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Abstract. In this paper we consider linear and time-invariant differential-algebraic equations
(DAEs) Eẋ(t) = Ax(t) + f(t), x(0) = x0, where x(·) and f(·) are functions with values in separable
Hilbert spaces X and Z. E : X → Z is assumed to be a bounded operator, whereas A is closed
and defined on some dense subspace D(A) which is in general a proper subset of X. Based on a
decoupling of the algebraic and the differential part, the set of initial values being consistent with
the given inhomogeneity will be parameterized. As a consequence of these results, we will derive
estimates for the trajectory x(·) in dependence of the initial state x0 and the inhomogeneity f(·). In
the theory of differential-algebraic equations, this is commonly known as perturbation analysis.
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1. Introduction. Coupled systems of differential-algebraic and partial differen-
tial equations, or - often called - partial differential-algebraic equations (PDAEs), are
the outcome when modelling jointly interacting - for instance technical - configura-
tions. A spatial discretization of the involved partial differential equations (PDEs)
usually leads to a high dimensional differential-algebraic equation (DAE). However,
for a better understanding of the underlying problem, an analytical investigation of
the original equations is important. A systematic and general study of these problems
leads to systems F (ẋ(t), x(t), t) = 0, x(0) = x0 in an abstract setting, the so-called ab-
stract DAEs (ADAEs). The unknown function x(·) now takes its values in an infinite
dimensional space, and the Fréchet derivative d

dẋ
F (ẋ, x, t) has a non-trivial nullspace,

in general. Typical examples where this kind of equations occurs is in electrical engi-
neering, when circuits with distributed components like transmission lines [11, 14] or
semiconductor devices [2, 17] are considered. Coupled systems also appear in other
disciplines like mechanical or chemical engineering [9, 10].
In this work, we focus on linear and time-invariant ADAEs

Eẋ(t) = Ax(t) + f(t),
x(0) = x0,

(1.1)

where E : X → Z is a bounded linear operator from a separable Hilbert space X to
another space Z. In many practical cases, X and Z are product spaces of Lebesgue
spaces and Rn. The operator A often contains differential operators with respect to
time and thus it is natural to assume that it may be unbounded and that it is defined
on some dense subspace D(A). The first concrete question we address in this work
is the classification of the initial states x0 ∈ X for which (1.1) possesses a solution.
This kind of problem already arises in the theory of finite dimensional DAEs and is
there known as consistent initialization. The second task we treat is the perturbation
analysis of ADAEs. The aim this is the development of estimates of the form

‖x(tf )‖ ≤ c ·



‖x0‖k +

νpert
∑

j=0

‖f (j)‖Lp([0,tf ],Z)



 , (1.2)
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where f (j)(·) denotes the j-th derivative of f(·) with respect to time, Lp([0, tf ], Z) is
a Lebesgue space of Z-valued functions, ‖ · ‖k is some norm on a subspace of X and
some constant c > 0 being independent of x0 and f(·) but dependent of tf .
In the case where E, A ∈ Rn×n, the Kronecker normal form [3, 7] is useful for the
determination of the initial states x0 ∈ R

n being consistent with a given (sufficiently
smooth) inhomogeneity f(·). To be more precise, if det(sE − A) is not the zero
polynomial, then there exist invertible matrices W, T ∈ Rn×n such that WET =
diag(N, I), WAT = diag(I, Ā), where N ∈ Rr×r is a nilpotent matrix and Ā is some
matrix of dimensions n − r × n − r. By a coordinate transformation

[

x1(·)
x2(·)

]

:= T−1x(·),

[

f1(·)
f2(·)

]

:= Wf(·),

we get that (1.1) is equivalent to the following two decoupled equations

Nẋ1(t) = x1(t) + f1(t), (1.3a)

ẋ2(t) = Āx2(t) + f2(t). (1.3b)

Here, (1.3a) contains the algebraic relations and some further - hidden algebraic -
constraints becoming purely algebraic when (1.3a) is formally differentiated with re-
spect to time. If ν is the Kronecker index of the DAE, i.e. the nilpotency index of
N , the solution is given by x1(t) = −

∑ν−1
k=0 Nkf (k)(t). Equation (1.3b) is an ordi-

nary differential equation (ODE) that is solved by the variation of constants formula

x2(t) = eĀtx2(0) +
∫ t

0
eĀτf(t − τ )dτ . Altogether, for the existence of a solution, the

inhomogeneity has to be ν−1-times differentiable in some sense and the initial value
x1(0) has to satisfy (1.3a) for t = 0 whereas x2(0) can be chosen arbitrarily. Fur-
thermore, (1.3) implies that for tf > 0 there exists a constant c > 0 such that for
all sufficiently smooth inhomogeneities f(·) and consistent initial values x0 ∈ Rn the
norm inequality

‖x(tf )‖ ≤ c ·

(

‖x0‖ +

ν
∑

k=0

‖f (k)‖Lp([0,tf ],Rn)

)

(1.4)

holds. Inspired by [13], a projector-based approach for the generalization of the Kro-
necker normal form to ADAEs was presented in [14, 15]. Indeed, this result is the basis
for our investigations in the fields of consistent initialization and perturbation analysis.
We now briefly present some known results about decoupling of operator pairs. We
remark that Lb(X, Z) denotes the space of bounded linear operators mapping from X
to Z and we abbreviate Lb(X) := Lb(X, X). The identity operator is usually denoted
by I ∈ Lb(X) and the domain D(A) of a closed linear operator A : D(A) ⊂ X → Y
is equipped with the graph norm ‖ · ‖D(A) defined by ‖x‖D(A) :=

√

‖x‖2 + ‖Ax‖2.

