
LP-Based Local Approximation for Markov Decision
Problems⋆

Stefan Heinz1, Volker Kaibel1,3, Matthias Peinhardt1, Jörg Rambau2, and Andreas
Tuchscherer1

1 Konrad-Zuse-Zentrum für Informationstechnik Berlin, Department Optimization, Takustr. 7,
14195 Berlin, Germany. E-mail:{heinz,kaibel,peinhardt,tuchscherer}@zib.de
2 Universität Bayreuth, Lehrstuhl für Wirtschaftsmathematik, 95440 Bayreuth, Germany.

E-mail:Joerg.Rambau@uni-bayreuth.de
3 Technische Universität Berlin, MA 6–2, 10623 Berlin, Germany.

Abstract. The standard computational methods for computing the optimal value
functions of Markov Decision Problems (MDP) require the exploration of the en-
tire state space. This is practically infeasible for applications with huge numbers
of states as they arise, e. g., from modeling the decisions inonline optimization
problems by MDPs. Exploiting column generation techniques, we propose and
apply an LP-based method to determine anε-approximation of the optimal value
function at a given state by inspecting only states in a smallneighborhood. In the
context of online optimization problems, we use these methods in order to evalu-
ate the quality of concrete policies with respect to given initial states. Moreover,
the tools can also be used to obtain evidence of the impact of single decisions.
This way, they can be utilized in the design of policies.

1 Introduction

Many real-world problems that call for planning under uncertainty over an infinite time
horizon, e. g., online optimization problems, can be modeled as Markov Decision Prob-
lems (MDPs). See Section 6 for an example. Due to several drawbacks of other con-
cepts of evaluation of online algorithms (like competitiveanalysis, see, e. g., [3]), MDPs
provide an attractive alternative in this context wheneverstochastic information about
future requests is available. However, the sizes of the state spaces of MDPs arising this
way usually are exponential in the original input parameters. The classical methods for
computing an optimal policy are value iteration, policy iteration, and linear program-
ming [2]. As the complexity of these methods depends at leastlinearly on the number
of states, their use is impossible in MDPs for practical applications as mentioned above.

The aim of the approach presented in this paper is to evaluategiven policies or just
single controls w. r. t. an optimal policy in one state without exploring the entire state
space. In order to obtain an estimation of the relative gap between the value function
of a given policy and the optimal value function at a particular state, we must provide
an upper bound for the first value and a lower bound for the second one. In fact, our
algorithm computes lower and upper bounds for both values separately.

⋆ Supported by the DFG Research Center MATHEON Mathematics for key technologiesin
Berlin.

2 Heinz, Kaibel, Peinhardt, Rambau, and Tuchscherer

Our methods are based on the classical linear programming formulation for com-
puting the optimal value function in an infinite-horizon discounted MDP. We modify
the formulation by taking into account only a (small) partŜ of the state spaceS. The
paper aims at making two main contributions. On the theoretical side, we show in Sec-
tion 3 that, for a givenε > 0 and an initial statei0 ∈ S, there is always some partŜof S
such that the restricted LP yields anε-approximation of the optimal value function ati0,
while the size ofŜ does not depend on the total number of states. In fact, the size of
Ŝ depends only on the local structure ofS at i0. On the practical side, in Section 5 we
propose an algorithm in which the local partŜof the state space is changed dynamically
during the run by means of a column generation procedure. We report on experiments
with a simplified version of an online target date assignmentproblem that arose from an
industrial application. At least in this simplified setting, the results of our experiments
are quite encouraging. The main reason for the practical efficiency of the algorithm
seems to be the feature that the dynamic change of the setŜ is guided by the reduced
cost structure of the current reduced LP.

