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Mean-risk optimization models for electricity
portfolio management

Andreas Eichhorn and Werner Römisch

Abstract— The possibility of controlling risk in stochastic
power optimization by incorporating special risk functionals, so-
called polyhedral risk measures, into the objective is demon-
strated. We present an exemplary optimization model for mean-
risk optimization of an electricity portfolios of a price-t aking
retailer. Stochasticity enters the model via uncertain electricity
demand, heat demand, spot prices, and future prices. The
objective is to maximize the expected overall revenue and,
simultaneously, to minimize risk in terms of multiperiod ri sk
measures, i.e., risk measures that take into account intermediate
cash values in order to avoid liquidity problems at any time.
We compare the effect of different multiperiod polyhedral risk
measures that had been suggested in our earlier work.

Index Terms— Electricity futures, Electricity portfolio, Opti-
mization methods, Polyhedral risk measures, Power industry,
Risk analysis, Scenario tree, Stochastic programming

I. I NTRODUCTION

The deregulation of energy markets has lead to an increased
number of uncertainty factors and higher financial risk for
electric utilities. Classical (stochastic and deterministic) opti-
mization models for power production and trading are focused
on (expected) profit maximization; see, e.g., [1], [2]. Risk
management is usually considered as a separate task. For-
mally, stochastic programming (optimization) models provide
the possibility of considering financial risk directly, e.g., by
probabilistic constraints or by incorporating risk measures.
Carrying out profit maximization and risk aversion simultane-
ously promises additional overall efficiency for power utilities;
see, e.g., [3], [4], [5]. However, most of such risk aversion
strategies in stochastic programming make the resulting prob-
lems harder to solve, thus, only smaller sized problems can
be handled. In this paper we demonstrate a possibility of risk
aversion by incorporating special risk functionals, so-called
polyhedral risk measures [6], into the objectives of stochastic
programs. In this case, the increase of complexity is moderate.
The case study presented here is rather large-scale, it employs
the framework of multistage stochastic programming; cf. [7].

Multistage stochastic programs represent the situation when
a decision maker has to make (optimal) decisions at several
time stages, in each case based on observations of the past
and on statistical information about the futures. An abstract
formulation of a typical multistage stochastic program readsminx 8>><>>:F(z1 ; :::; zT ) �������� zt :=Pt�=1 b� (�� ) � x� ;xt = xt(�1; :::; �t); xt 2 Xt;Pt�1�=0At;� (�t)xt�� = ht(�t)(t = 1; :::; T ) 9>>=>>; (1)
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Fig. 1. Schema of the optimization model components

with a finite (discrete) time horizont = 1; :::; T , a (multi-
variate) stochastic input process�1; :::; �T , given vectorsbt,ht, matricesAt (possibly depending on the stochastics), and
Euclidian subsetsXt. Thext-vectors are referred to as the de-
cisions, and the conditionsxt 2 Xt and

Pt�1�=0At;� (�t)xt�� =ht(�t) are the constraints. Note thatxt may depend on the
stochastic input process, but only on the components prior to
time t (non-anticipativity). Thezt variables represent the (ac-
cumulated) revenues until timet and depend on the stochastics
in the same manner as well as on the decisions. Finally, a
(mean-risk) functionalF is required that maps the stochastic
process of revenues into the real numbers.

The multistage stochastic optimization model presented in
this paper is tailored to the requirements of a typical Germnan
municipal power utility, which has to serve an electricity
demand and a heat demand of customers in a city and its
vicinity, cf. Fig. 1. The power utility owns acombined heat
and power (CHP) production facility that can serve the heat
demand completely and the electricity demand partly. Further
electricity can be obtained by purchasing volumes for each
hour at the (day-ahead) spot market of the European Energy
Exchange (EEX), and by signing a supply contract for a
medium term horizon with a larger power producer. The
latter possibility is suspected to be expensive, but relying on
the spot market only is known to be extremely risky. Spot
price risk, however, may be reduced (hedged) by obtaining
electricity futures at EEX. Futures at EEX are purely financial
contracts relating to a specified delivery period in the future.
Obtaining a future at a certain market value results, at the end
of the corresponding delivery period, in a compensation of
the difference between this market value and the average spot
price in the delivery period. When a specific supply contractis
offered to the power utility by a power producer, the question
arises, whether it is beneficial to accept that offer or it is better
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Fig. 2. Top: Schematic illustration of ”fan” of scenarios for the future,
scenarios are only connected at the beginning (present,t = 1). Bottom:
Scenario tree shows branching also at intermediate time steps (t > 1).

