terms of penalty functions
we obtain the following criterion.

Proposition 4.10. Let (ρt)t=0,1,... be a weakly time-consistent sequence of conditional convex
risk measures such that each ρt is continuous from above . Then

EQ[αmin
t+1(Q) |Ft ] ≤ αmin

t (Q) (30)

holds for all Q ∈ Me(P ) and all t = 0, 1, . . .. In particular, (αmin
t (Q))t=0,1,... is a Q-

supermartingale for all Q ∈ Q∗. Conversely, property (30) implies weak time-consistency if
the representation (17) or (23) holds.

Proof. Since property (29) is equivalent to At+1 ⊆ At, Lemma 2.6 implies

EQ[αmin
t+1(Q) |Ft ] = ess sup

Xt+1∈At+1

EQ[−Xt+1|Ft]

≤ ess sup
X∈At

EQ[−X|Ft] = αmin
t (Q)
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for all Q ∈ Me(P ). If αmin
0 (Q) < ∞ then it follows from (30) that αmin

t (Q) is Q-integrable for
all t ≥ 0. Thus (αmin

t (Q))t=0,1,... is a Q-supermartingale for all Q ∈ Q∗. To prove the opposite
direction, note that for X ∈ At+1

EQ[−X|Ft+1] ≤ αmin
t+1(Q) P -a.s. for all Q ∈Me(P )

by definition of the minimal penalty function. Using (30) we obtain

EQ[−X|Ft] ≤ EQ[αmin
t+1(Q) |Ft ] ≤ αmin

t (Q) P -a.s. for all Q ∈Me(P ).

So if (17) holds,
ρt(X) = ess sup

Q∈Me(P )

(
EQ[−X|Ft]− αmin

t (Q)
)
≤ 0,

and hence X ∈ At. If ρt has a representation (23), then the supermartingale property for all
Q ∈ Q∗ is sufficient to prove (29). �

Proof of 3) ⇒ 4) of Theorem 4.5:

a) First we will show that the representations (17), (18) and (23) hold for any t ≥ 0. Note that
property 3) implies EP ∗

[
αmin

t (P ∗)
]

< ∞ for P ∗ ∈ Q∗ , and so the representations (17) and
(18) of Lemma 3.5 hold for any P ∗ ∈ Q∗. Now take Q ∈ Me(P ) such that Q = P on Ft and
EQ[αmin

t (Q)] < ∞, that is Q ∈ Qf,e
t (P ). Using 3) we obtain

αmin
0 (Q) = EQ

[
αmin

0,t (Q)
]
+ EQ[αmin

t (Q)]

= EP

[
αmin

0,t (P )
]
+ EQ[αmin

t (Q)]

≤ αmin
0 (P ) + EQ[αmin

t (Q)] < ∞,

hence Q ∈ Q∗. Thus it follows from (18) that

ρt(X) ≤ ess sup
Q∈Q∗

(
EQ[−X|Ft]− αmin

t (Q)
)

for all X ∈ L∞.

The converse inequality “≥” follows from (17) of Lemma 3.5.

b) In the next step we fix Q̃ ∈ Q∗ and apply Lemma 3.3 to the set

Qf,e
t+1(Q̃) =

{
Q ∈Me(P )

∣∣ Q = Q̃ on Ft+1, E eQ[αmin
t+1(Q)] < ∞

}
.

For Q1, Q2 ∈ Qf,e
t+1(Q̃) and B ∈ Ft+1 we define

Ẑ := IB
dQ2

dQ̃
+ IBc

dQ1

dQ̃
.

Then by Lemma 3.3 the probabilty measure Q̂ defined via dQ̂/dQ̃ := Ẑ satisfies Q̂ = Q̃ on Ft+1

and
αmin

t+1(Q̂) = αmin
t+1(Q1) IBc + αmin

t+1(Q2) IB,

hence Q̂ ∈ Qf,e
t+1(Q̃).

c) Using b) and the same reasoning as in the proof of Lemma 2.6 we can deduce that the set{
EQ[−X|Ft+1]− αmin

t+1(Q)
∣∣ Q ∈ Qf,e

t+1(Q̃)
}
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is directed upward for all X ∈ L∞. Since ρt+1 can be represented as essential supremum over
this set by a), there exists a sequence (Qn) ⊆ Qf,e

t+1(Q̃) depending on Q̃ and X such that

EQn [−X|Ft+1]− αmin
t+1(Qn) ↗ ρt+1(X) P -a.s. with n →∞.

