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Mean-risk optimization models for electricity
portfolio management

Andreas Eichhorn and Werner Romisch

Abstract— The possibility of controlling risk in stochastic Power Municipal Power Utility
power optimization by incorporating special risk functionals, so- Exchange _ 4 Mid-term
called polyhedral risk measures, into the objective is demo (e.g, EEX) Supply
strated. We present an exemplary optimization model for mea- Spot Market 7s Contract
risk optimization of an electricity portfolios of a price-t aking poT AT 52 with large
retailer. Stochasticity enters the model via uncertain eletricity § | Power
demand, heat demand, spot prices, and future prices. The |Future Market 3 CBLp Producer
objective is to maximize the expected overall revenue and, $ facility
simultaneously, to minimize risk in terms of multiperiod risk
measures, i.e., risk measures that take into account interadiate '/7i T$ »
cash values in order to avoid liquidity problems at any time. [\ o ’“'\jf"\
We compare the effect of different multiperiod polyhedral risk adaasaa VRVAAVALY
measures that had been suggested in our earlier work. Customers Demand

Index Terms— Electricity futures, Electricity portfolio, Opti-
mization methods, Polyhedral risk measures, Power indusy,
Risk analysis, Scenario tree, Stochastic programming

Fig. 1. Schema of the optimization model components

|. INTRODUCTION with a finite (discrete) time horizom = 1,...,T, a (multi-

The deregulation of energy markets has lead to an increas@giate) stochastic input process, ..., {7, given vectorsh,,
number of uncertainty factors and higher financial risk fof;, matricesA; (possibly depending on the stochastics), and
electric utilities. Classical (stochastic and deterntiojsopti- Euclidian subsets(;. Thez;-vectors are referred to as the de-
mization models for power production and trading are foduseisions, and the conditions € X, andzi;]o A (&)xe—r =
on (expected) profit maximization; see, e.g., [1], [2]. Risk:({:) are the constraints. Note that may depend on the
management is usually considered as a separate task. Btoehastic input process, but only on the components poior t
mally, stochastic programming (optimization) models pdev time ¢ (non-anticipativity). Thez; variables represent the (ac-
the possibility of considering financial risk directly, e.¢py cumulated) revenues until tinteand depend on the stochastics
probabilistic constraints or by incorporating risk measur in the same manner as well as on the decisions. Finally, a
Carrying out profit maximization and risk aversion simutian (mean-risk) functionaF is required that maps the stochastic
ously promises additional overall efficiency for poweritigl; process of revenues into the real numbers.
see, e.g., [3], [4], [5]. However, most of such risk aversion The multistage stochastic optimization model presented in
strategies in stochastic programming make the resultiog-pr this paper is tailored to the requirements of a typical Genmn
lems harder to solve, thus, only smaller sized problems catunicipal power utility, which has to serve an electricity
be handled. In this paper we demonstrate a possibility &f risemand and a heat demand of customers in a city and its
aversion by incorporating special risk functionals, steca vicinity, cf. Fig. 1. The power utility owns @ombined heat
polyhedral risk measures [6], into the objectives of stochasticand power (CHP) production facility that can serve the heat
programs. In this case, the increase of complexity is maderademand completely and the electricity demand partly. Furth
The case study presented here is rather large-scale, ibgmpklectricity can be obtained by purchasing volumes for each
the framework of multistage stochastic programming; cf. [7hour at the (day-ahead) spot market of the European Energy

Multistage stochastic programs represent the situaticBrwhgExchange (EEX), and by signing a supply contract for a
a decision maker has to make (optimal) decisions at sevefgédium term horizon with a larger power producer. The
time stages, in each case based on observations of the pgsér possibility is suspected to be expensive, but reglyan
and on statistical information about the futures. An alzstrathe spot market only is known to be extremely risky. Spot
formulation of a typical multistage stochastic programd®a price risk, however, may be reduced (hedged) by obtaining

2 = Z::] b (&) - s, electricity futur.es at EEX. FL_J'Fures at EEX are purely finahci
] a = (6,0, 6), @ € Xy, contracts relating to a specified delivery period in the feitu
min F(z1, ..., 27) S A (€)= ha(£) (1) Obtaining a future at a certain market value results, at tie e
t T:‘i’ _'_”TT) o of the corresponding delivery period, in a compensation of

the difference between this market value and the average spo
Andreas Eichhorn and Werner Romisch are with the Instibftélathe- price in the delivery period. When a specific supply contisct
matics, Humboldt-University Berlin, 10099 Berlin, Gernyan offered to the power utility by a power producer, the quenstio
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for Key Technologies in Berlin, Germany Ifttp:/iwww.matheon.de). arises, whether it is beneficial to accept that offer or itattdr
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Fig. 3. Scenario tree data for monthly average spot prices

offering, and initial and variation margihdor futures. We
consider monthly base and peak futures for each month within
the optimization horizon, i.e., we neglect futures for qees
and their cascading. We allow for rebalancing the futureksto
on every trading day at 12 am.