to rely on spot and future market only. That decision will be
an output of the optimization which aims to maximize the
mean overall revenue and, simultaneously, to minimize a risk
measure.

To put this in concrete terms, we take an hourly discretiza-
tion and an optimization horizon of one year as a basis. We
suppose that two types of contracts are available: a fix contract
(fix delivery schedule, fix price), and a flexible contract. The
latter is based on the same delivery schedule, but, at the endof
each month, it is allowed to alter these pre-arranged volumes
for each hour of the following month by a certain percentage
and, in addition, to realter these new volumes in a day-ahead
manner by another percentage. The price of this contract may
depend on the overall volume and on the maximum power
(demand rate). Other (similar) types of flexible contracts such
as swing options would also be possible here, but the type
needs to be fixed a priori. Finally, since electricity production
together with contract volumes might exceed the demand, we
also allow for selling at EEX spot and future market.

Due to the medium term horizon, we slightly simplified the
technical restrictions of the CHP facility in the model such
that no integer variables appear, we only impose that the heat
and the electricity production are within certain interdependent
bounds and that the electricity production of two consecutive
time-steps must not differ more than a given delta. Further-
more, we assume linear production costs (cf. section IV). For
the spot market, we restrict ourselves to price-independent
bids. This guarantees full volume safety. We fully incorporate
the trading rules of EEX including transaction costs, day-ahead
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Fig. 3. Scenario tree data for monthly average spot prices

offering, and initial and variation margins1 for futures. We
consider monthly base and peak futures for each month within
the optimization horizon, i.e., we neglect futures for quarters
and their cascading. We allow for rebalancing the future stock
on every trading day at 12 am.

The remaining paper is organized as follows: After de-
scribing the employed methodology of risk aversion, we
sketch the statistical models and the procedure of generating
scenario trees. Then, in section IV, we formalize the above
optimization model. Together with a concrete scenario tree,
the model can be understood as a linear program. This so-
called deterministic equivalent is solved with a commercial
LP solver and simulation results are presented and interpreted
in section V.

II. M ULTIPERIOD POLYHEDRAL RISK MEASURES

The classical choice for the objective functionalF(z1 ; ::; zT )
in (1) is E [�zT ℄, i.e., the expected (mean) overall costs are
minimized. A lot is known about this case (cf., e.g., [7]).
To achieve risk aversive solutions for (1) it is common to
incorporate so-called risk measures ([8], [9]) such as Value-at-
Risk (VaR) into the objective. This yields mean-risk objectives
such as
 � VaR(zT ) � (1 � 
) � E [zT ℄ with some weighting
factor
 2 [0; 1℄ (cf., e.g., [10]). In this paper however, we are
dealing with a time horizon of one year and it will be seen
below that the application of a one-period risk measure such
as VaR is not sufficient here. A better alternative is to include
a multiperiod risk measure� into F. Such risk measures do
not focus on the terminal wealthzT only, but also take into
account the wealth at intermediate time stagest1 � ::: � tT 0
in order to avoid liquidity problems at all time [11], [12].