Theorem 1.1 ([15], Theorem 4.1). Let X, Z be Hilbert spaces and let (E, A) be a
regular operator pair such that E ∈ Lb(X, Z) has closed range and A : D(A) ⊂ X → Z
is closed and densely defined. Moreover, let an operator chain with

E0 := E, A0 := A,

Qi ∈ Lb(X) ∩ Lb(D(A)), Q2
i = Qi, imQi = ker Ei,

∑i−1
j=0 ker Ei ⊂ ker Qi,

Pi := I − Qi,

Ei+1 = Ei − AiQi, D(Ei+1) = D(Ei) ∩ (D(Ai) + kerQi),

Ai+1 = AiPi, D(Ai+1) = D(Ai) + imQi
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exist that is stationary, i.e. there exists a ν ∈ N with kerEν = {0}. Furthermore, let

im E + A

(

ν−1
∑

k=0

ker Ek

)

(1.5)

be closed. Then, there exist Hilbert spaces X1, X2, X3 as well as bounded operators
W ∈ Lb(Z, X1 × X2 × X3), T ∈ Lb(X1 × X2, X), where T is bijective and W is
injective and has dense range, i.e. imW = X1 × X2 × X3, such that

WET =





N 0
0 I
0 0



 , WAT =





I K
0 U

0 P



 . (1.6)

N ∈ Lb(X1) is a nilpotent operator with nilpotency order ν and P, U, K are linear
operators being defined on

[

0 I
]

T−1D(A). The operator WET : X1× X2 → X1×
X2×X3 is bounded and WAT extends to a closed operator with domain

D(WAT ) = X1 ×
[

0 I
]

T−1D(A). (1.7)

The proof in [14, 15] is constructive and denoting PΣν := P0 · · ·Pν−1, the spaces
X1, X2 and X3 are given by X1 := imQ0 × · · · × imQν−1, X2 = imPΣν and X3 =
im(I − EνE−

ν ), where E−
ν is a left inverse of Eν . The transformations W and T are

defined by

T ·
[

x0, x1, . . . , xν−1, xν

]

= xν +

ν−1
∑

i=0

P0 · · ·Pi−1Qixi (1.8)

and

Wz = (−Q0P1 · · ·Pν−1E
−
ν z,−Q1P2 · · ·Pν−1E

−
ν z,

. . . ,−Qν−1E
−
ν z, PΣνE−

ν z, (I − EνE−
ν )z) .

(1.9)

The operators in (1.6) then can be expressed as

N =

























0 Q0Q1 Q0P1Q2 Q0P1P2Q3 · · · Q0P1 · · ·Pν−2Qν−1

. . . Q1Q2 Q1P2Q3

...
. . .

. . .
. . .

...
. . .

. . . Qν−3Pν−2Qν−1

. . . Qν−2Qν−1

0

























, (1.10a)

K = −











Q0P1 · · ·Pν−1E
−
ν Aν

Q1P2 · · ·Pν−1E
−
ν Aν

...
Qν−1E

−
ν Aν











, (1.10b)

U = PΣνE−
ν Aν , (1.10c)

P = (I − EνE−
ν )Aν (1.10d)

and the domain of WAT is given by D(WAT ) = D(Aν) = ker PΣν ⊕(imPΣν ∩D(A)).
In [13, 14, 15], the natural number ν is called ADAE index. It takes the role of the
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Kronecker index in the abstract setting. An ADAE in decoupling form is then given
by





N 0
0 I
0 0





[

ẋ1(t)
ẋ2(t)

]

=





I K
0 U

0 P





[

x1(t)
x2(t)

]

+





f1(t)
f2(t)
f3(t)



 ,

[

x1(0)
x2(0)

]

=

[

x1,0

x2,0

]

.

(1.11)

System (1.11) comprehends the boundary control system

ẋ2(t) = Ux2(t) + f2(t),
0 = Px2(t) + f3(t),

y(t) = Kx2(t),
x2(0) = x2,0.

(1.12)

This type of systems is intensively studied in [4, 6]. By backsubstitution, x1(·) is then
the solution of

Nẋ1(t) = x1(t) + y(t) + f1(t),
x1(0) = x1,0.

(1.13)

Comparing this with the corresponding result in the finite dimensional case, there are
essentially two differences: There appears a ”third row” containing the operator P

which can be interpreted as a boundary control term. By the representation (1.10d)
we see that this is caused by the fact that, in general, the injectivity of Eν does
not imply its surjectivity in contrast to the case where Eν is a square matrix. The
coupling term K is also an effect of the infinite dimensionality of the problem. In
[14, 15], an example of an ADAE is given for which it was shown that no decoupling
form exists with K = 0. The following result gives a more detailed characterization
of this phenomenon.

Theorem 1.2. Let (E, A) be an operator pair satisfying the assumptions of
Theorem 1.1 and let k ∈ N. Then, there exist transformations W̄ , T̄ , such that

(W̄ET̄ , W̄AT̄ ) =









N̄ 0
0 I
0 0



 ,





I K̄
0 Ū

0 P̄







 (1.14)

with N̄kK̄ = 0, if there are transformations W, T such that (WET, WAT ) has the
decoupling form (1.6), and there exists an operator H ∈ Lb(X3, X1) such that

N j(K + HP)Uj ∈ Lb(X2, X1) for j = 0, . . . , ν − k − 1. (1.15)

Proof. Without loss of generality, we may assume that (E, A) already is in decou-

pling form (1.6). We now define the operator L :=
∑ν−k−1

j=0 N j(K + HP)Uj which is
bounded due to the assumption (1.15) and apply the transformations

W̄ =





I NL H
0 I 0
0 0 I



 , T̄ =

[

I −L
0 I

]

. (1.16)
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We then get a form (1.14) with N̄ = N , Ū = U, P̄ = P and K̄ = Nν−k(K +HP)Uν−k

and we calculate N̄kK̄ = NkNν−kKUν−k = 0.
In [14, 15], also a projector-based approach to the decoupling with N̄kK̄ = 0 is
considered. Then the kernels of Qi have to be chosen in a particular way leading to
the notion of canonical projectors. In the case where the preliminaries of Theorem 1.2
are violated, the canonical projectors may be unbounded and therefore unapt for the
decoupling. A conclusion of Theorem 1.2 is that a complete decoupling, i.e. a form
(1.14) with K̄ = 0 exists if (1.15) is fulfilled for k = 0. For trivial reasons, this holds
true in finite dimensions.
The remaining part of this work is organized as follows: In the following section,
solution concepts for ADAEs are clarified. We define the notions of weak and classical
solutions and consistent initial values. Some solvability criteria are presented. Section
3 gives the main result about consistent initialization of ADAEs. It is shown that
initial values not only have to fulfill the (hidden) algebraic relations but there are
some further constraints which are due to the appearance of the operators K and P

in the decoupling form (1.6). Thereafter, Section 4 treats the perturbation analysis
of ADAEs. We will show that the solution continuously depends upon the Sobolev
norms of the inhomogeneity and some particular norm of the initial value. Before
this work is concluded, we consider an example from electrical engineering, apply the
results of this work and give practical interpretations in Section 5.

2. Solvability of Abstract Differential-Algebraic Equations. In this sec-
tion we introduce solution concepts for ADAEs. First, some necessary function spaces
are introduced.

