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Abstract

By extending the stability analysis of [17] for multistage stochastic programs
we show that their solution sets behave stable with respect to the sum of an
Lr-distance and a filtration distance. Based on such stability results we suggest
a scenario tree generation method for the (multivariate) stochastic input process.
It starts with a fan of individual scenarios and consists of a recursive deletion and
branching procedure which is controlled by bounding the approximation error.
Some numerical experience for generating scenario trees in electricity portfolio
management is reported.
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1 Introduction

Multistage stochastic programs are often used to model practical decision processes
over time and under uncertainty, e.g., in finance, production, energy and logistics. We
refer to the pioneering work of Dantzig [4, 5], and to the recent books [35], [40] and
the monograph [24] for the state-of-the-art of the theory and solution methods for
multistage models and for a variety of applications.

The inputs of multistage stochastic programs are multivariate stochastic processes
{ξt}Tt=1 defined on some probability space (Ω,F , IP ) and with ξt taking values in some
IRd. The decision xt at t belonging to IRmt is assumed to be nonanticipative, i.e., to
depend only on (ξ1, . . . , ξt). This property is equivalent to the measurability of xt with
respect to the σ-field Ft(ξ) ⊆ F which is generated by (ξ1, . . . , ξt). Clearly, we have
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Ft(ξ) ⊆ Ft+1(ξ) for t = 1, . . . , T−1. Since at time t = 1 the input is known, we assume
that F1 = {∅,Ω}.

The multistage stochastic program is assumed to be of the form

min



IE

[
T∑

t=1

〈bt(ξt), xt〉
] ∣∣∣∣∣∣

xt ∈ Xt, t = 1, . . . , T, A1,0x1 = h1(ξ1),
xt is Ft(ξ)-measurable, t = 1, . . . , T,
At,0xt + At,1(ξt)xt−1 = ht(ξt), t = 2, . . . , T



 , (1)

where the sets Xt ⊆ IRmt are polyhedral cones, the cost coefficients bt(ξt) and right-
hand sides ht(ξt) belong to IRmt and IRnt, respectively, the fixed recourse matrices At,0

and the technology matrices At,1(ξt) are (nt, mt)- and (nt, mt−1)-matrices, respectively.
The costs bt(·), technology matrices At,1(·) and right-hand sides ht(·) are assumed to
depend affinely linear on ξt.

While the first and third groups of constraints in (1) have to be satisfied pointwise
with probability 1, the second group, the measurability or information constraints, are
functional and non-pointwise at least if T > 2 and F2 $ Ft ⊆ F for some 2 < t ≤ T .
The presence of such qualitatively different constraints constitutes the origin of both
the theoretical and computational challenges of multistage models. Recent results
(see [38, 39]) indicate that multistage stochastic programs have higher computational
complexity than two-stage models.

The main computational approach to multistage stochastic programs consists in
approximating the stochastic process ξ = {ξt}Tt=1 by a process having finitely many
scenarios exhibiting tree structure and starting at a fixed element ξ1 of IRd. This
leads to linear programming models that are very large scale in most cases and can
be solved by linear programming techniques, in particular, by decomposition methods
that exploit specific structures of the model. We refer to [35, Chapter 3] for a recent
survey.

Presently, there exist several approaches to generate scenario trees for multistage
stochastic programs (see [7] for a survey). They are based on several different principles.
We mention here (i) bound-based constructions [1, 9, 12, 26], (ii) Monte Carlo-based
schemes [2, 37, 39] or Quasi Monte Carlo-based methods [29, 30], (iii) (EVPI-based)
Sampling within decomposition schemes [3, 6, 18, 23], (iv) the target/moment-matching
principle [21, 22], and (v) probability metric based approximations [14, 16, 19, 20, 31].

We add a few more detailed comments on some of the recent work. The approach
of (i) relies on constructing discrete probability measures that correspond to lower and
upper bounds (under certain assumptions on the model and the stochastic input) and
on refinement strategies. The recent paper/monograph [1, 26] belonging to (i) also
offer convergence arguments (restricted to linear models containing only stochasticity
in right-hand sides in [1] and to convex models whose stochasticity is assumed to follow
some linear block-diagonal autoregressive process with compact supports in [26]). The
Monte Carlo-based methods in (ii) utilize conditional sampling schemes and lead to a
large number of (pseudo) random number generator calls for conditional distributions.
Consistency results are shown in [37] and the complexity is discussed in [38]. The
Quasi Monte Carlo-based methods in [29, 30] are developed for convex models and
for stochastic processes driven by time series models with uniform innovations. While
the general theory on epi-convergent discretizations in [29] also applies to conditional
sampling procedures, a general procedure for generating scenario trees of such time
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series driven stochastic processes is developed in [30] by approximating each of the
(independent) uniform random variables using Quasi Monte Carlo methods (see [28]).
The motivation of using Quasi Monte Carlo schemes originates from their remarkable
convergence properties and good performance for the computation of high-dimensional
integrals while ”generating random samples is difficult” [28, p. 7]. The approach of (v)
is based on probability distances that are relevant for the stability of multistage models.
While the papers [14, 20, 31] employ Fortet-Mourier or Wasserstein distances, our
recent work [16] is based on the rigorous stability result for linear multistage stochastic
programs in [17]. Most of the methods for generating scenario trees require to prescribe
(at least partially) the tree structure. Finally, we also mention the importance of
evaluating the quality of scenario trees and of a postoptimality analysis [7, 25].

In the present paper we extend the theoretical results obtained in [17] by proving an
existence result for solutions of (1) and a (qualitative) stability result for solutions of
multistage models. In addition, we review the forward technique of [16] for generating
scenario trees. Its idea is to start with a fan of individual scenarios which represents a
good initial approximation of the underlying stochastic input process ξ. This scenario
fan might be obtained by sampling or resampling techniques based on parametric or
nonparametric stochastic models of ξ. Starting from such a scenario fan, a tree is
constructed recursively by scenario reduction [8, 15] and bundling (Algorithm 3.2).
We review an error estimate for Algorithm 3.2 in terms of the Lr-distance and an
estimate of the filtration distance Df (Theorem 3.4). Based on the latter estimate we
present a modification of Algorithm 3.2, which allows to control the tree generation by
tolerance levels for the two relevant distances (Lr and Df). The resulting Algorithm
3.5 represents a stability-based heuristic for generating scenario trees. It has been
implemented and tested on real-life data in several practical applications. Numerical
experience was reported in [16] on generating inflow-demand scenario trees based on
real-life data provided by the French company EdF. Earlier or modified versions of the
algorithms were used in [36] to generate scenario trees in power engineering models and
in [27] on generating passenger demand scenario trees in airline revenue management
based on real-life data provided by Lufthansa Systems.

Section 2 presents an extension of the stability result of [17] which provides the
basis of our tree constructions. Section 3 reviews some results of [16], in particular, the
forward tree construction and error estimates in terms of Lr- and filtration distances,
respectively. In Section 4 we discuss some numerical experience on generating load-
price scenario trees for an electricity portfolio optimization model based on real-life
data of a municipal German power company.