In this paper, we apply the multiperiod risk measures to the
cash values at the end of each week within the optimization
horizon. We use risk measure taken from the class ofpoly-
hedral risk measures, that have been shown to be particularly
suitable for being optimized in a stochastic program [6]. They
are, basically, multiperiod extentions of the Conditional-Value-
at-Risk (CVaR), which is, in turn, an improvement of VaR that
is known to have certain drawbacks [10]. The key-idea is that
such a risk measure can be written as the optimal value of a

1When a future is obtained from EEX, a deposit, the initial margin, has to
be payed rather than the market value. As long as the future isheld, changes
of the market value have to be compensated immediately (variation margin).
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Fig. 4. Scenario tree notations
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Fig. 5. The (beginning of the) original scenario treeT (black) and the trading
treeT trade (red/gray) which is derived by delaying branching inT until the
beginning of the next trading day (t = 24, t = 48).

specific stochastic minimization problem of the form�(zt1 ; :::; ztT 0 ) =miny nE hPT 0j=1 
j � yji��� yj 2 Yj(ztj ; y1; :::; yj�1)o (1)

with certain dynamic linear constraintsyj 2 Yj . Inserting this
definition in (1) withF(z1 ; ::; zT ) = �(zt1 ; :::; ztT 0 ) leads tominx;y 8>><>>:E hPT 0j=1 
j � yji �������� zt :=Pt�=1 b� (�� ) � x� ;xt = xt(�1; :::; �t); xt 2 Xt;Pt�1�=0At;� (�t)xt�� = ht(�t);yj 2 Yj(ztj ; y1; :::; yj�1) 9>>=>>; :
Hence, minimizing (1) withF(z1 ; ::; zT ) = �(zt1 ; :::; ztT 0 ) is
in many respects equivalent to minimizing an expectation. The
same is true for the mean-risk objective
 � �(zt1 ; :::; ztT 0 ) �(1 � 
) � E [zT ℄. In mathematical terms this means that the
nonlinearity of � is transformed into a linear objective and
linear constraints. In particular, scenario tree generation can
be carried out in the same manner as for purely expectation-
based stochastic programs. In [6], five multiperiod instances
of polyhedral risk measures have been suggested of which
one goes back to [12]. The different effects of two of these
functionals (�2 and�4) will be demonstrated in Section V.

III. STOCHASTIC INPUT DATA AND SCENARIO TREES

Before setting up the stochastic optimization model, it is
necessary to identify the random input data�1; :::; �T and
to represent it by suitable statistical models. However, opti-
mization models based on arbitrary statistical models usually
cannot be solved in practice. Hence, the statistical modelsmust
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Fig. 6. Feasible region of CHP facility (x-axis: amount of electricity
production, y-axis: amount of heat production). The polyhedron is defined
through a matrixAp and a vectorbp by Apxp � bp with xp = (xpe; xph)0
representing the amounts of production at a time. The dots within the
polyhedron represent true possible states of the facility from historical data.

be approximated by means of appropriate sampling techniques
yielding a scenario tree.

For the stochastic input data of the optimization model here
(electricity demand, heat demand, and electricity spot prices), a
very heterogeneous statistical model is employed. It is adapted
to historical data in a rather involved procedure. It consists of
a cluster classification for the intra-day (demand and price)
profiles and a three dimensional time series model for the
daily average values. The latter consists of deterministictrend
functions and a trivariate ARMA model for the (stationary)
residual time series; see [13] for further details. An arbitrary
number of three dimensional sample paths (scenarios) can
easily be obtained by simulating white noise processes for
the ARMA model and by adding on the trend functions and
matched intra-day profiles from the clusters afterwards.

However, such a bunch of sample paths (scenario fan,
cf. Fig. 2) does not reflect the information structure in mul-
tistage stochastic optimization, i.e., it neglects the fact that
information is revealed gradually over time. In other words: for
multistage stochastic programming, a sample approximation
of a statistical time series model must provide stochasticity
(branching) not only at the beginning (t = 1) but also at
intermediate time steps. Thus, the collection of scenariosis
required to have a tree structure (scenario tree, cf. Fig. 2). For
this reason, specialized scenario tree construction algorithms
for multistage stochastic programs have been developed in
[14], [15]. These algorithms are based on stability results
for stochastic programs (cf. [16] and [7, Chapter 8]). Beside
generating a tree structure from a fan structure, the algorithms
can simultaneously reduce the number of scenarios in an op-
timal way in order to keep the resulting optimization problem
tractable; cf. [14], [15] for further details.