The remaining paper is organized as follows: After de-
scribing the employed methodology of risk aversion, we
sketch the statistical models and the procedure of gengrati
scenario trees. Then, in section 1V, we formalize the above
optimization model. Together with a concrete scenario, tree
the model can be understood as a linear program. This so-
Fig. 2. Top: Schematic illustration of "fan” of scenariosr fthe future, called deterministic equivalent is solved with a commercial

scenarios are only connected at the beginning (present, 1). Bottom: | p solver and simulation results are presented and integbre
Scenario tree shows branching also at intermediate tinps fte> 1). in section V

to rely on spot and future market only. That decision will be ||, M ULTIPERIOD POLYHEDRAL RISK MEASURES
an output of the optimization which aims to maximize the

mean overall revenue and, simultaneously, to minimizela ris The.classwal ch0|ce for the objective functiofigt, .., zr)
measure. in (1) is E[—z¢], i.e., the expected (mean) overall costs are

To put this in concrete terms, we take an hourly discretizg]'n'm'zed' A lot is known about this case (cf., e.g., [7]).

tion and an optimization horizon of one year as a basis. we achieve risk aversive solutions for (1) it is common to

suppose that two types of contracts are available: a fix ao’ntr'lg_C (I)(rp\(/) rz;[e_ Sf'iﬁ Iledbpskt_mea_lrshu_res_ (I[S]’ [9) suqhkasg/ai u

(fix delivery schedule, fix price), and a flexible contracteTh 'Sh( a )\'7g €o Jelc VE. Iés yie _sthmean-rls 0 r’{{m
latter is based on the same delivery schedule, but, at thefen uct asy .Oal (2?) — _107) .I [fr?] Wi sc;]me weighting
each month, it is allowed to alter these pre-arranged vodu ¢ ?W € [th ] EC N ef.]g.,_[ ]).fn 'S baper doyglev_(ﬁr,bwe are
for each hour of the following month by a certain percenta aling with a ime horizon ot one year and it will be seen
and, in addition, to realter these new volumes in a day-ahe gow that the application of a one-period risk measure such
man'ner by anot’her percentage. The price of this contract VaR is not sufficient here. A better alternative is to idelu
depend on the overall volume and on the maximum powgrmultiperiod risk measurg into . Such risk measures do
(demand rate). Other (similar) types of flexible contractshs not focmth;,hon thelttherntu_n?l We"’:;‘.f‘q OtF"y' bl:t alzo tal;e Into

as swing options would also be possible here, but the ty geount the wealth at iniermediate time stages. ... < -
needs to be fixed a priori. Finally, since electricity protie n orde_r to avoid liquidity problem_s at. all t_|me [11], [12]
together with contract volumes might exceed the demand, weh this paper, we apply the mult|per|od_r|s_k measur_es_to t_he
also allow for selling at EEX spot and future market. cash values at the end of each week within the optimization

Due to the medium term horizon, we slightly simplified th gé'z?njsxve use nskhmer?surebtakenhfrom th% C'*’J‘“’F"”"; |
technical restrictions of the CHP facility in the model suc _r"’LI“f rr;)ea_sures, t. a_t 3\/.6 een 1 own to be partécu arr]y
that no integer variables appear, we only impose that the hay'table for being optimized in a stochastic program [Elesr

and the electricity production are within certain intereegent /€ _ba5|cally, mu|t|_per|_0d_extentlons_of the ConditioNalue-
at-Risk (CVaR), which is, in turn, an improvement of VaR that

bounds and that the electricity production of two conseeuti’ K h in drawbacks [101. The kev-idea is th
time-steps must not differ more than a given delta. Furthdp- Known to have certain drawbac s [10]. The key-idea is that