2 Stability of multistage models

We assume that the stochastic input process ξ = {ξt}Tt=1 belongs to the linear space
×Tt=1Lr(Ω,F , IP ; IRd) for some r ∈ [1,+∞]. The model (1) is regarded as optimization
problem in the space ×Tt=1Lr′(Ω,F , IP ; IRmt) for some r′ ∈ [1,∞], where both linear
spaces are Banach spaces when endowed with the norms

‖ξ‖r :=
( T∑

t=1

IE[|ξt|r]
) 1
r

for r ∈ [1,∞) and ‖ξ‖∞ := max
t=1,...,T

ess sup |ξt|,

3



‖x‖r′ :=
( T∑

t=1

IE[|xt|r
′
]
) 1
r′

for r′ ∈ [1,∞) and ‖x‖∞ := max
t=1,...,T

ess sup |xt|,

respectively. Here, | · | denotes some norm on the relevant Euclidean spaces and r ′ is
defined by

r′ :=





r
r−1

, if costs are random,

r , if only right-hand sides are random,
∞ , if all technology matrices are random and r = T.

(2)

The definition of r′ is justified by the proof of [17, Theorem 2.1], which we record as
Theorem 2.2. Since r′ depends on r and our assumptions will depend on both r and
r′, we will add some comments on the choice of r and its interplay with the structure
of the underlying stochastic programming model. To have the stochastic program well
defined, the existence of certain moments of ξ has to be required. This fact is well
known for the two-stage situation (see, e.g., Chapter 2 in [35]). If either right-hand
sides or costs in a multistage model (1) are random, it is sufficient to require r ≥ 1.
The flexibility in case that the stochastic process ξ has moments of order r > 1 may
be used to choose r′ as small as possible in order to weaken the condition (A3) (see
below) on the feasible set. If the linear stochastic program is fully random (i.e., costs,
right-hand sides and technology matrices are random), one needs r ≥ T to have the
model well defined and no flexibility on r′ remains.

Let us introduce some notation. Let F denote the objective function defined on
Lr(Ω,F , IP ; IRs)× Lr′(Ω,F , IP ; IRm)→ IR by

F (ξ, x) :=





IE
[ T∑
t=1

〈bt(ξt), xt〉
]

, x ∈ X (ξ),

+∞ , otherwise,

where

X (ξ) := {x ∈ ×Tt=1Lr′(Ω,F , IP ; IRmt|x1 ∈ X1(ξ1), xt ∈ Xt(xt−1; ξt), t = 2, . . . , T}

is the set of feasible elements of (1) and

X1(ξ1) := {x1 ∈ X1|A1,0x1 = h1(ξ1)}
Xt(xt−1; ξt) := {xt ∈ IRmt|xt ∈ Xt, At,0xt + At,1(ξt)xt−1 = ht(ξt)}

the t-th feasibility set for every t = 2, . . . , T . Denoting by

Nr′(ξ) = Nr′((Ft(ξ))Tt=1) := ×Tt=1Lr′(Ω,Ft(ξ), IP ; IRmt)

the nonanticipativity subspace of ξ allows to rewrite the stochastic program (1) in the
form

min{F (ξ, x) : x ∈ Nr′(ξ)}. (3)

Let v(ξ) denote the optimal value of (3) and, for any α ≥ 0, let

lα(F (ξ̃, ·)) := {x̃ ∈ Nr′(ξ̃)|F (ξ̃, x̃) ≤ v(ξ̃) + α}
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denote the α-level set of the stochastic program (3) with input ξ̃. Since, for α = 0, the
level set coincides with the set solutions to (3), we will also use the notation

S(ξ̃) := l0(F (ξ̃, ·)).

The following conditions are imposed on (3):
(A1) ξ ∈ Lr(Ω,F , IP ; IRs), i.e.,

∫
Ω
|ξ(ω)|rdIP (ω) <∞.

(A2) There exists a δ > 0 such that for any ξ̃ ∈ Lr(Ω,F , IP ; IRs) with ‖ξ̃ − ξ‖r ≤ δ,
any t = 2, . . . , T and any x1 ∈ X1(ξ̃1), xτ ∈ Xτ (xτ−1; ξ̃τ), τ = 2, . . . , t− 1, there exists
an Ft(ξ̃)-measurable xt ∈ Xt(xt−1; ξ̃t) (relatively complete recourse locally around ξ).
(A3) The optimal values v(ξ̃) of (3) with input ξ̃ are finite for all ξ̃ in a neighborhood
of ξ and the objective function F is level-bounded locally uniformly at ξ, i.e., for some
α > 0 there exists a δ > 0 and a bounded subset B of Lr′(Ω,F , IP ; IRm) such that
lα(F (ξ̃, ·)) is contained in B for all ξ̃ ∈ Lr(Ω,F , IP ; IRs)with ‖ξ̃ − ξ‖r ≤ δ.

For any ξ̃ ∈ Lr(Ω,F , IP ; IRs) with ‖ξ̃−ξ‖r ≤ δ, condition (A2) implies the existence
of some feasible x̃ in X (ξ̃) and (2) implies the finiteness of the objective F (ξ̃, ·) at any
feasible x̃. A sufficient condition for (A2) to hold is the complete recourse condition
on every recourse matrix At,0, i.e., At,0Xt = IRnt, t = 1, . . . , T . The locally uniform
level-boundedness of the objective function F is quite standard in perturbation results
for optimization problems (see, e.g., [34, Theorem 1.17]). The finiteness condition on
the optimal value v(ξ) is not implied by the level-boundedness of F for all relevant
pairs (r, r′). In general, the conditions (A2) and (A3) get weaker for increasing r and
decreasing r′, respectively.

To state our first result on the existence of solutions to (3) in full generality, we
need two additional conditions:
(A4) There exists a feasible element z in ×Tt=1Lr̂(Ω,F , IP ; IRnt), 1

r
+ 1

r̂
= 1, of the dual

stochastic program to (3), i.e., it holds that

A∗t,0zt + A∗t+1,1(ξt+1)zt+1 − bt(ξt) ∈ X∗t , t = 1, . . . , T − 1, A∗T,0zT − bT (ξT ) ∈ X∗T , (4)

where X∗t denotes the polar to the polyhedral cone Xt, t = 1, . . . , T , and superscript ∗

at matrices means transposition.
(A5) If r′ = 1 we require that, for each c ≥ 0, there exists g ∈ L1(Ω,F , IP ) such that

T∑

t=1

〈bt(ξt(ω)), xt〉 ≥ c|x| − g(ω)

for all x ∈ IRm such that xt ∈ Xt, t = 1, . . . , T , A1,0x1 = h1(ξ1), At,0xt+At,1(ξt(ω))xt−1

