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Abstract. We introduce orbitopes as the convex hulls of 0/1-matrices
that are lexicographically maximal subject to a group acting on the
columns. Special cases are packing and partitioning orbitopes, which
arise from restrictions to matrices with at most or exactly one 1-entry
in each row, respectively. The goal of investigating these polytopes is to
gain insight into ways of breaking certain symmetries in integer programs
by adding constraints, e.g., for a well-known formulation of the graph
coloring problem.

We provide a thorough polyhedral investigation of packing and parti-
tioning orbitopes for the cases in which the group acting on the columns
is the cyclic group or the symmetric group. Our main results are com-
plete linear inequality descriptions of these polytopes by facet-defining
inequalities. For the cyclic group case, the descriptions turn out to be
totally unimodular, while for the symmetric group case both the de-
scription and the proof are more involved. Nevertheless, the associated
separation problem can be solved in linear time also in this case.

1. Introduction

Symmetries are ubiquitous in discrete mathematics and geometry. They
are often responsible for the tractability of algorithmic problems and for the
beauty of both the investigated structures and the developed methods. It
is common knowledge, however, that the presence of symmetries in integer
programs may severely harm the ability to solve them. The reasons for this
are twofold. First, the use of branch-and-bound methods usually leads to an
unnecessarily large search tree, because equivalent solutions are found again
and again. Second, the quality of LP relaxations of such programs typically
is extremely poor.

A classical approach to “break” such symmetries is to add constraints
that cut off equivalent copies of solutions, in hope to resolve these problems.
There are numerous examples of this in the literature; we will give a few
references for the special case of graph coloring below. Another approach
was developed by Margot [11, 12]. He studies a branch-and-cut method that
ensures to investigate only one representative of each class of equivalent solu-
tions by employing methods from computational group theory. Furthermore,
the symmetries are also used to devise cutting planes. Methods for symme-
try breaking in the context of constraint programming have been developed,
for instance, by Fahle, Schamberger, and Sellmann [7] and Puget [16].
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The main goal of this paper is to start an investigation of the polytopes
that are associated with certain symmetry breaking inequalities. In order to
clarify the background, we first discuss the example of a well-known integer
programming (IP) formulation for the graph coloring problem.

Let G = (V,E) be a loopless undirected graph without isolated nodes.
A (vertex) coloring of G using at most C colors is an assignment of colors
{1, . . . , C} to the nodes such that no two adjacent nodes receive the same
color. The graph coloring problem is to find a vertex coloring with as few
colors as possible. This is one of the classical NP-hard problems [9]. It is
widely believed to be among the hardest problems in combinatorial opti-
mization. In the following classical IP formulation, V = {1, . . . , n} are the
nodes of G and C is some upper bound on the number of colors needed.

min

C
∑

j=1

yj

xij + xkj ≤ yj {i, k} ∈ E, j ∈ {1, . . . , C} (i)
C

∑

j=1

xij = 1 i ∈ V (ii)

xij ∈ {0, 1} i ∈ V, j ∈ {1, . . . , C} (iii)
yj ∈ {0, 1} j ∈ {1, . . . , C} (iv)

(1)

In this model, variable xij is 1 if and only if color j is assigned to node i and
variable yj is 1 if color j is used. Constraints (i) ensure that color j is assigned
to at most one of the two adjacent nodes i and k; it also enforces that yj

is 1 if color j is used, because there are no isolated nodes. Constraints (ii)
guarantee that each node receives exactly one color.

It is well known that this formulation exhibits symmetry: Given a solution
(x, y), any permutation of the colors, i.e., the columns of x (viewed as an
n × C-matrix) and the components of y, results in a valid solution with the
same objective function value. Viewed abstractly, the symmetric group of
order C acts on the solutions (x, y) (by permuting the columns of x and the
components of y) in such a way that the objective function is constant along
every orbit of the group action. Each orbit corresponds to a symmetry class
of feasible colorings of the graph. Note that “symmetry” here always refers
to the symmetry of permuting colors, not to symmetries of the graph.

The weakness of the LP-bound mentioned above is due to the fact that
the point (x⋆, y⋆) with x⋆

ij = 1/C and y⋆
j = 2/C is feasible for the LP

relaxation with objective function value 2. The symmetry is responsible
for the feasibility of (x⋆, y⋆), since x⋆ is the barycenter of the orbit of an
arbitrary x ∈ {0, 1}n×C satisfying (ii) in (1).

It turned out that the symmetries make the above IP-formulation for
the graph coloring problem rather intractable in practice. One solution is
to develop different formulations for the graph coloring problem. This line
has been pursued, e.g., by Mehrotra and Trick [13], who devised a column
generation approach. See Figueiredo, Barbosa, Maculan, and de Souza [8]
and Cornaz [5] for alternative models.

Another solution is to enhance the IP-model by additional inequalities that
cut off as large parts of the orbits as possible, keeping at least one element of
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each orbit in the feasible region. Méndez-Díaz and Zabala [15] showed that a
branch-and-cut algorithm using this kind of symmetry breaking inequalities
performs well in practice. The polytope corresponding to (1) was investi-
gated by Campêlo, Corrêa, and Frota [3] and Coll, Marenco, Méndez-Díaz,
and Zabala [4]. Ramani, Aloul, Markov, and Sakallah [17] studied symme-
try breaking in connection with SAT-solving techniques to solve the graph
coloring problem.

The strongest symmetry breaking constraints that Méndez-Díaz and Za-
bala [14, 15] introduced are the inequalities

xij −

i−1
∑

k=1

xk,j−1 ≤ 0, for all i and j ≥ 2. (2)

From each orbit, they cut off all points except for one representative that
is the maximal point in the orbit with respect to a lexicographic ordering.
A solution (x, y) of the above IP-model is such a representative if and only
if the columns of x are in decreasing lexicographic order. We introduce a
generalization and strengthening of Inequalities (2) in Section 4.1.

Breaking symmetries by adding inequalities like (2) does not depend on the
special structure of the graph coloring problem. These inequalities single out
the lexicographic maximal representative from each orbit (with respect to the
symmetric group acting on the columns) of the whole set of all 0/1-matrices
with exactly one 1-entry per row. The goal of this paper is to investigate
the structure of general “symmetry breaking polytopes” like the convex hull
of these representatives. We call these polytopes orbitopes. The idea is that
general knowledge on orbitopes (i.e., valid inequalities) can be utilized for
different symmetric IPs in order to address both the difficulties arising from
the many equivalent solutions and from the poor LP-bounds. In particular
with respect to the second goal, for concrete applications it will be desirable
to combine the general knowledge on orbitopes with concrete polyhedral
knowledge on the problem under investigation in oder to derive strengthened
inequalities. For the example of graph coloring, we indicate that (and how)
this can be done in Section 5. Figure 1 illustrates the geometric situation.

The case of a symmetric group acting on the columns is quite important.
It does not only appear in IP-formulations for the graph coloring problem,
but also in many other contexts like, e.g., block partitioning of matrices [1],
k-partitioning in the context of frequency assignment [6], or line-planning
in public transport [2]. However, other groups are interesting as well. For
instance, in the context of timetabling in public transport systems [19] cyclic
groups play an important role.

We thus propose to study different types of orbitopes, depending on the
group acting on the columns of the variable-matrix and on further restrictions
like the number of 1-entries per row being exactly one (partitioning), at most
one (packing), at least one (covering), or arbitrary (full).

The main results of this paper are complete and irredundant linear de-
scriptions of packing and partitioning orbitopes for both the symmetric group
and for the cyclic group acting on the columns of the variable-matrix. We
also provide (linear time) separation algorithms for the corresponding sets of
inequalities. While this work lays the theoretical foundations on orbitopes,
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Figure 1: Breaking symmetries by orbitopes. The left figure illustrates an orbitope, i.e.,
the convex hull of the representatives of a large system of orbits. For a concrete problem,
like graph coloring, only a subset of the orbits are feasible. Combining a (symmetric)
IP-formulation for the concrete problem with the orbitope removes the symmetry from
the formulation (right figure).

a thorough computational investigation of the practical usefulness of the re-
sults will be the subject of further studies (see also the remarks in Section 5).

The outline of the paper is as follows. In Section 2, we introduce some
basic notations and define orbitopes. In Section 2.1 we show that optimiza-
tion over packing and partitioning orbitopes for symmetric and cyclic groups
can be done in polynomial time. In Section 3 we give complete (totally uni-
modular) linear descriptions of packing and partitioning orbitopes for cyclic
groups. Section 4 deals with packing and partitioning orbitopes for symmet-
ric groups, which turn out to be more complicated than their counterparts for
cyclic groups. Here, besides (strengthenings of) Inequalities (2), one needs
exponentially many additional inequalities, the “shifted column inequalities”,
which are introduced in Section 4.2. We show that the corresponding sepa-
ration problem can be solved in linear time, see Section 4.3. Section 4.4 gives
a complete linear description, and Section 4.5 investigates the facets of the
polytopes. We summarize the results for symmetric groups in Section 4.6
for easier reference. Finally, we close with some remarks in Section 5.

2. Orbitopes: General Definitions and Basic Facts

We first introduce some basic notation. For a positive integer n, we define
[n] := {1, 2, . . . , n}. We denote by 0 the 0-matrix or 0-vector of appropriate

sizes. Throughout the paper let p and q be positive integers. For x ∈ R[p]×[q]

and S ⊆ [p] × [q], we write

x(S) :=
∑

(i,j)∈S

xij .

For convenience, we use S−(i, j) for S \{(i, j)} and S +(i, j) for S∪{(i, j)},
where S ⊆ [p]× [q] and (i, j) ∈ [p]× [q]. If p and q are clear from the context,
then rowi := {(i, 1), (i, 2), . . . , (i, q)} are the entries of the ith row.

Let Mp,q := {0, 1}[p]×[q] be the set of 0/1-matrices of size p× q. We define

◦ M≤
p,q := {x ∈ Mp,q : x(rowi) ≤ 1 for all i}

◦ M=
p,q := {x ∈ Mp,q : x(rowi) = 1 for all i}

◦ M≥
p,q := {x ∈ Mp,q : x(rowi) ≥ 1 for all i}.
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Let ≺ be the lexicographic ordering of Mp,q with respect to the ordering

(1, 1) < (1, 2) < · · · < (1, q) < (2, 1) < (2, 2) < · · · < (2, q) < . . .

of matrix components (i.e., (1, 1) is the most significant entry for the lexico-
graphic ordering). Let Sn be the group of all permutations of [n] (symmetric
group) and let G be a subgroup of Sq, acting on Mp,q by permuting columns.
Let Mmax

p,q (G) be the set of matrices of Mp,q that are ≺-maximal within their
orbits under the group action.

We can now define the basic objects of this paper.

Definition 1 (Orbitopes).

(1) The full orbitope associated with the group G is

Op,q(G) := conv Mmax
p,q (G).

(2) We associate with the group G the following restricted orbitopes:

O≤
p,q(G) := conv(Mmax

p,q (G) ∩M≤
p,q) (packing orbitope)

O=
p,q(G) := conv(Mmax

p,q (G) ∩M=
p,q) (partitioning orbitope)

O≥
p,q(G) := conv(Mmax

p,q (G) ∩M≥
p,q) (covering orbitope)

Remark. By definition, O=
p,q(G) is a face of both O≤

p,q(G) and O≥
p,q(G).