more, we assume linear production costs (cf. section V). Fﬁum a risk measure can be written as the optimal value of a
the spot market, we restrict ourselves to price-independen, _ _ _ o
When a future is obtained from EEX, a deposit, the initial gmarhas to

bids. This guarantees fu_" VOIU.me Safety' We fu”y incorcner be payed rather than the market value. As long as the futurelds changes
the trading rules of EEX including transaction costs, dagaal of the market value have to be compensated immediatelyatiami margin).
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Fig. 6. Feasible region of CHP facility (x-axis: amount ofdticity
production, y-axis: amount of heat production). The potiroa is defined
through a matrixA” and a vectob? by APz? < bP with 2P = (zP¢, zP")’
representing the amounts of production at a time. The dotkirwithe
polyhedron represent true possible states of the facildynfhistorical data.

be approximated by means of appropriate sampling techsique
yielding a scenario tree.
For the stochastic input data of the optimization model here
(electricity demand, heat demand, and electricity spags), a
Fig. 5. The (beginning of the) original scenario trEgblack) and the trading very heterogeneous statistical model is employed. It iptedh
tree_Tf_rade (red/gray) which is derived by delaying branching7inuntil the  tg historical data in a rather involved procedure. It coissis
beginning of the next trading day & 24, ¢ = 48). a cluster classification for the intra-day (demand and price
profiles and a three dimensional time series model for the
daily average values. The latter consists of deterministicd
functions and a trivariate ARMA model for the (stationary)
P2ty 2t ) = residual time series; see [13] for further details. An aslit
min { E [Z],T; ¢ yj] ‘yj c yj(ztj,yl,---,yjq)} 1) number of three dimensional sample paths (scenarios) can
Y easily be obtained by simulating white noise processes for
with certain dynamic linear constraings € ;. Inserting this the ARMA model and by adding on the trend functions and
definition in (1) withF(z1, .., 27) = p(z¢,, ..., z,,) leads to  matched intra-day profiles from the clusters afterwards.
However, such a bunch of sample paths (scenario fan,

(¢] 12 24 36 48 60 72

specific stochastic minimization problem of the form

At = 22:1 br (&) - 2o, cf. Fig. 2) does not reflect the information structure in mul-
min ¢ E [Zl] ¢ %} & ilxt(&""’gt)= vt € X, | tistage stochastic optimization, i.e., it neglects thet fhat
2.y ! Ym0 At (E)Ti—r = ha(&t), information is revealed gradually over time. In other worfds

Yj € Vi(zt;,91, 5 yj-1) multistage stochastic programming, a sample approximatio

of a statistical time series model must provide stochagtici
(branching) not only at the beginning & 1) but also at
intermediate time steps. Thus, the collection of scenagos
equired to have a tree structure (scenario tree, cf. Fig-@)

%ﬂs reason, specialized scenario tree construction itthgos

or multistage stochastic programs have been developed in
?.'4_1], [15]. These algorithms are based on stability results

Hence, minimizing (1) withF(zy, .., z7) = p(24,, ..., 2¢,, ) 1S
in many respects equivalent to minimizing an expectatidre T
same is true for the mean-risk objective p(z, ..., 2¢,., ) —
(1 — =) - E[z¢]. In mathematical terms this means that th
nonlinearity of p is transformed into a linear objective ano;
linear constraints. In particular, scenario tree genenatan

be carried out in the same manner as for purely expectatic# . .
based stochastic programs. In [6], five multiperiod insésnc or stochastic programs (cf. [16] and [7, Chapter 8]). Besid

of polyhedral risk measures have been suggested of whiiglerating a tree structure from a fan structure, the algos

one goes back to [12]. The different effects of two of thege?" lslmultgne%usly r(la(duce rt]he nurr_ber of scenarios mcnzln op-
functionals p, andp4) will be demonstrated in Section V. timal way in order to keep the resu ““9 optimization prable
tractable; cf. [14], [15] for further detalils.