The monotone convergence theorem implies

E eQ[ρt+1(X)|Ft] = lim
n→∞

E eQ[EQn [−X|Ft+1]− αmin
t+1(Qn) | Ft]

= lim
n→∞

(
EQn [−X|Ft]− EQn [αmin

t+1(Qn)|Ft]
)
,

where we have used that Qn and Q̃ coincide on Ft+1. Moreover, the same reasoning as in a)
implies that Qf,e

t+1(Q̃) ⊆ Q∗, and applying 3) to Qn we obtain

EQn [αmin
t+1(Qn)|Ft] = αmin

t (Qn)− αmin
t,t+1(Qn)

= αmin
t (Qn)− αmin

t,t+1(Q̃) for all n ∈ N.

d) In the final step we obtain for Q̃ ∈ Q∗ and X ∈ L∞

E eQ[V
eQ

t+1(X)|Ft] = E eQ[ρt+1(X) + αmin
t+1(Q̃)|Ft]

= E eQ[ρt+1(X)|Ft]− αmin
t,t+1(Q̃) + αmin

t (Q̃)

= lim
n→∞

(
EQn [−X|Ft]− αmin

t (Qn)
)

+ αmin
t (Q̃)

≤ ess sup
Q∈Q∗

(
EQ[−X|Ft]− αmin

t (Q)
)

+ αmin
t (Q̃)

= ρt(X) + αmin
t (Q̃)

= V
eQ

t (X) t = 0, 1, . . . ,

where we have used 3), c), a) and Qn ∈ Q∗ for all n. Moreover, (V
eQ

t (X))t=0,1,... is adapted and
integrable for all Q̃ ∈ Q∗, and thus a Q̃-supermartingale.

Proof of 4) ⇒ 1) of Theorem 4.5:

In the first step we will show again that the representation (23) holds for all t ≥ 0. Indeed, 4)
implies EP ∗

[
αmin

t (P ∗)
]

< ∞ for all t ≥ 0 and P ∗ ∈ Q∗, since ρt(X) + αmin
t (P ∗) is P ∗-integrable

and ρt(X) ∈ L∞t for all X ∈ L∞ and t ≥ 0. Hence the representation (18) of Lemma 3.5 holds
for all t ≥ 0 and P ∗ ∈ Q∗. Moreover, for Q ∈ Qf,e

t (P ) and X ∈ A0 we obtain

EQ[−X] ≤ EQ[−X − ρt(X)] + EQ[ρt(X) + αmin
t (P )]

≤ EQ[αmin
t (Q)] + EP [ρt(X) + αmin

t (P )]
≤ EQ[αmin

t (Q)] + ρ0(X) + αmin
0 (P )

≤ EQ[αmin
t (Q)] + αmin

0 (P ),

where we have used representation (11) for αmin
t (Q), Q ∈ Qf,e

t (P ), P ∈ Q∗, 4), and X ∈ A0.
Hence

αmin
0 (Q) ≤ EQ[αmin

t (Q)] + αmin
0 (P ) < ∞

which implies Q ∈ Q∗. Now we can argue as in part a) of the proof 3) ⇒ 4) to obtain
representation (23).
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In the next step we will prove time-consistency. To this end let X, Y ∈ L∞ such that ρt+1(X) ≤
ρt+1(Y ) P -a.s.. Using 4) we obtain for all Q ∈ Q∗:

ρt(Y ) + αmin
t (Q) ≥ EQ[ρt+1(Y ) + αmin

t+1(Q)|Ft]
≥ EQ[ρt+1(X) + αmin

t+1(Q)|Ft]
≥ EQ[EQ[−X|Ft+1]− αmin

t+1(Q) + αmin
t+1(Q)|Ft]

= EQ[−X|Ft].

Thus
ρt(Y ) ≥ EQ[−X|Ft]− αmin

t (Q)

for all Q ∈ Q∗, and hence
ρt(Y ) ≥ ρt(X) P -a.s.,

proving time-consistency of the sequence (ρt) as characterized by (22). �

In the coherent case the characterization of time-consistency is already well understood; see
Theorem 5.1. in [2], Theorem 6.2 in [9], Lemma 3.29 in [16], Korollar 3.18 in [5], and section 4.4
in [6]. Let us show how the main results can be obtained as special cases of our discussion of
the general convex case. This involves the following stability property for the representing set of
measures, sometimes called fork convexity as in [9] and multiplicative stabilty or m-stabilty as in
[2]. It is equivalent to Definition 6.44 in [13] and stronger than the weak m-stabilty in Definition
3.27 of [16].

