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Abstract. The standard computational methods for computing the @ptialue
functions of Markov Decision Problems (MDP) require thelexation of the en-
tire state space. This is practically infeasible for aglins with huge numbers
of states as they arise, e. g., from modeling the decisionsline optimization
problems by MDPs. Exploiting column generation techniques propose and
apply an LP-based method to determinesaapproximation of the optimal value
function at a given state by inspecting only states in a snedjhborhood. In the
context of online optimization problems, we use these o order to evalu-
ate the quality of concrete policies with respect to givatiahstates. Moreover,
the tools can also be used to obtain evidence of the impadhgliesdecisions.
This way, they can be utilized in the design of policies.

1 Introduction

Many real-world problems that call for planning under unaimty over an infinite time
horizon, e. g., online optimization problems, can be madiakeMarkov Decision Prob-
lems (MDPs). See Section 6 for an example. Due to severallgrels of other con-
cepts of evaluation of online algorithms (like competitaraalysis, see, e. g., [3]), MDPs
provide an attractive alternative in this context whenestechastic information about
future requests is available. However, the sizes of the sgces of MDPs arising this
way usually are exponential in the original input paranetéhe classical methods for
computing an optimal policy are value iteration, policyr@ton, and linear program-
ming [2]. As the complexity of these methods depends at leastrly on the number
of states, their use is impossible in MDPs for practical apions as mentioned above.

The aim of the approach presented in this paper is to evajjisaga policies or just
single controls w.r.t. an optimal policy in one state witheuploring the entire state
space. In order to obtain an estimation of the relative gawdon the value function
of a given policy and the optimal value function at a particidtate, we must provide
an upper bound for the first value and a lower bound for therstome. In fact, our
algorithm computes lower and upper bounds for both valugsragely.

* Supported by the DFG Research CenterTMEON Mathematics for key technologies
Berlin.
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Our methods are based on the classical linear programmingufation for com-
puting the optimal value function in an infinite-horizon cisinted MDP. We modify
the formulation by taking into account only a (small) pérmf the state spac8. The
paper aims at making two main contributions. On the thecakside, we show in Sec-
tion 3 that, for a giverz > 0 and an initial stat& € S, there is always some pasiof S
such that the restricted LP yields arapproximation of the optimal value functionigt
while the size ofS does not depend on the total number of states. In fact, tieecsiz
édepends only on the local structure®étig. On the practical side, in Section 5 we
propose an algorithm in which the local p&iof the state space is changed dynamically
during the run by means of a column generation procedure eéjMert on experiments
with a simplified version of an online target date assignrpeoiblem that arose from an
industrial application. At least in this simplified settinbe results of our experiments
are quite encouraging. The main reason for the practicaliefity of the algorithm
seems to be the feature that the dynamic change of th@isejuided by the reduced
cost structure of the current reduced LP.

The approach described in the literature that yields theltseslosest to our’s is a
sparse sampling algorithm for large-scale Markov Decigtamblems [9]. The authors
also give theoretical bounds on the necessary size of atsobde state space that is
needed by their approach in order to obtaincaapproximation (see the remark at the
end of Section 3). However, for the applications that we dith&ir bounds are weaker
than ours. Furthermore, and maybe more importantly, thethod does not seem to
allow a modification that in practice visits substantialjwer states than guaranteed
by the theoretical analysiget maintaining the approximation guarantee a-posteriori
In our view, this is a main advantage of the method that we gsef(see the results
in Section 6). Other approaches to locally explore the sasee include [6, 1], where
in [6] policy iteration is used with a concept of locality thsa similar to ours. However,
their method does not provide any approximation guarargitiesr.

This paper is arranged as follows. In Section 2, we give tlimitien of an MDP
together with related notations. Section 3 presents thefmbour theoretical local
approximation theorem. A couple of useful applicationshig tesult are given in Sec-
tion 4. Our algorithmic approach for practical use is démdiin Section 5. Finally,
Section 6 shows computational results of our algorithmiaggb a simple MDP which
is derived from an industrial problem.