Now, consider a given scenario tree (generated as described
above) that describes the random input data appropriately.
Before setting up the stochastic optimization model, it iBor the optimization model in this paper, the formulation is

necessary to identify the random input data...,{r and essentially based on the (input) scenario ffe@vhich consists
to represent it by suitable statistical models. Howeveti-opof the tree structure (nodesc N and predecessor mapping),
mization models based on arbitrary statistical models liysuanode probabilitiesr,,, and the random datéD¢, D C3)
cannot be solved in practice. Hence, the statistical modalt for n € A (electricity demand, heat demand, and electricity

IIl. STOCHASTIC INPUT DATA AND SCENARIO TREES
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Fig. 7. Resulting optimal cash values over time for each agerfor the Fig. 8.  Resulting optimal cash values over time for each awenfor
case that no contract is included and without incorporatingtiperiod risk the case that no contract is included. Two different muligze polyhedral
measures. Top: Onlif[z7 | is optimized. Bottom0.9-CVaR(zr)—0.1-E[zr| risk measures are optimizeg, (top) andps (bottom), cf. [6]. Obviously,
is minimized. There igonsiderably high spreading and many scenarios reach multiperiod risk measures aim to reduce spreading at ak.tim

fairly low cash values at the end or in the meantime, respslyti Of course,

the collection of revenue curves in each figure has the sametste as the

input scenario tree since thevariables are defined on this tree structure. .
P Cstrans — (). 04 Euro/MWh: Spot market transaction costs

Cftrans — 0.02 Euro/MWh: Future market transaction costs
Cfimar — 9 0 Euro/MWh: Initial margin for futures

CP¢: Cost factor for electricity production ifburo/MWh

ICPh: Cost factor for production of heat iBuro/MWh

0P¢: Maximum gradient for electricity production iIR[W

Pe: Selling price for electricity inEuro/MWh

P": Selling price for heat iffuro/MWh

“: Pre-arranged contract volumes= 1, ..., 365 - 24)

spot prices, respectively, cf. Fig. 3). The nodesTofare
numbered successively beginning with the root nade 1,
cf. Fig. 4. Every nodex € N\ {1} has a unique predecesso
denoted byn— and a unique corresponding time-stgp) €
{1, ...,365-24}. Furthermore, we sefath(n) = {n,n—, ..., 1}
the set of all nodes betweenand the root node. The node
probabilities7,, are understood unconditional, i.e., for eac tc,ﬁx. Enerav rate for fix contract i MWh
time-stept it holds that)_,, c x.y()—¢y ™ = 1. Beside the ~ o © Pega)li enerav rate. flexible cg:\?r/Eu MWh
random input data, also the decision variables are defined on, - off K 9y ' )'(:E MWh rof
the scenario tree. This guarantees the non-anticipatiwitpe ¢, ', Of-Peak energy rate | uro/
decisions. ¢etiesd: Maximum demand rate ifturo/MW
The prices for the electricity futures are calculated a pos- _
teriori from the spot prices in the scenario tree. A future fd3- Derived trees
a monthm expires at the end of this month. Then, the final To formulate the optimization model, it is useful to in-
future price is fixed to the average electricity spot pric¢hiis troduce further (smaller) trees derived fram by delaying
monthm. (Note that, for peak futures, only the hours betwedsranching points or by eliminating time-steps. These trees
8 am and8 pm on trading days contribute to the respectiveeflect further non-anticipativity constraints, e.g. dayad
average, whereas, for base futures, every hour of menthrequirements for spot market decisions. All decision \@ea
is taken into account.) Hence, for the price of a future fare defined on the nodes of the trees. The nodes of the trees
monthm before the end of this month, it is natural to assunere numbered in the same way as for the original scenario
so-calledfair prices, i.e., the market value of the future attree:
some point in timet < end(m) is given by the conditional . Future tree7™!: based on the original scenario tree, the
expectation of the (temporal) average of the (stochastio} s number of time-steps and, hence, the number of nodes is
prices with respect to the information that is available at reduced such that there is one time-step at each trading
this time ¢. This approach guarantees the future prices to be day at12 am. In addition, there are time-steps (and nodes)
arbitrage-free. for the final billing of the futures at the end of each
month (11 pm). Every noded € AN™' has a unique
IV. OPTIMIZATION MODEL corresponding node(d) € A" in 7.