Definition 2.1. Let X be a separable Hilbert space and let I ⊂ R be an interval.
Then for k ∈ N ∪ {∞} we define Ck(I, X) to be the space of k-times continuously
differentiable functions f(·) : I → X and we identify C(I, X) := C0(I, X). For
p ∈ [1,∞], the Lebesgue spaces of X-valued functions are abbreviated by Lp(I, X).

The Sobolev space of k-times weakly differentiable functions is given by H k,p(I, X) :=
{f(·) ∈ Lp(I, X), f (l)(·) ∈ Lp(I, X) for 0 ≤ l ≤ k}. For negative exponents k,
H k,p(I, X) is defined to be the dual space of H−k,p(I, X). We identify the Hilbert
space H k(I, X) with H k,2(I, X) and in the case where the argument X in the above
spaces is missing, we mean X = R.
The separability of X is needed for the availability of common assertions like the
denseness of Ck(I, X)∩ Lp(I, X) and H k(I, X) in Lp(I, X) for k ≥ 0. However, the
separability assumption is nonrestrictive, since practically motivated spaces usually
have this property. For more details in the field of spaces of functions with values in
abstract spaces, we refer to [8] and the bibliography therein.
In the following we clarify the solution types. As in in the case of abstract ODEs,
i.e. X = Z and E is the identity, certain trajectories x(·) make sense even if they are
not continuously differentiable and x(t) /∈ D(A) for some t. This leads to concept of
weak solutions. Our definition is motivated by the corresponding concept for abstract
ODEs in [1].

Definition 2.2. Let an ADAE (1.1) with E ∈ Lb(X, Z) and a densely defined
linear A : D(A) ⊂ X → Z be given.
For f(·) ∈ C([0, tf ], Z), we call x(·) a classical solution, if x(·) ∈ C1([0, tf ], X),
x(t) ∈ D(A) and (1.1) is fulfilled pointwise for all t ∈ [0, tf ].
For f(·) ∈ L1([0, tf ], Z), the function x(·) is called a weak solution if it is continuous
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and for all z∗ ∈ D(A∗) holds that 〈x(·), E∗z∗〉 ∈ H 1,1([0, tf ]) with

d
dt

〈x(·), E∗z∗〉 = 〈x(·), A∗z∗〉 + 〈f(·), z∗〉 , (2.1)

where d
dt

means the weak derivative. A vector x0 is called a consistent initial value if
of (1.1) possesses a weak solution.
In the above definition of weak solutions, the inhomogeneity was assumed to be in the
space L1([0, tf ], Z). One could extend the definition in a manner that Lp([0, tf ], Z)
is considered instead. However, since these spaces are contained in L1([0, tf ], Z),
Definition 2.2 comprehends these cases. In the remaining part we are mainly interested
in weak solutions of ADAEs. Consequently, weak solutions are meant if just spoken
about solutions. In [15], a uniqueness result for solutions of ADAEs is given. We
further state a criterion for the existence of solutions in the case where the ADAE
is trivially initialized, i.e. x(0) = 0 whose proof is based on Laplace transformation.
The more general approach to initialization is considered in Section 3.

Theorem 2.3 ([15], Theorem 3.1). Let an ADAE (1.1) be given and assume that
there exists k ∈ N, M, ω ∈ R such that (sE−A)−1 exists and is bounded for all s ∈ C

with Re s > ω with particularly ‖(sE −A)−1‖Lb(Z,X) ≤ M(1 + |s|)k. Furthermore, let

x0 = 0 and f(·) with f(·) ∈ H k+1([0, tf ], Z) and f(0) = . . . = f (k)(0) = 0. Then (1.1)
has a weak solution.

3. Parameterization of the Consistent Initial Values. Taking a look at
an ADAE in decoupling form (1.11) and recalling the results from finite dimensional
DAEs, one could naively deduce that for the initialization, x2(0) ∈ X2 could be chosen
arbitrarily and x1(0) is then fixed by

x1(0) = −
ν−1
∑

j=0

N jf
(j)
1 (0) −

ν−1
∑

j=0

N j dj

dtj Kx2(t)|t=0 . (3.1)

The problem is that due to possible unboundedness of K, the second sum in the right
hand side of (3.1) does not always exist and even if it makes sense, the initial value
consisting of x1(0) and x2(0) may be inconsistent as the following example shows. For
ξ ∈ [0, tf ], we denote by Cξ ∈ Lb(H

1([0, tf ]), R) the evaluation at ξ, i.e. Cξf = f(ξ).
Consider the ADAE in decoupling form









0 0 0
1 0 0
0 0 I
0 0 0













ẋ1(t)
ẋ2(t)
ẋ3(t)



 =









1 0 −C1

0 1 0
0 0 − ∂

∂ξ

0 0 C0













x1(t)
x2(t)
x3(t)



+









f1(t)
f2(t)
f3(t)
f4(t)









, (3.2)

where - in the notation of (1.1) - the spaces X, Z and D(A) are given by X =
R

2 × L2([0, 1]), D(A) = R
2 × H 1([0, 1]), Z = R

2 × L2([0, 1]) × R. We assume a
trivial inhomogeneity, i.e. fi(·) ≡ 0 for i = 1, . . . , 4, and take the initial value with
x1(0) = x3(0) = 0 and x3(0) ∈ L2([0, 1], X) defined by

(x3(0))(ξ) =











0 : ξ ∈ [0, 1
3 ],

1 : ξ ∈ ( 1
3 , 2

3 ),

0 : ξ ∈ [ 23 , 1].

(3.3)
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The third row of (3.2) is given by d
dt

x3(t, ξ) = − ∂
∂ξ

x3(t, ξ) and together with boundary

condition x3(t, 0) = 0 and initial value (3.3), it has the solution

x3(t, ξ) =

{

x3(0, ξ − t) : ξ − t ∈ [0, 1],

0 : else.

Hence, we get

x1(t) =











0 : t ∈ [0, 1
3 ],

1 : t ∈ ( 1
3 , 2

3 ),

0 : t ∈ R
≥ 2

3 .

