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Abstract. In this paper we give an overview of model order reduction techniques for coupled
systems. We consider linear time-invariant control systems that are coupled through input-output
relations and discuss model reduction of such systems using moment matching and balanced trunca-
tion. Structure-preserving approaches to model order reduction of coupled systems are also presented.
Numerical examples are given.
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1. Introduction. Modelling and simulation of complex physical and techni-
cal processes yield coupled systems that consist of ordinary differential equations,
differential-algebraic equations and partial differential equations. Such systems arise
in many practical applications including very large system integrated (VLSI) chip de-
sign and micro-electro-mechanical systems (MEMS), e.g., [10, 14, 21, 52, 58]. As the
number and density of components on a single chip increase and feature sizes decrease,
different physical effects such as thermal interaction, electromagnetic radiation, sub-
strate noise and crosstalk cannot be ignored anymore. Furthermore, the design of
micro- and nano-structures requires the development of new multi-physical models
describing their complex internal behavior. Another application area of coupled sys-
tems is in subdomain decomposition. Partial differential equations on complicated
spatial geometries may be represented as a system of partial differential equations on
simpler domains coupled, for example, through boundary conditions.

As the mathematical models get more detailed and different coupling effects have
to be included, the development of efficient simulation and optimization tools for
large-scale coupled systems is a challenging task. Such systems consist of several
subsystems whose inputs and outputs are coupled via additional algebraic relations.
The subsystems usually have a high number of internal variables that leads to large
memory requirements and computational complexity. To handle such large systems
in simulation, control and optimization, their model order reduction (or reduced-order

modelling) is indispensable. A general idea of model order reduction is to approximate
a large-scale system by a reduced model of lower state space dimension that has the
same behavior as the original system.

In the last years, many different model reduction methods have been developed
in computational fluid dynamics, control design and electrical and mechanical engi-
neering, see [3, 11, 47] for books on this topic. In this paper we review recent progress
in dimension reduction of coupled systems. In structural dynamics, model reduction
methods based on subsystem structuring have been of interest already for a long time
[16, 35, 43]. Here, we will not consider these method, but will rather focus on general
concepts of model reduction of coupled systems developed in [42, 53, 60].
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This paper is organized as follows. In Section 2 we introduce linear time-invariant
coupled systems and give their closed-loop formulation. Section 3 deals with model
order reduction of coupled systems. To make the paper self-contained, we briefly
review model reduction techniques of balanced truncation and moment matching ap-
proximation. Furthermore, we report two approaches for reduced-order modelling of
coupled systems based on the reduction of closed-loop systems (Section 3.1) and on
structure-preserving model reduction (Section 3.2). The discussion of the advantages
and disadvantages of these approaches is presented in Section 3.3. Finally, in Section 4
we consider some numerical examples.

2. Coupled systems. Consider a system of k coupled linear time-invariant ge-
neralized state space subsystems in the first-order form

Ejẋj(t) = Ajxj(t) + Bjuj(t),
yj(t) = Cjxj(t),

(2.1)

or in the second-order form

Mj ẍj(t) + Dj ẋj(t) + Sj xj(t) = Bjuj(t),
Cj2ẋj(t) + Cj1xj(t) = yj(t),

(2.2)

that are coupled through the relations

uj(t) = Kj1y1(t) + . . . + Kjkyk(t) + Hju(t), j = 1, . . . , k, (2.3)

y(t) = R1 y1(t) + . . . + Rk yk(t). (2.4)

Here Ej , Aj , Mj , Dj , Sj ∈ Rnj ,nj , Bj ∈ Rnj ,mj , Cj , Cj1, Cj2 ∈ Rpj ,nj , xj(t) ∈ Rnj

are internal state vectors, uj(t) ∈ R
mj are internal inputs and yj(t) ∈ R

pj are in-
ternal outputs. Furthermore, Kjl ∈ Rmj ,pl , Hj ∈ Rmj ,m, Rj ∈ Rp,pj , u(t) ∈ Rm is
an external input and y(t) ∈ Rp is an external output. Coupled systems of the form
(2.1)–(2.4) are also known as interconnected or composite systems. The first-order
systems of the form (2.1) arise in simulation of linear RCL circuits that consist of
resistors, capacitors, inductors, voltage and current sources only [2, 34, 62]. In this
case the components of the state vector xj(t) are the nodal voltages, the inductor
currents and the currents through the voltage sources, uj(t) contains the currents
and voltages of the current and voltage sources, respectively, and yj(t) consists of the
voltages across the current sources and the currents through the voltage sources. The
linear RCL circuits are often used to model the interconnections of VLSI networks.
They can also be described by the second-order systems (2.2), where xj(t) consists
of the nodal voltages only. Systems of the form (2.2) appear also in mechanical and
structural dynamics. In this case, xj(t) is the displacement vector and uj(t) is the
acting force. Furthermore, systems (2.1) and (2.2) arise from spatial discretization
of instationary linear partial differential equations that describe, for example, heat
transfer, vibrations, electromagnetic radiation or fluid flow.