In this paper, we will be only concerned with the cases of G being the the
cyclic group Cq of order q (Section 3) or the symmetric group Sq (Section 4).
Furthermore, we will restrict attention to packing and partitioning orbitopes.
For these, we have the following convenient characterizations of vertices:

Observation 1.

(1) A matrix of Mp,q is contained in Mmax
p,q (Sq) if and only if its columns

are in non-increasing lexicographic ordering (with respect to the order ≺
defined above).

(2) A matrix of M≤
p,q is contained in Mmax

p,q (Cq) if and only if its first column
is lexicographically not smaller than the remaining ones (with respect to
the order ≺).

(3) In particular, a matrix of M=
p,q is contained in Mmax

p,q (Cq) if and only if
it has a 1-entry at position (1, 1).

2.1. Optimizing over Orbitopes

The main aim of this paper is to provide complete descriptions of O=
p,q(Sq),

O≤
p,q(Sq), O=

p,q(Cq), and O≤
p,q(Cq) by systems of linear equations and linear

inequalities. If these orbitopes admit “useful” linear descriptions then the
corresponding linear optimization problems should be solvable efficiently, due
to the equivalence of optimization and separation, see Grötschel, Lovász, and
Schrijver [10].

We start with the cyclic group operation, since the optimization problem
is particularly easy in this case.

Theorem 1. Both the linear optimization problem over Mmax
p,q (Cq) ∩M≤

p,q

and over Mmax
p,q (Cq) ∩M=

p,q can be solved in time O(pq).
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Proof. We first give the proof for the packing case.
For a vector c ∈ Q[p]×[q], we consider the linear objective function

〈c, x〉 :=

p
∑

i=1

q
∑

j=1

cij xij.

The goal is to find a matrix A⋆ ∈ Mmax
p,q (Cq) ∩ M≤

p,q such that 〈c,A⋆〉 is
maximal. Let A⋆ be such a c-maximal matrix, and let a⋆ ∈ {0, 1}p be its
first column. If a⋆ = 0, then A⋆ = 0 by Part (2) of Observation 1. By
the same observation it follows that if a⋆ 6= 0 and i⋆ ∈ [p] is the minimum
row-index i with a⋆

i = 1, then A⋆ has only zero entries in its first i⋆ rows,
except for the 1-entry at position (i⋆, 1) (there is at most one 1-entry in each
row). Furthermore, each row i > i⋆ of A⋆ either has no 1-entry or it has its
(unique) 1-entry at some position where c is maximal in row i.

Thus, we can compute an optimal solution as follows: (1) For each i ∈ [p]
determine a vector bi ∈ {0, 1}q that is the zero vector if c does not have
any positive entries in row i and otherwise is the j-th standard unit vector,
where j ∈ [q] is chosen such that cij = max{ciℓ : ℓ ∈ [q]}; set σi := 0 in
the first case and σi := cij in the second. (2) Compute the values sp := σp

and si := σi + si+1 for all i = p− 1, p − 2, . . . , 1. (3) Determine i⋆ such that
ci⋆,1 + si⋆+1 is maximal among {ci,1 + si+1 : i ∈ [p]}. (4) If ci⋆,1 + si⋆+1 ≤ 0,
then 0 is an optimal solution. Otherwise, the matrix whose i-th row equals bi

for i ∈ {i⋆ + 1, . . . , p} and which is all-zero in the first i⋆ rows, except for a
1-entry at position (i⋆, 1), is optimal.

From the description of the algorithm it is easy to see that its running
time is bounded by O(pq) (in the unit-cost model).

The partitioning case is then straightforward and even becomes easier due
to Part (3) of Observation 1. �

Theorem 2. Both the linear optimization problem over Mmax
p,q (Sq) ∩M≤

p,q

and over Mmax
p,q (Sq) ∩M=

p,q can be solved in time O(p2q).

Proof. We give the proof for the partitioning case, indicating the necessary
modifications for the packing case at the relevant points.

As in the proof of Theorem 1, we maximize the linear objective function
given by 〈c, x〉 for c ∈ Q[p]×[q]. We will describe a two-step approach.

In the first step, for i1, i2 ∈ [p] with i1 ≤ i2 and j ∈ [q], we let M(i1, i2, j)

be c-maximal among the matrices in {0, 1}{i1 ,i1+1,...,i2}×[j] with exactly (in
the packing case: at most) one 1-entry in every row. Denote by µ(i1, i2, j)
the c-value of M(i1, i2, j), i.e.,

µ(i1, i2, j) =

i2
∑

k=i1

j
∑

ℓ=1

ckℓ M(i1, i2, j)kℓ .

The values µ(i1, i2, j) can be computed in time O(p2q) as follows. First,
we compute all numbers λ(i, j) = max{ciℓ : ℓ ∈ [j]} (in the packing case:
λ(i, j) = max(0, {ciℓ : ℓ ∈ [j]})) for all i ∈ [p] and j ∈ [q]. This can clearly
be done in O(pq) steps by using the recursions λ(i, j) = max{λ(i, j − 1), cij}
for j ≥ 2. Then, after initializing µ(i, i, j) = λ(i, j) for all i ∈ [p] and
j ∈ [q], one computes µ(i1, i2, j) = µ(i1, i2 − 1, j) + λ(i2, j) for all j ∈ [q],
i1 = 1, 2, . . . , p, and i2 = i1 + 1, i1 + 2, . . . , q; see Figure 2.
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µ(i1, i2 − 1, j)

λ(i2, j)

i1

i2

j

i

j

k
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T

Figure 2: Illustration of the proof of Theorem 2. Left: Computation of µ(i1, i2, j).

Right: Computation of τ (i, j) via the dynamic programming relation (3). Indicated are the
matrix M(i, k−1, j−1) and corresponding term µ(i, k−1, j−1) and matrix T (k+1, j+1)
with corresponding term τ (k + 1, j + 1).

In the second step, for i ∈ [p] and j ∈ [q], let T (i, j) be c-maximal among

the matrices in {0, 1}{i,i+1,...,p}×[q] with exactly (in the packing case: at most)
one 1-entry in every row and with columns j, j + 1, . . . , q being in non-
increasing lexicographic ordering. Thus, by Part (1) of Observation 1, T (1, 1)
is an optimal solution to our linear optimization problem. Denote by τ(i, j)
the c-value of T (i, j), i.e.,

τ(i, j) =

p
∑

k=i

q
∑

ℓ=1

ckℓ T (i, j)kℓ.

By considering all possibilities for the first 1-entry in column j of T (i, j)
we can compute

τ(i, j) = max { µ(i, k − 1, j − 1) + ckj + τ(k + 1, j + 1) : (3)

k ∈ {i, i + 1, . . . , p + 1}},

for all i ∈ [p] and j ∈ [q], see Figure 2.
For convenience we define in Equation (3), µ(k1, k2, 0) = 0 for k1, k2 ∈ [p]

with k1 ≤ k2 and µ(k, k − 1, ℓ) = 0 for all k ∈ [p] and ℓ ∈ {0, 1, . . . , q}.
Furthermore, we set cp+1,ℓ = 0 for all ℓ ∈ [q]. Finally, we define τ(p+1, ℓ) =
τ(k, q + 1) = 0 for all k ∈ [p] and ℓ ∈ [q + 1]. Hence, k = p + 1 in (3)
corresponds to the case where column j has only zeros.

Thus, by dynamic programming, we can compute the table τ(i, j) via
Equation (3) in the order i = p, p − 1, . . . , 1, j = q, q − 1, . . . , 1. For each
pair (i, j) the evaluation of (3) requires no more than O(p) steps, yielding a
total running time bound of O(p2q).

Furthermore, if during these computations for each (i, j) we store a maxi-
mizer k(i, j) for k in (3), then we can easily reconstruct the optimal solution
T (1, 1) from the k-table without increasing the running time asymptotically:
For i ∈ [p], j ∈ [q] the matrix T (i, j) is composed of M(i, k(i, j) − 1, j − 1)
(if k(i, j) ≥ i + 1 and j ≥ 2), T (k(i, j) + 1, j + 1) (if k(i, j) ≤ p − 1 and
j ≤ q − 1), and having 0-entries everywhere else, except for a 1-entry at
position (k(i, j), j) (if k(i, j) ≤ p). Each single matrix M(i1, i2, j) can be
computed in O((i2 − i1)j) steps. Furthermore, for the matrices M(i1, i2, j)
needed during the recursive reconstruction of T (1, 1), the sets {i1, . . . , i2}×[j]
are pairwise disjoint (see Figure 2). Thus, these matrices all together can be
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computed in time O(pq). At the end there might be a single T (k, q + 1) to
be constructed, which trivially can be done in O(pq) steps. �

Thus, with respect to complexity theory there are no “obstructions” to
finding complete linear descriptions of packing and partitioning orbitopes
for both the cyclic and the symmetric group action. In fact, for cyclic group
actions we will provide such a description in Theorem 3 and Theorem 4 for
the partitioning and packing case, respectively. For symmetric group actions
we will provide such a description for partitioning orbitopes in Theorems 16
and for packing orbitopes in Theorem 17. The algorithm used in the proof
of Theorem 1 (for cyclic groups) is trivial, while the one described in the
proof of Theorem 2 (for symmetric groups) is a bit more complicated. This
is due to the simpler characterization of the cyclic case in Observation 1 and
is reflected by the fact that the proofs of Theorems 16 and 17 (for symmetric
groups) need much more work than the ones of Theorems 3 and 4 (for cyclic
groups).

The algorithms described in the above two proofs heavily rely on the fact
that we are considering only matrices with at most one 1-entry per row.
For cyclic group operations, the case of matrices with more ones per row
becomes more involved, because we do not have a simple characterization
(like the one given in parts 2 and 3 of Observation 1) of the matrices in
Mmax

p,q (Cq) anymore. For the action of the symmetric group, though we
still have the characterization provided by Part (1) of Observation 1, the
dynamic programming approach used in the proof of Theorem 2 cannot
be adapted straight-forwardly without resulting in an exponentially large
dynamic programming table (unless q is fixed). These difficulties apparently
are reflected in the structures of the corresponding orbitopes (see the remarks
in Section 5).

3. Packing and Partitioning Orbitopes for Cyclic Groups

From the characterization of the vertices in parts (2) and (3) of Observa-
tion 1 one can easily derive IP-formulations of both the partitioning orbitope
O=

p,q(Cq) and the packing orbitope O≤
p,q(Cq) for the cyclic group Cq. In fact,

it turns out that these formulations do already provide linear descriptions of
the two polytopes, i.e., they are totally unimodular. We refer the reader to
Schrijver [18, Chap. 19] for more information on total unimodularity.

It is easy to see that for the descriptions given in Theorems 3 and 4 below,
the separation problem can be solved in time O(pq).

Theorem 3. The partitioning orbitope O=
p,q(Cq) for the cyclic group Cq

equals the set of all x ∈ R[p]×[q] that satisfy the following linear constraints:

◦ the equations x11 = 1 and x1j = 0 for all 2 ≤ j ≤ q,
◦ the nonnegativity constraints xij ≥ 0 for all 2 ≤ i ≤ p and j ∈ [q],
◦ the row-sum equations x(rowi) = 1 for all 2 ≤ i ≤ p.