(3.4)

Thus, for tf ≥ 1
3 we have x1(·) ∈ L2([0, tf ])\H 1([0, tf ]) and, since x2(·) is the deriva-

tive of x1(·), the second component of the state fulfills x2(·) = ẋ1(·) /∈ C([0, tf ]).
Altogether, we can conclude that (3.2) with the initial values x1(0) = x2(0) = 0 and
x3(0) as in (3.3) has no weak solution in the sense of Definition 2.2.
The reason that an ADAE in decoupling form cannot be initialized in the above pro-
posed way is that the boundary control system (1.12) may produce an output that
is not smooth enough. This additional problem does not appear for ordinary finite
dimensional systems where any initial value results into an infinitely often differen-
tiable output of the free system (i.e. f(·) ≡ 0). Indeed, if x3(·) in (3.2) is initialized
by a smoother function, it possesses a weak solution. An interpretation of this is that
the boundary control term delivers some further relations, which can be considered as
(hidden) boundary conditions in analogy to the corresponding notion for the algebraic
constraints. Nevertheless, the above example has a weak solution if we study (3.2)
on a time interval [0, tf ] ⊂ [0, 1

3 ]. We are not separately considering this effect but
consistent initialization such that a weak solution for an arbitrary time horizon is
contemplated. Another conclusion that can be drawn from this example is that it is
not possible to infer an inequality

∥

∥

∥

∥

∥

∥





x1(tf )
x2(tf )
x3(tf )





∥

∥

∥

∥

∥

∥

R2×L2([0,1])

≤ c











∥

∥

∥

∥

∥

∥





x1(0)
x2(0)
x3(0)





∥

∥

∥

∥

∥

∥

R2×L2([0,1])

+

∥

∥

∥

∥

∥

∥

∥

∥









f1(·)
f2(·)
f3(·)
f4(·)









∥

∥

∥

∥

∥

∥

∥

∥

H 2([0,tf ],R2×L2([0,1])×R)











(3.5)

analogous to the results in finite dimensions. One has to provide the initial value with
some stronger norm, such that a uniform estimate similar to (3.5) is possible.
Before we present the result about consistent initialization, a definition from [16] is
briefly reviewed. In that reference, boundary control systems (1.12) with - in our
notation - f2(·) ≡ 0 are considered.

Definition 3.1. A boundary control system (1.12) is said to be well-posed if the
following holds:

(i) The operator P : D(U) → X3 is onto, kerP is dense in X2, P ∈ Lb(D(U), X2)
and there exists a µ ∈ R such that ker(µI −U)∩kerP = {0} and µI −U is onto.

(ii) For every x2,0 ∈ D(U) ∩ kerP, (1.12) with additionally f2(·) ≡ 0, f3(·) ≡ 0
possesses a unique solution x2(·) ∈ C([0, tf ], D(U)) ∩ C1([0, tf ], X) depending



8 T. REIS

continuously on x2,0 ∈ D(U), i.e. there exists a constant c > 0 such that

max
t∈[0,tf ]

{‖x(t)‖D(U), ‖ẋ(t)‖} ≤ c‖x2,0‖D(U).

(iii) For all f2(·) ∈ H 1([0, tf ], X2) with f2(0) = 0, f3(·) ∈ H 1([0, tf ], X3) and
x2,0 ∈ D(U) with Px2,0 = −f3(0), (1.12) possesses a unique solution x2(·) ∈
C([0, tf ], D(U)) ∩ C1([0, tf ], X) depending continuously on x2,0 ∈ D(U) and

ḟ2(·) ∈ L2([0, tf ], X2), ḟ3(·) ∈ L2([0, tf ], X3), i.e. there exists a constant c > 0
such that

max
t∈[0,tf ]

{‖x(t)‖D(U), ‖ẋ(t)‖}

≤ c
(

‖x2,0‖D(U) + ‖ḟ2(·)‖L2([0,tf ],X2) + ‖ḟ3(·)‖L2([0,tf ],X3)

)

.

(iv) The operator K satisfies K ∈ Lb(D(U), Y ) and there exists a constant c > 0
such that for all x2,0 ∈ D(U)∩kerP, the solution x2(·) of (1.12) with the specific
inhomogeneity f2(·) ≡ 0, f3(·) ≡ 0 satisfies

‖x2(·)‖L2([0,tf ],X2) ≤ c‖x2,0‖.

(v) There exists a constant c > 0 such that for all f2(·) ∈ H 2([0, tf ], X2) with
f2(0) = 0 and f3(·) ∈ H 2([0, tf ], X3) with f3(0) = 0, the output y(·) of (1.12)
with x2,0 = 0 satisfies

‖y(·)‖L2([0,tf ],X1) ≤ c
(

‖f2(·)‖L2([0,tf ],X2) + ‖f3(·)‖L2([0,tf ],X3)

)

.

The well-posedness of the boundary control system constructed from an ADAE in
decoupling form will be an essential prerequisiste in the remaining part of this work.
In [14], this property was shown for ADAEs arising from the equations of electrical
circuits with transmission lines.
We now present the main result on the consistent initialization of ADAEs in decou-
pling form.

Theorem 3.2. Let an ADAE in decoupling form (1.11) with index ν be given
and let k ∈ {0, . . . , ν} with NkK = 0. Further assume that the boundary control
system (1.12) is well-posed according to Definition 3.1. Then for f1(·) with N jf1(·) ∈
H ν−j([0, tf ], X1) for j = 0, . . . , ν − 1, f2(·) ∈ H k([0, tf ], X2), f3(·) ∈ H k([0, tf ], X3)
and x1,0 ∈ X1, x2,0 ∈ X2 satisfying

f3(0) = −Px2,0, x2,1 := f2(0) + Ux2,0 ∈ D(U),

ḟ3(0) = −Px2,1, x2,2 := ḟ2(0) + Ux2,1 ∈ D(U),
...

...

f
(k−2)
3 (0) = −Px2,k−2, x2,k−1 := f

(k−2)
2 (0) + Ux2,k−2 ∈ D(U),

f
(k−1)
3 (0) = −Px2,k−1, x2,k := f

(k−1)
2 (0) + Ux2,k−1 ∈ X,

(3.6a)

x1,0 = −
ν−1
∑

j=0

N jf
(j)
1 (0) −

k−1
∑

j=0

N jKx2,j , (3.6b)

there exists a weak solution with x1(0) = x1,0 and x2(0) = x2,0.
For the proof of Theorem 3.2, the subsequent lemma is needed. It gives conditions
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for the inhomogeneity and the initial state of boundary control systems such that a
smooth output is delivered.