2 Preliminaries

The basic data of atationary optimal control problenm discrete time are a s&
of states together with a non-empty séf(i) of feasible controldor every staté € S.
Applying in state € Scontrolu € U (i) moves the system into stagec Swith transition
probability p;(u) (thus, we haves ;s pij(u) = 1). The functiong(i,u, j) denotes the
stage cosbf controlu € U (i) in statei € Sin the case when stajec Sis the next state.
A policy u is a mapping that assigns a feasible control to each statex Eq0, 1) the
a-discounted cosvf a policy u for initial statei € Sis the expected discounted total
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cost defined by

[ee]

Ju(i) = Ejl,jz,...(k;akguk,u(jk), ki), 1)

wherejo =i and jx is a random variable specifying the state of the system gegta
Jy is called thevalue functiorof policy u and theoptimal value functioris defined at
statei € Shy

J* (i) = nLinJ“(i).

Any policy p* with J,« = J* is anoptimal policy The goal is to find an optimal or
close-to-optimal policy.

In the computer science literature such systems are ustalgdMarkov Decision
Problems MDP, for short. For an introduction to the subject see, ,d1d.]. If J* is
known then—by Bellman’s principle of optimality—any pafig with

u()eargmm{g i,u +aZSp., J(j)} Vvies

ueU (i

is optimal, wherey(i,u) := ¥ jcspij (U)d(i, U, j) is theexpected stage cost using con-
troluc U(i) at state € S,

Methods to computd* include value iteration policy iteration andlinear pro-
gramming[2, 10]. In all these methods, the complexity of finding animgt policy
depends at least linearly on the number of states, whichiitseur context is usually
exponential in the common input parameters.

According to the classical linear programming model, thiénoal value functiord*
can be derived as the unique optimal solution of the follgWinear program:

max{ZgJ OIRIO! <g|u+0{ZSpIJ (j)vieSvueu(i)} (2)

This formulation has been the starting point for severaragghes [4, 5]. Since we
are only interested id*(ip) for a particular stat& € S, we will consider the following
LP with simplified objective function instead:

max{J(io) [J() <g(i,u)+a Zspij (WJ(j)VieSvueu (i)} 3)
JE

The following relation is due to the fact that the componéséwnaximum of two
feasible solutions to the LPs is feasible as well.

Remark 1.Every optimal solution to (2) is an optimal solution to (3).

Since in our model there is only a finite number of states amdrots the expected
stage costg(i,u) are bounded from above by some consftant. e., g(i,u) < G for
all states € Sand all controlau € U (i). This implies an upper bound ah from (1)
we easily getl, (i) <C:=G/(1—a), for all policiesu and alli € S. Since it will be
convenient sometimes, we generally assube 1 (which easily can be obtained by
scaling the expected stage costs).
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3 The Structural Result

In the following we present our structural result which skdhat anc-approximation
of the optimal value function at one given state can be obthby taking into account
only a small local part of the entire state space.

Theorem 1. Let S be the state space of an MDP with the following propgrtihere
c,d e Nwithcd>2and G> 1.

— The numbefU (i)| of controls is bounded by c for eackiS.

— For each ie S and ue U (i), the number of statesg S with positive transition
probabilities p;j (u) is bounded by d.

— Foreachie S and ue U (i), the expected stage costs satBfg g(i,u) < G.

Then, for every discount factér< a < 1, for all ip € S, and for alle > 0, there is
a set of stateS C S with the following properties:

R e(l-a) N
(i) 1§ e O((cd)'og( c )/Iog(a)), in particular, the number of states & does not
dependons.
(i) The function J S— R, defined as an optimal solution to the reduced LP

max{J(io) [J() <g(i,u)+a Zpij (WI(j)vie Svue U(i)} (Lg
jes

is anée-close lower bound to*Jin the given statept
0<J%(ip) — J(ip) < &.

Our theorem does not apply to the case d = 1, which, however, leads only to
trivial MDPs (at least in our context). Note that the redutBdL ) is feasible since we
assume that the expected stage cgftal) > 0, e.g.J = 0 is always a solution.