Now, consider a given scenario tree (generated as described
above) that describes the random input data appropriately.
For the optimization model in this paper, the formulation is
essentially based on the (input) scenario treeT , which consists
of the tree structure (nodesn 2 N and predecessor mapping),
node probabilities�n, and the random data(Den; Dhn; Csn)
for n 2 N (electricity demand, heat demand, and electricity
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Fig. 7. Resulting optimal cash values over time for each scenario for the
case that no contract is included and without incorporatingmultiperiod risk
measures. Top: OnlyE[zT ℄ is optimized. Bottom:0:9�CVaR(zT )�0:1�E[zT ℄
is minimized. There isconsiderably high spreading and many scenarios reach
fairly low cash values at the end or in the meantime, respectively. Of course,
the collection of revenue curves in each figure has the same structure as the
input scenario tree since thez variables are defined on this tree structure.

spot prices, respectively, cf. Fig. 3). The nodes ofT are
numbered successively beginning with the root noden = 1,
cf. Fig. 4. Every noden 2 N n f1g has a unique predecessor
denoted byn� and a unique corresponding time-stept(n) 2f1; :::; 365�24g. Furthermore, we setpath(n) = fn; n�; :::; 1g
the set of all nodes betweenn and the root node. The node
probabilities�n are understood unconditional, i.e., for each
time-stept it holds that

Pfn2N :t(n)=tg �n = 1. Beside the
random input data, also the decision variables are defined on
the scenario tree. This guarantees the non-anticipativityof the
decisions.

The prices for the electricity futures are calculated a pos-
teriori from the spot prices in the scenario tree. A future for
a monthm expires at the end of this month. Then, the final
future price is fixed to the average electricity spot price inthis
monthm. (Note that, for peak futures, only the hours between8 am and8 pm on trading days contribute to the respective
average, whereas, for base futures, every hour of monthm
is taken into account.) Hence, for the price of a future for
monthm before the end of this month, it is natural to assume
so-calledfair prices, i.e., the market value of the future at
some point in timet < end(m) is given by the conditional
expectation of the (temporal) average of the (stochastic) spot
prices with respect to the information that is available at
this time t. This approach guarantees the future prices to be
arbitrage-free.

IV. OPTIMIZATION MODEL

A. Parameters

The scenario tree data can be understood as parameters
indexed by node numbers. All the other parameters are indexed
by time-step or they are not indexed at all:Den, Dhn: Demand of electricity, heat at noden 2 N in MWCsn: Spot price costs for electricity in Euro/MWh (n 2 N )Cfb;mn , Cfp;mn : Prices for base, peak futures in Euro/MWh
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Fig. 8. Resulting optimal cash values over time for each scenario for
the case that no contract is included. Two different multiperiod polyhedral
risk measures are optimized,�2 (top) and�4 (bottom), cf. [6]. Obviously,
multiperiod risk measures aim to reduce spreading at all time.Cs;trans = 0:04Euro=MWh: Spot market transaction costsCf;trans = 0:02Euro=MWh: Future market transaction costsCf;imar = 2:0Euro=MWh: Initial margin for futuresCpe: Cost factor for electricity production inEuro=MWhCph: Cost factor for production of heat inEuro=MWhÆpe: Maximum gradient for electricity production inMWP e: Selling price for electricity inEuro=MWhP h: Selling price for heat inEuro=MWhV 
t : Pre-arranged contract volumes (t = 1; :::; 365 � 24)C
;�x: Energy rate for fix contract inEuro=MWhC
;
ex;p: Peak energy rate, flexible contr. inEuro=MWhC
;
ex;o: Off-peak energy rate inEuro=MWhC
;
ex;d: Maximum demand rate inEuro=MW
B. Derived trees