Definition 4.11. We call a set Q ⊆ Me(P ) stable if it has the following property: For any
Q1, Q2, Q3 ∈ Q, any t ≥ 0 and any At ∈ Ft the probability measure Q given by

Q[A] = EQ1

[
IAt Q2[A | Ft ] + IAc

t
Q3[A | Ft ]

]
, (31)

called the pasting of Q1, Q2 and Q3 in t via At, belongs again to the set Q.

Note that the density of the pasting Q is given by

ZT := IAt

Z1
t

Z2
t

Z2
T + IAc

t

Z1
t

Z3
t

Z3
T , (32)

where Zi denotes the density process of Qi with respect to P for i = 1, 2, 3.

It is also easy to see that a probabilty measure Q is a pasting of Q1, Q2 and Q3 at time t via At

iff it has the following property:

EQ[X|Fs] =
{

EQ1

[
IAt EQ2 [X | Ft ] + IAc

t
EQ3 [X | Ft ] | Fs

]
; s < t

IAt EQ2 [X | Fs ] + IAc
t
EQ3 [X | Fs ] ; s ≥ t.

(33)

for all s ≥ 0. In particular we have Q = Q1 on Ft.

If the initial risk measure ρ0 is coherent then the penalty function αmin
0 (Q) can only take values

0 or ∞. Hence the set Q∗ takes the form

Q∗ =
{

Q ∈Me(P )
∣∣ αmin

0 (Q) = 0
}

.

Corollary 4.12. Let (ρt)t=0,1,... be a sequence of conditional convex risk measures such that
each ρt is continuous from above. Assume that Q∗ 6= ∅ and that the initial risk measure ρ0 is
coherent. Then the following conditions are equivalent:

20



1. (ρt)t=0,1,... is time-consistent.

2. The representation
ρt(X) = ess sup

Q∈Q∗
EQ[−X|Ft] (34)

holds for all X ∈ L∞ and all t ≥ 0, and the set Q∗ is stable.

3. The representation (34) holds for all X ∈ L∞ and all t ≥ 0, and the process (ρt(X))t=0,1,...

is a Q-supermartingale for all Q ∈ Q∗ and all X ∈ L∞.

In each case (ρt)t=0,1,... is a dynamic coherent risk measure.

Proof. As in the proof of Theorem 4.5 we may assume that P ∈ Q∗.

1) ⇒ 2) Time-consistency implies property 3) of Theorem 4.5, and we will show that this
implies property 2) of Corollary 4.12. Indeed, αmin

0 (Q) = 0 implies αmin
t (Q) = 0 for all t ≥ 0

due to property 3). Hence the representation (23) reduces to (34). To prove stability of the
set Q∗, take Q1, Q2, Q3 ∈ Q∗, t ≥ 0, At ∈ Ft and define Q via (31). Using (33) we obtain
αmin

0,t (Q) = αmin
0,t (Q1) = 0 and

αmin
t (Q) = ess sup

X∈At

EQ[−X|Ft]

= IA ess sup
X∈At

EQ2 [−X|Ft] + IAc ess sup
X∈At

EQ3 [−X|Ft]

= IAαmin
t (Q2) + IAcαmin

t (Q3) = 0,

hence αmin
0 (Q) = αmin

0,t (Q) + EQ[αmin
t (Q)] = 0, and thus Q ∈ Q∗.

2) ⇒ 3) We have to show that 2) implies

E eQ[ ess sup
Q∈Q∗

EQ[−X|Ft+1] | Ft ] ≤ ess sup
Q∈Q∗

EQ[−X|Ft] (35)

for all t ≥ 0 and Q̃ ∈ Q∗. To this end note first that the set{
EQ[−X|Ft+1]

∣∣ Q ∈ Q∗
}

is directed upward due to the stability of the set Q∗ and our assumption P ∈ Q∗. Indeed, for any
Q1, Q2 ∈ Q∗ the pasting Q of P, Q1 and Q2 in t+1 via At :=

{
EQ1 [−X|Ft+1] > EQ2 [−X|Ft+1]

}
with the density

ZT := IAt

Z1
T

Z1
t+1

+ IAc
t

Z2
T

Z2
t+1

belongs to Q∗ and

EQ[−X|Ft+1] = max(EQ1 [−X|Ft+1], EQ2 [−X|Ft+1]).

Hence the same argument as in the proof of Lemma 2.6 implies

E eQ[ess sup
Q∈Q∗

EQ[−X|Ft+1] | Ft] = ess sup
Q∈Q∗

E eQ[EQ[−X|Ft+1] | Ft].

Moreover, the pasting of Q̃ and Q in t + 1 via At+1 = Ω belongs to Q∗, and hence we have

ess sup
Q∈Q∗

E eQ[EQ[−X|Ft+1] | Ft] ≤ ess sup
Q∈Q∗

EQ[−X|Ft],
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and this proves (35).