Since the second-order system (2.2) can be rewritten as an equivalent first-order
system of the form (2.1), in the following we will consider the coupled system (2.1),
(2.3), (2.4) only adding comments on (2.2) if necessary. The matrices Ej in (2.1)
may be singular, but we will assume that the pencils λEj − Aj are regular, i.e.,
det(λEj −Aj) 6≡ 0 for j = 1, . . . , k. In this case we can consider the transfer functions
of (2.1) given by Gj(s) = Cj(sEj − Aj)

−1Bj . If Ejxj(0) = 0, then applying the
Laplace transform to (2.1), we find that yj(s) = Gj(s)uj(s), where yj(s) and uj(s)
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are the Laplace transforms of yj(t) and uj(t). Thus, Gj(s) describes the input-output
relation of system (2.1) in the frequency domain.

The transfer function Gj(s) is called proper if lims→∞ Gj(s) < ∞, and improper,
otherwise. System (2.1) is asymptotically stable if the pencil λEj −Aj is stable, i.e., all
its finite eigenvalues have negative real part. The transfer function Gj(s) of (2.1) is
called stable if it has no poles in the closed right half-plane. Clearly, the asymptotically
stable system (2.1) has the stable transfer function Gj(s). Note that the stability of
Gj(s) does not, in general, imply that λEj − Aj is stable. However, for any stable
transfer function Gj(s) one can find a generalized state space representation (2.1)
such that Gj(s) = Cj(sEj − Aj)

−1Bj and λEj − Aj is stable, see [36]. Let H∞ be
the space of all proper and stable rational transfer functions. We provide this space
with the H∞-norm defined for G ∈ H∞ by

‖G‖H∞
:= sup

ℜe(s)>0

‖G(s)‖2 = sup
ω∈R

‖G(iω)‖2,

where ‖ · ‖2 denotes the matrix spectral norm.
Let n = n1 + . . . + nk, p0 = p1 + . . . + pk and m0 = m1 + . . . + mk. Consider

the coupling block matrices

R = [ R1, . . . , Rk ] ∈ R
p,p0 , H = [ HT

1 , . . . , HT
k ]T ∈ R

m0,m,

and K = [Kj,l]
k
j,l=1 ∈ Rm0,p0 together with the block diagonal matrices

E = diag(E1, . . . , Ek) ∈ Rn,n, A = diag(A1, . . . , Ak) ∈ Rn,n,

B = diag(B1, . . . , Bk) ∈ Rn,m0 , C = diag(C1, . . . , Ck) ∈ Rp0,n.
(2.5)

Let G(s) = C(sE − A)−1B = diag
(
G1(s), . . . , Gk(s)

)
. If I − G(s)K is invertible,

then the input-output relation of the coupled system (2.1), (2.3), (2.4) can be written
as y(s) = G(s)u(s), where y(s) and u(s) are the Laplace transforms of the external
output y(t) and the external input u(t), respectively, and the closed-loop transfer
function G(s) has the form

G(s) = R
(
I − G(s)K

)−1
G(s)H = R G(s)

(
I − KG(s)

)−1
H. (2.6)

A generalized state space realization of G(s) is given by

E ẋ(t) = Ax(t) + B u(t),
y(t) = C x(t),

(2.7)

where

E = E ∈ Rn,n, A = A + BKC ∈ Rn,n,

B = BH ∈ Rn,m, C = RC ∈ Rp,n.
(2.8)

Note that I −G(s)K is invertible if and only if the pencil λE −A−BKC is regular.
Moreover, if G(s) and (I−G(s)K)−1 are proper, then the coupled system (2.1), (2.3),
(2.4) is well-posed in the sense that the closed-loop transfer function G(s) exists and it
is proper. In a schematic way, an example of a coupled system is shown in Figure 2.1.