To formulate the optimization model, it is useful to in-
troduce further (smaller) trees derived fromT by delaying
branching points or by eliminating time-steps. These trees
reflect further non-anticipativity constraints, e.g. day-ahead
requirements for spot market decisions. All decision variables
are defined on the nodes of the trees. The nodes of the trees
are numbered in the same way as for the original scenario
tree:� Future treeT fut: based on the original scenario tree, the

number of time-steps and, hence, the number of nodes is
reduced such that there is one time-step at each trading
day at12 am. In addition, there are time-steps (and nodes)
for the final billing of the futures at the end of each
month (11 pm). Every noded 2 N fut has a unique
corresponding noden(d) 2 N in T .� Trading day treeT trade: based on the original scenario
tree. For every day and every scenario, branching between12 am, previous day, and12 am, current day, is delayed in
time until the beginning of the next trading day (mon-fri
and not a holiday), cf. Fig. 5. Each noden 2 N of the
original scenario tree has a unique corresponding nodej(n) 2 N trade such that for the time-steps of the nodes
it holds thatt(n) = t(j(n)).
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Fig. 9. Resulting optimal cash values over time for each scenario for the
case that no contract is included and withhigh fuel costs. Top: Only E[zT ℄
is optimized. Bottom:0:9 � CVaR(zT )� 0:1 � E[zT ℄ is minimized.� Contract treeT 
ontr: based onT trade, branching is

(further) delayed to the1st day of the following month.
For each nodej of T trade there is a unique corresponding
nodel(j) 2 N 
ontr.

Note that the decision about the contract alternatives (fix,
flexible, or none) has to be made already at the beginning
(here-and-now decision), i.e., the respective decision variable
would be defined on the root node1 rather than on one of the
above trees.

C. Decision variables

Decision variables will be denoted by the letterx. All of
them are defined on one of the trees described in the previous
section and, hence, are indexed by the respective node number:
Future stock for monthm (base):xfb;md 2 R, d 2 N fut
Future stock for monthm (peak):xfp;md 2 R, d 2 N fut
Spot market volumes:xsj 2 R, j 2 N trade
Power production, electricity:xpen 2 R+ , n 2 N
Power production, heat (thermal):xphn 2 R+ , n 2 N
Power production:xpn = (xpen ; xphn ) 2 R2 , n 2 N
Monthly declared contr. volumes:x
;
ex;de
ll 2 R+ , l 2 N 
ontr
Contract volumes:x
j 2 R+ , j 2 N trade
D. Constraints

For the future trading variables, we impose that the initial
future stock is empty and that, after future for monthm has
expired, the respective amount of futures is zero:xfb;m1 = xfp;m1 = 0 for m = 1; :::; 12,xfb;md = xfp;md = 0 if t(d) � end(m) for m = 1; :::; 12.

For the CHP facility we impose a gradient restriction for
the production of electricity, the heat demand satisfaction
constraint, and that, for all time-steps, the two-dimensional
vectorxpn lies within some given bounded polyhedron inR2 ,
cf. Fig. 6, that is given through a matrixAp and a vectorbp:jxpen � xpen�j � Æpe for n 2 N n f1g,xphn � Dhn andApxpn � bp for n 2 N .

For the contract volumes we have thatx
j = 0 if no contract
is purchased and, if the fix contract is included,x
j = V 
t(j) for
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Fig. 10. Resulting optimal cash values over time for each scenario for the
case that no contract is included and withhigh fuel costsusing�2 (top) and�4 (bottom)j 2 N trade. For the case that the flexible contract is chosen,
the monthly declared volumes and the effective volumes,
respectively, have to satisfy:x
;
ex;de
ll 2 [(1� �) � V 
t(l); (1 + �) � V 
t(l)℄x
j 2 [(1� �) � x
;
ex;de
ll(j) ; (1 + �) � x
;
ex;de
ll(j) ℄
for l 2 N 
ontr, j 2 N trade with some given percentages�; �.