3) ⇒ 1) We show that property 3) of Corollary 4.12 implies property 4) of Theorem 4.5. Indeed,
for X ∈ At+1 representation (34) implies EQ[−X|Ft+1] ≤ 0 for all Q ∈ Q∗. Hence EQ[−X|Ft] ≤
0 for all Q ∈ Q∗ and X ∈ At by (34). Thus the sequence (ρt)t=0,1,... is weakly time-consistent, and
the process (αmin

t (Q))t=0,1,... is a non-negative Q-supermartingale for all Q ∈ Q∗ by Proposition
4.10. Moreover, since αmin

0 (Q) = 0 we obtain αmin
t (Q) = 0 for all t ≥ 0. Hence the process

ρt(X) = ρt(X) + αmin
t (Q), t ≥ 0

is a Q-supermartingale for all Q ∈ Q∗, and so we have verified property 4) of Theorem 4.5. �

5 Asymptotic safety and asymptotic precision

Consider a time-consistent sequence (ρt)t=0,1,... of conditional convex risk measures with infinite
time horizon T = ∞. We assume that F = F∞ := σ (∪t≥0Ft) and that Q∗ 6= ∅.

For Q ∈ Q∗ and X ∈ L∞, the process (V Q
t (X))t=0,1,... is a Q-supermartingale due to Theo-

rem 4.5, and the process (αmin
t (Q))t=0,1,... is a non-negative Q-supermartingale by Remark 4.8.

Moreover, (V Q
t (X))t=0,1,... is bounded from below since

V Q
t (X) ≥ EQ[−X|Ft] Q-a.s.

due to the robust representation (23) of the risk measure ρt. Hence (V Q
t (X))t=0,1,... and

(αmin
t (Q))t=0,1,... are both Q-a.s. convergent to some finite limits αmin

∞ (Q) and V Q
∞(X). In par-

ticular, the limit
ρ∞(X) := lim

t→∞
ρt(X) = V Q

∞(X)− αmin
∞ (Q) (36)

exists P -a.s..

Lemma 5.1. The functional ρ∞ : L∞ → L∞ defined by (36) is normalized, monotone, condi-
tionally convex and conditionally cash invariant with respect to Ft for any t ≥ 0, and it satisfies

ρ∞(X) ≥ −X − ess inf
Q∈Q∗

αmin
∞ (Q) P -a.s..

Proof. Normalization, monotonicity, conditional convexity and conditional cash invariance w.r.t.
any Ft0 follow from the corresponding properties of ρt for t ≥ t0. Since

ρt(X) ≥ EQ[−X|Ft]− αmin
t (Q)

for all t, we obtain
ρ∞(X) ≥ −X − αmin

∞ (Q) Q-a.s. (37)

by martingale convergence for any Q ∈ Q∗. �

Clearly, ρ∞ is a conditional convex risk measure if and only if it reduces to the trivial monetary
risk measure

ρ∞(X) = −X, (38)

since this is equivalent to cash invariance w.r.t. F∞ = F . But this property does not always
hold as shown by examples 5.5 and 5.10 below.

22



Let us first focus on the weaker property

ρ∞(X) ≥ −X,

i.e., the asymptotic capital requirement ρ∞ is enough to cover the actual final loss −X:

Definition 5.2. We say that the sequence (ρt)t=0,1,... is asymptotically safe if the limit ρ∞
defined by (36) satisfies

ρ∞(X) ≥ −X

for any X ∈ L∞.

In order to characterize asymptotic safety we recall that the classes

A0,t = A0 ∩ L∞t t = 0, 1, . . .

and the corresponding penalty functions

αmin
0,t (Q) = sup

X∈A0,t

EQ[−X] t = 0, 1, . . .

satisfy the relations
A0 = A0,t +At

and
αmin

0 (Q) = αmin
0,t (Q) + EQ[αmin

t (Q)],

for all Q ∈ Q∗. In particular, αmin
0,t (Q) is increasing in t by Remark 4.7 and bounded from above

by αmin
0 (Q) for Q ∈ Q∗. Thus the limit

αmin
0,∞(Q) := lim

t→∞
αmin

0,t (Q) ≤ αmin
0 (Q) (39)

exists for all Q ∈ Q∗.

Definition 5.3. Let us say that X ∈ L∞ is predictably acceptable if there exists a uniformly
bounded and P -a.s. convergent sequence (Xt) ⊆ L∞ such that Xt ∈ A0,t for all t ≥ 0 and

X ≥ lim
t→∞

Xt.

We denote by A0,∞ the class of all predictably acceptable positions X.