To prove the theorem we introduce some technical notions.

Definition 1 (H—neighborhood).For an MDP with state space S, a stated S, and

a number He N, the H-neighborhoo®(ip,H) of i in S is the subset of states that
can be reached frony iwith positive probability within at most H transitions. Ttia
S(ip,0) :={io}, and for H> 0 we define:

S(io,H) :=S(ig,H—1)U{j € S| Ji € ip,H —1)Fuec U(i) : pjj(u) > O}.
Using this definition we can prove Theorem 1.

Proof (Theorem 1)For a,& >0, a < 1, andip € S, we chooseéS = S(ip,H) where
H > 0 is specified later. Since the numbers of applicable can&notl succeeding states
for any control are bounded hyresp.d, we have that§ < % < (cd)"+1 (as
we havecd > 1).

Similarly to Remark 1, there is some optimal solutibof the restricted LP (k)
that is also optimal with respect to the objective functigns J(i). Thus, for every state
i € § thereis at least one contmok U (i) such that the corresponding inequality inglL
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is satisfied with equality by (here we need that every state has at least one control).
We call one of these controls theeitical control u(i) of i. Furthermore, leg* be the
optimal value function (i. eJ* is the optimal solution to (2)).

We defineJ(i) := 0 for all i € S\ S. The value(io) is a lower bound ord*(io)
since (Lg) can be seen as derived from (3) with the additional restrist)(i) = O for

allieS\S
We then have the relations
J*(i)Sg(hg(i))JraZspu (u(i))J*(i) Vie§
Jje
I() =g(i,u) +a  pij(u)I(i) Vie$§
jes
which gives
—Ji)<a an (u() (3" () —3(1)) vies (4)

Note that in (4) we sum over the whole state space, althowgadhality forJ provides
only a sum ove& However, this does not affect the validity duglfg) =0 for j € S\ S
We show by reverse induction dn=H, ..., 0 that, for alli € S(ig, h),

G
J* H J < H+1-h
() -30) < S

()

Note that alli to which (5) refers are contained $because of < H.
Forh=H and for alli € S(ip,h), due toJ*(j) < G/(1—a) for all j € S, we de-

rive (5) from (4):
G
—J@) <ad pijui)(—— -0
Jgs J (1—(1 )

l-a
Here, the equation follows from the fact tigf.spiju(i) = 1 holds for every € S.
Now assume that (5) holds for gl S(ig,h) with H > h > 0. For anyi € S(ip,h—1)

we again apply (4):

-3 <a 3 pii)('()-30) =a 5 piud)(()-ID).

1€ jeS(ioh)
where the equation is due to the fact thatjadt Swith p;; (u(i)) > 0 are contained in
S(ip, h). We can apply the induction hypothesis fog Sig, h):
G

G
\]*(|) —Q(I) <a z p”( ( )) H+1 h_ ¥ aHJrl*(hfl)
jeSo.h) l-a 1-a

which completes the inductive proof of (5).
Fori = ip andh = 0, inequality (5) yields)*(ig) — J(io) < a" 1. By choosing

[Iog( ) /loga] — 1 the gap of the lower bounHtip) is bounded by. O

)
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Remark 2.The size of the restricted state space is optimal in somesaagan be seen
from the example of a tree like MDP (rootedig}, in which every state (that can be
reached withirH steps fromig) has exactlyc different controls, which with uniform
transition probabilities, lead to exactly'new states” that can be reached only via this
control. In this case, one can show tiat S(ip,H) as above is the smallest restricted
state space to obtain the desired approximation. Of courserporating additional
parameters of the MDP might give better results in specs¢sa

Though this is not important in our context, we mention thia¢drem 1 still holds
if the state spac8is not finite.