For the spot market, no further constraints are imposed. It
remains to require the satisfaction of the electricity demand:xsj(n) + xpen + x
j(n) � Den; n 2 N (1)

E. Cash values

For formulating the objective, we introduce auxiliary vari-
ableszn (n 2 N ) that represent the wealth at timet(n) in
the respective scenario, i.e., the accumulated revenues. These
cash values are composed of the revenues from satisfying the
demands, the costs of power production and contracts, and the
cash flows caused by spot market activity and future trading:zn = zn� + P e �Den + P h �Dhn+ zpn + z
n + zsn+ P12m=1zfb;mn +P12m=1zfp;mn (2)

Note that thez variables depend on the decisions. The cash
flows for power production and spot market are given byzpn = �Cpe � xpen � Cph � xphnzsn = �xsj(n) � Csn � jxsj(n)j � Cs;trans;
respectively. Because we allow for future trading only on
trading days at noon,zfb;mn = zfp;mn = 0 if t(n) does not
correspond to such point in time. Ift(n) does correspond to12 am on a trading day, i,e., if there is a corresponding noded(n) 2 N fut, thenzfb;mn = xfb;md(n)� � �Cfb;md(n) � Cfb;md(n)��� �jxfb;md(n) j � jxfb;md(n)�j� � Cf;imar� ���xfb;md(n) � xfb;md(n)���� � Cf;trans � 1ft(n)6=end(m)g
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Fig. 11. Overall future stock over time for each scenario forthe case that no
contract is included and with high fuel costs. Top: OnlyE[zT ℄ is optimized.
Bottom: 0:9 � CVaR(zT )� 0:1 � E[zT ℄ is minimized.

for base futures of monthm = 1; :::; 12. The first and the
second summand in the above equation represent the variation
margin and the initial margin, respectively. The indicator
function in the third summand reflects the fact, that transaction
costs don’t need to be payed when the future contract expires.
For peak futures, the cost functionszfp;mn are analogous.

For the contracts cash flowz
n, we have to distinguish
between the fix and the flexible contract. For both of them,
there is a volume dependent price to be payed, but for the
latter, there is, in addition, an extrapolated demand ratez
;
ex;dn
depending on the maximum demand within the elapsed time,
which is to be payed at the end of each month.z
n = ( �x
j(n) � C
;�x for the fix contract�x
j(n) � C
;
ext(n) � z
;
ex;dn for the flexible contract

The monthly demand rate is adapted such that, at the end of
the term, the overall payment is proportional to the overall
maximum power, hence,Pf~n2path(n)gz
;
ex;d~n = C
;
ex;d �maxfj2path(j(n))gx
;
exj
for all leavesn, i.e., forn 2 N such thatt(n) = T . Note thatz
;
ex;d~n = 0 if t(~n) is not the end of a month.

F. Objective

The above cash valueszn can be understood, together
with the node probabilities�n, as discrete random variableszt; t = 1; :::; T; with T = 365 �24 andzt = (zn)fn2N :t(n)=tg.
Note that the cash values are defined in a cumulative sense.
Thus, the overall expected revenue is given byE [zT ℄ and the
multiperiod risk measure� applied to the time-stepst1; :::; tT 0
reads�(zt1 ; :::; ztT 0 ). Hence, the objective can be written asmin 
 � �(zt1 ; :::; ztT 0 )� (1� 
) � E [zT ℄ (3)

with some weighting parameter
 2 [0; 1℄. The minimization
is over all thex variables from section IV-C with respect to the
constraints from section IV-D. For the simulations, we used
 = 0:9 and fort1; :::; tT 0 we took the end of each week within
the optimization horizon, i.e.,T 0 = 52 and tj = j � 7 � 24.
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Fig. 12. Overall future stock over time for each scenario forthe case that no
contract is included and with high fuel costs using�2 (top) and�4 (bottom)

V. SIMULATION RESULTS

The model is implemented and solved with ILOG CPLEX
9.1, the ILOG Concert Technology 21 library, and GNU C++
on a2GHz Linux PC with1GB memory. We used a scenario
tree with 40 scenarios,T = 365 � 24 = 8760 time-steps, and
approx.150; 000 nodes.