« Trading day tree7 'r2d¢: pased on the original scenario

A. Parameters tree. For every day and every scenario, branching between
The scenario tree data can be understood as parameters 12 am, previous day, ant? am, current day, is delayed in

indexed by node numbers. All the other parameters are imdexe time until the beginning of the next trading day (mon-fri

by time-step or they are not indexed at all: and not a holiday), cf. Fig. 5. Each nodec A of the
D¢, D: Demand of electricity, heat at nodec N in MW original scenario tree has a unique corresponding node
C's: Spot price costs for electricity in Euro/MWh € N) j(n) € N'trade sych that for the time-steps of the nodes

cfb-m oI Prices for base, peak futures in Euro/MWh it holds thatt(n) = t(j(n)).
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Fig. 9. Resulting optimal cash values over time for each agerfor the Fig. 10. Resulting optimal cash values over time for eactmade for the
case that no contract is included and wltigh fuel costs Top: OnlyE[z]  case that no contract is included and whiigh fuel costsusingp> (top) and
is optimized. Bottom0.9 - CVaR(zr) — 0.1 - E[zr | is minimized. pa (bottom)

« Contract tree7": based on7'd¢ branching is j ¢ N'*ade For the case that the flexible contract is chosen,

(further) delayed to thést day of the following month. the monthly declared volumes and the effective volumes,

For each nodg of 7'r2d¢ there is a unique correspondingespectively, have to satisfy:

nOdel(j) € Neont, c,flex,decl ¢ ¢
Note that the decision about the contract alternatives (fix, < € [A-a): Vt(flf’ ((} : )'V( )]
flexible, or none) has to be made already at the beginning’; € [(1-5) 'mf(j)ex’ “LA+B)
(here-and-now decision), i.e., the respective decisiarabbe
would be defined on the root noderather than on one of the
above trees.

c ﬁex de(‘l]

for 1 € Neontr | j ¢ Ntrade with some given percentages 3.
For the spot market, no further constraints are imposed. It
remains to require the satisfaction of the electricity deda

C. Decision variables Ty + 200+ 35, 2 Dy neN (1)
Decision variables will be denoted by the letter All of

them are defined on one of the trees described in the previdusCash values

section and, hence, are indexed by the respective node mumberq formulating the objective, we introduce auxiliary vari

Future stock for montin (base):z""™ € R, d € V'™t ablesz, (n € N) that represent the wealth at tinién) in
Future stock for monthn (peak):z”™ € R, d € NTu* the respective scenario, i.e., the accumulated reventheseT
Spot market volumest$ € R, j € N'rade cash values are composed of the revenues from satisfying the
Power production, electricitys?® € R, n € N demands, the costs of power production and contracts, @nd th
Power production, heat (thermal)y” € Ry, n € N/ cash flows caused by spot market activity and future trading:
Power productionz? = (xP¢, zP") € R*, n € N
Monthly declared contr. volumes; " decl ¢ Ry, € Neontr Zn = zp— +P°-Di+P"-Dp
Contract volumesz¢ € Ry, j € Aftrade +omtrty ‘ 2

+ Z:rlezr{b’m + Z:rlezfip’m
D. Congtraints Note that thez variables depend on the decisions. The cash

For the future trading variables, we impose that the initifllows for power production and spot market are given by
future stock is empty and that, after future for monthhas

2P = _(Ope.gpe _ CPh . gph
expired, the respective amount of futures is zero: So= g . OF —|go |- Csitrans
et = gfrm — o form = 1,...,12, o T T8y On T T 7
5” "= xﬁ”’m =0if t(d) > end( ) form =1,...,12. respectively. Because we allow for future trading only on

For the CHP facility we impose a gradlent restriction fotrading days at noon; /> = 2fP™ = 0 if ¢(n) does not
the production of electricity, the heat demand satisfacticorrespond to such point in time. #fn) does correspond to
constraint, and that, for all time-steps, the two-dimenalo 12 am on a trading day, i,e., if there is a corresponding node
vectorz®, lies within some given bounded polyhedroni¥, d(n) € N, then
cf. Fig. 6, that is given through a matrit? and a vectob?:

jabe — o1 | <8 forn € '\ {1}, e =l (- ol
PP > DM and APzP < bP forn € N. — (= fbm‘_| form ) S imar
For the contract volumes we have th@t— 0 if no contract ()~

‘ fbm fbm‘ Cftran%

is purchased and, if the fix contract is included,—= V for 1i(n)#end(m)}
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Fig. 11. Overall future stock over time for each scenariotii@r case that no Fig. 12. Overall future stock over time for each scenariotfier case that no
contract is included and with high fuel costs usimg (top) andp4 (bottom)

contract is included and with high fuel costs. Top: Ofily | is optimized.
Bottom: 0.9 - CVaR(zr) — 0.1 - E[zr | is minimized.

for base futures of month: = 1,...,12. The first and the

function in the third summand reflects the fact, that tratisac
costs don’t need to be payed when the future contract exp
For peak futures, the cost function&”™ are analogous.