More important is the observation that, in the same way asomgpated the lower
bound on the optimal cost function in a given sigteve can compute an upper bound as
well. Instead of just dropping the cost function outsiié e., setting it to zero, we can
set the corresponding variables to the general upper lBunG/(1— o). By choosing
the same restricted state space S(ip,H) as above, the new restricted program reads:

max J(ip)
I <giu+a(YpWIN+ Y mWc) vieSvueui (U9
jeS jes\S

LetJ be an optimal solution to (§). ObviouslyJ(io) is an upper bound aF(ig). In the
same way as in the proof of Theorem 1 we focus on critical csitr, this time with
respect to the optimal solutioli of (2). The basic relations then read (withj) =C
forall j € S\ 9:

(i) =g(i,u"(i)) +a Zspu(U*(i))J*(J) vie§
IS
j(i)S@J(i,U*(i))JrOIZSIOij(U*(i))j(j) vie§
IS
which leads to
3(i)—J*(i)SGXSDU(U*G))@(J')—J*(J)) vies
IS
Following the arguments as above we deduce:

J(io) — I*(ig) < a™tt_—.
(i) = J"(io) = a7 —

The program () for the computation of the upper bound can be tightened tiebe
upper bounds tha@/(1 — o) for the cost function of not included states can be found.

Remark 3.It should be noted that the size of the restricted state spacare using
is considerably smaller than that used for random samphn®]. There states are

sampled up to a depth bk = [log (8(14;5)3) /loga’ which gives a considerably larger
state space (note that due to our general assum@tiprl we haves(1— a)/G < 1).
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However, the setting given there is somewhat differenteg dssume very large values
of d. In particular, they sample, for each considered state pthdemaller thars, only

T~ (arses) (e () (555)
%In (8(14—60)3) In (£(14_Ga)2)> +In (ﬁ))

consecutive states If < d. Note however that even for fairly small problems, e.g.,
G=1,c=4,a =0.7,ande = 0.1, this yieldsT larger than 18 billion.

4 Applications

For online optimization problems, very often algorithmerseto behave well in prac-
tice or, at least, in simulation experiments, although tlsgical analysis tools (e.g.,
based on competitive ratio) do not indicate this. In ordegdm evidence for such ob-
servations, we aim for a method that, at each event, prowidestimate of the expected
(future) costs caused by the current decision (assumintateedecisions to be made
according to a concrete algorithm or not), relative to thet€generated by an optimal
algorithm. Translated into the language of MDPs, we theeefeeed a method for the
relative evaluatiorof a given policy or of a single control. In an MDP-model of sem
online optimization problem, the states need to encodelitapbinformation like, e. g.,
the currently open requests and the resources used at themh¢winich usually lead to
state spaces of intractable size). Stochastic informatimut future requests can then
be translated into transition probabilities.

We showed that ap-approximation of the optimal value function for one stad@ c
be computed by only considering a small subset of statesevéias does not depend
on the total number of states. In the following we highlighetul applications of this
result that are obtained by considering appropriate rtigtris of the state space of the
MDP.

Obviously, the value functiody, of a given policyu equals the optimal value func-
tion of the restricted MDP, where the feasible controls astricted to those chosen by
the policy, i.e.U’(i) = {u(i)} for all states € S. Therefore, we can approximate the
value function of a policy in the same way as we did for theroptivalue function. For
the same guarantee, the value function approximation favengolicy may require
substantially fewer states than the approximation of thiag value function since
there is only one feasible control per state.

As mentioned above, it sometimes is more desirable to eteaturdly a single control
applied in a given state (not entire policy), given that tmaining decisions are made
w. r. t. an optimal policy. Using another restriction of ouiginal MDP, our method can
be used for this purpose, too. Given a state Sand a controli € U (ip), we definel, as
the value function of a policy which is optimal among all padis that apply contral
in stateig. The valuel,(ip) reflects the impact of using contralin stateip. We say
that controlu is optimalin stateig if Jy(io) = J*(io). Again, J, is the optimal value
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function of an restricted MDP, where the set of feasible matin statdg is restricted
toU’(ip) = {u}. Thus, we can use Theorem 1 to approxiniat&).

The observations above yield the following corollary of ®rem 1:

Remark 4.Assume we are given an MDP satisfying the conditions of Téeot, a
stateip € S, a policy i, and a controu € U (ip). Then, by restricting the MDP, the
values]y (ip) andJy(ip) can be approximated in the same way as describedf @) in
Theorem 1.