= ht(ξt(ω)), t = 2, . . . , T , and for IP -almost all ω ∈ Ω.
To use Weierstrass’ result on the existence of minimizers, we need a topology T

on Lr′(Ω,F , IP ; IRm) such that some level set lα(F (ξ, ·)) is compact with respect to T .
Since the norm topology is too strong for infinite-dimensional optimization models in
Lp-spaces, we resort to the weak topologies σ(Lp, Lq) on the spaces Lp(Ω,F , IP ; IRm),
where p ∈ [1,∞] and 1

p
+ 1

q
= 1. They are Hausdorff and generated by a basis consisting

of the sets

O =
{
x ∈ Lp(Ω,F , IP ; IRm) :

∣∣∣IE
[ T∑

t=1

〈xt − x0
t , y

i
t〉
]∣∣∣ < ε, i = 1, . . . , n

}
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for all x0 ∈ Lp(Ω,F , IP ; IRm), n ∈ IN , ε > 0 and yi ∈ Lq(Ω,F , IP ; IRm), i = 1, . . . , n.
For p ∈ [1,∞), the weak topology σ(Lp, Lq) is of the form σ(E,E∗) with some Banach
space E and its topological dual E∗. For p =∞, the weak topology σ(L∞, L1) on the
Banach space L∞(Ω,F , IP ; IRm) is sometimes called weak∗ topology since it is of the
form σ(E∗, E). If Ω is finite, the weak topologies coincide with the norm topology. If
the space Lp(Ω,F , IP ; IRm) is infinite-dimensional, its weak topology σ(Lp, Lq) is even
not metrizable. For p ∈ [1,∞), subsets of Lp(Ω,F , IP ; IRm) are (relatively) weakly
compact iff they are (relatively) weakly sequentially compact due to the Eberlein-
Šmulian theorem. For p = ∞ the latter property is lost in general. However, if a
subset B of Lp(Ω,F , IP ; IRm) is compact with respect to the weak topology σ(Lp, Lq),
its restriction to B is metrizable if Lq(Ω,F , IP ; IRm) is separable. For these and related
results we refer to [11, Sections 3 and 4].

Now, we are ready to state our existence result for solutions of (3).

Proposition 2.1 Let (A1) – (A5) be satisfied for some pair (r, r′) satisfying (2).
Then the solution set S(ξ) of (3) is nonempty, convex and compact with respect to the
weak topology σ(Lr′, Lq) ( 1

r′ + 1
q

= 1). Here, the conditions (A4) and (A5) are only

needed for r′ ∈ {1,∞}.

Proof: We define the integrand f : Ω× IRm → IR

f(ω, x) :=





T∑
t=1

〈bt(ξt(ω)), xt〉 , x1 ∈ X1(ξ1), xt ∈ Xt(xt−1, ξt(ω)), t = 2, . . . , T,

+∞ , otherwise.

Then f is a proper normal convex integrand (cf. [33] and [34, Chapter 14]).
Let (ω, x) ∈ Ω × IRm be such that x1 ∈ X1(ξ1), xt ∈ Xt(xt−1, ξt(ω)), t = 2, . . . , T .
Then we conclude from (A4) the existence of z ∈ ×Tt=1Lr̂(Ω,F , IP ; IRnt) such that (4)
is satisfied. Hence, for each t = 1, . . . , T , there exists x∗t (ω) ∈ X∗t such that

bt(ξt(ω)) = A∗t,0zt(ω) + A∗t+1,1(ξt+1(ω))zt+1(ω)− x∗t (ω) (t = 1, . . . , T − 1)

bT (ξT (ω)) = A∗T,0zT (ω)− x∗T (ω) .

Inserting the latter representation of bt(ξt(ω)) into the integrand f (defining F (ξ, x) =
IE[f(ω, x)]) leads to

f(ω, x) =
T−1∑

t=1

〈A∗t,0zt(ω) + A∗t+1,1(ξt+1(ω))zt+1(ω)− x∗t (ω), xt〉

+〈A∗T,0zT (ω)− x∗T (ω), xT 〉

≥
T−1∑

t=1

〈A∗t,0zt(ω) + A∗t+1,1(ξt+1(ω))zt+1(ω), xt〉+ 〈A∗T,0zT (ω), xT 〉

=

T∑

t=1

〈zt(ω), At,0xt〉+

T−1∑

t=1

〈zt+1(ω), At+1,1(ξt+1(ω))xt〉

=
T∑

t=1

〈zt(ω), ht(ξt(ω))〉.
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Hence, we have

f(ω, x) ≥ g(ω) , where g :=
T∑

t=1

〈zt, ht(ξt)〉 ∈ L1(Ω,F , IP ).

This implies for the conjugate normal convex integrand f ∗ : Ω× IRm → IR given by

f ∗(ω, y) := sup
x∈IRm

{〈y, x〉 − f(ω, x)}

that the estimate f ∗(ω, 0) ≤ −g(ω) holds. Hence, the assumption of [33, Corollary 3D]
is satisfied and we conclude that the integral functional F (ξ, ·) = IE[f(ω, ·)] is lower
semicontinuous on Lr′(Ω,F , IP ; IRm) with respect to the weak topology σ(Lr′, Lq).

The nonanticipativity subspace Nr′(ξ) is closed with respect to the weak topology
σ(Lr′ , Lq) for all r′ ∈ [1,∞]. For r′ ∈ [1,∞) this fact is a consequence of the norm
closedness and convexity of Nr′(ξ). For r′ = ∞, let (xα)α∈I be a net in N∞(ξ) with
some partially ordered set (I,≤) that converges to some x∗ ∈ L∞(Ω,F , IP ; IRm). Any
neighborhood U(x∗) of x∗ with respect to the weak topology σ(L∞, L1) is of the form

U(x∗) =
{
x ∈ L∞(Ω,F , IP ; IRm) :

∣∣∣IE
[ T∑

t=1

〈xt − x∗t , yit〉
]∣∣∣ < εi, i = 1, . . . , n

}
,

where n ∈ IN , yi ∈ L1(Ω,F , IP ; IRm), εi > 0, i = 1, . . . , n. Since the net (xα)α∈I
converges to x∗, there exists α0 ∈ I such that xα ∈ U(x∗) whenever α0 ≤ α. If the
elements yi belong to ×Tt=1L1(Ω,Ft, IP ; IRmt) for each i = 1, . . . , n, we obtain

∣∣∣IE
[ T∑

t=1

〈xα,t − x∗t , yit〉
]∣∣∣ =

∣∣∣IE
[ T∑

t=1

IE[〈xα,t − x∗t , yit〉|Ft]
]∣∣∣

=
∣∣∣IE
[ T∑

t=1

〈xα,t − IE[x∗t |Ft], yit〉
]∣∣∣ < εi

due to the fact that IE[xα,t|Ft] = xα,t for each t = 1, . . . , T and α ∈ I. Hence, we have
in this case

U(x∗) = U(IE[x∗1|F1], . . . , IE[x∗T |FT ]).

Since the net (xα)α∈I converges to x∗ and the weak topology is Hausdorff, we conclude
x∗t = IE[x∗t |Ft], t = 1, . . . , T , and, thus, x∗ ∈ N∞(ξ).