This system of constraints is non-redundant.

Proof. Let A be the coefficient matrix of the constraint system in the theo-
rem. Thus, A has pq columns (and (p + 1)q − 1 rows), which we assume to

be ordered according to the lexicographic order ≺ of [p] × [q]. Let Ã be the
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submatrix of A belonging to the p row-sum equations. Because in order ≺
the entries of each row appear consecutively, Ã is a 0/1-interval-matrix (i.e.,
if there are two 1-entries in the same row, then all entries between the two
1-entries are 1’s as well), and hence Ã is totally unimodular. Since A arises

from Ã by adding an identity matrix, A is totally unimodular, too.
Hence, the constraint system given in the statement of the theorem de-

scribes an integer polyhedron. By Part (3) of Observation 1, the set of
integer points satisfying this constraint system is M=

p,q ∩Mmax
p,q (Cq). Hence

the given constraints completely describe O=
p,q(Cq). The non-redundancy fol-

lows from the fact that dropping any of the constraints enlarges the set of
feasible integer solutions. �

Theorem 4. The packing orbitope O≤
p,q(Cq) for the cyclic group Cq equals

the set of all x ∈ R[p]×[q] that satisfy the following linear constraints:

◦ the constraints x11 ≥ 0 and x1j = 0 for all 2 ≤ j ≤ q,
◦ the nonnegativity constraints xij ≥ 0 for all 2 ≤ i ≤ p and j ∈ [q],
◦ the row-sum inequalities x(rowi) ≤ 1 for all 2 ≤ i ≤ p,
◦ the inequalities

q
∑

j=2

xij −

i−1
∑

k=1

xk1 ≤ 0 (4)

for all 2 ≤ i ≤ p (see Figure 3 (a) for an example).

This system of constraints is non-redundant.

Proof. From Part (2) of Observation 1 it follows that an integer point is
contained in O≤

p,q(Cq) if and only if it satisfies the constraints described in
the statement, where inequalities (4) ensure that the first column of x is
lexicographically not smaller than the other ones (note that we have at most
one 1-entry in each row of x). Dropping any of the constraints enlarges
the set of integer solutions, which proves the statement on non-redundancy.
Thus, as in the proof of the previous theorem, it remains to show that the
polyhedron defined by the constraints is integral.

Again, we show that the coefficient matrix A of the given system is totally
unimodular. Since A arises from by adding an identity matrix to the coef-
ficient matrix Ã of the row-sum inequalities and inequalities (4), it suffices

to prove the total unimodularity of Ã. We are going to show this by es-
tablishing the Ghouila-Houri criterion for total unimodularity (see, e.g., [18,

Thm. 19.3(iv)]): For every subset C ⊆ [p] × [q] of column indices of Ã we
construct a signing, i.e., a map σ : C → {−1,+1}, such that

∑

c∈C σ(c) ac

is a vector with components in {−1, 0,+1}, where ac ∈ {0, 1}2(p−1) denotes

the column of Ã corresponding to index c ∈ [p] × [q].

As we have a1j = 0 for all 2 ≤ j ≤ q, we can ignore these columns of Ã.
Assume that the remaining columns are arranged according to the ordering of
the variables xij indicated in Figure 3 (b) (i.e., corresponding to the sorting
of ([p]× [q])\{(1, 2), (1, 3), . . . , (1, q)} that starts with (1, 1), (2, 1), . . . , (p, 1)
and continues with {2, 3, . . . , p} × {2, 3, . . . , q} in increasing lexicographic

order). An example for the coefficient matrix Ã with p = q = 5 looks as
follows:
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i

(a) (b)

Figure 3: (a) Example of the coefficient vector for Inequality (4); “−” stands for a −1,

“+“ for a +1. (b) Ordering used in the proof of Theorem 4.
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− − + + + +
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C

C

C

C

C

C

C

C

C

A

Let the upper p−1 rows of Ã, corresponding to x(rowi) ≤ 1 for i = 2, . . . , p,
be labeled u2, u3, . . . , up. Similarly, let the lower p − 1 rows, correspond-
ing to (4) for i = 2, . . . , p, be labeled ℓ2, ℓ3, . . . , ℓp. The indices of the

columns of Ã are partitioned into p blocks B1 = {(1, 1), (2, 1), . . . , (p, 1)}
and Bk = {(k, 2), (k, 3), . . . , (k, q)} for 2 ≤ k ≤ p, corresponding to the
arrows in Figure 3 (b).

For an arbitrary subset C ⊆ ([p] × [q]) \ {(1, 2), (1, 3), . . . , (1, q)}, we con-
struct a signing σ : C → {−1,+1} as required by the Ghouila-Houri criterion
in the following way. In each of the blocks B1, B2, . . . , Bp, we let the signs

alternate (with respect to the ordering of the columns of Ã); the value of
the first sign will be determined later. Obviously, if C ∩ B1 = ∅, then
∑

c∈C σ(c) ac ∈ {−1, 0,+1}2(p−1) (as the part of Ã composed of the other
blocks is a 0/1-interval-matrix). Therefore, we only consider the case where
C ∩ B1 6= ∅. We then assign a (+1)-sign to the first column of C ∩B1; this
fixes the signs in C ∩ B1.

Because the signs σ(c) have been chosen alternatingly for c ∈ C, and

since the the part of Ã corresponding to C ∩ B1 is an interval matrix (see
the example above), we have

y :=
∑

C∩B1

σ(c) ac ∈ {−1, 0,+1}2(p−1). (5)

For each 2 ≤ k ≤ p, the columns in C∩Bk contribute only to components uk

and ℓk of
∑

c∈C σ(c) ac. Thus, it suffices to show that we can, for each block
index k ∈ [p], k ≥ 2, choose some “starting sign” σk ∈ {−1,+1} for C ∩ Bk

such that

yuk
+

n
∑

i=0

(−1)i σk ∈ {−1, 0,+1} and yℓk
+

n
∑

i=0

(−1)i σk ∈ {−1, 0,+1}
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hold for all n ∈ N.
If yuk

, yℓk
∈ {−1, 0} (Case A), then we choose σk = +1, and if yuk

,
yℓk

∈ {0,+1} (Case B), then we set σk = −1. In both cases the choices lead
to the wanted behavior. Hence, we have to prove that Case A or Case B
applies. If yuk

= 0, then this is clear.
If yuk

= 1, then it follows from (5) that (k, 1) ∈ C and σ((k, 1)) = yuk
= 1.

Again from (5), we have

yℓk
=

∑

c∈C∩{(i,1) : i<k}

σ(c) · (−1).

We conclude that yℓk
= 0: Since we assigned a (+1)-sign to the first element

of C ∩ B1 and we have σ((k, 1)) = +1 it follows that
∑

c∈C∩{(i,1) : i<k}

σ(c) = 1 − 1 + 1 − · · · + 1 − 1 = 0

holds. Hence, Case B applies.
If yuk

= −1, then we similarly conclude yℓk
= −1 as well, showing that

Case A applies. �

4. Packing and Partitioning Orbitopes for Symmetric Groups

For packing orbitopes O≤
p,q(Sq) and partitioning orbitopes O=

p,q(Sq) with
respect to the symmetric group it follows readily from the characterization
in Part (1) of Observation 1 that the equations

xij = 0 for all i < j (6)

are valid. Thus, we may drop all variables corresponding to components in
the upper right triangle from the formulation and consider

O≤
p,q(Sq), O=

p,q(Sq) ⊂ RIp,q with Ip,q := {(i, j) ∈ [p] × [q] : i ≥ j}.

We also adjust the definition of

rowi := {(i, 1), (i, 2), . . . , (i,min{i, q})} for i ∈ [p].

and define the jth column for j ∈ [q] as

colj := {(j, j), (j + 1, j), . . . , (p, j)}.

Furthermore, we restrict ourselves to the case

p ≥ q ≥ 2

in this context. Because of (6), the case of q > p can be reduced to the case
p = q and the case of q = 1 is of no interest.

The next result that shows a very close relationship between packing and
partitioning orbitopes in this case of symmetric group actions.

Proposition 5. The polytopes O=
p,q(Sq) and O≤

p−1,q−1(Sq−1) are affinely

isomorphic via orthogonal projection of O=
p,q(Sq) onto the space

L := {x ∈ RIp,q : xi1 = 0 for all i ∈ [p]}

(and the canonical identification of this space with RIp−1,q−1).
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Proof. The affine subspace

A := {x ∈ RIp,q : x(rowi) = 1 for all i}

of RIp,q clearly contains O=
p,q(Sq). Let π : A → RIp−1,q−1 be the orthogonal

projection mentioned in the statement (identifying L in the canonical way
with RIp−1,q−1); note that the first row is removed since it only contains the
element (1, 1). Consider the linear map φ : RIp−1,q−1 → RIp,q defined by

φ(y)ij =

{

1 − y(rowi−1) if j = 1

yi−1,j−1 otherwise
for (i, j) ∈ Ip,q

(where row0 = ∅ and y(∅) = 0). This is the inverse of π, showing that π

is an affine isomorphism. As we have π(O=
p,q(Sq)) = O≤

p−1,q−1(Sq−1), this
finishes the proof. �

It will be convenient to address the elements in Ip,q via a different “system
of coordinates” as well:

〈η, j〉 := (j + η − 1, j) for j ∈ [q], 1 ≤ η ≤ p − j + 1.

Thus (as before) i and j denote the row and the columns, respectively, while η
is the number of the diagonal (counted from above) containing the respective
element; see Figure 4 (a) for an example. For (k, j) = 〈η, j〉 and x ∈ RIp,q ,
we write x〈η,j〉 := x(k,j) := xkj.

For x ∈ {0, 1}Ip,q we denote by Ix := {(i, j) ∈ Ip,q : xij = 1} the set of
all coordinates (positions in the matrix), where x has a 1-entry. Conversely,
for I ⊆ Ip,q, we use χI ∈ {0, 1}Ip,q for the 0/1-point with χI

ij = 1 if and only

if (i, j) ∈ I.
For (i, j) ∈ Ip,q, we define the column

col(i, j) = {(j, j), (j + 1, j), . . . , (i − 1, j), (i, j)} ⊆ Ip,q,

and for (i, j) = 〈η, j〉 we write col〈η, j〉 := col(i, j). Of course, we have
col〈η, j〉 = {〈1, j〉, 〈2, j〉, . . . , 〈η, j〉}.

The rest of this section is organized as follows. First, in Section 4.1, we deal
with basic facts about integer points in packing and partitioning orbitopes
for the symmetric group. To derive a linear description of O≤

p,q(Sq) and
O=

p,q(Sq) that only contains integer vertices, we need additional inequalities,
the shifted column inequalities, which are introduced in Section 4.2. We then
show that the corresponding separation problem can be solved in linear time
(Section 4.3). Section 4.4 proves the completeness of the linear description
and Section 4.5 investigates the facets of the polytopes.

4.1. Characterization of Integer Points

We first derive a crucial property of the vertices of O≤
p,q(Sq).

Lemma 6. Let x be a vertex of O≤
p,q(Sq) with 〈η, j〉 ∈ Ix (j ≥ 2). Then we

have Ix ∩ col〈η, j − 1〉 6= ∅.