With respect to the goals discussed at the beginning of #tigo, we aim at esti-
mating and reporting for every statee S, which is reached while running a simulation
or real-world systempnlinethe quantity

Jx(io) — JI*(io)
J*(i0)

wherex € {u,u}. This gives the relative cost increase in stgie Swhen using policyu
or controlu € U (ip) instead of an optimal policy. Thus, we need both a lower bound
onJ*(ip) and an upper bound ak(ip). They can be computed as described above.

The following observation can be useful in order to detem@n optimal control in
a given state.

Remark 5.Suppose, for a statg € Sand a controu € U(ip), we have obtained an
upper bound,(ip) on Jy(ip) and lower bounds,, (i) on Jy (io) for all controlsu’ €
U(ip) \ {u}, respectively, such thak,(ip) < Jy(io) for all u'. Thenu is an optimal
control atig.

5 Algorithmic Approach

In order to compute approximations on the optimal value fionat a particular state of
a given MDP, it is usually inappropriate to apply the consfilan of Section 3 directly.
In this section, we present a suitably modified algorithnppraach. Following the
lines described in the last section, the algorithm can a¢soded in order to evaluate a
concrete policy or a specific control at a single state.

The idea is to start with a small sét:ontainingio that successively is increased by
adding new states. In doing so, we obtain a sequence ofsetsS, c --- ¢ §,C S
together with a sequence of improving lower and upper boobtiined as the optimal
values of the corresponding linear programs. Note that added statee S\ Syields
one new variable anfil) (i)| new constraints in both linear programsgyland ().
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Our method proceeds by performing column generation orirteard program (k).
The corresponding dual program reads:

min Z Z g(i,u)m(i,u) (Dg)
ieSueU(i)
subjectto % miou)=ay 3 pig(u)7i,u)+1
ueU (ip) ieSueU (i)
Y aw=ay 3 pyumiu) Vi€ S\ {io}
ueU(j) ieSueU (i)
m(i,u) >0 Vi e Svue U (i)

Given an optimal solutiom®® to the dual program (E) for some subse$ c S, the
reduced profit of a statpe S\ Sequalsa Yics Y ueu i) Pij (U)TP(i, u). The goal of the
pricing problem is to find a state with maximum reduced profit.

Using our column generation algorithm, we aim to investdaiw many states are
required in practice to obtain a given approximation gussanT herefore, the algorithm
is mainly not designed to be very run-time efficient, but tovgthow many states it
requires to obtain the desired approximation. Our basioralgn thus starts with the
set$; = {ip} and only adds one state of maximum reduced profit in eacttiitera

6 Computational Results

As an example for applying our algorithm, we choose the MDRlehof a smaltarget
date assignment problerfhis kind of problems arise, e. g., in the context of dispatc
ing service technicians [8]. In the simplified model that vemsidered for our experi-
ments, one is faced with a sequence of items (of two possidde)sarriving over time.
Each item has to be assigned to one of the following four deysédiately and irre-
vocably). The items assigned to a particular day are paekeda minimal number of
bins of size one. The goal is to distribute the items in suclag that the total number
of bins used is as small as possible. We consider an instanesevat most six items
are released per day.

The parameters of the resulting MDP are as follows. In eaate shere are four
feasible controls and positive transition probabilities &t most four successor states.
All transition probabilities are in the rand@.1,0.5]. Possible stage costs are 1 (a new
bin is required) and 0 (no new bin). The MDP has more than 16amistates in total.
In all computations in this section, we use a discount faator = 0.7. For this MDP no
explicit optimal policy is known. For more details on the MRd the computational
evaluation of associated policies using our algorithm[gke

First we analyze the performance of our column generatigordhm compared to
the method that directly applies the construction of Theoiefor approximating the
optimal value function at a particular stage Table 1 shows for given values Bf€ N,
the resulting approximation guaranteahen using théd—neighborhood oify as used
in Theorem 1. Moreover, the table shows the size offfh@eighborhood and the re-
quired number of state|$| to obtain the given guaranteewhen using the column
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generation algorithm as well as the ratio of these two valdssexpected, the col-
umn generation requires substantially fewer states aseiththoretical worst-case for
non-trivial approximation guarantees. It should be mergthat the actual bounds
obtained by the state set constructed from Theorem 1 aretimfach better than guar-
anteed by this theorem, e. g., tdr= 6 we already achieve an approximation guarantee
of e=0.1.