The model reduction problem for the coupled system (2.1), (2.3), (2.4) consists in
an approximation of the global mapping from the external input u(t) to the external
output y(t). In other words, we want to find a reduced-order model

Ẽ ˙̃x(t) = Ã x̃(t) + B̃ u(t),

y(t) = C̃ x̃(t),
(2.9)
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Fig. 2.1. Coupled system.

with Ẽ , Ã ∈ R
ℓ,ℓ, B̃ ∈ R

ℓ,m, C̃ ∈ R
ℓ,n and ℓ ≪ n that approximates the closed-

loop system (2.7). In the frequency domain, the model reduction problem can be
reformulated as follows: for given G(s) = C(s E − A)−1B, find an approximation

G̃(s) = C̃(s Ẽ − Ã)−1B̃ such that Ẽ , Ã ∈ R
ℓ,ℓ and ‖ G̃ − G ‖ is small in some system

norm. For instance, the approximation error can be estimated in the H∞-norm. Apart
from having a small state space dimension ℓ, it is also required that the reduced-order
system (2.9) preserves essential properties of (2.7) like stability and passivity. Note
that passivity, in general, means that the system does not produce energy and it is
important system property, especially in circuit design [2].

3. Model reduction approaches for coupled systems. There exist two main
possibilities for model order reduction of coupled systems. The first approach is to
consider all subsystems together in the closed-loop form (2.7) and to compute the
reduced-order system (2.9) by applying any model reduction method to (2.7). The
second approach consists in replacing subsystems (2.1) by reduced-order models that
are coupled then through the same interconnection relations. In this section we discuss
these two approaches in more detail and mention their advantages and disadvantages.

3.1. Model reduction of the closed-loop system. Most of the model reduc-
tion methods for linear time-invariant dynamical systems are based on the projection
of the system onto lower dimensional subspaces. Using these methods for the closed-
loop system (2.7), we can compute the reduced-order model (2.9) by projection

Ẽ = WTE T , Ã = WTAT , B̃ = WTB, C̃ = C T , (3.1)

where the projection matrices W , T ∈ Rn,ℓ determine the subspaces of interest. For
example, in modal model reduction the columns of W and T span, respectively, the
left and right deflating subspaces of the pencil λ E −A corresponding to the dominant
eigenvalues [18, 44]. Balanced truncation model reduction is based on the projection
of system (2.7) onto the subspaces corresponding to the dominant Hankel singular
values of (2.7), see [46, 54]. In the moment matching approximation, one choose
the projection matrices W and T whose columns form the bases of certain Krylov
subspaces associated with (2.7), e.g., [5, 22]. In the next subsections we briefly describe
balanced truncation and moment matching methods.

3.1.1. Balanced truncation. One of the most studied model reduction tech-
niques is balanced truncation, an approach firstly proposed for standard state space
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systems in [19, 27, 46, 54] and then extended to generalized state space systems in
[45, 50, 56]. An important property of balanced truncation model reduction methods
is that stability is preserved in the reduced-order system. Moreover, the existence
of computable error bounds allows an adaptive choice of the state space dimension ℓ

of the approximate model. A disadvantage of these methods is that (generalized)
Lyapunov equations have to be solved. However, recent results on low rank approxi-
mations to the solutions of matrix equations [9, 12, 29, 33, 40, 49] make the balanced
truncation model reduction approach attractive for large-scale problems.

Consider the closed-loop system (2.7) with the stable pencil λ E − A. For sim-
plicity, we will assume that the matrix E is nonsingular. However, all results of this
subsection can also be extended for systems with singular E , see [45, 56] for details.
The balanced truncation model reduction method is closely related to the controllabi-

lity Gramians P and the observability Gramian Q that are unique symmetric, positive
semidefinite solutions of the generalized Lyapunov equations

E PAT + AP ET = −BBT , (3.2)

ETQA + ATQE = −CT C . (3.3)

The matrix P ETQE has nonnegative eigenvalues, and the square roots of these eigen-
values σj =

√
λj(P ETQE) define the Hankel singular values of system (2.7). We

will assume that σj are ordered decreasingly. System (2.7) is called balanced if
P = Q = diag(σ1, . . . , σn). The Hankel singular values characterize the ‘importance’
of state variables in (2.7). States of the balanced system corresponding to the small
Hankel singular values are difficult to reach and to observe at the same time. Such
states are less involved in the energy transfer from inputs to outputs, and, therefore,
they can be truncated without changing the system properties significantly [46]. Thus,
a general idea of balanced truncation is to transform system (2.7) into a balanced form
and to truncate the states that correspond to the small Hankel singular values. In
practice, balancing and truncation can be combined by projecting system (2.7) onto
the dominant subspaces of the matrix P ETQE . This can be done in a numerically
efficient way using the following algorithm that is an obvious generalization of the
square root method [39, 59].