It remains to show that, for some α > 0, the α-level set lα(F (ξ, ·)) is compact
with respect to the weak topology σ(Lr′ , Lq). For r′ ∈ (1,∞) the Banach space
Lr′(Ω,F , IP ; IRm) is reflexive. Furthermore, any α-level set lα(F (ξ, ·)) is closed and
convex. For some α > 0 the level set is also bounded due to (A3) and, hence, com-
pact with respect to σ(Lr′ , Lq). For r′ = 1 the compactness of any α-level set with
respect to σ(L1, L∞) follows from [33, Theorem 3K] due to condition (A5). For r′ =∞,
some α-level set is bounded due to (A3) and, hence, relatively compact with respect to
σ(L∞, L1) due to Alaoglu’s theorem [11, Theorem 3.21]. Since the objective function
F (ξ, ·) is lower semicontinuous and N∞(ξ) weakly closed with respect to σ(L∞, L1),
the α-level set is even compact with respect to σ(L∞, L1).
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Altogether, S(ξ) is nonempty due to Weierstrass’ theorem and compact with respect
to σ(Lr′ , Lq). The convexity of S(ξ) is an immediate consequence of the convexity of
the objective F (ξ, ·) of the stochastic program (3).

Finally, we note that assumptions (A4) and (A5) are not needed for proving that
S(ξ) is nonempty and compact with respect to the topology σ(Lr′ , Lq) in case r′ ∈
(1,∞). This fact is an immediate consequence of minimizing a linear continuous func-
tional on a closed, convex, bounded subset of a reflexive Banach space. �

To state our first result we introduce the functional Df(ξ, ξ̃) depending on the
filtrations of ξ and of its approximation (or perturbation) ξ̃, respectively. It is defined
by

Df(ξ, ξ̃) := sup
ε∈(0,α]

Df,ε(ξ, ξ̃) (5)

and Df,ε(ξ, ξ̃) denotes the ε-filtration distance given by

Df,ε(ξ, ξ̃) := inf

T−1∑

t=2

max{‖xt − IE[xt|Ft(ξ̃)]‖r′, ‖x̃t − IE[x̃t|Ft(ξ)]‖r′}, (6)

where the infimum is taken with respect to all x ∈ lε(F (ξ, ·)) and x̃ ∈ lε(F (ξ̃, ·)),
respectively, i.e., with respect to all feasible decisions belonging to the ε-level sets
of the original and perturbed programs. In the following, we call the functional Df

filtration distance, although it fails to satisfy the triangle inequality in general.
If solutions of (3) for the inputs ξ and ξ̃ exist, the filtration distance is of the simplified
form

Df(ξ, ξ̃)=inf
{T−1∑

t=2

max{‖xt−IE[xt|Ft(ξ̃)]‖r′, ‖x̃t−IE[x̃t|Ft(ξ)]‖r′} :x ∈ S(ξ), x̃ ∈ S(ξ̃)
}
.

If Ω is finite, the conditions (A1)–(A3) imply the existence of solutions to (3) for each
input ξ̃ with ‖ξ − ξ̃‖r ≤ δ. For general Ω solutions to (3) exist, for example, if the
assumptions of Proposition 2.1 are satisfied. We note that the conditional expectations
IE[xt|Ft(ξ̃)] and IE[x̃t|Ft(ξ)] may be written equivalently in the form IE[xt|ξ̃1, . . . , ξ̃t]
and IE[x̃t|ξ1, . . . , ξt], respectively.

The following stability result for optimal values of program (3) is taken from [17,
Theorem 2.1].

Theorem 2.2 Let (A1), (A2) and (A3) be satisfied and X1(ξ1) be nonempty and
bounded. Then there exists positive constants L and δ such that the estimate

|v(ξ)− v(ξ̃)| ≤ L(‖ξ − ξ̃‖r +Df(ξ, ξ̃)) (7)

holds for all random elements ξ̃ ∈ Lr(Ω,F , IP ; IRs) with ‖ξ̃ − ξ‖r ≤ δ.

The choice of r′ and of X1(ξ1) is slightly more general than that considered in [17].
However, the proof of [17, Theorem 2.1] remains valid for the more general choice of r ′

and may be extended easily to constraints for x1 that depend on ξ1 (via the right-hand
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side of the equality constraint A1,0x1 = h(ξ1)). We note that the constant L depends
on ‖ξ‖r in all cases.

To prove a stability result for solutions of (3), we need a slightly stronger version
of the filtration distance Df . For its definition we assume that solutions of (3) for the
inputs ξ and ξ̃ exist (cf. Proposition 2.1). We define

D∗f (ξ, ξ̃)=sup
{T−1∑

t=2

max{‖xt−IE[xt|Ft(ξ̃)]‖r′, ‖x̃t−IE[x̃t|Ft(ξ)]‖r′} :x ∈ S(ξ), x̃ ∈ S(ξ̃)
}
.

Clearly, we have Df(ξ, ξ̃) ≤ D∗f (ξ, ξ̃) and both functionals coincide if the solution sets
S(ξ) and S(ξ̃) are singletons.

Theorem 2.3 Assume that only costs and right-hand sides are random in (3). Let
(A1)–(A3) be satisfied for r ∈ (1,∞), 1

r
+ 1

r′ = 1.
If (ξ(n)) is a sequence in Lr(Ω,F , IP ; IRs) converging to ξ in Lr and with respect to D∗f
and if (x(n)) is a sequence of solutions of the approximate problems, i.e., x(n) ∈ S(ξ(n)),
then there exists a subsequence (x(nk)) of (x(n)) that converges with respect to the weak
topology σ(Lr′ , Lr) to some element of S(ξ). If S(ξ) is a singleton, the sequence (x(n))
converges with respect to the weak topology σ(Lr′, Lr) to the unique solution of (3).

Proof: Let (ξ(n)) and (x(n)) be selected as above. Since there exists n0 ∈ IN such that
‖ξ(n) − ξ‖r ≤ δ and x(n) ∈ lα(F (ξ(n), ·)) for any n ≥ n0, where α > 0 and δ > 0 are
chosen as in (A3), the sequence (x(n)) is contained in a bounded set of the reflexive
Banach space Lr′(Ω,F , IP ; IRm). Hence, there exists a subsequence (x(nk)) of (x(n))
that converges with respect to the weak topology σ(Lr′, Lr) to some element x∗ in
Lr′(Ω,F , IP ; IRm). Theorem 2.2 implies

v(ξ(nk)) = F (ξ(nk), x(nk)) = IE
[ T∑

t=1

〈bt(ξ(nk)
t ), x

(nk)
t 〉

]
→ v(ξ).

Due to the norm convergence of (ξ(nk)) and the weak convergence of (x(nk)), we also
obtain

IE
[ T∑

t=1

〈bt(ξ(nk)
t ), x

(nk)
t 〉

]
→ IE

[ T∑

t=1

〈bt(ξt), x∗t 〉
]
.