We ran the simulation successively for the case that the fix
contract, the flexible one, or no contract at all is included.
We separated this decision from the rest of the optimization
model, because all the remaining decision variables are
continuous, hence, the three remaining (sub-) problems
are purely linear programs. Time for solution is in either
case around two hours. We optimized with CVaR, with2
multiperiod risk measures, and without risk measure and
obtained the following values:

no contract fix contr. flex. contr.
opt. 0:9�2 � 0:1E 2:887:700 2:348:420 3:751:450�2(zt1 ; :::; zt52) 2:886:930 2:402:930 3:766:220E[zT ℄ �2:894:640 �1:857:900 �3:618:460
opt. 0:9�2 � 0:1E 1:110:470 595:918 1:335:880�4(zt1 ; :::; zt52) 911:662 453:436 1:078:550E[zT ℄ �2:899:720 �1:878:250 �3:651:910
opt. 0:9CVaR� 0:1E 2:894:770 1:872:500 3:629:540
CVaR(zT ) 2:894:770 1:872:500 3:629:540E[zT ℄ �2:894:770 �1:872:500 �3:629:540
opt. E[zT ℄ (
 = 0) �2:877:230 �1:846:890 �3:601:580
These values suggest, that going without any contract is the

best alternative in terms of expected revenue and, surprisingly,
in terms of risk, too. Note that the absolute values of the
risk measures may not have a significant meaning, but can
be compared for the three contract alternatives.

Beside the (optimal) magnitude of the risk measure and
the expected terminal wealth, the shape of the cash values
over all time-steps seems to be the most relevant output
information. For the case that no contract is considered, the
effect of different risk measures can be observed very well,
cf. Fig. 7-10. Fig. 7 and 8 result from simulations using
the reference parameter. Obviously, optimizing without a risk
measure causes high spread for the distribution of the overall
revenue zT . The incorporation of the (one-period) CVaR
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Fig. 13. Resulting cash values over time using the multiperiod risk measure�2 for the case that the fix contract (top) or the flexible contract (bottom) is
included. In the latter case, there are jumps due to the monthly demand rate.

applied tozT reduces this spread considerably for the price
of high spread and very low values forzt at timet < T . The
multiperiod polyhedral risk measures are effective such that
spreading is somehow more equal over time.

Fig. 8 suggests that the effect of�2 and�4 is more or less
the same, but Fig. 10 reveals that this is not the case. For
the calculation of Fig. 9 and 10, the parametersCpe andCph
have been augmented in order to give the cash value curves
a different direction. The difference between�2 and �4 is,
roughly speaking, that�4 tries to bring equal spread at all
times, whereas�2 tries to find a maximal level that is rarely
underrun.

The different shapes of the curves are achieved by different
policies of future trading. Future trading is revealed through
the jumps in the curves and is explicitely shown in Fig. 11 and
12. If no risk is considered then there is no future trading at
all since, due to the fair-price assumption, there is no benefit
from futures in terms of the expected revenue. Using CVaR
or �2 leads to extensive future trading activity, whereas the
application of�4 yields more moderate future trading.

For the case that a delivery contract is considered, future
trading activity is reduced, cf. Fig. 13. The curve shapes are
basically determined by the special properties of the contracts.

VI. CONCLUSIONS ANDOUTLOOK

Regarding the optimal values, relying on spot and future
market appears to be the better choice than purchasing one of
the available delivery contracts. However, the situation may be
different if the conditions, i.e., the parameters, are changed, or
if we no longer assume fair prices for the futures. Due to this
fair-price assumption, futures are almost too perfectly capable
of reducing spot price risk.

The model could be adapted and improved in numerous
directions, e.g. by allowing for price-dependent spot market
bids or by introducing integer variables into the CHP produc-
tion facility model. Moreover, another goal is to enlarge the
number of scenarios in order to approximate the uncertainty
more accurately. Therefore, one would need more efficient

solution methods. Currently, we are working on a decomposi-
tion approach based on Lagrangian relaxation of the coupling
constraint (1) and the coupling induced by the non-linearity
of the polyhedral risk measures.
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