The approach described in the literature that yields the results closest to our’s is a
sparse sampling algorithm for large-scale Markov DecisionProblems [9]. The authors
also give theoretical bounds on the necessary size of a subset of the state space that is
needed by their approach in order to obtain anε-approximation (see the remark at the
end of Section 3). However, for the applications that we aim at their bounds are weaker
than ours. Furthermore, and maybe more importantly, their method does not seem to
allow a modification that in practice visits substantially fewer states than guaranteed
by the theoretical analysis,yet maintaining the approximation guarantee a-posteriori.
In our view, this is a main advantage of the method that we propose (see the results
in Section 6). Other approaches to locally explore the statespace include [6, 1], where
in [6] policy iteration is used with a concept of locality that is similar to ours. However,
their method does not provide any approximation guaranteeseither.

This paper is arranged as follows. In Section 2, we give the definition of an MDP
together with related notations. Section 3 presents the proof of our theoretical local
approximation theorem. A couple of useful applications of this result are given in Sec-
tion 4. Our algorithmic approach for practical use is described in Section 5. Finally,
Section 6 shows computational results of our algorithm applied to a simple MDP which
is derived from an industrial problem.

2 Preliminaries

The basic data of astationary optimal control problemin discrete time are a setS
of states, together with a non-empty setU(i) of feasible controlsfor every statei ∈ S.
Applying in statei ∈Scontrolu∈U(i) moves the system into statej ∈Swith transition
probability pi j (u) (thus, we have∑ j∈Spi j (u) = 1). The functiong(i,u, j) denotes the
stage costof controlu∈U(i) in statei ∈ S in the case when statej ∈ S is the next state.
A policy µ is a mapping that assigns a feasible control to each state. For α ∈ (0,1) the
α-discounted costof a policy µ for initial statei ∈ S is the expected discounted total

Local Value Function Approximation 3

cost defined by

Jµ(i) := E j1, j2,...
(

∞

∑
k=0

αkg(jk,µ(jk), jk+1)
)

, (1)

where j0 = i and jk is a random variable specifying the state of the system at stagek.
Jµ is called thevalue functionof policy µ and theoptimal value functionis defined at
statei ∈ Sby

J∗(i) := min
µ

Jµ(i).

Any policy µ∗ with Jµ∗ = J∗ is anoptimal policy. The goal is to find an optimal or
close-to-optimal policy.

In the computer science literature such systems are usuallycalledMarkov Decision
Problems, MDP, for short. For an introduction to the subject see, e. g., [11]. If J∗ is
known then—by Bellman’s principle of optimality—any policy µ with

µ(i) ∈ argmin
u∈U(i)

{

g(i,u)+ α ∑
j∈S

pi j (u)J∗(j)
}

∀i ∈ S

is optimal, whereg(i,u) := ∑ j∈Spi j (u)g(i,u, j) is theexpected stage costof using con-
trol u∈U(i) at statei ∈ S.

Methods to computeJ∗ includevalue iteration, policy iteration, and linear pro-
gramming[2, 10]. In all these methods, the complexity of finding an optimal policy
depends at least linearly on the number of states, which itself in our context is usually
exponential in the common input parameters.

According to the classical linear programming model, the optimal value functionJ∗

can be derived as the unique optimal solution of the following linear program:

max
{

∑
i∈S

J(i) |J(i) ≤ g(i,u)+ α ∑
j∈S

pi j (u)J(j) ∀i ∈ S,∀u∈U(i)
}

(2)

This formulation has been the starting point for several approaches [4, 5]. Since we
are only interested inJ∗(i0) for a particular statei0 ∈ S, we will consider the following
LP with simplified objective function instead:

max
{

J(i0) |J(i) ≤ g(i,u)+ α ∑
j∈S

pi j (u)J(j) ∀i ∈ S,∀u∈U(i)
}

(3)

The following relation is due to the fact that the componentwise maximum of two
feasible solutions to the LPs is feasible as well.

Remark 1.Every optimal solution to (2) is an optimal solution to (3).