Hence, it remains to show that x∗ is feasible for (3), i.e., x∗ ∈ X (ξ) and x∗ ∈ Nr′(ξ).
In the present situation, the set X (ξ) is of the form

X (ξ) = {x ∈ Lr′(Ω,F , IP ; IRm) : x ∈ X,Ax = h(ξ)}, (8)

where X := ×Tt=1Xt, h(ξ) := (h1(ξ1), . . . , hT (ξT )} and

A :=




A1,0 0 0 · · · 0 0 0
A2,1 A2,0 0 · · · 0 0 0

...
...

...
...

...
...

...
0 0 0 · · · 0 AT,1 AT,0


 .
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The graph of X , i.e., graphX = {(x, ξ) ∈ Lr′(Ω,F , IP ; IRm) × Lr(Ω,F , IP ; IRs)|x ∈
X (ξ)} is closed and convex. Since (ξ(nk)) norm converges in Lr(Ω,F , IP ; IRs) to ξ and
(x(nk)) weakly converges to x∗, the sequence ((x(nk), ξ(nk))) of pairs in graphX converges
weakly to (x∗, ξ). Due to the closedness and convexity of graphX , Mazur’s theorem
[11, Theorem 3.19] implies that graphX is weakly closed and, thus, (x∗, ξ) ∈ graphX
or x∗ ∈ X (ξ).

Finally, we have to show that x∗ belongs to Nr′(ξ). For any y ∈ Lr(Ω,F , IP ; IRm)
we have that

∣∣∣
T∑

t=1

〈yt, x∗t − IE[x∗t |Ft(ξ)]〉
∣∣∣ ≤

∣∣∣
T∑

t=1

〈yt, x∗t − x(nk)
t 〉

∣∣∣+
∣∣∣

T∑

t=1

〈yt, x(nk)
t − IE[x

(nk)
t |Ft(ξ)]〉

∣∣∣

+
∣∣∣

T∑

t=1

〈yt, IE[x
(nk)
t |Ft(ξ)]− IE[x∗t |Ft(ξ)]〉

∣∣∣

≤
∣∣∣

T∑

t=1

〈yt, x∗t − x(nk)
t 〉

∣∣∣+ ‖y‖rD∗f (ξ, ξ(nk))

+
∣∣∣

T∑

t=1

〈yt, IE[x
(nk)
t − x∗t |Ft(ξ)]〉

∣∣∣.

The first term on the right-hand side converges to 0 for k tending to∞ as the sequence
(x(nk)) converges weakly to x∗. The third term converges to 0 as the mapping E

E(x) := (IE[x1|F1(ξ)], . . . , IE[xT |FT (ξ)])

from Lr′(Ω,F , IP ; IRm) into itself is linear and bounded and, hence, the sequence
(E(x(nk))) converges weakly to E(x∗). Since (D∗f (ξ, ξ(nk))) also converges to 0, we con-
clude x∗t = IE[x∗t |Ft(ξ)] for each t = 1, . . . , T , and, hence, x∗ ∈ Nr′(ξ). �

Both Theorems 2.2 and 2.3 are valid for any choice of the underlying probability
space such that there exists a version of ξ having its probability distribution. The right-
hand side of (7) is minimal if the probability space is selected such that the distances
‖ξ− ξ̃‖r, ‖xt− IE[xt|Ft(ξ̃)‖r′ and ‖x̃t− IE[x̃t|Ft]‖r′ coincide with the corresponding Lr-
minimal and Lr′-minimal distances of the probability distributions of the corresponding
random vectors. The Lr-minimal distance `r for r ≥ 1 of probability distributions
having r-th order absolute moments is given by

`r(P,Q) := inf

{∫

Ξ×Ξ

|ξ − ξ̃|rη(dξ, dξ̃) |η ∈ P(Ξ× Ξ), π1η = P, π2η = Q

} 1
r

(9)

(e.g., [32]). However, for deriving estimates of the filtration distance, specific probabil-
ity spaces may be more appropriate (see Section 3).

3 Constructing scenario trees

Let ξ be the original stochastic process on some probability space (Ω,F , IP ) with
parameter set {1, . . . , T} and state space IRd. We aim at generating a scenario tree ξtr

10



such that
‖ξ − ξtr‖r and Df(ξ, ξ

tr) (10)

are small and, hence, the optimal values v(ξ) and v(ξtr) are close to each other according
to Theorem 2.2. Since this problem is hardly solvable in general, we replace ξ by a
finitely discrete approximation ξf such that ‖ξ − ξf‖r is small and its scenarios form
a fan of individual scenarios. Let its scenarios and probabilities be denoted by ξ i =

r������
��

�
�
�
�

@
@
@
@

HHHH

XXXX

r����r����r((((rrhhhhrXXXXrXXXX

rrrrrrr

rrrrrrrq
t = 1
q q q

t = T

Figure 1: Example of a fan of individual scenarios with T = 4 and N = 7

(ξi1, . . . , ξ
i
T ) and pi, i = 1, . . . , N , respectively, and assume that all scenarios coincide

at the first time period t = 1, i.e., ξ1
1 = . . . = ξN1 =: ξ∗1 . Such a fan of individual

scenarios may be obtained in many practical situations, e.g., by resampling techniques
from historical data, by sampling from statistical models (e.g., time series models) or
by quantization of the probability distribution of ξ [13]. Clearly, a fan may be regarded
as a scenario tree with root node at t = 1 having N branches at the root and consisting
of 1 + (T − 1)N nodes.

If such a scenario fan is inserted into a multiperiod stochastic program, the model
is two-stage as all σ-fields Ft(ξf), t = 2, . . . , T , coincide.

In this section we describe an algorithmic procedure that starts from the fan ξ f and
ends up with scenario trees ξtr having the same root node ξ∗1 , less nodes than ξf and
allowing for constructive estimates of the Lr-norm ‖ξf− ξtr‖r and of the corresponding
filtration distance. Here, r ≥ 1 is determined such that the optimal values of the
underlying multistage stochastic program satisfy an estimate of the form (7) in Theorem
2.2. The idea of the algorithm consists in forming clusters of scenarios based on scenario
reduction on the time horizon {1, . . . , t} recursively for decreasing and increasing time
t, respectively.
To this end, the Lr-seminorm ‖ · ‖r,t on Lr(Ω,F , IP ; IRs) (with s = Td) given by

‖ξ‖r,t :=
(
IE[|ξ|rt ]

) 1
r

=
( N∑

i=1

pi|ξi|rt
) 1
r

(11)

is used at step t, where |·|t denotes the seminorm on IRs given by |ξ|t := |(ξ1, . . . , ξt, 0, . . . , 0)|
for each ξ = (ξ1, . . . , ξT ) ∈ IRs.
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3.1 Forward tree construction

The following procedure determines recursively stochastic processes ξ̂t having sce-
narios ξ̂t,i endowed with probabilities pi, i ∈ I := {1, . . . , N}, and partitions Ct =
{C1

t , . . . , C
Kt
t } of I, i.e., such that

Ck
t ∩ Ck′

t = ∅ ∀k 6= k′ and
Kt⋃

k=1

Ck
t = I. (12)

The elements of such a partition Ct are called (scenario) clusters. The initialization of
the procedure consists in setting ξ̂1 = ξ, i.e., ξ̂1,i = ξi, i ∈ I, and C1 = {I}. At step
t (with t > 1) we consider each cluster Ck

t−1, i.e., each scenario subset {ξ̂t−1,i}i∈Ckt−1
,

separately and delete scenarios {ξ̂t−1,j}j∈Jkt by the forward selection algorithm of [15]
such that

(Kt−1∑

k=1

∑

j∈Jkt

pj min
i∈Ikt
|ξ̂t−1,i − ξ̂t−1,j|rt

) 1
r

is bounded from above by some prescribed tolerance. Here, the index set Ikt of remain-
ing scenarios is given by

Ikt = Ck
t−1 \ Jkt .