Note that
A0,∞ ⊆ A0, (40)

since X ≥ limt Xt implies

ρ0(X) ≤ ρ0(lim
t

Xt) ≤ lim inf
t

ρ0(Xt) ≤ 0

by monotonicity and by the Fatou property of the unconditional risk measure ρ0.

Theorem 5.4. The following properties are equivalent:

1.
⋂
t≥0
At = L∞+ .
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2. A0,∞ = A0.

3. lim
t→∞

αmin
0,t (Q) = αmin

0 (Q) for all Q ∈ Q∗.

4. limt→∞ αmin
t (Q) = 0 Q-a.s. and in L1(Q) for all Q ∈ Q∗.

5. limt→∞ αmin
t (Q) = 0 Q-a.s. and in L1(Q) for at least one Q ∈ Q∗.

6. (ρt)t=0,1,... is asymptotically safe.

Proof. 1) ⇒ 2) In view of (40) we have to show that property 1 implies A0 ⊆ A0,∞. For X ∈ A0

define Xt := −ρt(X). Then Xt ∈ A0,t by property (24) of Lemma 4.6. Moreover, for 0 ≤ n ≤ t
we have

X + ρt(X) ∈ An,

since ρt(X + ρt(X)) = 0 and thus ρn(X + ρt(X)) = 0 for all n ≤ t by time-consistency.
Using the Fatou property of ρn we obtain

ρn(X + ρ∞(X)) ≤ lim inf
t→∞

ρn(X + ρt(X)) = 0

for any n ≥ 0, hence
X + ρ∞(X) ∈

⋂
n≥0

An = L∞+ .

Thus limt Xt = −ρ∞(X) ≤ X P -a.s., and this shows X ∈ A0,∞.

2) ⇒ 3) If X ∈ A0 = A0,∞, then there exists a bounded convergent sequence Xt ∈ A0,t, t ≥ 0,
such that limt Xt ≤ X P -a.s.. For any Q ∈ Q∗ we have

αmin
0 (Q) ≥ αmin

0,∞(Q) = lim
t→∞

αmin
0,t (Q) ≥ lim inf

t→∞
EQ[−Xt] ≥ EQ[−X],

where we have used (39), the definition of αmin
0,t (Q) and Lebesgue’s convergence theorem for Q.

But
αmin

0 (Q) = sup
X∈A0

EQ[−X],

and this implies the equality αmin
0 (Q) = αmin

0,∞(Q).

3) ⇒ 4) Note that property 3 in Theorem 4.5 implies

αmin
0 (Q) = αmin

0,t (Q) + EQ[αmin
t (Q)]

for Q ∈ Q∗. Thus the convergence of αmin
0,t (Q) to αmin

0 (Q) implies that the Q-expectation of
αmin

t (Q) converges to 0 as t →∞. This yields our claim since (αmin
t (Q))t=0,1,... is a non-negative

Q-supermartingale by Remark 4.8.

4) ⇒ 5) This is obvious.

5) ⇒ 6) Property 5) and Lemma 5.1 imply ρ∞(X) ≥ −X P -a.s..

6) ⇒ 1) We have to show that the inequality ρ∞(X) ≥ −X implies
⋂
t≥0
At ⊆ L∞+ . Indeed,

X ∈
⋂
t≥0

At ⇒ ρt(X) ≤ 0 for all t ≥ 0

⇒ −X ≤ ρ∞(X) ≤ 0
⇒ X ∈ L∞+ .
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Not every time-consistent sequence of conditional convex risk measures is asymptotically safe,
as illustrated by the following example.

Example 5.5. Let P denote Lebesgue measure on the unit interval Ω := (0, 1], and let Ft denote
the finite σ-field generated by the t-th dyadic partition into the intervals Jt,k := (k2−t, (k + 1)2−t]
(k = 0, . . . , 2t − 1). Take a set A ∈ F := σ(∪t≥0Ft) such that P [A] > 0 and P [Ac ∩ Jt,k] 6= 0 for
any dyadic interval, for example

Ac =
∞⋃

t=1

2t−1⋃
k=1

Uεt(k2−t)

with εt ∈ (0, 2−2t]. For any t ≥ 0 we fix the same acceptance set

At :=
{

X ∈ L∞
∣∣ X ≥ −IA

}
.

The corresponding conditional convex risk measure ρt is given by

ρt(X) = − ess sup
{

m ∈ L∞t
∣∣ m ≤ X + IA

}
.

Note that ρt is indeed normalized since m ≤ 0 for any m ∈ L∞t such that m ≤ IA, due to our
assumption that P [Ac ∩ Jt,k] > 0 for any atom of the σ-field Ft. The corresponding penalty
function is given by

αmin
t (Q) = EQ[ IA | Ft ].