Lemma 3.3. Let a well-posed boundary control system (1.12) be given with f2(·) ∈
H k([0, tf ], X2), f3(·) ∈ H k([0, tf ], X3) and the initial value x2,0 fulfill (3.6a). Then
the output satisfies y(·) ∈ H k([0, tf ], X1) and there exists a constant c ∈ R+ such that
the following uniform estimate is valid for all x2,k

‖y(·)‖Hk([0,tf ],X1) ≤ c
(

‖f2(·)‖Hk([0,tf ],X2) + ‖f3(·)‖Hk([0,tf ],X3) + ‖x2,k‖
)

. (3.7)

Moreover, the initial values of the first k − 1 derivatives of the output are given by

y(j)(0) = Kx2,j . (3.8)

Proof. We show the above statement while additionally assuming that f2(·) ∈

H k+2([0, tf ], X2) with f
(k)
2 (0) = 0, f3(·) ∈ H k+2([0, tf ], X3) and x2,k ∈ D(U) with

Px2,k = −f
(k)
2 (0). By continuity arguments, the more general assumptions of Lemma

3.3 follow from the denseness of H k+2([0, tf ], Xi) in H k([0, tf ], Xi) and ker P in X2.
Consider the boundary control system

˙̄x2,k(t) = Ux̄2,k(t) + f
(k)
2 (t), (3.9a)

0 = Px̄2,k(t) + f
(k)
3 (t), (3.9b)

ȳk(t) = Kx̄2,k, (3.9c)

x̄2,k(0) = x2,k. (3.9d)

Integrating (3.9a), we obtain for t ∈ [0, tf ]

x̄2,k(t) − x̄2,k(0) =
∫ t

0
Ux̄2,k(τ )dτ + f

(k−1)
2 (t) − f

(k−1)
2 (0).

Since U ∈ Lb(D(U), X1) and x2,k = f
(k−1)
2 (0) + Ux2,k−1 by definition, this equation

simplifies to

x̄2,k(t) = U
(

∫ t

0
x̄2,k(τ )dτ + x2,k−1

)

+ f
(k−1)
2 (t).

Hence, x̄2,k−1(t) := x2,k−1 +
∫ t

0
x̄2,k(τ )dτ satisfies ˙̄x2,k−1(t) = Ux̄2,k−1(t) + f

(k)
2 (t)

pointwise. Moreover, due to P ∈ Lb(D(U), X3), we can calculate

Px̄2,k−1(t) + f
(k−1)
3 (t) =

∫ t

0
Px̄2,k(τ )dτ + Px2,k−1 + f

(k−1)
3 (t)

=
∫ t

0
f

(k)
3 (t)dτ − f

(k−1)
3 (0) + f

(k−1)
3 (t) = 0.

Defining ȳk−1(t) :=
∫ t

0
ȳk(τ )dτ + Kx2,k, we obtain ˙̄yk−1(t) = ȳk(t). Then K ∈

Lb(D(U), X1) leads to ȳk−1(t) = Kx̄2,k−1(t). The above defined x̄k−1(·) and ȳk−1(·)
therefore solve the boundary control system

˙̄x2,k−1(t) = Ux̄2,k−1 + f
(k−1)
2 (t), (3.10a)

0 = Px̄2,k−1(t) + f
(k−1)
3 (t), (3.10b)

ȳk−1(t) = Kx̄2,k−1, (3.10c)

x̄2,k−1(0) = x2,k−1. (3.10d)



10 T. REIS

By the definition of well-posedness and the linearity of the boundary control system
(3.9), there exists a constant c > 0 such that for all f2(·) ∈ H k+2([0, tf ], X2), f3(·) ∈

H k+2([0, tf ], X3), x2,k ∈ D(U) with Px2,k = −f
(k)
3 (0), the output ȳk(·) satisfies

‖ȳk(·)‖L2([0,tf ],X1) ≤ c
(

‖x2,k‖ + ‖f2(·)‖Hk([0,tf ],X2) + ‖f3(·)‖Hk([0,tf ],X3)

)

.

Since d
dt

ȳk−1(·) = ȳk(·), then there exists c > 0 such that the output of (3.10) fulfills

‖ȳk−1(·)‖H 1([0,tf ],X1) ≤ c
(

‖x2,k‖ + ‖f2(·)‖Hk([0,tf ],X2) + ‖f3(·)‖Hk([0,tf ],X3)

)

.

Iterating this argumentation k−1-times, we are led to the system (1.12) with y(·) =
ȳ0 ∈ H k([0, tf ], X1), y(j)(0) = ȳj(0) = Kx2,j and an estimate

‖y(·)‖Hk([0,tf ],X1) ≤ c
(

‖x2,k‖ + ‖f2(·)‖Hk([0,tf ],X2) + ‖f3(·)‖Hk([0,tf ],X3)

)

.

The conditions (3.6a) also follow by formally building the first k−1 derivatives of
(1.12) yielding

ẋ
(j+1)
2 (t) = Ux

(j)
2 (t) + f

(j)
2 (t)

0 = Px
(j)
2 (t) + f

(j)
3 (t)

y(j)(t) = Kx
(j)
2 (t)

x(0) = x2,j

(3.11)

for i = 0, . . . , k − 1. By a successive insertion of these relations, we obtain (3.6a).
This further justifies the nomenclature of (hidden) boundary constraints for these
conditions. With Lemma 3.3, we are now able to prove Theorem 3.2.

Proof. The unique candidate for the weak solution (x1(·), x2(·)) of (1.11), consists
of x2(·), the solution of (1.12) and

x1(t) = −

k−1
∑

j=0

N jy(j)(t) −

ν−1
∑

j=0

N jf
(j)
1 (t). (3.12)

It remains to show that both x1(·) and x2(·) are continuous and satisfy the prescribed
initial conditions. Lemma 3.3 implies that y(·) ∈ H k([0, tf ], X1) with y(j)(0) = Kx2,j .
Additionally, N jf1(·) ∈ H ν−j([0, tf ], X1) for j = 0, . . . , ν − 1 and (3.12) imply
x1(·) ∈ H 1([0, tf ], X1), especially that x1(·) ∈ C([0, tf ], X1). It can be seen that
x2(0) reads as in (3.6b), and this completes the proof.