As in the general scenario reduction procedure [15] the index set J kt is subdivided into
index sets Jkt,i, i ∈ Ikt such that

Jkt =
⋃

i∈Ikt

Jkt,i, Jkt,i := {j ∈ Jkt : i = ikt (j)} and ikt (j) ∈ arg min
i∈Ikt
|ξ̂t−1,i − ξ̂t−1,j|rt .

Next we define a mapping αt : I → I such that

αt(j) =

{
ikt (j) , j ∈ Jkt , k = 1, . . . , Kt−1,
j , otherwise.

(13)

Then the scenarios of the stochastic process ξ̂t = {ξ̂tτ}Tτ=1 are defined by

ξ̂t,iτ =

{
ξ
ατ (i)
τ , τ ≤ t,
ξiτ , otherwise,

(14)

with probabilities pi for each i ∈ I. The processes ξ̂t are illustrated in Figure 2, where
ξ̂t corresponds to the t-th picture for t = 1, . . . , T . The partition Ct at time t is defined
by

Ct = {α−1
t (i) : i ∈ Ikt , k = 1, . . . , Kt−1}, (15)

i.e., each element of the index sets Ikt defines a new cluster and the partition Ct is a
refinement of the partition Ct−1.

The scenarios and their probabilities of the final scenario tree ξtr := ξ̂T are given
by the structure of the final partition CT , i.e., they have the form

ξ̂k = (ξ∗1 , ξ
α2(i)
2 , . . . , ξ

αt(i)
t , . . . , ξ

αT (i)
T ) and πkT =

∑

j∈CkT

pj if i ∈ Ck
T

12



for each k = 1, . . . , KT . The index set It of realizations of ξtr
t is given by

It :=

Kt−1⋃

k=1

Ikt .

For each t ∈ {1, . . . , T} and each i ∈ I there exists an unique index kt(i) ∈ {1, . . . , Kt}
such that i ∈ C

kt(i)
t . Moreover, we have C

kt(i)
t = {i} ∪ Jkt−1(i)

t,i for each i ∈ It. The
probability of the i-th realization of ξtr

t is πit =
∑

j∈Ckt(i)t
pj. The branching degree of

scenario i ∈ It−1 coincides with the cardinality of I
kt(i)
t .

The next result quantifies the relative error of the t-th construction step and is
proved in [16, Theorem 3.4].

Theorem 3.1 Let the stochastic process ξ with fixed initial node ξ∗1 , scenarios ξi and
probabilities pi, i = 1, . . . , N , be given. Let ξtr be the stochastic process with scenarios
ξ̂k = (ξ∗1 , ξ

α2(i)
2 , . . . , ξ

αt(i)
t , . . . , ξ

αT (i)
T ) and probabilities πkT if i ∈ Ck

T , k = 1, . . . , KT .
Then we have

‖ξf − ξtr‖r =
( T∑

t=2

Kt−1∑

k=1

∑

j∈Jkt

pj min
i∈Ikt
|ξit − ξjt |r

) 1
r

. (16)

Next, we provide a flexible algorithm that allows to generate a variety of scenario
trees satisfying a given approximation tolerance with respect to the Lr-distance.

Algorithm 3.2 (forward tree construction)
Let N scenarios ξi with probabilities pi, i = 1, . . . , N , fixed root ξ∗1 ∈ IRd and probability

distribution P , r ≥ 1 and tolerances ε, εt, t = 1, . . . , T , be given such that
T∑
t=1

εt ≤ ε.

Step 1: Set ξ̂1 := ξ and C1 = {{1, . . . , N}}.

Step t: Let Ct−1 = {C1
t−1, . . . , C

Kt−1

t−1 }. Determine disjoint index sets Ikt and Jkt such
that Ikt ∪ Jkt = Ck

t−1, the mapping αt(·) according to (13) and a stochastic process

ξ̂t having N scenarios ξ̂t,i with probabilities pi according to (14) and such that
‖ξ̂t − ξ̂t−1‖r,t ≤ εt. Set Ct = {α−1

t (i) : i ∈ Ikt , k = 1, . . . , Kt−1}.
Step T+1: Let CT = {C1

T , . . . , C
KT
T }. Construct a stochastic process ξtr having KT

scenarios ξ̂k such that ξ̂kt := ξ
αt(i)
t if i ∈ Ck

T , k = 1, . . . , KT , t = 1, . . . , T .

While the first picture in Figure 2 illustrates the original fan ξ f , the second, third,
fourth and fifth pictures correspond to the situation after Steps 2–5 of the algorithm.
The final picture corresponds to Step 6 and illustrates the final scenario tree ξtr. The
proof of the following corollary is also given in [16].

Corollary 3.3 Let a scenario fan ξf with fixed initial node ξ∗1 , scenarios ξi and prob-
abilities pi, i = 1, . . . , N , be given. If ξtr is constructed by Algorithm 3.2 we have

‖ξf − ξtr‖r ≤
T∑

t=1

εt ≤ ε.

When using Algorithm 3.2, the selection of r > 1 should be done according to
Section 2. The tolerances εt should be nonincreasing for εt, t = 2, . . . , T . The smaller
εt is, the more branchings occur at t.

13



 t = 1  t = 2  t = 3  t = 4  t = 5  t = 1  t = 2  t = 3  t = 4  t = 5

 t = 3 t = 1  t = 2  t = 4  t = 5  t = 1  t = 2  t = 3  t = 5 t = 4

 t = 5 t = 1  t = 2  t = 3  t = 4  t = 1  t = 2  t = 3  t = 4  t = 5

Figure 2: Illustration of the tree construction for an example with T=5 time periods
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3.2 Estimating filtration distances

Let ξf be the (discrete) approximation of the original stochastic process ξ consisting of
individual scenarios and ξtr be the process obtained by the forward tree construction
approach of Section 3.1, respectively. Theorem 3.1 provides an estimate for ‖ξ f− ξtr‖r.
Of course, our aim is to generate the scenario tree ξtr such that the optimal values v(ξ)
and v(ξtr) and (eventually) the sets S(ξ) and S(ξtr) of solutions are close. Making use
of the stability estimate of Theorem 2.2, for example, we obtain

|v(ξ)− v(ξtr)| ≤ L(‖ξ − ξtr‖r +Df(ξ, ξ
tr))

≤ L(‖ξ − ξf‖r + ‖ξf − ξtr‖r +Df(ξ, ξ
tr)).