Proof. With 〈η, j〉 = (i, j) we have xij = 1, which implies xi,j−1 = 0 (since x
has at most one 1-entry in row i). Thus, Ix ∩ col〈η, j − 1〉 = ∅ would yield
xk,j−1 = 0 for all k ≤ i, contradicting the lexicographic order of the columns
of x (see Part (1) of Observation 1). �
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Definition 2 (Column inequality). For (i, j) ∈ Ip,q and the set B = {(i, j),
(i, j + 1), . . . , (i,min{i, q})}, we call

x(B) − x(col(i, j − 1)) ≤ 0

a column inequality; see Figure 3 (a) for an example with (i, j) = (9, 2).

The column inequalities are strengthenings of the symmetry breaking in-
equalities

xij − x(col(i, j − 1)) ≤ 0, (7)

introduced by Méndez-Díaz and Zabala [14] in the context of vertex-coloring
(see (2) in the introduction).

Proposition 7. A point x ∈ {0, 1}Ip,q is contained in O≤
p,q(Sq) (O=

p,q(Sq)) if
and only if x satisfies the row-sum constraints x(row(i)) ≤ 1 (x(row(i)) = 1)
for all i ∈ [p] and all column inequalities.

Proof. By Lemma 6, inequalities (7) are valid for O≤
p,q(Sq) (and thus, for

its face O=
p,q(Sq) as well). Because of the row-sum constraints, all column

inequalities are valid as well. Therefore, it suffices to show that a point
x ∈ {0, 1}Ip,q that satisfies the row-sum constraints x(row(i)) ≤ 1 and all
column inequalities is contained in Mmax

p,q (Sq).
Suppose, this was not the case. Then, by Part (1) of Observation 1, there

must be some j ∈ [q] such that the (j−1)-st column of x is lexicographically
smaller than the jth column. Let i be minimal with xij = 1 (note that
column j cannot be all-zero). Thus, xk,j−1 = 0 for all k < i, and due to
x(row(i)) ≤ 1 we have xi,j−1 = 0. This implies x(col(i, j−1)) = 0 < 1 = xij ,
showing that the column inequality x(B) − x(col(i, j − 1)) ≤ 0 is violated
by x for B = {(i, j), (i, j + 1), . . . , (i,min{i, q}). �

4.2. Shifted Column Inequalities

Proposition 7 provides a characterization of the vertices of the packing-
and partitioning orbitopes for symmetric groups among the integer points.
Different from the situation for cyclic groups (see Theorems 3 and 4), how-
ever, the inequalities in this characterization do not yield complete descrip-
tions of these orbitopes. In fact, we need to generalize the concept of a
column inequality in order to arrive at complete descriptions. This will yield
exponentially many additional facets (see Proposition 14).

Definition 3 (Shifted columns). A set S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} ⊂
Ip,q with η ≥ 1 and c1 ≤ c2 ≤ · · · ≤ cη is a called a shifted column. It is a
shifting of each of the columns

col〈η, cη〉, col〈η, cη + 1〉, . . . , col〈η, q〉}.

Remark.

◦ As a special case we have column col(i, j), which is the shifted column
{〈1, j〉, 〈2, j〉, . . . , 〈η, j〉} for 〈η, j〉 = (i, j).

◦ By definition, if S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} ⊂ Ip,q is a shifted col-
umn, then so is {〈1, c1〉, 〈2, c2〉, . . . , 〈η

′, cη′〉} for every 1 ≤ η′ ≤ η.

Lemma 8. Let x be a vertex of O≤
p,q(Sq) with 〈η, j〉 ∈ Ix (j ≥ 2). Then we

have Ix ∩ S 6= ∅ for all shiftings S of col〈η, j − 1〉.
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Figure 4: (a) Example for coordinates (9, 5) = 〈5, 5〉. (b)–(d) Shifted column inequalities

with leader (5, 5), see Definition 4. All SCI inequalities are ≤-inequalities with right-hand
sides zero and “−” stands for a (−1)-coefficient, “+“ for a (+1) coefficient. The shifted
column of (c) is {〈1, 2〉, 〈2, 3〉, 〈3, 3〉, 〈4, 4〉, 〈5, 4〉}.

Proof. We proceed by induction on j. The case j = 2 follows from Lemma 6,
because the only shifting of col〈η, 1〉 is col〈η, 1〉 itself. Therefore, let j ≥ 3,
and let S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} be a shifting of col〈η, j − 1〉 (hence,
c1 ≤ c2 ≤ · · · ≤ cη ≤ j−1). Since by assumption 〈η, j〉 ∈ Ix, Lemma 6 yields
that there is some η′ ≤ η with 〈η′, j − 1〉 ∈ Ix. If 〈η′, j − 1〉 ∈ S, then we are
done. Otherwise, cη′ < j − 1 holds. Hence, {〈1, c1〉, 〈2, c2〉, . . . , 〈η

′, cη′ 〉} is a
shifting of (col〈η′, cη′〉 and hence of) col〈η′, j − 2〉, which, by the inductive
hypothesis, must intersect Ix. �

Definition 4 (Shifted column inequalities). For (i, j) = 〈η, j〉 ∈ Ip,q, B =
{(i, j), (i, j + 1), . . . , (i,min{i, q})}, and a shifting S of col〈η, j − 1〉, we call

x(B) − x(S) ≤ 0

a shifted column inequality (SCI). The set B is the bar of the SCI, and (i, j)
is the leader of (the bar of) the SCI. The set S is the shifted column (SC)
of the SCI. See Figure 4 for examples.

In particular, all column inequalities are shifted column inequalities. The
class of shifted column inequalities, however, is substantially richer: It con-
tains exponentially many inequalities (in q).

Proposition 9. Shifted column inequalities are valid both for the packing
orbitopes O≤

p,q(Sq) and for the partitioning orbitopes O=
p,q(Sq).

Proof. As O=
p,q(Sq) is a face of O≤

p,q(Sq), it is enough to prove the proposition

for packing orbitopes O≤
p,q(Sq). Therefore, let (i, j) = 〈η, j〉 ∈ Ip,q, with

j ≥ 2, and let S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} be a shifting of col〈η, j − 1〉.
Denote by B the bar of the corresponding SCI.

Let x ∈ {0, 1}Ip,q be a vertex of O≤
p,q(Sq). If B ∩ Ix = ∅, then clearly

x(B) − x(S) = 0 − x(S) ≤ 0 holds. Otherwise, there is a unique element
(i, j′) = 〈η′, j′〉 ∈ B ∩ Ix. As j′ ≥ j, we have η′ ≤ η. Therefore S′ =
{〈1, c1〉, 〈2, c2〉, . . . , 〈η

′, cη′〉} ⊆ S is a shifting of col〈η′, j′ − 1〉. Thus, by
Lemma 8, we have S′ ∩ Ix 6= ∅. This shows x(S) ≥ x(S′) ≥ 1, implying
x(B) − x(S) ≤ 1 − 1 = 0. �
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Figure 5: The two cases arising in the dynamic programming algorithm of Section 4.3.

4.3. A Linear Time Separation Algorithm for SCIs

In order to devise an efficient separation algorithm for SCIs we need
a method to compute minimal shifted columns with respect to a given
weight vector w ∈ QIp,q . The crucial observation is the following. Let
S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} with 1 ≤ c1 ≤ c2 ≤ · · · ≤ cη ≤ j be a shift-
ing of col〈η, j〉 for 〈η, j〉 ∈ Ip,q with η > 1. If cη < j, then S is a shifting of
col〈η, j − 1〉 (Case 1 ). If cη = j, then

S − 〈η, j〉 = {〈1, c1〉, 〈2, c2〉, . . . , 〈η − 1, cη−1〉}

is a shifting of col〈η − 1, j〉 (Case 2 ); see Figure 5.
For all 〈η, j〉 ∈ Ip,q, let ω〈η, j〉 be the weight of a w-minimal shifting of

col〈η, j〉. The table (ω〈η, j〉) can be computed by dynamic programming as
follows; we also compute a table of values τ〈η, j〉 ∈ {1, 2}, for each 〈η, j〉,
which are needed later to reconstruct the corresponding shifted columns:

(1) For j = 1, 2, . . . , q, initialize ω〈1, j〉 := min{w〈1,ℓ〉 : ℓ ∈ [j]}.
(2) For η = 2, 3, . . . , p, initialize ω〈η, 1〉 := ω〈η − 1, 1〉 + w〈η,1〉.
(3) For η = 2, 3, . . . , p, j = 2, 3, . . . , q (with 〈η, j〉 ∈ Ip,q): Compute

ω1 := w〈η, j − 1〉 and ω2 := w〈η − 1, j〉 + w〈η,j〉

corresponding to Cases 1 and 2, respectively. Then set

ω〈η, j〉 = min{ω1, ω2} and τ〈η, j〉 =

{

1 if ω1 ≤ ω2

2 otherwise.

Thus, the tables (ω〈η, j〉) and (τ〈η, j〉) can be computed in time O(pq).
Furthermore, for a given 〈η, j〉 ∈ Ip,q, we can compute a w-minimal shifting
S〈η, j〉 of col〈η, j〉 in time O(η) from the table (τ〈η, j〉): We have S〈1, j〉 =
{〈1, j〉} for all j ∈ [q], S〈η, 1〉 = col〈η, 1〉 for all η ∈ [p], and

S〈η, j〉 =

{

S〈η, j − 1〉 if τ〈η, j〉 = 1

S〈η − 1, j〉 ∪ {〈η, j〉} if τ〈η, j〉 = 2

for all other 〈η, j〉. This proves the following result.

Theorem 10. Let w ∈ QIp,q be a given weight vector. There is an O(pq)
time algorithm that simultaneously computes the weights of w-minimal shift-
ings of col〈η, j〉 for all 〈η, j〉 ∈ Ip,q and a data structure that afterwards, for
a given 〈η, j〉, allows to determine a corresponding shifted column in O(η)
steps.
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In particular, we obtain the following:

Corollary 11. The separation problem for shifted column inequalities can
be solved in linear time O(pq).

Proof. Let a point x⋆ ∈ QIp,q be given. We can compute the x⋆-values
β(i, j) := x⋆(B(i, j)) of all bars B(i, j) = {(i, j), (i, j + 1), . . . , (i,min{i, q})}
in linear time in the following way: First, we initialize β(i, ℓ) = x⋆

iℓ for all
i ∈ [p] and ℓ = min{i, q}. Then, for each i ∈ [p], we calculate the value
β(i, j) = x⋆

ij + β(i, j + 1) for j = min{i, q} − 1,min{i, q} − 2, . . . , 1.

Using Theorem 10 (and the notations introduced in the paragraphs pre-
ceeding it), we compute the table (ω〈η, j〉) and the mentioned data struc-
ture in time O(pq). Then in time O(pq) we check whether there exists an
(i, j) = 〈η, j〉 ∈ Ip,q with j ≥ 2 and ω〈η, j − 1〉 < β(i, j). If there exists such
an 〈η, j〉, then we compute the corresponding shifted column S〈η, j − 1〉 (in
additional time O(η) ⊆ O(p)), yielding an SCI that is violated by x⋆. Oth-
erwise x⋆ satisfies all SCIs. �

Of course, the procedure described in the proof of the corollary can be
modified to find a maximally violated SCI if x⋆ does not satisfy all SCIs.