Since in our model there is only a finite number of states and controls the expected
stage costsg(i,u) are bounded from above by some constantG, i. e., g(i,u) ≤ G for
all statesi ∈ S and all controlsu ∈ U(i). This implies an upper bound onJ: from (1)
we easily getJµ(i) ≤C := G/(1−α), for all policiesµ and alli ∈ S. Since it will be
convenient sometimes, we generally assumeG ≥ 1 (which easily can be obtained by
scaling the expected stage costs).

4 Heinz, Kaibel, Peinhardt, Rambau, and Tuchscherer

3 The Structural Result

In the following we present our structural result which shows that anε-approximation
of the optimal value function at one given state can be obtained by taking into account
only a small local part of the entire state space.

Theorem 1. Let S be the state space of an MDP with the following properties, where
c,d ∈ N with cd≥ 2 and G≥ 1:

– The number|U(i)| of controls is bounded by c for each i∈ S.
– For each i∈ S and u∈ U(i), the number of states j∈ S with positive transition

probabilities pi j (u) is bounded by d.
– For each i∈ S and u∈U(i), the expected stage costs satisfy0≤ g(i,u) ≤ G.

Then, for every discount factor0 < α < 1, for all i0 ∈ S, and for allε > 0, there is
a set of stateŝS⊂ S with the following properties:

(i) |Ŝ| ∈ O
(

(cd)
log
(

ε(1−α)
G

)

/ log(α))
, in particular, the number of states in̂S does not

depend on|S|.
(ii) The function J: Ŝ→ R+ defined as an optimal solution to the reduced LP

max
{

J(i0) |J(i)≤ g(i,u)+ α ∑
j∈Ŝ

pi j (u)J(j) ∀i ∈ Ŝ∀u∈U(i)
}

(LŜ)

is anε-close lower bound to J∗ in the given state i0:

0≤ J∗(i0)−J(i0) ≤ ε.

Our theorem does not apply to the casec = d = 1, which, however, leads only to
trivial MDPs (at least in our context). Note that the reducedLP (LŜ) is feasible since we
assume that the expected stage costsg(i,u) ≥ 0, e. g.,J ≡ 0 is always a solution.

To prove the theorem we introduce some technical notions.

Definition 1 (H–neighborhood).For an MDP with state space S, a state i0 ∈ S, and
a number H∈ N, the H–neighborhoodS(i0,H) of i0 in S is the subset of states that
can be reached from i0 with positive probability within at most H transitions. That is
S(i0,0) := {i0}, and for H> 0 we define:

S(i0,H) := S(i0,H −1)∪{ j ∈ S| ∃ i ∈ S(i0,H −1)∃u∈U(i) : pi j (u) > 0}.

Using this definition we can prove Theorem 1.

Proof (Theorem 1).For α,ε > 0, α < 1, andi0 ∈ S, we chooseŜ= S(i0,H) where
H > 0 is specified later. Since the numbers of applicable controls and succeeding states

for any control are bounded byc resp.d, we have that|Ŝ| ≤ (cd)H+1−1
cd−1 ≤ (cd)H+1 (as

we havecd > 1).
Similarly to Remark 1, there is some optimal solutionJ of the restricted LP (L̂S)

that is also optimal with respect to the objective function∑i∈ŜJ(i). Thus, for every state
i ∈ Ŝ, there is at least one controlu∈U(i) such that the corresponding inequality in (LŜ)

Local Value Function Approximation 5

is satisfied with equality byJ (here we need that every state has at least one control).
We call one of these controls thecritical control u(i) of i. Furthermore, letJ∗ be the
optimal value function (i. e.,J∗ is the optimal solution to (2)).

We defineJ(i) := 0 for all i ∈ S\ Ŝ. The valueJ(i0) is a lower bound onJ∗(i0)
since (LŜ) can be seen as derived from (3) with the additional restrictionsJ(i) = 0 for
all i ∈ S\ Ŝ.