Since αmin
0 (Q) = Q[A], we have Q∗ = Me(P ), and in particular Q∗ 6= ∅ as required in Theorem

4.5.

The sequence (ρt)t=0,1,... is time-consistent. Indeed, At,t+s = L∞+ (Ft+s) for t ≥ 0 and s ≥ 0, and
so we have

At = At+s = At+s + L∞+ (Ft+s) = At+s +At,t+s

in accordance with property 2 of Theorem 4.5. On the other hand, the sequence (ρt)t=0,1,...

decreases to

ρ∞(X) = − ess sup

{
m ∈

∞⋃
t=0

L∞t
∣∣ m ≤ X + IA

}
,

and
ρ∞(−IA) = 0 6≥ IA,

i.e., the sequence (ρt)t=0,1,... is not asymptotically safe. In order to illustrate the criteria of
Theorem 5.4, note that ⋂

t≥0

At = A0 6= L∞+ ,

that
αmin

0,t (Q) ≡ 0 6= αmin
0 (Q),

and that
αmin
∞ (Q) = lim

t→∞
αmin

t (Q) = IA 6= 0.

Remark 5.6. Every dynamic conditional coherent risk measure that satisfies the conditions of
Theorem 4.5 is asymptotically safe. Indeed, property 4) of Theorem 5.4 is clearly satisfied, since
αmin

t (Q) = 0 for all Q ∈ Q∗ as shown in the proof of Corollary 4.12.
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Lemma 5.7. Asymptotic safety holds if the initial risk measure ρ0 satisfies the condition

ρ0 (EP X [X|Ft]) ≤ ρ0(X) (41)

for any X ∈ L∞, all t ≥ 0 and for some measure PX ≈ P .

Proof. Let us verify that condition (41) implies property 2) of Theorem 5.4. Indeed, for any
X ∈ A0 the sequence Xt := EP X [X|Ft] ∈ L∞t (t ≥ 0) is uniformly bounded and P -a.s. convergent
to X. Moreover, Xt ∈ A0,t for all t ≥ 0 since ρ0(Xt) ≤ ρ0(X) ≤ 0 due to (41). �

Remark 5.8. 1. Condition (41) is satisfied for PX = P if ρ0 is law-invariant w.r.t. P ; see
Corollary 4.59 in [13].

2. Condition (41) holds (as an equality) if the supremum in the robust representation of ρ0(X)
is actually attained by some measure PX ≈ P . Indeed, the equality

ρ0(X) = EP X [−X]− αmin
t (PX)

implies

ρ0(X) = EP X [−EP X [X|Ft]]− αmin
t (PX)

= ρ0(EP X [X|Ft])

for any t ≥ 0.

Let us now return to the question whether the asymptotic capital requirement ρ∞ is exactly
equal to the actual final loss.

Definition 5.9. We say that the sequence (ρt)t=0,1,... is asymptotically precise if the limit ρ∞
defined by (36) satisfies

ρ∞(X) = −X

for any X ∈ L∞.

The following example shows that the sequence (ρt)t=0,1,... may be asymptotically safe without
being asymptotically precise.

Example 5.10. In the situation of example 5.5 we now define the acceptance sets

At :=
{

X ∈ L∞
∣∣ X ≥ 0

}
and the corresponding conditional coherent risk measures

ρt(X) = − ess sup
{

m ∈ L∞t
∣∣ m ≤ X

}
.

The sequence (ρt)t=0,1,... is time-consistent and satisfies the conditions of Theorem 4.5. Moreover,
it is asymptotically safe due to Remark 5.6. But it is not asymptotically precise, since the set A
defined in example 5.5 satisfies ρt(IA) = 0 for all t ≥ 0, hence ρ∞(IA) = 0 6= −IA.

Let us now formulate a simple sufficient condition for asymptotic precision.
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Proposition 5.11. Suppose that the supremum in the robust representation of the initial risk
measure ρ0 is in fact a maximum, i.e.,

ρ0(X) = EQX [−X]− αmin
t (QX)

for any X ∈ L∞ and for some QX ≈ P . Then the sequence (ρt)t=0,1,... is asymptotically precise.