4.4. Complete Inequality Descriptions

In this section we prove that nonnegativity constraints, row-sum equa-
tions, and SCIs suffice to describe partitioning and packing orbitopes for
symmetric groups. The proof will be somewhat more involved than in the
case of the cyclic group. In particular, the coefficient matrices are not to-
tally unimodular anymore. In order to see this, consider the three column
inequalities

x3,3 − x2,2 ≤ 0, x4,3 + x4,4 − x2,2 − x3,2 ≤ 0, and

x5,4 + x5,5 − x3,3 − x4,3 ≤ 0.

The submatrix of the coefficient matrix belonging to these three rows and
the columns corresponding to (2, 2), (3, 3), and (4, 3) is the matrix





−1 +1 0
−1 0 +1

0 −1 −1



 ,

whose determinant equals −2. Note that the above three inequalities define
facets both of O≤

p,q(Sq) and O=
p,q(Sq) for p ≥ q ≥ 5 (see Propositions 14

and 15, respectively).

Proposition 12. The partitioning orbitope O=
p,q(Sq) is completely described

by the nonnegativity constraints, the row-sum equations, and the shifted col-
umn inequalities:

O=
p,q(Sq) = {x ∈ RIp,q : x ≥ 0, x(rowi) = 1 for i = 1, . . . , p,

x(B) − x(S) ≤ 0 for all SCIs with SC S and bar B }.

Proof. Let P be the polyhedron on the right-hand side of the statement
above. From Propositions 7 and 9 we know already that

P ∩ ZIp,q = O=
p,q(Sq) ∩ZIp,q
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holds. Thus, it suffices to show that P is an integral polytope (as O=
p,q(Sq)

is by definition). In the following we first describe the strategy of the proof.
For the rest of the proof, fix an arbitrary vertex x⋆ of P . A basis B of x⋆ is a

cardinality |Ip,q| subset of the constraints describing P that are satisfied with
equality by x⋆ with the property that the |Ip,q| × |Ip,q|-coefficient matrix of
the left-hand sides of the constraints in B is non-singular. Thus, the equation
system obtained from the constraints in B has x⋆ as its unique solution.

We will show that there exists a basis B⋆ of x⋆ that does not contain
any SCI. Thus, B⋆ consists of a subset of the p row-sum equations and at
least |Ip,q| − p nonnegativity constraints. This shows that x⋆ has at most p
nonzero entries and, since x⋆ satisfies the row-sum equations, it has a nonzero
entry in every row. Therefore, B⋆ contains all p row-sum equations, and all p
nonzero entries must in fact be 1. Hence, x⋆ is a 0/1-point. So the existence
of such a basis proves the proposition.

The weight of a shifted column S = {〈1, c1〉, 〈2, c2, ,〉 . . . , 〈η, cη〉} with
1 ≤ c1 ≤ c2 ≤ · · · ≤ cη < q (we will not need shifted columns with cη = q
here, as they do not appear in SCIs) is

weight(S) :=

η
∑

i=1

ci qi.

In particular, if S1 and S2 are two shifted columns with |S1| < |S2|, then
we have weight(S1) < weight(S2). The weight of an SCI is the weight of its
shifted column, and the weight of a basis B is the sum of the weights of the
SCIs contained in B (note that a shifted column can appear in several SCIs).

A basis of x⋆ that contains all row-sum equations and all nonnegativ-
ity constraints corresponding to 0-entries of x⋆ is called reduced. As the
coefficient vectors (of the left-hand sides) of these constraints are linearly
independent, some reduced basis of x⋆ exists. Hence, there is also a reduced
basis B⋆ of x⋆ of minimal weight.

To prove the proposition, it thus suffices to establish the following claim.

Claim 1. A reduced basis of x⋆ of minimal weight does not contain any SCI.

The proof of Claim 1 consists of three parts:

(1) We show that a reduced basis of x⋆ does not contain any “trivial SCIs”
(Claim 2).

(2) We prove that a reduced basis of x⋆ of minimal weight satisfies three
structural conditions on its (potential) SCIs (Claim 3).

(3) Finally, assuming that a reduced basis of x⋆ with minimal weight con-
tains at least one SCI, we will derive a contradiction by constructing a
different solution x̃ 6= x⋆ of the corresponding equation system.

We are now ready to start with part 1. We call an SCI with shifted
column S trivial if x⋆(S) = 0 holds or if we have x⋆(S) = 1 and x⋆

kℓ = 0
for all (k, ℓ) ∈ S − (i, j) for some (i, j) ∈ S (thus satisfying x⋆

ij = 1) (see

Figure 6 (a)).

Claim 2. A reduced basis B of x⋆ does not contain any trivial SCIs.

Proof. Let S be the shifted column S and B be the bar of some SCI that is
satisfied with equality by x⋆.
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Figure 6: Illustration of trivial SCIs and of the three types of configurations not present
in reduced bases of minimal weight, see Claim 3. Bars are shown in dark gray, shifted
columns in light gray. Figure (a) shows trivial SCIs (“?” refers to a 0 or 1). Figures (b),
(c), and (d) refer to parts (1), (2), and (3) of Claim 3, respectively (“⋆” indicates any
nonzero number).

If x⋆(S) = 0, then the coefficient vector of the SCI is a linear combination
of the coefficient vectors of the inequalities xij ≥ 0 for (i, j) ∈ S ∪ B, which
all are contained in B (due to x⋆(B) = x⋆(S) = 0). Since the coefficient
vectors of the inequalities in B form a non-singular matrix, the SCI can not
be in B. (By “coefficient vector” we always mean the vector formed by the
coefficients of the left-hand side of a constraint.)

If S contains exactly one entry (k, ℓ) ∈ S with x⋆
kℓ = 1, then we have

x⋆(S) = x⋆(B) = 1. Let i be the number of the row that contains the bar B.
The nonnegativity constraints xrs ≥ 0 for (r, s) ∈ S − (k, ℓ), xks ≥ 0 for
(k, s) ∈ rowk −(k, ℓ), and xis ≥ 0 for (i, s) ∈ rowi \B are contained in B.

Since the coefficient vector of the considered SCI can linearly be combined
from the coefficient vectors of these nonnegativity constraints and of the row-
sum equations x(rowk) = 1 and x(rowi) = 1, this SCI cannot be contained
in B. �

Claim 3. A minimal weight reduced basis B of x⋆ satisfies the following three
conditions:

(1) If (k, ℓ) is contained in the shifted column of some SCI in B, then there
exists some s < ℓ with x⋆

is > 0.
(2) If (i, j) is the leader of an SCI in B, then x⋆

ij > 0 holds.

(3) If (i, j) is the leader of an SCI in B, then there is no SCI in B whose
shifted column contains (i, j).

See Figure 6, (b)–(d) for an illustration of the three conditions.

Proof. Part (1): Assume there exists an SCI in B with shifted column S
and bar B that contains the first nonzero entry of a row k, i.e., there is
(k, ℓ) ∈ S with x⋆

kℓ > 0, and x⋆
ks = 0 for all s < ℓ. Let S′ := S ∩ Ik−1,q

be the entries of S above row k. Let C = {(k, 1), (k, 2), . . . , (k, ℓ − 1)} and
B′ = rowk \(C + (k, ℓ)). See Figure 7 (1) for an illustration.

Because S′ is a shifting of col(k − 1, ℓ), x(B′) − x(S′) ≤ 0 is an SCI
and hence satisfied by x⋆. Since we have |S′| < |S| (thus, weight(S′) <
weight(S)), it suffices to show that replacing the original SCI x(B)−x(S) ≤ 0
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Figure 7: Illustration of the proof of Claim 3, parts (1) to (3).

by x(B′) − x(S′) ≤ 0 gives another basis B′ of x⋆ (which also is reduced),
contradicting the minimality of the weight of B.

Due to x⋆(rowk) = 1, x⋆(C) = 0, x⋆(B′)− x⋆(S′) ≤ 0, and S′ + (k, ℓ) ⊆ S
we have

1 = x⋆
kℓ + x⋆(B′) ≤ x⋆

kℓ + x⋆(S′) ≤ x⋆(S) = x⋆(B) ≤ 1. (8)

Therefore, equality must hold throughout this chain. In particular, this
shows x⋆(B′) − x⋆(S′) = 0. Thus, its suffices to show that the coefficient
matrix of the equation system obtained from B′ is non-singular, which can
be seen as follows.

Since x⋆(S′+(k, ℓ)) = 1 = x⋆(S) (see (8)), we know that all nonnegativity
constraints xrs ≥ 0 with (r, s) ∈ S \ (S′ + (k, ℓ)) are contained in B and B′.
The same holds for xks ≥ 0 with (k, s) ∈ C and for xis ≥ 0 with (i, s) ∈
rowi \B, where row i contains bar B (since x⋆(B) = 1 by (8)). Thus, we can
linearly combine the coefficient vector of x(B)−x(S) ≤ 0 from the coefficient
vectors of the constraints x(B′) − x(S′) ≤ 0, x(rowk) = 1, x(rowi) = 1, and
the nonnegativity constraints mentioned above. Since all these constraints
are contained in B′, this shows that the coefficient matrix of B′ has the same
row-span as that of B, thus proving that it is non-singular as well.

Part (2): Assume that there exists an SCI in B with leader (i, j), bar B,
and shifted column S such that x⋆

ij = 0. If S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉},

then we have (i, j) = 〈η, j〉. Define B′ := B − (i, j), S′ := S − 〈η, cη〉, and
observe that B′ 6= ∅, S′ 6= ∅, i.e., |B| > 1 and |S| > 1, because a reduced
basis does not contain trivial SCIs by Claim 2. Hence, x(B′) − x(S′) ≤ 0 is
an SCI. We therefore have:

0 = x⋆(B) − x⋆(S) = x⋆(B′) = x⋆(S) ≤ x⋆(B′) − x⋆(S′) ≤ 0, (9)

where the first equation holds because x(B) − x(S) ≤ 0 is satisfied with
equality by x⋆ and the second equation follows from x⋆

ij = 0. Hence, we

know that x⋆(B′) − x⋆(S′) = 0. Since we have |S′| < |S| (and consequently
weight(S′) < weight(S)), again it remains to show that the coefficient vector
of x(B) − x(S) ≤ 0 can be linearly combined from the coefficient vector of
x(B′) − x(S′) ≤ 0 and some coefficient vectors of nonnegativity constraints
in B and B′. But this is clear, as we have x⋆

ij = 0 and x⋆
〈η,cη〉

= 0, where the

latter follows from (9).
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Part (3): Assume that in B there exists an SCI

x(B1) − x(S1) ≤ 0 (10)

with leader (i, j) = 〈η, j〉, bar B1, and shifted column

S1 = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉}

(in particular: cη < j) and another SCI

x(B2) − x(S2) ≤ 0 (11)

with bar B2 and shifted column

S2 = {〈1, d1〉, 〈2, d2〉, . . . , 〈η, j〉, 〈η + 1, dη+1〉, . . . , 〈τ, dτ 〉}

such that (i, j) = 〈η, j〉 ∈ S2. Define

S3 := {〈1, d1〉, 〈2, d2〉, . . . , 〈η − 1, dη−1〉}

(i.e, the part of S2 lying strictly above row i) and

S4 := {〈1, c1〉, . . . , 〈η, cη〉, 〈η + 1, dη+1〉, . . . , 〈τ, dτ 〉}

(i.e, S1 together with the part of S2 strictly below row i). Clearly, S3 is a
shifting of col〈η − 1, j〉 = col(i − 1, j), and S4 is a shifted column as well
(due to cη < j ≤ dη+1). Thus, with B3 = B1 − (i, j), we obtain the SCIs

x(B3) − x(S3) ≤ 0 (12)

and

x(B2) − x(S4) ≤ 0. (13)

Since (10) and (11) are contained in B, we have x⋆(B1)− x⋆(S1) = 0 and
x⋆(B2) − x⋆(S2) = 0. Adding these two equations yields

(

x⋆(B3) − x⋆(S3)
)

+
(

x⋆(B2) − x⋆(S4)
)

= 0, (14)

because x⋆
ij cancels due to (i, j) ∈ B1 ∩ S2. Since x⋆ satisfies the SCIs (12)

and (13), Equation (14) shows that in fact we have x⋆(B3)−x⋆(S3) = 0 and
x⋆(B2) − x⋆(S4) = 0.