We then have the relations

J∗(i) ≤ g(i,u(i))+ α ∑
j∈S

pi j (u(i))J∗(j) ∀ i ∈ Ŝ,

J(i) = g(i,u(i))+ α ∑
j∈Ŝ

pi j (u(i))J(j) ∀ i ∈ Ŝ,

which gives

J∗(i)−J(i) ≤ α ∑
j∈S

pi j (u(i))
(

J∗(j)−J(j)
)

∀ i ∈ Ŝ. (4)

Note that in (4) we sum over the whole state space, although the equality forJ provides
only a sum over̂S. However, this does not affect the validity due toJ(j) = 0 for j ∈S\ Ŝ.

We show by reverse induction onh = H, . . . ,0 that, for alli ∈ S(i0,h),

J∗(i)−J(i) ≤ αH+1−h G
1−α

. (5)

Note that alli to which (5) refers are contained in̂Sbecause ofh≤ H.
For h = H and for all i ∈ S(i0,h), due toJ∗(j) ≤ G/(1−α) for all j ∈ S, we de-

rive (5) from (4):

J∗(i)−J(i) ≤ α ∑
j∈S

pi j (u(i))
(G

1−α
−0
)

= α
G

1−α
Here, the equation follows from the fact that∑ j∈Spi j u(i) = 1 holds for everyi ∈ S.

Now assume that (5) holds for allj ∈S(i0,h) with H ≥ h> 0. For anyi ∈S(i0,h−1)
we again apply (4):

J∗(i)−J(i) ≤ α ∑
j∈S

pi j (u(i))
(

J∗(j)−J(j)
)

= α ∑
j∈S(i0,h)

pi j (u(i))
(

J∗(j)−J(j)
)

,

where the equation is due to the fact that allj ∈ S with pi j (u(i)) > 0 are contained in
S(i0,h). We can apply the induction hypothesis forj ∈ S(i0,h):

J∗(i)−J(i) ≤ α ∑
j∈S(i0,h)

pi j (u(i))αH+1−h G
1−α

= αH+1−(h−1) G
1−α

,

which completes the inductive proof of (5).
For i = i0 andh = 0, inequality (5) yieldsJ∗(i0)−J(i0) ≤ αH+1 G

1−α . By choosing

H = ⌈log
(

ε(1−α)
G

)

/ logα⌉−1 the gap of the lower boundJ(i0) is bounded byε. ⊓⊔

6 Heinz, Kaibel, Peinhardt, Rambau, and Tuchscherer

Remark 2.The size of the restricted state space is optimal in some sense, as can be seen
from the example of a tree like MDP (rooted ati0), in which every state (that can be
reached withinH steps fromi0) has exactlyc different controls, which with uniform
transition probabilities, lead to exactlyd “new states” that can be reached only via this
control. In this case, one can show thatŜ= S(i0,H) as above is the smallest restricted
state space to obtain the desired approximation. Of course,incorporating additional
parameters of the MDP might give better results in special cases.

Though this is not important in our context, we mention that Theorem 1 still holds
if the state spaceS is not finite.

More important is the observation that, in the same way as we computed the lower
bound on the optimal cost function in a given statei0, we can compute an upper bound as
well. Instead of just dropping the cost function outsideŜ, i. e., setting it to zero, we can
set the corresponding variables to the general upper boundC = G/(1−α). By choosing
the same restricted state spaceŜ= S(i0,H) as above, the new restricted program reads:

max J(i0)

J(i) ≤ g(i,u)+ α
(

∑
j∈Ŝ

pi j (u) J(j)+ ∑
j∈S\Ŝ

pi j (u) C
)

∀i ∈ Ŝ∀u∈U(i) (UŜ)

Let J be an optimal solution to (ÛS). ObviouslyJ(i0) is an upper bound ofJ∗(i0). In the
same way as in the proof of Theorem 1 we focus on critical controlsu∗, this time with
respect to the optimal solutionJ∗ of (2). The basic relations then read (withJ(j) = C
for all j ∈ S\ Ŝ):

J∗(i) = g(i,u∗(i))+ α ∑
j∈S

pi j (u
∗(i))J∗(j) ∀ i ∈ Ŝ,

J(i) ≤ g(i,u∗(i))+ α ∑
j∈S

pi j (u
∗(i))J(j) ∀ i ∈ Ŝ,

which leads to

J(i)−J∗(i) ≤ α ∑
j∈S

pi j (u
∗(i))

(

J(j)−J∗(j)
)

∀ i ∈ Ŝ.