Proof. By Lemma 5.7 and the first part of Remark 5.8 the sequence (ρt)t=0,1,... is asymptotically
safe. Thus the Q-supermartingale (V Q

t (X))t=0,1,... satisfies

V Q
∞(X) = ρ∞(X) + αmin

∞ (Q) = ρ∞(X)

for any Q ∈ Q∗, due to (36) and property 4) of Theorem 5.4. Moreover, the non-negative
supermartingale

V Q
t (X)− EQ[−X|Ft], t ≥ 0,

has the initial value ρ0(X) + αmin
0 (Q)− EQ[−X] = 0 if we take Q = QX , and so its limit

V QX

∞ (X) + X = ρ∞(X) + X

is equal to 0 P -a.s.. �

6 Example: The entropic dynamic risk measure

Suppose that preferences are characterized by an exponential utility function u(x) = 1 −
exp(−γx) with γ > 0. At time t the conditional expected utility of a financial position X ∈ L∞

is then given by the Ft-measurable random variable

Ut(X) = E[1− e−γX |Ft].

The set
At :=

{
X ∈ L∞

∣∣ Ut(X) ≥ Ut(0)
}

=
{

X ∈ L∞
∣∣ E[e−γX |Ft] ≤ 1

}
satisfies the necessary conditions for an acceptance set, and hence we can define a sequence of
conditional convex risk measures (ρt)t=0,1,... via

ρt(X) := ess inf
{

Y ∈ L∞t
∣∣ Y + X ∈ At

}
= ess inf

{
Y ∈ L∞t

∣∣ E[e−γX |Ft] ≤ eγY
}

=
1
γ

log E[e−γX |Ft]. (42)

We call a risk measure defined via (42) a conditional entropic risk measure. These risk measures
are also discussed in section 4 of [11].

It is easy to see that a conditional entropic risk measure is continuous from above and hence
representable for all t ≥ 0. To identify the minimal penalty function in the robust representation
we will need the notion of conditional relative entropy.

Recall that the relative entropy of Q ∈M1(P ) with respect to P on the σ-field Ft is defined as

Ht(Q|P ) := EQ[log Zt] = EP [Zt log Zt] ∈ [0,∞],

where Zt denotes a density of Q with respect to P on Ft. By Jensen’s inequality we have
Ht(Q|P ) ≥ 0, with equality iff Q = P on Ft.
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Definition 6.1. For Q ∈ Me(P ) we define the conditional relative entropy of Q with respect
to P at time t ≥ 0 as the Ft-measurable random variable

Ĥt(Q|P ) := EQ

[
log

ZT

Zt

∣∣Ft

]
= EP

[
ZT

Zt
log

ZT

Zt

∣∣Ft

]
I{Zt>0}

(note that Zt > 0 Q-a.s.).

If Ω is a polish space, then for all Q ∈ Pt there exists a regular conditional probability of Q
given Ft, that is a probability kernel Qt : Ω × F → [0, 1] such that Qt(·, B) = Q[B|Ft]Q-a.s.
for all B ∈ F . In this case the conditional relative entropy can be calculated pointwise as the
relative entropy of Qt(ω, ·) with respect to Pt(ω, ·).

The next lemma is a version of Proposition 4 in [11]; see also [3].

Lemma 6.2. For all t ≥ 0 the conditional entropic risk measure ρt has the robust representations
(4) with the minimal penalty function

αmin
t (Q) =

1
γ

Ĥt(Q|P ), Q ∈ Pt.

Proof. To calculate the minimal penalty function we use formula (11):

αmin
t (Q) = ess sup

X∈L∞
(EQ[−X|Ft]− ρt(X))

= ess sup
X∈L∞

(
EQ[−X|Ft]−

1
γ

log EP [e−γX |Ft]
)

=
1
γ

ess sup
Y ∈L∞

(
EQ[−Y |Ft]− log EP [eY |Ft]

)
, Q ∈ Pt.

Now we use the conditional version of a well-known variational formula for relative entropy:

ess sup
Y ∈L∞

(
EQ[−Y |Ft]− log EP [eY |Ft]

)
= Ĥt(Q|P )

for Q ∈ Pt. This follows as in the unconditional case; see, e.g., Lemma 3.29 in [13] and Lemma
2 in [11]. �

An easy calculation shows that the sequence of conditional entropic risk measures (ρt)t=0,1,... .
is time-consistent:

ρt(X) =
1
γ

log EP [e−γX |Ft]

=
1
γ

log EP [e−γ( 1
γ

log EP [e−γX |Ft+1]|Ft]

= ρt(−ρt+1(X)) t ≥ 0.

Martingale convergence w.r.t. P shows that the sequence (ρt)t=0,1,... is asymptotically precise.
Moreover, the set

Q∗ =
{

Q ∈Me(P )
∣∣ HT (Q|P ) < ∞

}
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is obviously not empty, and so we could apply Theorem 4.5 and Theorem 5.4. But let us rather
illustrate the main criteria for time-consistency and asymptotic precision by verifying them
directly in our present case.