Remark 3.4. By the argumentation in the above proof, we could also assume
that N jf1(·) ∈ Cj([0, tf ], X1) for the existence of a weak solution. In terms of better
overview, this is not further specified. It was further assumed in Theorem 3.2 that
f2(·) ∈ H k,p([0, tf ], X2), f3(·) ∈ H k,p([0, tf ], X3) for especially p = 2. The correspond-
ing result for general p ∈ [1,∞] can be yielded by a suitable extension of the notion of
well-posedness of boundary control systems. Similar problems are considered in [18].
This is also not deepened in this work. It should be further remarked that Theorem 3.2
only gives sufficient conditions for the consistency of initial values. In the example
(3.2), the initial value is consistent for tf ≤ 1

3 although (3.6a) is violated. However,
the given conditions in Theorem 3.2 are independent of tf , i.e. they are also sufficient
for the existence of solutions on an infinite time horizon.
Briefly revisiting the example (3.2), we have - in the notation of Theorem 3.2 - that
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U = − ∂
∂ξ

, D(U) = H 1([0, 1]), P = C0 and ν = k = 2. The (hidden) boundary

constraints therefore read (x3(0))(0) = −f4(0), (f3(0) − ∂
∂ξ

x3(0))(·) ∈ H 1([0, 1]),

( ∂
∂ξ

x3(0) − f3(0))(0) = ḟ4(0). In the case where the inhomogeneity would be absent,

these constraints simplify to (x3(0))(·) ∈ H 2([0, 1]) with (x3(0))(0) = ( ∂
∂ξ

x3(0))(0) =
0.
We now present the consequences of consistent initialization and perturbation analysis
for abstract differential-algebraic equations (1.1) decoupled by the projector approach
in the proof of Theorem 1.1. Let x(0) = x0 be the initial value. According to (1.10c)
and (1.10d), the condition (3.6a) on the (hidden) boundary constraints read

(I − EνE−
ν )f(0) = −(I − EνE−

ν )Aνx0,

(I − EνE−
ν )ḟ(0) = −(I − EνE−

ν )Aνx1,
...

(I − EνE−
ν )f (k−2)(0) = −(I − EνE−

ν )Aνxk−2,
(I − EνE−

ν )f (k−1)(0) = −(I − EνE−
ν )Aνxk−1,

(3.13a)

where the xi are recursively defined by

x1 := PΣνE−
ν f(0) + PΣνE−

ν Aνx0 ∈ D(A),

x2 := PΣνE−
ν ḟ(0) + PΣνE−

ν Aνx1 ∈ D(A),
...

xk−1 := PΣνE−
ν f (k−2)(0) + PΣνE−

ν Aνxk−2 ∈ D(A),
xk := PΣνE−

ν f (k−1)(0) + PΣνE−
ν Aνxk−1 ∈ X.

(3.13b)

We now determine Qjx(0) for j = 0, . . . , ν − 1, i.e. we translate the condition (3.6b)
into the projector-based approach to decoupling. The assumption NkK = 0 means
that QjPj+1 · · ·Pν−1E

−
ν Aν = 0 for j = k, . . . , ν − 1. For the time being, we assume

that k = ν, meaning that K in (1.10b) is full. According to the transformations (1.8)
and (1.9), we then have

Qjx0 = QjQj+1ẋ(0) + QjPj+1Qj+2ẋ(0) + . . . + QjPj+1 · · ·Pν−2Qν−1ẋ(0)
+QjPj+1 · · ·Pν−2Pν−1E

−
ν Aνx0 + QjPj+1 · · ·Pν−2Pν−1E

−
ν f(0).

(3.14a)

Inserting the relations

Qj+kx(l)(0) = Qj+kQj+i+1x
(l+1)(0) + Qj+iPj+i+1Qj+i+2x

(l+1)(0) + . . .

+Qj+iPj+i+1 · · ·Pν−2Qν−1x
(l+1)(0)

+Qj+iPj+i+1 · · ·Pν−2Pν−1E
−
ν Aνxl

+Qj+iPj+i+1 · · ·Pν−2Pν−1E
−
ν f (l)(0)

(3.14b)

for l = 1, . . . , i leads to conditions for the consistent initial values.
Remark 3.5. We could also derive explicit representations for Qjx(0) with combi-

natorial methods, but the resulting expressions are very complicated and therefore hard
to use for general ν ∈ N. In many examples of practical relevance like e.g. electrical
circuits with transmission lines [14], the ADAE index does not exceed 2. Then the
above representation simplifies to

Q1x0 = Q1E
−
2 A2x0 + Q1E

−
2 f(0),

Q0x0 = Q0P1E
−
2 A2x(0) + Q0Q1E

−
2 A2x1

+Q0P1E
−
2 f(0) + Q0Q1E

−
2 ḟ(0).

(3.15)
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If we assume that NkK = 0 and Nk−1K 6= 0 for an arbitrary k ∈ {0, . . . , ν}, we
can use (3.13) as well. The fact that xl is not defined for l = k + 1, . . . , ν − 1 is
compensated by QjPj+1 · · ·Pν−1E

−
ν Aν = 0 for j = k, . . . , ν−1. Hence, the expression

(3.14b) then even makes sense.
Summarizing the above considerations, we can formulate the following result.

Corollary 3.6. Let an ADAE (1.1) be given for which the assumptions of The-
orem 1.1 are valid and let the boundary control system (1.12) with U, P and K as in
(1.10) be well-posed. Further, let k ∈ {0, . . . , ν} be such that QjPj+1 · · ·Pν−1E

−
ν Aν =

0 for j = k, . . . , ν−1 and (I−EνE−
ν )f(·) ∈ H k([0, tf ], Z), PΣνE−

ν f(·) ∈ H k([0, tf ], X),
QjPj+1 · · ·Pν−1E

−
ν f(·) ∈ H ν−j([0, tf ], X). Then, for an initial value x0 satisfying

(3.13) and (3.14), the ADAE (1.1) possesses a unique solution.
Since both the (hidden) algebraic constraints and the (hidden) boundary constraints
can be obtained by a formal differentiation, this technique could be also applied to
the entire system (1.1) without performing a transformation into decoupling form.
Then we get a so-called derivative array

Eẋ(0) = Ax(0) + f(0),
...

Ex(ν+1)(0) = Ax(ν)(0) + f (ν)(0)

(3.16)

and solving for x(0). Derivative arrays are well-known in the theory of finite di-
mensional DAEs (see e.g. [3]). However, this procedure in general delivers more
constraints than the needed ones, since the possible fact that in the decoupling form
holds NkK = 0 for some integer k < ν is not taken into account.

4. Perturbation Analysis. We now consider an adequate generalization of the
perturbation estimates for the finite dimensional case in (1.4). In the example (3.2)
we constituted that an estimate like (3.5) is not possible if x3(0)(·) is provided with
the Lebesgue norm. It will turn out that a similar estimate is possible if we take
a Sobolev norm of x3(0) instead. In that example, we can argue by the transport
equation ∂

∂t
x3(t, ξ) = − ∂

∂ξ
x3(t, ξ) that the derivative with respect to time equals the

spatial one. We first present a result about the perturbation analysis of ADAEs in
decoupling form. Later on, we state the consequences for general DAEs which can
be decoupled by the projector approach presented after Theorem 1.1. An essential
prerequisite in the following result will be that the system is initialized with a vector
fulfilling (3.6).