Following the arguments as above we deduce:

J(i0)−J∗(i0) ≤ αH+1 G
1−α

.

The program (ÛS) for the computation of the upper bound can be tightened if better
upper bounds thanG/(1−α) for the cost function of not included states can be found.

Remark 3.It should be noted that the size of the restricted state spacewe are using
is considerably smaller than that used for random sampling in [9]. There states are

sampled up to a depth ofHs = ⌈log
(

ε(1−α)3

4G

)

/ logα⌉ which gives a considerably larger

state space (note that due to our general assumptionG≥ 1 we haveε(1−α)/G < 1).

Local Value Function Approximation 7

However, the setting given there is somewhat different as they assume very large values
of d. In particular, they sample, for each considered state in depth smaller thanHs, only

T ≈

(

4G
ε(1−α)3

)2
(

2
lnα

ln

(

ε(1−α)3

4G

)

ln

(

(

4G
ε(1−α)3

)2

c
lnα

ln

(

ε(1−α)3

4G

)

ln

(

4G
ε(1−α)2

)

)

+ ln

(

4G
ε(1−α)2

)

)

consecutive states ifT < d. Note however that even for fairly small problems, e. g.,
G = 1, c = 4, α = 0.7, andε = 0.1, this yieldsT larger than 1.8 billion.

4 Applications

For online optimization problems, very often algorithms seem to behave well in prac-
tice or, at least, in simulation experiments, although the classical analysis tools (e. g.,
based on competitive ratio) do not indicate this. In order togain evidence for such ob-
servations, we aim for a method that, at each event, providesan estimate of the expected
(future) costs caused by the current decision (assuming thelater decisions to be made
according to a concrete algorithm or not), relative to the costs generated by an optimal
algorithm. Translated into the language of MDPs, we therefore need a method for the
relative evaluationof a given policy or of a single control. In an MDP-model of some
online optimization problem, the states need to encode important information like, e. g.,
the currently open requests and the resources used at the moment (which usually lead to
state spaces of intractable size). Stochastic informationabout future requests can then
be translated into transition probabilities.

We showed that anε-approximation of the optimal value function for one state can
be computed by only considering a small subset of states whose size does not depend
on the total number of states. In the following we highlight useful applications of this
result that are obtained by considering appropriate restrictions of the state space of the
MDP.

Obviously, the value functionJµ of a given policyµ equals the optimal value func-
tion of the restricted MDP, where the feasible controls are restricted to those chosen by
the policy, i. e.,U ′(i) = {µ(i)} for all statesi ∈ S. Therefore, we can approximate the
value function of a policy in the same way as we did for the optimal value function. For
the same guarantee, the value function approximation for a given policy may require
substantially fewer states than the approximation of the optimal value function since
there is only one feasible control per state.

As mentioned above, it sometimes is more desirable to evaluate only a single control
applied in a given state (not entire policy), given that the remaining decisions are made
w. r. t. an optimal policy. Using another restriction of our original MDP, our method can
be used for this purpose, too. Given a statei0 ∈Sand a controlu∈U(i0), we defineJu as
the value function of a policy which is optimal among all policies that apply controlu
in statei0. The valueJu(i0) reflects the impact of using controlu in statei0. We say
that controlu is optimal in statei0 if Ju(i0) = J∗(i0). Again, Ju is the optimal value

8 Heinz, Kaibel, Peinhardt, Rambau, and Tuchscherer

function of an restricted MDP, where the set of feasible controls in statei0 is restricted
to U ′(i0) = {u}. Thus, we can use Theorem 1 to approximateJu(i0).