It is not clear, however, that we can simply replace (10) and (11) by (12)
and (13) in order to obtain a new basis of x⋆. Nevertheless, if v1, v2, v3,
and v4 are the coefficient vectors of (10), (11), (12), and (13), respectively,
we have v1 + v2 = v3 + v4, which implies

v2 = v3 + v4 − v1. (15)

Let V ⊂ RIp,q be the subspace of RIp,q that is spanned by the coefficient
vectors of the constraints different from (10) and (11) in B. Thus, the linear
span of V ∪{v1, v2} is the whole space RIp,q . Due to (15), the same holds for
V ∪ {v1, v3, v4}. Therefore, there are α, β ∈ {1, 3, 4} such that V ∪ {vα, vβ}

spans RIp,q . Let (a) and (b) be the corresponding SCIs from (10), (12),
and (13). Hence, B′ := B \ {(10), (11)} ∪ {(a), (b)} is a (reduced) basis of x⋆

as well.
Since we have |S3| < |S1| and weight(S4) < weight(S2) (due to cη < j),

the weight of B′ is smaller than that of B, contradicting the minimality of
the weight of B. �
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Figure 8: Illustration of the proof of Claim 4.

Before we finish the proof of the proposition by establishing Claim 1, we
need one more structural result on the SCIs in a reduced basis of x⋆. Let
S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} be any shifted column with x⋆

〈γ,cγ〉
> 0 for

some γ ∈ [η]. We call 〈γ, cγ〉 the first nonzero element of S if

x⋆
〈1,c1〉

= · · · = x⋆
〈γ−1,cγ−1〉

= 0

holds. Similarly, 〈γ, cγ〉 is called the last nonzero element of S if we have

x⋆
〈γ+1,cγ+1〉

= · · · = x⋆
〈η,cη〉

= 0.

Claim 4. Let B be a reduced basis of x⋆, and let S1, S2 be the shifted columns
of some SCIs in B (S1 = S2 is allowed).

(1) If (i, j) is the first nonzero element of S1 and (i, j) ∈ S2, then (i, j) is
also the first nonzero element of S2.

(2) If (i, j) is the last nonzero element of S1 with x⋆(S1) = 1 and (i, j) ∈ S2,
then (i, j) is also the last nonzero element of S2 and x⋆(S2) = 1.

(3) If (i, j) is the last nonzero element of S1 with x⋆(S1) = 1, then (i, j) is
not the first nonzero element of S2.

Proof. Let

S1 = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} and S2 = {〈1, d1〉, 〈2, d2〉, . . . , 〈τ, dτ 〉}

be two shifted columns of SCIs with bars B1 and B2, respectively, in the
reduced basis B of x⋆. Suppose that (i, j) = 〈γ, j〉 ∈ S1∩S2, i.e., cγ = j = dγ

holds. Define

S′
1 := {〈1, c1〉, 〈2, c2〉, . . . , 〈γ − 1, cγ−1〉},

S′
2 := {〈1, d1〉, 〈2, d2〉, . . . , 〈γ − 1, dγ−1〉},

and S
′
2 := S2 \ S′

2, see Figure 8. Since 〈γ, j〉 ∈ S1 ∩ S2 holds, S′
1 ∪ S′

2 is a

shifted column and x(B2) − x(S′
1 ∪ S′

2) ≤ 0 is an SCI. Thus, we obtain

x⋆(B2) − x⋆(S′
1) − x⋆(S

′
2) ≤ 0. (16)

Furthermore, since x(B2) − x(S2) ≤ 0 is contained in the basis B of x⋆, we
have

x⋆(B2) − x⋆(S′
2) − x⋆(S

′
2) = 0. (17)

Subtracting (17) from (16) yields x⋆(S′
2) − x⋆(S′

1) ≤ 0. We thus conclude

x⋆(S′
2) ≤ x⋆(S′

1) and x⋆(S′
1) ≤ x⋆(S′

2) (18)
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Figure 9: Illustration of the construction of x̃, Steps (1) to (3).

(where the second inequality follows by exchanging the roles of S1 and S2 in
the argument).

Part (1): If (i, j) is the first nonzero element of S1, then we have x⋆(S′
1) = 0.

Thus, the first inequality of (18) implies x⋆(S′
2) = 0, showing that (i, j) is

the first nonzero element of S2.

Part (2): If (i, j) is the last nonzero element of S1 and x⋆(S1) = 1 holds,
then we have x⋆(S′

1 + (i, j)) = 1. With the second inequality of (18) we
obtain:

1 = x⋆(S′
1 + (i, j)) ≤ x⋆(S′

2 + (i, j)) ≤ x⋆(S2) = x⋆(B2) ≤ 1,

where the last equation holds because x(B2) − x(S2) ≤ 0 is contained in B.
It follows that x⋆(S2) = 1 and (i, j) is the last nonzero element of S2.

Part (3): This follows from the first two parts of the claim, since B does not
contain any trivial SCIs by Claim 2. �

We will now proceed with the proof of Claim 1. Thus, assume that B⋆ is a
reduced basis of x⋆ of minimal weight and suppose that B⋆ contains at least
one SCI. We are going to construct a point x̃ 6= x⋆ that satisfies the equation
system obtained from B⋆, contradicting the fact the x⋆ is the unique solution
to this system of equations.

At the beginning, we set x̃ = x⋆, and let λ > 0 be an arbitrary posi-
tive number. Then we perform the following four steps (see Figure 9 for
illustrations of the first three).

(1) For every (i, j) that is the first nonzero element of the shifted column of
at least one SCI in B⋆, we reduce x̃ij by λ.

(2) For every (i, j) that is the last nonzero element of the shifted column S
of at least one SCI in B⋆ with x⋆(S) = 1, we increase x̃ij by λ.

(3) For each i ∈ [p] and for all j = min{i, q},min{i, q} − 1, . . . , 1 (in this
order): If (i, j) is the leader of some SCI in B⋆, we adjust x̃ij such that,
with B = {(i, j), (i, j + 1), . . . , (i,min{i, q})},

x̃(B) =

{

1 if x⋆(B) = 1

x⋆(B) − λ otherwise

holds.
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(4) For each i ∈ [p], adjust x̃ij in order to achieve x̃(rowi) = 1, where
j = min{ℓ : x⋆

iℓ > 0}.

The reason for treating the case x⋆(S) = 1 separately in Step 2 will become
evident in the proof of Claim 8 below.

The following four claims will yield that x̃ is a solution of the equation
system corresponding to B⋆.

Claim 5. After Step 2, for each shifted column S of some SCI in B⋆ we
have

x̃(S) =

{

1 if x⋆(S) = 1

x⋆(S) − λ otherwise.

Proof. Let S be the shifted column of some SCI in B⋆. It follows from
Part (1) of Claim 4 that the first nonzero element (i, j) of S is the only
element in S whose x̃-component is changed (reduced by λ) in Step 1. Thus,
after Step 1 we have x̃(S) = x⋆(S) − λ.

If x⋆(S) < 1, then, by Part (2) of Claim 4, x̃(S) is not changed in Step 2.
Otherwise, x⋆(S) = 1, and x̃kℓ is increased by λ in Step 2, where (k, ℓ) is
the last nonzero element of S. According to Part (2) of Claim 4, no other
component of x̃ belonging to some element in S is changed in Step 2. Thus,
in both cases the claim holds. �

Claim 6. No component of x̃ belonging to the shifted column of some SCI
in B⋆ is changed in Step 3.

Proof. Let S be the shifted column of some SCI in B⋆. According to Part (3)
of Claim 3, S does not contain the leader of any SCI in B⋆, since B⋆ is a
reduced basis of minimal weight. �

Claim 7. After Step 3, for each SCI in B⋆ with shifted column S and bar B
we have x̃(S) = x̃(B).

Proof. For an SCI in B⋆ with shifted column S and bar B, we have x⋆(S) =
x⋆(B). Thus, from Claims 5 and 6 it follows that x̃(S) = x̃(B) holds after
Step 3. �

Claim 8. Step 4 does not change any component of x̃ that belongs to the
shifted column or the bar of some SCI in B⋆.

Proof. Let (i, j) be such that x⋆
iℓ = 0 for all ℓ < j and x⋆

ij > 0. By Part (1)

of Claim 3, (i, j) is not contained in any shifted column of an SCI in B⋆. If
(i, j) is contained in the bar B of some SCI in B⋆, then clearly x⋆(B) = 1
holds. Thus, after Step 3, we have x̃(rowi) = x̃(B) = 1, which shows that
x̃ij is not changed in Step 4. �

We can now finish the proof of the proposition. Claims 7 and 8 show
that x̃ satisfies all SCIs contained in B⋆ with equality. Furthermore, in all
steps of the procedure only components x̃ij with x⋆

ij > 0 are changed (this

is clear for Steps 1, 2, and 4; for Step 3 it follows from Part (2) of Claim 3).
Since after Step 4, x̃ satisfies all row-sum equations, this proves that x̃ is a
solution to the equation system obtained from B⋆.

We assumed that B⋆ contains at least one SCI. Let S be the shifted column
of one of these. We know x⋆(S) > 0 by Claim 2. Thus, let (i, j) be the first
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nonzero element of S. Hence, after Step 1, we have x̃ij = x⋆
ij−λ. By Part (3)

of Claim 4, this still holds after Step 2. As x̃ij is also not changed in Steps 3
and 4 (see Claims 6 and 8), we deduce x̃ 6= x⋆, contradicting the fact that x⋆

is the unique solution to the equation system belonging to B⋆.
This concludes the proof of Proposition 12. �

We hope that reading this proof was somewhat enjoyable. Anyway, at least
it also gives us a linear description of the packing orbitopes for symmetric
groups almost for free.

Proposition 13. The packing orbitope O≤
p,q(Sq) is completely described by

the nonnegativity constraints, the row-sum inequalities, and the shifted col-
umn inequalities:

O≤
p,q(Sq) = {x ∈ RIp,q : x ≥ 0, x(rowi) ≤ 1 for i = 1, . . . , p,

x(B) − x(S) ≤ 0 for all SCIs with SC S and bar B }.

Proof. Let Q ⊂ RIp,q be the polyhedron on the right-hand side of the state-
ment. We define A := {x ∈ RIp+1,q+1 : x(rowi) = 1 for all i ∈ [p + 1]}.