To this end we introduce the “one-step” conditional entropy

Ĥt,t+1(Q|P ) := EQ

[
log

Zt+1

Zt

∣∣Ft

]
,

i.e., the conditional entropy at time t if Q and P are regarded as measures on Ft+1. Clearly,

Ĥt(Q|P ) = Ĥt,t+1(Q|P ) + EQ[Ĥt+1(Q|P )|Ft],

and this illustrates property 3 in Theorem 4.5. Let us now prove directly the basic supermartin-
gale property 4 of the process

V Q
t (X) = ρt(X) + αmin

t (Q), t ≥ 0

in the entropic case. Moreover, we clarify the structure of the corresponding Doob decomposition,
i.e., we identify the increasing predictable process (AQ

t (X)) such that

V Q
t (X)−AQ

t (X), t ≥ 0

is a martingale under Q.

Theorem 6.3. For any Q ∈M1(P ) such that HT (Q|P ) < ∞ and for any X ∈ L∞ the process

V Q
t (X) =

1
γ

log EP [e−γX |Ft] +
1
γ

Ĥt(Q|P ), t ≥ 0

is a supermartingale under Q. Its Doob decomposition is given by the predictable increasing
process

AQ
t (X) :=

1
γ

t−1∑
s=0

Ĥs,s+1(Q|PX), t ≥ 0, (43)

where PX ∈Me(P ) is defined by

dPX

dP
:=

e−γX

EP [e−γX ]
.

The process (V Q
t (X))t=0,1,... is in fact a martingale iff Q = PX . Moreover, V Q

T (X) = −X for
T < ∞, and

lim
t→∞

ρt(X) = lim
t→∞

V Q
t (X) = −X Q-a.s. and in L1(Q)

for T = ∞. In particular,

lim
t→∞

αmin
t (Q) = 0 Q-a.s. and in L1(Q).

Proof. Since PX ≈ P , we can write

Ĥt(Q|P ) = Ĥt(Q|PX) + EQ

[
log

e−γX

EP [e−γX |Ft]

∣∣Ft

]
= Ĥt(Q|PX)− γEQ[X|Ft]− γρt(X),
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and this implies

V Q
t (X) = EQ[−X|Ft] +

1
γ

Ĥt(Q|PX).

Lemma 6.4, applied to PX instead of P , shows that (V Q
t (X))t=0,1,... is a supermartingale under

Q. It also shows that the increasing predictable process (AQ
t (X)) defined by (43) is such that

V Q
t (X)−AQ

t (X), t ≥ 0

is a Q-martingale. In particular, (V Q
t (X))t=0,1,... is a Q-martingale iff Ĥt,t+1(Q|PX) = 0 Q-a.s.

for all t ≥ 0, and this is the case iff Q = PX on F = FT . �

The following lemma was used in the preceding proof.

Lemma 6.4. For any Q ∈M1(P ) such that HT (Q|P ) < ∞, the process of conditional relative
entropies

Ĥt(Q|P ), t ≥ 0

is a supermartingale under Q, and it is in fact a potential in the sense that ĤT (Q|P ) = 0 for
T < ∞ and

lim
t→∞

Ĥt(Q|P ) = 0 Q-a.s. and in L1(Q) (44)

for T = ∞. Its Doob decomposition is given by the predictable increasing process

At :=
t−1∑
s=0

Ĥs,s+1(Q|P ), t ≥ 0, (45)

i.e., the process Ĥt(Q|P ) + At, t ≥ 0 is a martingale under Q.

Proof. We have

Ĥt+1(Q|P ) = EQ

[
log

ZT

Zt+1

∣∣Ft+1

]
= EQ

[
log

ZT

Zt

∣∣Ft+1

]
− log

Zt+1

Zt
,

hence
EQ[ Ĥt+1(Q|P ) | Ft ] = Ĥt(Q|P )− Ĥt,t+1(Q|P ).

Since Ĥt,t+1(Q|P ) ≥ 0 Q-a.s. by Jensen’s inequality, it follows that (Ĥt(Q|P ))t≥0 is a super-
martingale under Q, and that the predictable increasing process in its Doob decomposition is
given by (45). Moreover, (44) follows from

HT (Q|P ) = Ht(Q|P ) + EQ[Ĥt(Q|P )],

since limt→∞Ht(Q|P ) = HT (Q|P ). Indeed, we have Ht(Q|P ) ≤ HT (Q|P ) by Jensen’s inequal-
ity, and the convergence follows by Fatou’s lemma applied to the P -a.s. convergent sequence
(u(Zt))t=0,1,... with u(x) = x log x. �
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