The observations above yield the following corollary of Theorem 1:

Remark 4.Assume we are given an MDP satisfying the conditions of Theorem 1, a
statei0 ∈ S, a policy µ , and a controlu ∈ U(i0). Then, by restricting the MDP, the
valuesJµ(i0) andJu(i0) can be approximated in the same way as described forJ∗(i0) in
Theorem 1.

With respect to the goals discussed at the beginning of this section, we aim at esti-
mating and reporting for every statei0 ∈S, which is reached while running a simulation
or real-world system,onlinethe quantity

Jx(i0)−J∗(i0)
J∗(i0)

,

wherex∈{µ ,u}. This gives the relative cost increase in statei0 ∈Swhen using policyµ
or controlu ∈ U(i0) instead of an optimal policy. Thus, we need both a lower bound
onJ∗(i0) and an upper bound onJx(i0). They can be computed as described above.

The following observation can be useful in order to determine an optimal control in
a given state.

Remark 5.Suppose, for a statei0 ∈ S and a controlu ∈ U(i0), we have obtained an
upper boundJu(i0) on Ju(i0) and lower boundsJu′(i0) on Ju′(i0) for all controlsu′ ∈
U(i0) \ {u}, respectively, such thatJu(i0) ≤ Ju′(i0) for all u′. Then u is an optimal
control ati0.

5 Algorithmic Approach

In order to compute approximations on the optimal value function at a particular state of
a given MDP, it is usually inappropriate to apply the construction of Section 3 directly.
In this section, we present a suitably modified algorithmic approach. Following the
lines described in the last section, the algorithm can also be used in order to evaluate a
concrete policy or a specific control at a single state.

The idea is to start with a small setŜcontainingi0 that successively is increased by
adding new states. In doing so, we obtain a sequence of setsŜ1 ⊂ Ŝ2 ⊂ ·· · ⊂ Ŝn ⊂ S
together with a sequence of improving lower and upper boundsobtained as the optimal
values of the corresponding linear programs. Note that eachadded statei ∈ S\ Ŝyields
one new variable and|U(i)| new constraints in both linear programs (LŜ) and (UŜ).

Local Value Function Approximation 9

Our method proceeds by performing column generation on the linear program (L̂S).
The corresponding dual program reads:

min ∑
i∈Ŝ

∑
u∈U(i)

g(i,u)π(i,u) (DŜ)

subject to ∑
u∈U(i0)

π(i0,u) = α ∑
i∈Ŝ

∑
u∈U(i)

pii0(u)π(i,u)+1

∑
u∈U(j)

π(j,u) = α ∑
i∈Ŝ

∑
u∈U(i)

pi j (u)π(i,u) ∀ j ∈ Ŝ\ {i0}

π(i,u) ≥ 0 ∀i ∈ Ŝ∀u∈U(i)

Given an optimal solutionπopt to the dual program (D̂S) for some subset̂S⊂ S, the
reduced profit of a statej ∈ S\ Ŝequalsα ∑i∈Ŝ∑u∈U(i) pi j (u)πopt(i,u). The goal of the
pricing problem is to find a state with maximum reduced profit.

Using our column generation algorithm, we aim to investigate how many states are
required in practice to obtain a given approximation guarantee. Therefore, the algorithm
is mainly not designed to be very run-time efficient, but to show how many states it
requires to obtain the desired approximation. Our basic algorithm thus starts with the
setŜ1 = {i0} and only adds one state of maximum reduced profit in each iteration.

6 Computational Results

As an example for applying our algorithm, we choose the MDP model of a smalltarget
date assignment problem. This kind of problems arise, e. g., in the context of dispatch-
ing service technicians [8]. In the simplified model that we considered for our experi-
ments, one is faced with a sequence of items (of two possible sizes) arriving over time.
Each item has to be assigned to one of the following four days (immediately and irre-
vocably). The items assigned to a particular day are packed into a minimal number of
bins of size one. The goal is to distribute the items in such a way that the total number
of bins used is as small as possible. We consider an instance where at most six items
are released per day.