The proof of Proposition 12 in fact shows that its statement remains true
if we drop all SCIs with shifted column S and S ∩ col1 6= ∅ from the linear
description. This follows from the fact that, due to x⋆

11 = 1 and Claim 2, no
such SCI can be contained in any reduced basis of x⋆ (using the notations
from the proof of Proposition 12). Thus we obtain

O=
p+1,q+1(Sq+1) = A ∩ Q̃, (19)

with

Q̃ = {x ∈ RIp+1,q+1 : x(B) − x(S) ≤ 0 for all SCIs with bar B

and shifted column S with S ∩ col1 = ∅,

xij ≥ 0 for all (i, j) ∈ Ip+1,q+1 \ col1,

x(rowi −(i, 1)) ≤ 1 for all i = 2, . . . , p + 1},

where the last inequalities are equivalent (with respect to O=
p+1,q+1(Sq+1)) to

the nonnegativity constraints associated with the elements of col1 by addition
of row-sum equations.

Define L := {x ∈ RIp+1,q+1 : xi1 = 0 for all i ∈ [p + 1]}, and denote by
π̃ : RIp+1,q+1 → L the orthogonal projection. Since none of the inequalities
defining Q̃ has a nonzero coefficient in col1, we have π̃−1(Q̃∩L) = Q̃, hence

Q̃∩L = π̃(Q̃). This yields π̃(A∩Q̃) = π̃(A)∩ π̃(Q̃), which, due to π̃(A) = L,

implies π̃(A ∩ Q̃) = Q̃ ∩ L. Thus, we obtain

O≤
p,q(Sq) = π̃(O=

p+1,q+1(Sq+1)) = π̃(A ∩ Q̃) = Q̃ ∩ L = Q,

where the first equation is due to Proposition 5, the second equation is (19),
and the final arises from identifying L with RIp,q . �

4.5. Facets

In this section, we investigate which of the constraints from the linear
descriptions of O=

p,q(Sq) and O≤
p,q(Sq) given in Propositions 12 and 13, re-

spectively, define facets. This will also yield non-redundant descriptions.
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Figure 10: (a)–(b): Illustration of the matrices used in the proof of parts (1) and (3)

of Proposition 14. (c): Example of an SCI that does not define a facet; see the proof of
Part (4) of Proposition 14.

It seems to be more convenient to settle the packing case first and then
to carry over the results to the partitioning case. Recall that we assume
2 ≤ p ≤ q.

Proposition 14.

(1) The packing orbitope O≤
p,q(Sq) ⊂ RIp,q is full dimensional:

dim(O≤
p,q(Sq)) = |Ip,q| = pq − q(q−1)

2 =
(

p − q−1
2

)

q.

(2) A nonnegativity constraint xij ≥ 0, (i, j) ∈ Ip,q, defines a facet of

O≤
p,q(Sq), unless i = j < q holds. The faces defined by xjj ≥ 0 with

j < q are contained in the facet defined by xqq ≥ 0.
(3) Every row-sum constraint x(rowi) ≤ 1 for i ∈ [p] defines a facet of

O≤
p,q(Sq).

(4) A shifted column inequality x(B)− x(S) ≤ 0 with bar B and shifted col-
umn S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} defines a facet of O≤

p,q(Sq), unless
η ≥ 2 and c1 < c2 hold. In the latter case, the corresponding face is
contained in the facet defined by the SCI with bar B and shifted column
{〈1, c2〉, 〈2, c2〉, . . . , 〈η, cη〉}.

Proof. Part (1): For all (k, ℓ) ∈ Ip,q, we define V kℓ = (vkℓ
ij ) ∈ RIp,q by

vkℓ
ij =

{

1 if
(

i = j ≤ ℓ and j < q
)

or (i, j) = (k, ℓ)

0 otherwise
for (i, j) ∈ Ip,q,

that is, V kℓ has 1-entries at position (k, ℓ) and on the main diagonal up to
column ℓ, except that vkℓ

qq = 0 unless (k, ℓ) = (q, q); see Figure 10 (a). The

columns of each V kℓ are in non-increasing lexicographic order. Hence, by
Part (1) of Observation 1, each V kℓ is a vertex of O≤

p,q(Sq).
In order to show that these vectors are linearly independent, we fix an

arbitrary ordering of the V kℓ that starts with V 11, V 22, . . . , V q−1,q−1. For
each (k, ℓ) ∈ Ip,q, all points V rs preceding V kℓ have a 0-entry at position

(k, ℓ), while vkℓ
kℓ = 1. This shows that these |Ip,q| vertices of O≤

p,q(Sq) are
linearly independent. Together with 0 this gives |Ip,q|+1 affinely independent



26 KAIBEL AND PFETSCH

A

B
C

D

S

(a) All cases

s

r

(b) Case A, W rs

s

r

(c) Case D,Urs

i

j

s

r

(d) Case S

Figure 11: Illustration of the constructions in the proof of Part (4) of Proposition 14.

points contained in O≤
p,q(Sq), proving that O≤

p,q(Sq) is full dimensional. The
calculations in the statement are straightforward.

Part (2): For (i, j) ∈ Ip,q \ {(j, j) : j < q} all points V kℓ with (k, ℓ) 6= (i, j)
are contained in the face defined by xij ≥ 0. Since this is also true for 0, the
face defined by xij ≥ 0 contains |Ip,q| affinely independent points (see the

proof of Part (1)), i.e., it is a facet of O≤
p,q(Sq).

For every vertex x⋆ ∈ O≤
p,q(Sq) contained in the face defined by xjj ≥ 0

for some j < q, we have x⋆
ℓℓ = 0 for all ℓ ≥ j (because otherwise the columns

of x⋆ would not be in non-increasing lexicographic order). This shows that x⋆

is contained in the facet defined by xqq ≥ 0.

Part (3): In order to show that x(rowi) ≤ 1 defines a facet of O≤
p,q(Sq)

for i ∈ [p], we construct points V̂ kℓ (depending on i) from the points V kℓ

defined in Part (1) by adding a 1 at position (i, 1) if V kℓ(rowi) = 0 (see

Figure 10 (b)). The (|Ip,q| − 1) points V̂ kℓ for all (k, ℓ) ∈ Ip,q − (i, 1), and
the unit vector Ei1 (with a single 1 in position (i, 1)) satisfy x(rowi) = 1.
Furthermore, they are affinely independent, since subtracting Ei1 from all
vectors V̂ kℓ yields the vectors V kℓ, which are linearly independent, as proved
in Part (1).

Part (4): Let x(B) − x(S) ≤ 0 be an SCI with bar B, leader (i, j) = 〈η, j〉,
and shifted column S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉}.

If η ≥ 2 and c1 < c2 hold, then the SCI is the sum of the SCI

x〈1,c1+1〉 − x〈1,c1〉 ≤ 0

and the SCI with bar B and shifted column {〈1, c1 + 1〉, 〈2, c2〉, . . . , 〈η, cη〉};
see Figure 10 (c). Repeating this argument (c2 − c1 − 1) times proves the
second statement of Part (4).

Otherwise, let V be the set of vertices of O≤
p,q(Sq) that satisfy the SCI

with equality, and let L = lin(V ∪ Eij) be the linear span of V and the
unit vector Eij . We will show that L = RIp,q , which proves dim(aff(V)) =
|Ip,q| − 1 (since 0 ∈ V). Hence, the SCI defines a facet of O≤

p,q(Sq).
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To show that L = RIp,q , we prove that Ers ∈ L for all (r, s) ∈ Ip,q. We
partition the set Ip,q \ (B ∪ S) into three parts (see Figure 11 (a)):

A :={〈ρ, s〉 ∈ Ip,q : (ρ ≤ η and s < cρ) or ρ > η},

C :={〈ρ, s〉 = (r, s) ∈ Ip,q : ρ ≤ η and r > i}, and

D :={〈ρ, s〉 = (r, s) ∈ Ip,q : ρ < η, s > cρ, and r < i}.

For (r, s) = 〈ρ, s〉, denote by diag≤(r, s) = {〈ρ, 1〉, 〈ρ, 2〉, . . . , 〈ρ, s〉} the
diagonal starting at 〈ρ, 1〉 = (r − s + 1, 1) and ending at 〈ρ, s〉 = (r, s).
Similarly, denote by diag≥(r, s) = {〈ρ, s〉, 〈ρ, s + 1〉, . . . } ∩ Ip,q the diagonal
starting at (r, s) and ending in colq or in rowp.

Claim 9. For all (r, s) = 〈ρ, s〉 ∈ A ∪ C we have Ers ∈ L.

Proof. Denote the incidence vector of diag≤(r, s) by W rs = χdiag≤(r,s) (see
Figure 11 (b)). Both W rs and W rs −Ers are vertices of O≤

p,q(Sq). We have

diag≤(r, s) ∩ (B ∪ S) = ∅ for (r, s) ∈ A. Furthermore

|diag≤(r, s) ∩ B| = 1 = |diag≤(r, s) ∩ S|

for (r, s) ∈ C. Hence, these two vertices satisfy the SCI with equality and
we obtain Ers = W rs − (W rs − Ers) ∈ L. �

Claim 10. For all (r, s) = 〈ρ, s〉 ∈ D we have Ers ∈ L.

Proof. Define the set

U(r, s) := diag≤(r, s) ∪ diag≥(r + 1, s) ∪
(

{〈ρ + 1, q〉, 〈ρ + 2, q〉, . . . } ∩ Ip,q

)

,

see Figure 11 (c). Let U rs := χU(r,s). By construction, the three points U rs,
U rs − Ers, and U rs − Er+1,s are vertices of O≤

p,q(Sq).
If ρ = 1, we have |U(r, s) ∩ B| = 1 and |U(r, s) ∩ S| = 1, where we need

c1 = c2 in case of s = c1 + 1. Due to (r, s) /∈ B ∪S, both U rs and U rs −Ers

satisfy the SCI with equality. This yields Ers = U rs − (U rs − Ers) ∈ L.
If ρ > 1, then |U(r, s) ∩ S| = 1 does not hold in all cases (e.g., if s = cρ+1,

we have (r +1, s) ∈ S). However, since ρ > 1, U(r− 1, s) is well-defined and

|U(r − 1, s) ∩ B| = 1 and |U(r − 1, s) ∩ S| = 1

hold. Hence the vertices U r−1,s and U r−1,s−Ers satisfy the SCI with equal-
ity, giving Ers = U r−1,s − (U r−1,s − Ers) ∈ L. �

Claim 11. For all (r, s) = 〈ρ, s〉 ∈ S we have Ers ∈ L.

Proof. Define the set

T (r, s) := diag≤(r, s) ∪
(

{〈ρ, j〉, 〈ρ + 1, j〉, . . . } ∩ Ip,q

)

,

see Figure 11 (d). The incidence vector T rs := χT (r,s) is a vertex of O≤
p,q(Sq),

which, due to T (r, s) ∩ S = {(r, s)} and T (r, s) ∩ B = {(i, j)} satisfies the
SCI with equality. Thus, from

Ers = T rs − Eij −
∑

(k,ℓ)∈T (r,s)∩A

Ekℓ −
∑

(k,ℓ)∈T (r,s)∩C

Ekℓ −
∑

(k,ℓ)∈T (r,s)∩D

Ekℓ

we conclude Ers ∈ L, since Eij ∈ L by definition of L, and Ekℓ ∈ L for all
(k, ℓ) ∈ A ∪ C ∪ D by Claims 9 and 10. �
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Claim 12. For all (i, s) = 〈ρ, s〉 ∈ B we have Ers ∈ L.