Algorithm 3.1. Generalized square root balanced truncation method.

Given system (2.7) with the transfer function G(s) = C(sE − A)−1B, compute the

reduced-order system (2.9).
1. Compute the Cholesky factors LP and LQ of the Gramians P = LPLT

P and

Q = LQLT
Q, that satisfy the generalized Lyapunov equations (3.2) and (3.3).

2. Compute the singular value decomposition

LT
P ETLQ = [ U1, U2 ]

[
Σ1 0
0 Σ2

]
[ V1, V2 ]

T
,

where [ U1, U2 ] and [ V1, V2 ] have orthonormal columns, Σ1 = diag(σ1, . . . ,σℓ)
and Σ2 = diag(σℓ+1, . . . , σr) with r = rank(LT

P ETLQ).

3. Compute the reduced system (2.9) with Ẽ = WTE T , Ã = WTAT , B̃ = WTB

and C̃ = C T , where W = LQV1Σ
−1/2
1 and T = LPU1Σ

−1/2
1 .

One can show that the reduced-order system G̃(s) = C̃(sẼ − Ã)−1B̃ computed by
this algorithm is stable and the H∞-norm error bound

‖ G̃ − G ‖H∞
≤ 2(σℓ+1 + . . . + σr)
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holds, where σℓ+1, . . . , σr are the truncated Hankel singular values of system (2.7), see
[19, 27, 51]. To solve the large-scale generalized Lyapunov equations (3.2) and (3.3)
for the Cholesky factors without forming the Gramians P and Q explicitly, we can
use the ADI method [40, 49], the cyclic Smith method [33, 49] or the sign function
method [9, 12].

Apart from the balanced truncation method considered here, other balancing-
based model reduction techniques have been developed, see [32, 47]. These are LQG
balancing, stochastic balancing, positive real balancing and bounded real balancing.
All these techniques are related to algebraic Riccati equations and aim to capture
specific system properties like closed-loop performance, minimum phase property,
passivity and H∞-gain.

3.1.2. Moment matching approximation. An alternative model reduction
approach for linear time-invariant systems is a moment matching approximation based
on Krylov subspace methods, see [3, 5, 22] for recent surveys on these methods.
Suppose that s0 ∈ C is not an eigenvalue of the pencil λ E − A. Then the matrix
A− s0E is nonsingular, and the transfer function G(s) = C(s E −A)−1B of the closed-
loop system (2.7) can be expanded into a Taylor series at s0 as

G(s) = −C
(
I − (s − s0)(A− s0E)−1E

)−1
(A− s0E)−1B

= M0 + M1(s − s0) + M2(s − s0)
2 + . . . ,

where the matrices

Mj = −C
(
(A− s0E)−1E

)j
(A− s0E)−1B

are called the moments of system (2.7) at the expansion point s0. The moment
matching approximation problem consists in determining a reduced-order system (2.9)

whose the transfer function G̃(s) = C̃(s Ẽ − Ã)−1B̃ has the Taylor series expansion at
s0 of the form

G̃(s) = M̃0 + M̃1(s − s0) + M̃2(s − s0)
2 + . . . , (3.4)

where the moments M̃j satisfy the moment matching conditions

Mj = M̃j , j = 0, 1, . . . , q. (3.5)

For s0 = 0 and q as large as possible, the approximation (3.4), (3.5) coincides with
the matrix Padé approximation of G(s), e.g., [8]. For an arbitrary complex number
s0 6= 0, the moment matching approximation is the problem of rational interpolation

[1]. Besides a single interpolation point, it is also possible to construct a reduced-

order system with the transfer function G̃(s) that matches G(s) at multiple points
{s0, s1, . . . , sl}. Such an approximation is called a multi-point rational interpolant and
has been studied in [25, 30]. Furthermore, one can consider the Laurent expansion of
G(s) at s0 = ∞ given by

G(s) = M−d+1s
d−1 + . . . + M−1s + M0 + M1s

−1 + M2s
−2 + . . . ,

where the coefficients Mj are known as Markov parameters of system (2.7). In this
case, computing the approximation

G̃(s) = M̃−d+1s
d−1 + . . . + M̃−1s + M̃0 + M̃1s

−1 + M̃2s
−2 + . . .