The parameters of the resulting MDP are as follows. In each state there are four
feasible controls and positive transition probabilities for at most four successor states.
All transition probabilities are in the range[0.1,0.5]. Possible stage costs are 1 (a new
bin is required) and 0 (no new bin). The MDP has more than 16 million states in total.
In all computations in this section, we use a discount factorof α = 0.7. For this MDP no
explicit optimal policy is known. For more details on the MDPand the computational
evaluation of associated policies using our algorithm, see[7].

First we analyze the performance of our column generation algorithm compared to
the method that directly applies the construction of Theorem 1 for approximating the
optimal value function at a particular statei0. Table 1 shows for given values ofH ∈ N,
the resulting approximation guaranteeε when using theH–neighborhood ofi0 as used
in Theorem 1. Moreover, the table shows the size of theH–neighborhood and the re-
quired number of states|Ŝ| to obtain the given guaranteeε when using the column

10 Heinz, Kaibel, Peinhardt, Rambau, and Tuchscherer

generation algorithm as well as the ratio of these two values. As expected, the col-
umn generation requires substantially fewer states as in the theoretical worst-case for
non-trivial approximation guarantees. It should be mentioned that the actual bounds
obtained by the state set constructed from Theorem 1 are in fact much better than guar-
anteed by this theorem, e. g., forH = 6 we already achieve an approximation guarantee
of ε = 0.1.

H 0 1 2 3 4 5 6 7 8 9 10
ε 2.34 1.64 1.15 0.81 0.57 0.40 0.28 0.20 0.14 0.10 0.07
|S(i0,H)| 1 17 147 855 3497 11421 31893 69613 118321 199765 328357
|Ŝ| by CG 1 5 25 47 118 274 558 904 1429 2064 3012
% 100 29.41 17.01 5.50 3.37 2.40 1.75 1.30 1.21 1.03 0.92

Table 1.Required number of states:H–neighborhood vs. column generation algorithm (CG). The
valueJ∗(i0) is about 1.53 which yields an impression for the relative approximation quality.

Table 2 shows for each depth w. r. t. the considered state how many states exist and
how many of them were generated by the column generation algorithm. The required
approximation guarantee is 5 %. We see that for practical MDPs the required state set
can be far away from being anH–neighborhood for someH ∈ N.

layer 0 1 2 3 4 5 6 7 8 9 10
total 1 16 130 708 2642 7924 20472 37720 48708 81444 128592
used 1 14 46 157 440 741 768 866 729 188 7
% 100 87.5 35.38 22.18 16.65 9.35 3.75 2.30 1.49 0.23 0.005

Table 2.Distribution of states per layer.

Next we consider the approximation process of our column generation algorithm
in detail. Given a statei0 ∈ S, a policy µ , and a controlu ∈ U(i0), we refer in the
following to the valuesJ∗(i0), Jµ(i0), andJu(i0) simply as the optimal cost, the cost of
policy µ , and the cost of controlu at statei0, respectively. Figure 1 shows the progress
of lower and upper bounds for the approximation of the optimal cost, the cost of a given
policy, and the cost of the control chosen by the policy at oneparticular state. This
state was chosen to obtain a distinctive behavior of the approximations. The required
approximation guarantee was chosen to be 5 % (thinner lines indicate the progress after
reaching this gap). As mentioned before, estimating the value function of a given policy
requires much fewer states than estimating the optimal value function. In this example
we see that the considered policy is not optimal. Moreover, the chosen control of the
policy also does not seem to be optimal, even though Figure 1 does not provide a proof
for that.

Local Value Function Approximation 11

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0 500 1000 1500 2000 2500 3000 3500 4000

ex
pe

ct
ed

 c
os

t

number of LP variables

optimal cost
policy cost

control cost

Fig. 1.Approximation progress for the optimal cost, the cost of a given policy, and the cost of the
control chosen by the policy.