Theorem 4.1. Let an ADAE system in decoupling form (1.11) with ADAE
index ν be given and assume that the boundary control system (1.12) is well-posed.
Moreover, assume that NkK = 0 for some k ∈ {0, . . . , ν}. Then there exists a
c ∈ R+ such that for all f1(·) with N jf1(·) ∈ H ν−j([0, tf ], X1) for j = 0, . . . , ν − 1,
f2(·) ∈ H k([0, tf ], X2), f3(·) ∈ H k([0, tf ], X3) and x1,0 ∈ X1, x2,0 ∈ X2 satisfying
(3.6), we have

∥

∥

∥

∥

[

x1(tf )
x2(tf )

]∥

∥

∥

∥

≤ c



‖x2,k‖ +
ν−1
∑

j=0

∥

∥N jf1(·)
∥

∥

H j+1([0,tf ],X1)

+ ‖f2(·)‖Hk([0,tf ],X2)
+ ‖f3(·)‖Hk([0,tf ],X3)



 .

(4.1)
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Proof. As a conclusion from (3.7) in Lemma 3.3 (take the identity as output
operator), we verify the estimate

‖x2(tf )‖ ≤ c2

(

‖x2,k‖ + ‖f2(·)‖Hk([0,tf ],X2)
+ ‖f3(·)‖Hk([0,tf ],X3)

)

(4.2)

for some c2 ∈ R+. Furthermore, for y(·) = Kx2(·), a combination of Lemma 3.3
with the boundedness of the evaluation operators, that is the existence of c̃ > 0 with
‖y(j)(tf )‖ ≤ c̃‖y(·)‖Hk([0,tf ],X1) for all j < k, y(·) ∈ H k([0, tf ], X1), we get that there
exist constants c̄j with

‖y(j)(tf )‖X1
≤ c̄j

(

‖x2,k‖ + ‖f2(·)‖Hk([0,tf ],X2)
+ ‖f3(·)‖Hk([0,tf ],X3)

)

. (4.3)

Using the expression (3.12) for x1(t), the triangular inequality yields

‖x1(tf )‖ ≤
ν−1
∑

i=0

∥

∥

∥N jf
(j)
1 (tf )

∥

∥

∥+
k−1
∑

i=0

‖y(i)(tf )‖.

A combination of this relation with (4.3) and making use of the boundedness of the
evaluation operator yields the existence of c1 ∈ R+ with

‖x1(tf )‖ ≤ c1

(

‖x2,k‖ + ‖f2(·)‖Hk([0,tf ],X2)
+ ‖f3(·)‖Hk([0,tf ],X3)

)

. (4.4)

Altogether, from (4.2) and (4.4), the desired result is obtained for c = c1 + c2.
We briefly discuss Theorem 4.1 by means of the example (3.2). An application of
(4.1) leads to

∥

∥

∥

∥

∥

∥





x1(tf )
x2(tf )
x3(tf )





∥

∥

∥

∥

∥

∥

R2×L2([0,1])

≤ c

(

∥

∥

∥

(

ḟ3(0) − ∂
∂ξ

f3(0) + ∂2

∂ξ2 x3(0)
)

(·)
∥

∥

∥

L2([0,1])
+ ‖f1(·)‖H 2([0,tf ])

+ ‖f2(·)‖H 1([0,tf ]) + ‖f3(·)‖H 2([0,tf ],L2([0,1])) + ‖f4(·)‖H 2([0,tf ])

)

.

(4.5)

In the case where the inhomogeneity vanishes, the following simpler estimate is valid
∥

∥

∥

∥

∥

∥





x1(tf )
x2(tf )
x3(tf )





∥

∥

∥

∥

∥

∥

R2×L2([0,1])

≤ c ‖x3(0)(·)‖
H 2([0,1]) . (4.6)

From this example, it can be drawn that x2,k in (4.1) may correspond to spatial
derivatives. Aspects of spatial perturbation are e.g. considered in [12] for a special
class of partial differential-algebraic equations. The results of this work give a more
general approach in an abstract framework.
Subsequently, we present the corresponding perturbation result for general ADAEs
decoupled by the projector-based transformations (1.8) and (1.9). The proof consists
of an application of Theorem 4.1 to these special transformastions and is therefore
omitted.

Corollary 4.2. Let an ADAE (1.1) be given for which the assumptions of The-
orem 1.1 are valid and let the boundary control system (1.12) with U, P and K as in
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(1.10) be well-posed. Further, let k ∈ {0, . . . , ν} be such that QjPj+1 · · ·Pν−1E
−
ν Aν =

0 for j = k, . . . , ν − 1. Then there exists a c > 0 such that for all f(·) with (I −
EνE−

ν )f(·) ∈ H k([0, tf ], Z), PΣνE−
ν f(·) ∈ H k([0, tf ], X), QjPj+1 · · ·Pν−1E

−
ν f(·) ∈

H j+1([0, tf ], X) and an initial value x0 satisfying (3.13) and (3.14) holds that

‖x(tf )‖ ≤ c



‖xk‖ +
ν−1
∑

j=0

‖QjPj+1 · · ·Pν−1E
−
ν f(·)‖H j+1([0,tf ],X)

+ ‖PΣνE−
ν f(·)‖Hk([0,tf ],X) + ‖(I − EνE−

ν )f(·)‖Hk([0,tf ],Z)



 .

(4.7)

In the case where the entire inhomogeneity is ν-times weakly differentiable, the fol-
lowing simpler estimate can be formulated

‖x(tf )‖ ≤ c
(

‖xk‖ + ‖f(·)‖Hν([0,tf ],Z)

)

. (4.8)

If additionally the ADAE possesses a complete decoupling, i.e. there exists a decou-
pling form with K = 0, then for some c > 0, the inequality

‖x(tf )‖ ≤ c
(

‖x0‖ + ‖f(·)‖Hν([0,tf ],Z)

)

(4.9)

holds true.