H 0 1 2 3 4 5 6 7 8 9 10

£ 234 164 115 081 057 040 028 020 014 010 007
S(io,H)| 1 17 147 855 3497 11421 31893 69613 118321 199765 328357
SbycGc 1 5 25 47 118 274 558 904 1429 2064 3012
% 100 2941 1701 550 337 240 175 130 121 103 092

Table 1.Required number of statdd=—neighborhood vs. column generation algorithm (CG). The
valueJ*(ip) is about 153 which yields an impression for the relative approximatoiality.

Table 2 shows for each depth w.r. t. the considered state hamy istates exist and
how many of them were generated by the column generationitiign The required
approximation guarantee is 5%. We see that for practical MDE required state set
can be far away from being af—neighborhood for somd € N.

layer O 1 2 3 4 5 6 7 8 9 10
total 1 16 130 708 2642 7924 20472 37720 48708 81444 128592
used 1 14 46 157 440 741 768 866 729 188 7

% 100 875 3538 2218 1665 935 375 230 149 023 0005

Table 2. Distribution of states per layer.

Next we consider the approximation process of our columregion algorithm
in detail. Given a statéy € S, a policy u, and a controu € U(ig), we refer in the
following to the values)* (i), Ju(io), andJy(ig) simply as the optimal cost, the cost of
policy u, and the cost of contral at statdg, respectively. Figure 1 shows the progress
of lower and upper bounds for the approximation of the opittoat, the cost of a given
policy, and the cost of the control chosen by the policy at pasgicular state. This
state was chosen to obtain a distinctive behavior of thecqimiations. The required
approximation guarantee was chosen to be 5 % (thinner lintésate the progress after
reaching this gap). As mentioned before, estimating thee/ainction of a given policy
requires much fewer states than estimating the optimakvainction. In this example
we see that the considered policy is not optimal. Moreover,chosen control of the
policy also does not seem to be optimal, even though Figure$ dot provide a proof
for that.
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Fig. 1. Approximation progress for the optimal cost, the cost of@gipolicy, and the cost of the
control chosen by the policy.
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we follow the fixed policy.
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Note that in the beginning the upper bound on the cost of thieypoonsidered
in Figure 1 is much smaller than the upper bound on the optoosi. This observa-
tion leads to the following algorithmic idea. One starts pp@ximating the cost of a
known policy to some degree. The corresponding state spabem used to initialize
the computation for approximating the optimal cost. Thishrod might reduce the total
number of required states, in particular if the utilizedippls good. Figure 2 depicts
the progress in cost approximation by means of this algoritiat we calfixed policy
diving for the same state as before. The thin line indicates thialimipproximation of
the cost function of the used policy.

* 16000
14000
12000
10000
8000
6000
4000
2000

0

3000
1500 I
0 - B = B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
iteration

increase number of LP variable

Fig. 3. Required states for approximating a sample path of states.

Finally, we investigate to what extend our algorithm can enake of a warm start
when several states of a sampled path in the state space beeconsidered. After
approximating the cost of the first state in the sample wehessgénerated sé&to start
the approximation for the second state, and so on. FiguresBshow many additional
states in each iteration are needed to approximate the aptst function at the given
state up to an accuracy of 10 %. In each step the new state eshfor the case that
a currently best control is applied. Apparently, our altjori is suitable for using such
a kind of a warm start. More than the half of all used statesggareerated in the first
five steps of the sample consisting of 20 states in total.rigutthis process the linear
program becomes very large. Therefore, one has to thinktabmwoving some states
at some point in order to apply this method continuously.
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