Proof. The vector W is := χdiag≤(i,s) is a vertex of O≤
p,q(Sq) that satisfies the

SCI with equality. Furthermore, we have

Eis = W is − Ercρ −
∑

(k,ℓ)∈diag≤(i,s)∩A

Ekℓ −
∑

(k,ℓ)∈diag≤(i,s)∩D

Ekℓ,

where (r, cρ) := 〈ρ, cρ〉 ∈ S. Thus, we conclude Eis ∈ L, since Ekℓ ∈ L for
all (k, ℓ) ∈ A ∪ D ∪ S by Claims 9, 10, and 11. �

Claims 9 to 12 show Ers ∈ L for all (r, s) ∈ Ip,q. This proves that the SCI

defines a facet of O≤
p,q(Sq) (unless c1 < c2 holds). �

Finally, we carry the results of Proposition 14 over to partitioning or-
bitopes.

Proposition 15.

(1) The partitioning orbitope O=
p,q(Sq) ⊂ RIp,q has dimension

dim(O=
p,q(Sq)) = |Ip−1,q−1| = |Ip,q| − p =

(

p − q
2

)

(q − 1).

The constraints x(rowi) = 1 form a complete and non-redundant linear
description of aff(O=

p,q(Sq)).
(2) A nonnegativity constraint xij ≥ 0, (i, j) ∈ Ip,q, defines a facet of

O=
p,q(Sq), unless i = j < q holds. The faces defined by xjj ≥ 0 with

j < q are contained in the facet defined by xqq ≥ 0.
(3) A shifted column inequality x(B)− x(S) ≤ 0 with bar B and shifted col-

umn S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} defines a facet of O=
p,q(Sq), unless

η ≥ 2 and we have c1 < c2 or c1 = 1. If η ≥ 2, the face is con-
tained in the facet defined by the SCI with bar B and shifted column
{〈1, c2〉, 〈2, c2〉, . . . , 〈η, cη〉} in case of c1 < c2, and it is contained in the
facet defined by x2,1 ≥ 0 in case of 1 = c1 = c2.

Proof. According to Proposition 5, O≤
p−1,q−1(Sq−1) is isomorphic to O=

p,q(Sq)
via the orthogonal projection of the latter polytope to the space

L := {x ∈ RIp,q : xi1 = 0 for all i ∈ [p]}

(and via the canonical identification of L and RIp−1,q−1). This shows the
statement on the dimension of O=

p,q(Sq); the calculations and the claim on
the non-redundancy of the equation system are straightforward.

Furthermore, this projection (which is one-to-one on aff(O=
p,q(Sq))) maps

every face of O=
p,q(Sq) that is defined by some inequality

〈a, x〉 :=
∑

(i,j)∈Ip,q

aij xij ≤ a0,

with a ∈ RIp,q , a0 ∈ R, and ai1 = 0 for all i ∈ [p] to a face of O≤
p−1,q−1(Sq−1)

with the same dimension defined by
∑

(i,j)∈Ip−1,q−1

ai+1,j+1 xij ≤ a0.
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Conversely, if 〈ã, x〉 ≤ ã0 defines a face of O≤
p−1,q−1(Sq−1) for ã ∈ RIp−1,q−1

and ã0 ∈ R, then the inequality
∑

(i,j)∈Ip,q

ãij xi+1,j+1 ≤ ã0

defines a face of O=
p,q(Sq) with the same dimension.

Due to parts (2) and (3) of Proposition 14, this proves Part (2) of the
proposition, where we use the fact that the inequalities xi1 ≥ 0 are equivalent
to x

(

rowi −(i, 1)
)

≤ 1 with respect to O=
p,q(Sq).

Furthermore, due to Part (4) of Proposition 14, the above arguments also
imply the statement of Part (3) for c1 ≥ 2. The case of 1 = c1 < c2 can be
proved by the arguments that we used in the case c1 < c2 in the proof of
Part (4) of Proposition 14. Finally, we consider the case 1 = c1 = c2. Since
we have x1,1 = 1 for all x ∈ O=

p,q(Sq), the equation x(B)− x(S) = 0 implies

1 ≥ x(B) = x(S) = x1,1 + x2,1 + x(S − (1, 1) − (2, 1)) ≥ 1,

and hence x2,1 = 0. This concludes the proof. �

4.6. Summary of Results on the Symmetric Group

We collect the results on the packing- and partitioning orbitopes for sym-
metric groups.

Theorem 16. The partitioning orbitope O=
p,q(Sq) (for p ≥ q ≥ 2) with

respect to the symmetric group Sq equals the set of all x ∈ RIp,q that satisfy
the following linear constraints:

◦ the row-sum equations x(rowi) = 1 for all i ∈ [p],
◦ the nonnegativity constraints xij ≥ 0 for all (i, j) ∈ Ip,q \{(j, j) : j < q},
◦ the shifted column inequalities x(B) − x(S) ≤ 0 for all bars

B = {(i, j), (i, j + 1), . . . , (i,min{i, q})}

with (i, j) = 〈η, j〉 ∈ Ip,q, j ≥ 2, and shifted columns

S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} with 2 ≤ c1 = c2 ≤ · · · ≤ cη ≤ j − 1

(where in case of η = 1 the last condition reduces to 2 ≤ c1).

This system of constraints is non-redundant. The corresponding separation
problem can be solved in time O(pq).

For the result on the completeness of the description, see Proposition 12,
for the question of redundancy see Proposition 15, and for the separation
algorithm see Corollary 11. Note that the SCI with shifted column {(1, 1)}
and bar {(2, 2)} defines the same facet of O=

p,q(Sq) as the nonnegativity
constraint x2,1 ≥ 0.

Theorem 17. The packing orbitope O≤
p,q(Sq) (for p ≥ q ≥ 2) with respect

to the symmetric group Sq equals the set of all x ∈ RIp,q that satisfy the
following linear constraints:

◦ the row-sum inequalities x(rowi) ≤ 1 for all i ∈ [p],
◦ the nonnegativity constraints xij ≥ 0 for all (i, j) ∈ Ip,q \{(j, j) : j < q},
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◦ the shifted column inequalities x(B) − x(S) ≤ 0 for all bars

B = {(i, j), (i, j + 1), . . . , (i,min{i, q})}

with (i, j) = 〈η, j〉 ∈ Ip,q, j ≥ 2, and shifted columns

S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} with 1 ≤ c1 = c2 ≤ · · · ≤ cη ≤ j − 1.

This system of constraints is non-redundant. The corresponding separation
problem can be solved in time O(pq).

For the result on the completeness of the description, see Proposition 13,
for the question of redundancy see Proposition 14, and for the separation
algorithm see Corollary 11.

5. Concluding Remarks

We close with some remarks on the technique used in the proof of Propo-
sition 12, on the combination of SCIs and clique-inequalities for the graph-
coloring problem, and on full and covering orbitopes.

The Proof Technique. Our technique to prove Proposition 12 can be sum-
marized as follows. Assume a polytope Q ⊂ Rn is described by some (finite)
system Q of linear equations and inequalities. Suppose that Q′ is a subsys-
tem of Q for which it is known that Q′ defines an integral polytope Q′ ⊇ Q.
One can prove that Q is integral by showing that every vertex x⋆ of Q is a
vertex of Q′ in the following way. Here we call a basis (with respect to Q)
of x⋆ reduced if it contains as many constraints from Q′ as possible:

(1) Starting from an arbitrary reduced basis B of x⋆, construct iteratively a
reduced basis B⋆ of x⋆ that satisfies some properties that are useful for
the second step.

(2) Under the assumption that B⋆ 6⊆ Q′, modify x⋆ to some x̃ 6= x⋆ that
also satisfies the equation system corresponding to B⋆ (contradicting the
fact that B⋆ is a basis).

(In our proof of Proposition 12, Step (1) was done by showing that a reduced
basis of “minimal weight” has the desired properties.)

Such a proof is conceivable for every 0/1-polytope Q by choosing Q′ =
[0, 1]n as the whole 0/1-cube and Q′ as the set of the 2n trivial inequalities
0 ≤ xi ≤ 1, for i = 1, . . . , n (if necessary, modifying Q in order to contain
them all).

We do not know whether this kind of integrality proof has been used in
the literature. It may well be that one can interpret some of the classical
integrality proofs in this setting. Anyway, it seems to us that the technique
might be useful for other polytopes as well.

The Graph-Coloring Problem. As mentioned in the introduction, for con-
crete applications like the graph coloring problem one can (and probably
has to) combine the polyhedral knowledge on orbitopes with the knowledge
on problem specific polyhedra. We illustrate this by the example of clique
inequalities for the graph coloring model (1) described in the introduction.

Fix a color index j ∈ [C]. If W ⊆ V is a clique in the graph G = (V,E),
then clearly the inequality

∑

i∈W xij ≤ 1 is valid. In fact, the strengthened
inequalities

∑

i∈W xij ≤ yj are known to be facet-defining for the convex



PACKING AND PARTITIONING ORBITOPES 31

j

Figure 12: Combination of a clique inequality and an SCI.

hull of the solutions to (1), see [4]. Suppose that S ⊂ I|V |,C is a shifted
column and that we have η ≤ |S| for all 〈η, j〉 = (i, j) with i ∈ W . Then the
inequality

∑

i∈W

xij − x(S) ≤ 0

is valid for all solutions to the model obtained from (1) by adding inequali-
ties (2) (which are all “column inequalities” in terms of orbitopes), see Fig-
ure 12. The details and a computational study will be the subject of a
follow-up paper.

Full and Covering Orbitopes. As soon as one starts to consider 0/1-matrices
that may have more than one 1-entry per row, things seem to become more
complicated.

With respect to cyclic group actions, we loose the simplicity of the char-
acterizations in Observation 1. The reason is that the matrices under inves-
tigation may have several equal nonzero columns. In particular, the lexico-
graphically maximal column may not be unique.

With respect to the action of the symmetric group, we still have the char-
acterization of the representatives as the matrices whose columns are in
non-increasing lexicographic order (see Part 1 of Observation 1). The struc-
tures of the respective full and covering orbitopes, however, become much
more complicated. In particular, we know from computer experiments that
several powers of two arise as coefficients in the facet-defining inequalities.
This increase in complexity is reflected by the fact that optimization of linear
functionals over these orbitopes seems to be more difficult than over packing
and partitioning orbitopes (see the remarks at the end of Section 2.1).

Let us close with a comment on our choice of the set of representatives
as the maximal elements with respect to a lexicographic ordering (referring
to the row-wise ordering of the components of the matrices). It might be
that the difficulties for full and covering orbitopes mentioned in the previous
paragraph can be overcome by the choice of a different system of representa-
tives. The choice of representatives considered in this paper, however, seems
to be appropriate for the packing and partitioning cases.

Whether the results presented in this paper are useful in practice will turn
out in the future. In any case, we hope that the reader shares our view that
orbitopes are neat mathematical objects. It seems that symmetry strikes
back by its own beauty, even when mathematicians start to fight it.
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