Since the fan ξf is assumed to be selected such that ‖ξ − ξf‖r is small, it remains to
estimate the filtration distance Df(ξ, ξ

tr). The latter aim, however, is very challenging
and hardly possible in general. Therefore, we replace ξ by ξ f, derive bounds for

Df(ξ
f , ξtr)

and develop strategies for controlling the tree generation process by exploiting the
latter bounds together with the bound in Corollary 3.3. Although this step induces an
error, it is heuristically justified in our opinion as ξf approximates ξ in the Lr-sense
and, hence, carries approximate information on the filtration of ξ. We stress again that
the filtration distance is evaluated at solutions of (3) (if they exist) with inputs ξ f and
ξtr, respectively.

Now, let ξf and ξtr be defined on the probability space (Ω,F , IP ), where Ω is defined
by Ω = {ω1, . . . , ωN}, F denotes the power set of Ω and IP (ωi) = pi, i = 1, . . . , N . We
assume that conditions (A2) and (A3) of Section 2 are satisfied and know that solutions
x ∈ S(ξf) and x̃ ∈ S(ξtr) exist. Since the filtration (Ft)Tt=1 of ξf satisfies Ft = F for
t = 2, . . . , T , we obtain the following estimate

Df(ξ
f, ξtr) ≤





T−1∑
t=2

(IE[|xt − IE[xt|Ft(ξtr)]|r′]) 1
r′ , 1 ≤ r′ <∞

T−1∑
t=2

‖xt − IE[xt|Ft(ξtr)]‖∞, , r′ =∞
(17)

for the filtration distance of ξf and ξtr, respectively.
As in Section 3.1 we denote by It again the index set of realizations of the scenario

tree ξtr at time t, by C
kt(i)
t the cluster C

kt(i)
t = {i} ∪ Jkt−1(i)

t,i for each i ∈ It and by πit
the cluster probability for each i ∈ It. Then we obtain

Df(ξ
f, ξtr) ≤





T−1∑
t=2

( ∑
i∈It

∑
j∈Ckt(i)t

pj

∣∣∣xjt − 1
πit

∑
l∈Ckt(i)t

plx
l
t

∣∣∣
r′) 1

r′
(1 ≤ r′ <∞)

T−1∑
t=2

max
i∈It

max
j∈Ckt(i)t

∣∣∣xjt − 1
πit

∑
l∈Ckt(i)t

plx
l
t

∣∣∣ (r′ =∞),

(18)

where xit, i = 1, . . . , N , are the t-th components of solution scenarios of the two-stage
model with input ξf having scenarios ξj, j = 1, . . . , N .
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Starting from (18) we are interested in bounds on Df that are based on input
information only. This requires to derive estimates for the distance of any two scenarios
of some solution x ∈ S(ξf). To this end, we assume that only costs and right-hand
sides are random in (3) and consider the scenario-based stochastic program

min



〈b1(ξ∗1), x1〉+

N∑

i=1

pi

T∑

t=2

〈bt(ξit), xit〉

∣∣∣∣∣∣

xit ∈ Xt, t = 1, . . . , T, A1,0x1 = h1(ξ1),
At,0x

i
t + At,1x

i
t−1 = ht(ξ

i
t),

t = 2, . . . , T, i = 1, . . . , N



, (19)

which is indeed two-stage and represents a linear program. It is well known that the
minimization decomposes into first- and second-stage variables leading to the following
form of the two-stage program (19)

min
{
〈b1(ξ∗1), x1〉+

N∑

i=1

piΦ(ξi, x1) | x1 ∈ X1

}
, (20)

where the optimal value function Φ is extended real-valued and defined on Ξ×X1(ξ∗1)
by

Φ(z, x1) := inf
{ T∑

t=2

〈bt(zt), xt〉 | xt ∈ Xt, At,0xt +At,1xt−1 = ht(zt), t = 2, . . . , T
}

(21)

for any pair (z, x1) ∈ Ξ×X1(ξ∗1). Exploiting Lipschitz stability properties of solutions
to the linear program on the right-hand side of (21), the following result is proved as
Theorem 4.8 in [16].

Theorem 3.4 Assume that only costs and right-hand sides are random in (3) and that
(A2) and (A3) are satisfied. Then there exists a constant L̂ > 0 such that the filtration
distance allows the estimate

Df(ξ
f, ξtr) ≤ L̂





( ∑
i∈I2

∑
j∈Ck2(i)

2

pj|ξj − ξi|r′
) 1
r′

, 1 ≤ r′ <∞

max
i∈I2

max
j∈Ck2(i)

2

|ξj − ξi| , r′ =∞ .
(22)

The estimate (22) shows that the first time period after the deterministic first stage

plays a major role. The estimate advises that every cluster C
k2(i)
2 has to be chosen such

that the term

B2,i :=





∑
j∈Ck2(i)

2

pj|ξj − ξi|r′ , 1 ≤ r′ <∞

max
j∈Ck2(i)

2

|ξj − ξi| , r′ =∞ (23)

is small enough. This means that scenario i ∈ I2 should admit branching at t = 2 only
if the distance of ξi and each scenario ξj, j ∈ C

k2(i)
2 that branches from i is not too

large, i.e., the bound B2,i defined in (23) is small. In many practical cases the latter

condition will imply that the cardinality of C
k2(i)
2 remains relatively small and that of

I2 large. Notice that the distance of scenarios in (22) is measured with respect to the
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whole time horizon. The latter fact represents the main difference to the estimates of
the Lr-distance in Theorem 3.1.

Accordingly, Algorithm 3.2 has to be modified such that clusters C
k2(i)
2 , i ∈ I2, are

determined at step t = 2 satisfying the condition

B∗r′ :=





( ∑
i∈I2

B2,i

) 1
r′ ≤ εf , 1 ≤ r′ <∞

max
i∈I2

B2,i ≤ εf , r′ =∞
(24)

for some filtration tolerance εf . If (24) is satisfied, the further branching behavior at
time periods t with 2 < t ≤ T is controlled via the existing tests in Algorithm 3.2.
Hence, the modified algorithm is of the form:

Algorithm 3.5 (modified forward tree construction)
Let N scenarios ξi with probabilities pi, i = 1, . . . , N , root ξ∗1 ∈ IRd, r ≥ 1 and filtration

level εf , reduction level εr and εt, t = 1, . . . , T , be given such that
T∑
t=1

εt ≤ εr.

Step 1: Set ξ̂1 := ξ and C1 = {{1, . . . , N}}.