For the contracts cash flow’, we have to distinguish
between the fix and the flexible contract. For both of the
there is a volume dependent price to be payed, but for the

latter, there is, in addition, an extrapolated demandagafe*-?

which is to be payed at the end of each month.
_ ) Cc’ﬁx
. { o

The monthly demand rate is adapted such that, at the en

for the fix contract

V. SIMULATION RESULTS

approx.150, 000 nodes.
We ran the simulation successively for the case that the fix
contract, the flexible one, or no contract at all is included.

. . ... The model is implemented and solved with ILOG CPLEX
second summand in the above equation represent the varlaBo

margin and the initial margin, respectively. The indicator 1, the ILOG Concert Technology 21 library, and GNU C++

on a2 GHz Linux PC with1 GB memory. We used a scenario

irterge with 40 scenarios;l’ = 365 - 24 = 8760 time-steps, and

e separated this decision from the rest of the optimization

model, because all the remaining decision variables are

. . o ._continuous, hence, the three remaining (sub-) problems
depending on the maximum demand within the elapsed time . . Ao P
are purely linear programs. Time for solution is in either

case around two hours. We optimized with CVaR, with
multiperiod risk measures, and without risk measure and

—2%, - C’f(’:fx — zeflexd for the flexible contract OPtained the following values:

the term, the overall payment is proportional to the overallp,(z:,, ..., 2t5,)

maximum power, hence,

c,flex

c,flex,d __ fex,d
— (oflex, s MAX{jepath(j(n))}L;

Z{ﬁepath(n)}zﬁ

for all leavesn, i.e., forn € N such that(n) = T. Note that
zoMesd — o/ if #(7) is not the end of a month.

F. Objective

. no contract| fix contr. | flex. contr.
Bhbt. 0.9p2 — 0.1E 2.887.700 2.348.420 3.751.450
2.886.930 2.402.930 3.766.220

Elzr] —2.894.640 | —1.857.900 | —3.618.460
opt. 0.9p> — 0.1E 1.110.470 595.918 1.335.880
PACTET) 911.662 453.436 1.078.550
Elzr] —2.899.720 | —1.878.250 | —3.651.910
opt. 0.9CVaR— 0.1E 2.894.770 1.872.500 3.629.540
CVaR(zr) 2.894.770 1.872.500 3.629.540
Elzr] —2.894.770 | —1.872.500 | —3.629.540

[ opt. E[zr] (y=0) [ —2.877.230 | —1.846.890 | —3.601.580 ||

The above cash values, can be understood, together These values suggest, that going without any contract is the
with the node probabilities,,, as discrete random variablegpest alternative in terms of expected revenue and, sunghsi
in terms of risk, too. Note that the absolute values of the
Note that the cash values are defined in a cumulative sens¢k measures may not have a significant meaning, but can
Thus, the overall expected revenue is givenithyr| and the be compared for the three contract alternatives.
Beside the (optimal) magnitude of the risk measure and
readsp(zt,, ..., 2t,, ). Hence, the objective can be written asthe expected terminal wealth, the shape of the cash values
over all time-steps seems to be the most relevant output
information. For the case that no contract is consideresl, th
with some weighting parameter € [0, 1]. The minimization effect of different risk measures can be observed very well,
is over all ther variables from section IV-C with respect to thecf. Fig. 7-10. Fig. 7 and 8 result from simulations using
constraints from section IV-D. For the simulations, we usetie reference parameter. Obviously, optimizing withouisk r
~v = 0.9 and forty, ..., t7» we took the end of each week withinmeasure causes high spread for the distribution of the thvera
revenue zy. The incorporation of the (one-period) CVaR

ze, t=1,....,T,with T = 365-24 andz; = (Zn){ne_/\[:t(n):t}.

multiperiod risk measurg applied to the time-steps, ..., t7

min g p(eny,ozey) = (1=7) Elzr] (@)

the optimization horizon, i.e7” =52 andt¢; = j - 7 - 24.
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40r06 - ‘ ‘ ‘ ‘ ‘ T _I————1  solution methods. Currently, we are working on a decomposi-

tion approach based on Lagrangian relaxation of the cogplin
constraint (1) and the coupling induced by the non-lingarit
of the polyhedral risk measures.
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