A SURVEY ON MODEL REDUCTION OF COUPLED SYSTEMS 7

with Mj = M̃j for j = −(d − 1), . . . ,−1, 0, 1, . . . , q reduces to the partial realization

problem [13, 28].
In order to determine the reduced-order system (2.9) satisfying the moment

matching condition (3.5), the explicit computation of the moments can be avoided by
using the following connection between the Padé (or Padé-type) approximation and
the right and left block Krylov subspaces

Kqr
(A−1

0 E , A−1
0 B ) = Im [ A−1

0 B , A−1
0 EA−1

0 B , . . . , (A−1
0 E)qr−1A−1

0 B ],

Kql
(A−T

0 ET,A−T
0 CT) = Im [A−T

0 CT, A−T
0 ETA−T

0 CT, . . . , (A−T
0 ET)ql−1A−T

0 CT ],

with A0 = A− s0E .
Theorem 3.1. [26, 30] Consider the closed-loop system (2.7) and the reduced-

order system (2.9), (3.1) with some projection matrices W, T ∈ Rn,ℓ. Let s0 ∈ C be

not an eigenvalue of λE − A and λẼ − Ã, and let Mj and M̃j be the moments of

systems (2.7) and (2.9), (3.1), respectively.

1. If Kqr
(A−1

0 E ,A−1
0 B) ⊆ Im T and W = T , then Mj = M̃j for j = 0, . . . , qr−1.

2. If Kqr
(A−1

0 E ,A−1
0 B) ⊆ Im T and Kql

(A−T
0 ET,A−T

0 CT)⊆ ImW, then Mj =M̃j

for j = 0, . . . , qr + ql − 1.
This theorem proposes to take the projection matrices T and W as the bases of

the Krylov subspaces Kqr
(A−1

0 E ,A−1
0 B) and Kql

(A−T
0 ET,A−T

0 CT ), respectively. Such
bases can be efficiently computed by Lanczos or Arnoldi process [5, 20, 25] in the
single-input single-output case and Lanczos- or Arnoldi-type methods [22, 24, 30, 48]
in the multi-input multi-output case.

While the Krylov-based moment matching methods are efficient for very large
sparse problems, the reduced-order systems computed by these methods have only
local good approximation properties. So far, there is no global error bound, see
[5, 6, 31] for recent contributions on this topic. The location of the interpolation
points strongly influences the approximation quality. The optimal choice of these
points remains an open problem. Another drawback of the moment matching methods
is that stability and passivity are not necessarily preserved in the resulting reduced-
order model, so that usually a post-processing is needed to guarantee these properties.
Recently, passivity-preserving model reduction methods based on Krylov subspaces
have been developed for standard state space systems [4, 55] and also for structured
generalized state space systems arising in circuit simulation [23, 24, 38, 48].

3.2. Structure-preserving model reduction. Model order reduction of the
closed-loop system (2.7) does not preserve the interconnection structure in the ap-
proximate system (2.9). Although many different model reduction methods have been
developed for linear dynamical systems, structure-preserving reduced-order modelling

of coupled systems only recently has received an attention [42, 43, 53, 60]. Instead of
reduction of the entire system (2.7), one can replace each subsystem (2.1), or some of
them, by a reduced-order model

Ẽj
˙̃xj(t) = Ãj x̃j(t) + B̃jũj(t),

ỹj(t) = C̃j x̃j(t),
(3.6)

where Ẽj , Ãj ∈ Rℓj ,ℓj , B̃j ∈ Rℓj ,mj , C̃j ∈ Rpj ,ℓj with ℓj ≪ nj , and then to couple
these subsystems through the same interconnection relations

ũj(t) = Kj1ỹ1(t) + . . . + Kjkỹk(t) + Hju(t), j = 1, . . . , k, (3.7)

ỹ(t) = R1 ỹ1(t) + . . . + Rk ỹk(t). (3.8)
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Note that since the internal outputs yj(t) are replaced by the approximate outputs
ỹj(t), due to (3.7), the internal inputs uj(t) in (3.6) should also be replaced by the
approximate inputs ũj(t). Let

Ẽ = diag(Ẽ1, . . . , Ẽk), Ã = diag(Ã1, . . . , Ãk),

B̃ = diag(B̃1, . . . , B̃k), C̃ = diag(C̃1, . . . , C̃k).