5. Example: An Electrical Circuit with a Transmission Line . Consider
the electrical circuit of Fig. 5.1 containing a transmission line of length ℓ. The voltage

Transmission Line

uC (t)

iV (t)

uV (t)

iL(t)

uR(t)

R

C

L

Fig. 5.1. Electrical circuit with transmission line

and current courses V (ξ, t), I(ξ, t) along the transmission line satisfy the telegraph
equations

CT
∂
∂t

V (ξ, t) = −GT I(ξ, t) − ∂
∂ξ

V (ξ, t),

LT
∂
∂t

I(ξ, t) = − ∂
∂ξ

I(ξ, t) − RT V (ξ, t)

for some constants GT , RT ≥ 0, CT , LT > 0. Further, due to element relations and
the Kirchhoff laws [5], we get

Cu̇C(t) = iV (t) − I(0, t), 0 = uC(t) − uV (t),

Li̇L(t) = uR(t), 0 = R−1uR(t) + iL(t) − I(ℓ, t),

0 = uC(t) − V (0, t), 0 = uR(t) − V (ℓ, t).
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This system can be rewritten as an abstract differential algebraic system (1.1) as
follows. The state x(t) and the inhomogeneity f(t) are chosen to be

x(t) =

















uC(t)
iV (t)
iL(t)
uR(t)
V (t)
I(t)

















, f(t) =

























0
−uV (t)

0
0
0
0
0
0

























,

where V (t) and I(t) are are functions describing of the voltage and current along the
transmission line, i.e. (V (t))(ξ) := V (ξ, t) and (I(t))(ξ) := I(ξ, t). As spaces X and
Z, we take X := R4 × (L2([0, ℓ]))2 Z := R6 × (L2([0, ℓ]))2 and we use the operators

E =

























C 0 0 0 0 0
0 0 0 0 0 0
0 0 L 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 CT 0
0 0 0 0 0 LT

























, A =

























0 1 0 0 0 −C0

1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 R−1 0 −Cℓ

1 0 0 0 −C0 0
0 0 0 1 −Cℓ 0
0 0 0 0 −GT − ∂

∂ξ

0 0 0 0 − ∂
∂ξ

−RT

























,

where Cp denotes the evaluation of a function at the point p ∈ [0, ℓ]. The domain of
A reads D(A) = R5 × (H ([0, ℓ]))2. It turns out that this system has ADAE index 2
and decoupling projectors are given by

Q0 =

















0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















, Q1 =

















1 0 0 0 0 0
C 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















,

A left inverse of E2 = E − AQ0 − AP0Q1 can be chosen as

E−
2 =

















0 −1 0 0 0 0 0 0
−1 C 0 0 0 0 0 0
0 0 L−1 −RL−1 0 0 0 0
0 0 0 −R 0 0 0 0
0 0 0 0 0 0 C−1

T 0
0 0 0 0 0 0 0 L−1

T

















Now using the expressions (1.10), we obtain that the inherent dynamics live in the
space {0}2 × R × {0} × (L2([0, 1]))2. More precisely, the inherent abstract ODE is
given by

d

dt





iL(t)
V (t)
I(t)



 =





−L−1R 0 L−1RC1

0 −GT

CT
− 1

CT

∂
∂ξ

0 − 1
LT

∂
∂ξ

−RT

LT









iL(t)
V (t)
I(t)



 (5.1a)
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with boundary conditions

[

0
0

]

=

[

0 −C0 0
−R −Cℓ 0

]





iL(t)
V (t)
I(t)



+

[

uV (t)
0

]

. (5.1b)

Moreover, we obtain the identity Q1E
−
2 A2 = 0 implying that we have a decoupling

form with NK = 0. However, K is unbounded due to the identity

Q0P1E
−
2 A2 =

















0 0 0 0 0 0
0 0 0 0 0 C0

0 0 0 0 0 0
0 0 −R 0 0 −RCℓ

0 0 0 0 0 0
0 0 0 0 0 0

















.

Indeed, the preliminaries of Theorem 1.2 are violated and thus, we cannot obtain a
decoupling form with K = 0. We will not go into the detail into the proof that the
boundary control system extracted from the circuit equations is well-posed. In [14],
this is shown for general electrical circuits containing transmission lines. By only
sketching the proof, the transmission line and the other (finite dimensional dynamics)
are first considered separately and afterwards representing the given boundary control
system as the separate systems with additional input-feedback. Then an application
of the results of [19] leads to the well-posedness.
We now collect the (hidden) algebraic relations. 0 = Q1x(t)−Q1E

−
2 f(t) is equivalent

to

0 = uC(t) − uV (t), (5.2a)

whereas Q0Q1ẋ(t) = Q0x + Q0P1E
−
2 A2x(t) − Q0P1E

−
2 f(t) yields

Cu̇C(t) = iV (t) − C0I(t), (5.2b)

0 = uR(t) + RiL(t) − RCℓI(t). (5.2c)

We now make use of Theorem 3.2 by giving conditions on an initial value with
uC(0) = uC0, iV (0) = iV 0, iL(0) = iL0, uR(0) = uR0, VT (0) = VT0, IT (0) = IT0

being consistent for an inhomogeneity containing uV (·) ∈ H 2([0, t]). For a general
ADAE in decoupling form (1.11) with ADAE index 2, NK = 0 and an inhomogeneity
satisfying f2(·) ≡ 0, the boundary conditions (3.6a) simplify to x2,0 ∈ D(U), f3(0) =
−Px2,0. Taking a closer look at (5.1), we see that the domain of U is given by
R × H 1([0, ℓ]) × H 1([0, ℓ]) and the graph norm is equivalent to this Sobolev norm.
This means that iL0, V0 and I0 have to fulfill

V0, I0 ∈ H 1([0, ℓ]), V0(0) = uV (0), V0(ℓ) = −RiL0. (5.3a)

The algebraic relations are then given by

uV 0 = uV (0), iV 0 = Cu̇V (0) + I0(0), uR0 = RI0(ℓ) − RiL0. (5.3b)
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Furthermore, for all uV (·) ∈ H 2([0, t]) and initial values fulfilling (5.2) and (5.3),
Theorem 4.1 yields the existence of a constant c > 0 such that
∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

















uC(t)
iV (t)
iL(t)
uR(t)
V (t)
I(t)

















∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

R4×(L2([0,ℓ]))2

< c
(

‖V0(·)‖H 1([0,ℓ]) + ‖I0(·)‖H 1([0,ℓ]) + |iL0| + ‖uV (·)‖H 2([0,t])

)

. (5.4)

6. Conclusion. In this paper we have considered the consistent initialization
and perturbation analysis of differential-algebraic systems on infinite dimensional
Hilbert spaces, the so-called abstract DAEs. Based on a decoupling form, we have
formulated sufficient criteria for an initial value being consistent with a given inho-
mogeneity. The initial value has to fulfill not only algebraic relations being hidden in
the system but there are some further conditions, the (hidden) boundary constraints.
For systems which are consistently initialized, perturbation results are formulated. In
these estimates, the initial value has been provided with some stronger norm, which
has been interpreted as spatial perturbation in the given examples.
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