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0 500 1000 1500 2000 2500 3000 3500 4000

ex
pe

ct
ed

 c
os

t

number of LP variables

optimal cost (standard)
optimal cost (policy diving)

Fig. 2.Approximation of the optimal cost using fixed policy diving:up to approx. 2 500 variables
we follow the fixed policy.

12 Heinz, Kaibel, Peinhardt, Rambau, and Tuchscherer

Note that in the beginning the upper bound on the cost of the policy considered
in Figure 1 is much smaller than the upper bound on the optimalcost. This observa-
tion leads to the following algorithmic idea. One starts by approximating the cost of a
known policy to some degree. The corresponding state space is then used to initialize
the computation for approximating the optimal cost. This method might reduce the total
number of required states, in particular if the utilized policy is good. Figure 2 depicts
the progress in cost approximation by means of this algorithm that we callfixed policy
diving for the same state as before. The thin line indicates the initial approximation of
the cost function of the used policy.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

nu
m

be
r

of
 L

P
 v

ar
ia

bl
es

 0
 1500
 3000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

in
cr

ea
se

iteration

Fig. 3. Required states for approximating a sample path of states.

Finally, we investigate to what extend our algorithm can make use of a warm start
when several states of a sampled path in the state space are tobe considered. After
approximating the cost of the first state in the sample we use the generated setŜto start
the approximation for the second state, and so on. Figure 3 shows how many additional
states in each iteration are needed to approximate the optimal cost function at the given
state up to an accuracy of 10 %. In each step the new state is sampled for the case that
a currently best control is applied. Apparently, our algorithm is suitable for using such
a kind of a warm start. More than the half of all used states aregenerated in the first
five steps of the sample consisting of 20 states in total. During this process the linear
program becomes very large. Therefore, one has to think about removing some states
at some point in order to apply this method continuously.

References

1. Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh,Learning to act using real-time
dynamic programming, Artificial Intelligence72 (1995), 81–138.

2. Dimitri P. Bertsekas,Dynamic programming and optimal control, 2 ed., vol. 1 and 2, Athena
Scientific, Belmont, 2001.

Local Value Function Approximation 13

3. Allan Borodin and Ran El-Yaniv,Online computation and competitive analysis, Cambridge
University Press, 1998.

4. Daniela P. de Farias and Benjamin Van Roy,The linear programming approach to approxi-
mate dynamic programming, Operations Research51 (2003), no. 6, 850–865.

5. , On constraint sampling in the linear programming approach to approximate dy-
namic programming, Mathematics of Operations Research29 (2004), no. 3, 462–478.

6. Thomas L. Dean, Leslie Pack Kaelbling, Jak Kirman, and AnnE. Nicholson,Planning with
deadlines in stochastic domains., AAAI, 1993, pp. 574–579.

7. Stefan Heinz,Policies for online target date assignment problems: Competitive analysis ver-
sus expected performance, Master’s thesis, Technische Universität Berlin, 2005.

8. Stefan Heinz, Sven O. Krumke, Nicole Megow, Jörg Rambau,Andreas Tuchscherer, and
Tjark Vredeveld,The online target date assignment problem, Proceedings of the 3rd Work-
shop on Approximation and Online Algorithms (Thomas Erlebach and Giuseppe Persiano,
eds.), vol. 3879, Springer, 2005, pp. 230–243.

9. Michael J. Kearns, Yishay Mansour, and Andrew J. Ng,A sparse sampling algorithm for
near-optimal planning in large Markov decision processes, International Joint Conferences
on Artificial Intelligence, 1999, pp. 1324–1331.

10. Michael L. Littman, Thomas L. Dean, and Leslie Pack Kaelbling, On the complexity of solv-
ing Markov decision problems, Proceedings of the Eleventh Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI–95) (Montreal, Québec, Canada), 1995, pp. 394–402.

11. Martin L. Putermann,Markov decision processes: Discrete stochastic dynamic program-
ming, 2 ed., John Wiley and Sons, Inc., Hoboken, New Jersey, 2005.