Step 2: Determine disjoint index sets I1
2 and J1

2 such that I1
2 ∪ J1

2 = I, the mapping
α2(·) according to (13) and a stochastic process ξ̂2 having N scenarios ξ̂2,i with
probabilities pi according to (14) such that B∗r′ ≤ εf (see (24)) and ‖ξ̂2− ξ̂1‖r,2 ≤
ε2. Set C2 = {α−1

2 (i) : i ∈ I1
2}.

Step t: Let Ct−1 = {C1
t−1, . . . , C

Kt−1

t−1 }. Determine disjoint index sets Ikt and Jkt such
that Ikt ∪ Jkt = Ck

t−1, the mapping αt(·) according to (13) and a stochastic process

ξ̂t having N scenarios ξ̂t,i with probabilities pi according to (14) and such that
‖ξ̂t − ξ̂t−1‖r,t ≤ εt. Set Ct = {α−1

t (i) : i ∈ Ikt , k = 1 . . . , Kt−1}.

Step T+1: Let CT = {C1
T , . . . , C

KT
T }. Construct a stochastic process ξtr having KT

scenarios ξ̂k such that ξ̂kt := ξ
αt(i)
t if i ∈ Ck

T , k = 1, . . . , KT , t = 1, . . . , T .

Some numerical experience for Algorithm 3.5 applied to certain practical models in
power engineering is reported in [16] and in the next section.

4 Numerical experience

We consider a mean-risk optimization model for electricity portfolios of a German
municipal power company which consist of the own (thermal) electricity production,
the spot market contracts, supply contracts and electricity futures. Stochasticity enters
the model via the electricity demand, heat demand, spot prices, and future prices (cf.
[10]). Our approach of generating input scenarios in form of a scenario tree consists
in developing a statistical model for all stochastic components and in using Algorithm
3.5 started with a finite number of (individual) scenarios which are simulated from the
statistical model.
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4.1 Adapting a statistical model

For the stochastic input data of the optimization model (namely, electricity demand,
heat demand, and electricity spot prices), we had access to historical data (from a
yearly period of hourly observations). Due to climatic influences the demands are
characterized by typical yearly cycles with high (low) demand during winter (summer)
time. Furthermore, the demands contain weekly cycles due to varying consumption
behavior of private and industrial customers on working days and weekends. The
intra-day profiles reflect a characteristic consumption behavior of the customers with
seasonal differences. Outliers can be observed on public holidays, on days between
holidays, and on days with extreme climatic conditions. Spot prices are affected by
climatic conditions, economic activities, local power producers, customer behavior etc.
An all-embracing modeling is hardly possible. However, spot prices are also character-
ized by typical yearly cycles with high (lower) prices during winter (summer) time, and
they show weekly and daily cycles, too. Hence, the (price and demand) data was de-
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Figure 3: Time plot of load profile for one year
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Figure 4: Time plot of spot price profile for one year

composed into intra-day profiles and daily average values. While the intra-day profiles

18



are modeled by a distribution-free resampling procedure based on standard clustering
algorithms, a three dimensional time series model was developed for the daily average
values. The latter consists of deterministic trend functions and a trivariate autoregres-
sive moving-average (ARMA) model for the (stationary) residual time series (see [10]
for details). Then an arbitrary number of three dimensional scenarios can easily be
obtained by simulating white noise processes for the ARMA model and by adding on
afterwards the trend functions, the matched intra-day profiles from the clusters and
extreme price outliers modeled by a discrete jump-diffusion process with time-varying
jump parameters. Future price scenarios are directly derived from those for the spot
prices.

4.2 Construction of input scenario trees

The three dimensional (electricity demand, heat demand, spot price) scenarios form a
scenario fan and serve as inputs for the modified forward tree construction (Algorithm
3.5). In our test series we started with a total number of 100 sample scenarios for a
one year time horizon with hourly discretization. Table 1 displays the dimension of the

Components Horizon Scenarios Time steps Nodes
3 (trivariate) 1 year 100 8 760 875 901

Table 1: Dimension of simulated input scenarios

simulated input scenarios. Due to the fact that electricity future products can only be
traded monthly, branching was allowed only at the end of each month. Scenario trees
were generated by Algorithm 3.5 for r = r′ = 2 and different relative reduction and
filtration levels εrel,r and εrel,f, respectively. The relative levels are given by

εrel,r :=
εr

εr
max

and εrel,f :=
εf

εr′
max

,

where εr
max is given as the maximum of the best possible Lr-distance of ξf and one of

its scenarios endowed with unit mass. The individual tolerances εt at branching points
were chosen such that

εt =
ε

T

[
1 + q

(
1

2
− t

T

)]
, t = 2, . . . , T, (25)

where q ∈ [0, 1] is a parameter that affects the branching structure of the constructed
trees. For the test runs we used q = 0.6. All test runs were performed on a PC with a
3 GHz Intel Pentium CPU and 1 GByte main memory.

Table 2 displays the results of our test runs with different relative reduction and
filtration levels. For varying reduction levels two series of scenario trees were com-
puted where greater or smaller importance was attached to the filtration distance. As
expected, the results show that a higher relative filtration level, i.e. more tolerance
between the scenario fan and the scenario tree with respect to the filtration distance,
leads to more branching regardless which reduction level is selected whenever the re-
duction level is not too small. On the other hand, a smaller relative filtration level
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leads to less branching. Nevertheless, the number of nodes for some reduction level
does not differ much when varying the filtration level. Clearly, for very small reduction
levels, the reduction affects only a few scenarios. Furthermore, the number of nodes
decreases considerably if the reduction level is increased. The computing times of less
than 30 seconds already include approximately 20 seconds for computing distances of
all scenario pairs that are needed in all calculations. Figures 5 and 6 show the scenario
trees obtained for reduction levels of 25 percent and 50 percent, respectively.

Reduction Filtration Scenarios Nodes Stages Time
level εrel,r level εrel,f (sec)

0.10 0.20 98 774 988 6 25.01
0.30 99 774 424 6 25.05

0.15 0.25 94 719 714 12 24.97
0.35 94 723 495 10 24.99

0.20 0.30 90 670 321 9 24.94
0.40 90 670 478 10 24.94

0.25 0.35 85 619 296 9 24.95
0.45 87 620 340 10 24.93

0.30 0.40 80 547 824 11 24.86
0.50 83 567 250 11 24.91

0.35 0.45 72 482 163 11 24.94
0.55 76 498 732 11 24.90

0.40 0.50 67 426 794 8 24.92
0.60 71 444 060 11 24.90

0.45 0.55 60 368 380 7 24.97
0.65 65 383 556 11 24.87

0.50 0.60 50 309 225 6 24.99
0.70 60 319 380 11 24.88

0.55 0.65 44 247 303 6 25.00
0.75 51 265 336 10 24.91

0.60 0.70 37 188 263 6 25.17
0.80 45 203 321 9 24.98

Table 2: Numerical results of Algorithm 3.5 for yearly demand-price scenario trees
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Figure 5: Yearly demand-price scenario trees with reduction level εrel,r = 0.25
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