If the reduced-order pencils λẼ−Ã and λẼ−Ã−B̃KC̃ are regular, then the reduced-
order closed-loop system has the form (2.9) with

Ẽ = Ẽ, Ã = Ã + B̃KC̃, B̃ = B̃H, C̃ = RC̃. (3.9)

The transfer function of this system is given by

G̃(s) = R
(
I − G̃(s)K

)−1
G̃(s)H = R G̃(s)

(
I − KG̃(s)

)−1
H,

where G̃(s) = diag(G̃1(s), . . . , G̃k(s)) with G̃j(s) = C̃j(s Ẽj − Ãj)
−1B̃j , j = 1, . . . , k.

The reduced-order subsystems (3.6) can be computed by projection

Ẽj = WT
j EjTj , Ãj = WT

j AjTj , B̃j = WT
j Bj , C̃j = CjTj , (3.10)

where the projection matrices Wj , Tj ∈ Rℓj ,ℓj are determined for every subsystem
either independently or using interconnection structure as it was proposed in [42, 60].
Note that in this case the matrix coefficients of the reduced-order system (2.9) have
the form (3.1) with the block diagonal projection matrices

W = diag(W1, . . . , Wk), T = diag(T1, . . . , Tk). (3.11)

The following theorem gives a bound on the H∞-norm of the error G̃ − G. For
the time being, we assume that all the subsystems are asymptotically stable.

Theorem 3.2. Consider the coupled system (2.1)–(2.4) with asymptotically stable

subsystems and consider the reduced-order coupled system (3.6)–(3.8). Let

Πl = diag(ξ1Ip1
, . . . , ξkIpk

), Πr = diag(ξ1Im1
, . . . , ξkImk

),

where ξj = 1 if G̃j 6= Gj and ξj = 0, otherwise. Let

g1 = ‖ΠrK(I − GK)−1‖H∞
, g2 = ‖R(I − GK)−1Πl‖H∞

,

g3 = ‖(I − KG)−1KΠl‖H∞
, g4 = ‖Πr(I − KG)−1H‖H∞

.

If

2 max{g1, g3} max
1≤j≤k

‖G̃j − Gj‖H∞
< 1, (3.12)

then the absolute error G̃ − G is bounded as

‖ G̃ − G ‖H∞
≤ min{c1, c2} max

1≤j≤k
‖G̃j − Gj‖H∞

, (3.13)

where c1 = 2g2(‖H‖2 + g1‖GH‖H∞
) and c2 = 2g4(‖R‖2 + g3‖R G‖H∞

).
Proof. The result immediately follows from [53, Theorem 3.1].
Note that Theorem 3.2 provides not only the approximation error bounds but

also gives sufficient criteria for the stability of the reduced-order system. Indeed,
if G is stable, ‖GH‖H∞

or ‖R G‖H∞
is bounded and condition (3.12) holds, then

Theorem 3.2 implies that G̃ is also stable. Further aspects of stability of coupled
systems can be found in [37, 53].
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3.2.1. Subsystem model reduction by balanced truncation. Now we ap-
ply the H∞-norm estimates provided by balanced truncation to the coupled system
(2.1)–(2.4), where all subsystems are asymptotically stable. As a consequence of
Theorem 3.2 we obtain the following error bounds for the closed-loop system (2.9)
computed by the balanced truncation model reduction method applied to the subsys-
tems.

Corollary 3.3. Consider the coupled system (2.1)–(2.4) with asymptotically

stable subsystems and consider the reduced-order coupled system (3.6)–(3.8), where

subsystems (3.6) are computed by Algorithm 3.1 applied to (2.1). Let

γ = 2 max
1≤j≤k

(σ
(j)
ℓj+1 + . . . + σ(j)

nj
),

where σ
(j)
ℓj+1, . . . , σ

(j)
nj denote the truncated Hankel singular values of the jth subsystem

(2.1). Further, let g1, g3, c1 and c2 be as in Theorem 3.2. If 2γ max{g1, g3} < 1, then

the H∞-norm of the error G̃ − G can be bounded as

‖ G̃ − G ‖H∞
≤ γ min{c1, c2}. (3.14)

Note that the computation of the a priori error bounds (3.13) and (3.14) for large-
scale systems is expensive, since we need to calculate the H∞-norm of the transfer
functions of the state space dimension n1 + . . . + nk. Similar to Theorem 3.2 and
Corollary 3.3, we can also obtain the a posteriori error bounds like (3.13) and (3.14),

with G replaced by G̃.
An essential assumption in Theorem 3.2 and Corollary 3.3 was the asymptotic

stability of the subsystems (2.1). However, the asymptotic stability of the involved
subsystems is neither necessary nor sufficient for the asymptotic stability of the closed-
loop system (2.7). Nevertheless, unstable subsystems can be artificially represented
as a coupling of stable subsystems, and we are then in the situation of Theorem 3.2
and Corollary 3.3. A possibility for the representation of an unstable subsystem (2.1)
as a coupling of stable ones is based on the coprime factorization.

Consider the transfer function Gj(s) = Cj(sEj −Aj)
−1Bj which is not necessary

in H∞. Such a transfer function admits a representation Gj(s) = N j(s)Dj(s)
−1,

where Dj ∈ H∞ is square and N j ∈ H∞ has the same matrix dimensions as Gj . If,
additionally, there exist Xj , Y j ∈ H∞ such that Xj(s)Dj(s)+Y j(s)N j(s) = I, then
Dj and N j are called right coprime factors of Gj . For system (2.1) with no unstable
and coevally uncontrollable modes, the coprime factors can be determined via a state
feedback matrix Fj ∈ Rmj ,nj with the property that the pencil sEj − Aj − BjFj is
stable and of index at most one [15, 61]. In this case, N j and Dj can be chosen as

N j(s) = Cj(sEj − Aj − BjFj)
−1Bj ,

Dj(s) = Fj(sEj − Aj − BjFj)
−1Bj + I.

Then the extended transfer function

Gext,j(s) =

[
N j(s)

Dj(s) − I

]
(3.15)

is stable and has the generalized state space representation

Ejẋj(t) = (Aj + BjFj)x(t) + Bjvj(t),[
y1j(t)
y2j(t)

]
=

[
Cj

Fj

]
xj(t).

(3.16)
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Coupling this system with itself by the relations

vj(t) = −y2j(t) + uj(t) = [ 0, −I ]

[
y1j(t)
y2j(t)

]
+ uj(t),

yj(t) = y1j(t) = [ I, 0 ]

[
y1j(t)
y2j(t)

]
,

(3.17)

we obtain the coupled system which has the same transfer function Gj(s) as (2.1).
Such a coupled system is shown in Figure 3.1. Note that the state space dimension
of (3.16) coincides with that of (2.1).

+

+

yj

uj vj

[
N j

Dj − I

] y1j

y2j

Gj

Fig. 3.1. Coprime factorization as a coupled system.

In the following, we discuss the benefit of the coprime factorization to the structu-
re-preserving model reduction of the coupled system (2.1), (2.3), (2.4) with possibly
unstable subsystems. Without loss of generality, we may assume that the first q

subsystems are unstable and the corresponding right coprime factorizations are given
by Gj(s) = N j(s)Dj(s)

−1 for j = 1, . . . , q. The unstable subsystems can now be
replaced by the asymptotically stable models (3.16) with the internal inputs and
outputs satisfying (3.17). In this case, the coupling relations (2.3) and (2.4) take the
form

vj(t) = −y2j(t) + uj(t) 1 ≤ j ≤ q,

= Kj1y11(t) + . . . + Kjqy1q(t) − y2j(t)

+ Kj,q+1yq+1(t) + . . . + Kjkyk(t) + Hju(t),

uj(t) = Kj1y11(t) + . . . + Kjqy1q(t) q < j ≤ k,

+ Kj,q+1yq+1(t) + . . . + Kjkyk(t) + Hju(t),

y(t) = R1y11(t) + . . . + Rqy1q(t) + Rq+1yq+1(t) + . . .+ Rkyk(t).

The closed-loop transfer function of the new extended coupled system is given by
Gext(s) = Rext(I − Gext(s)Kext)

−1Gext(s)H, where

Kext = K diag
(
[Ip1

, 0], . . . , [Ipq
, 0], I

)
−diag

(
[0, Im1

], . . . , [0, Imq
], 0

)
,

Rext =
[
R1 0 · · · Rq 0 Rq+1 Rq+2 · · · Rk

]

and

Gext(s) = diag
(
Gext,1(s), . . . , Gext,q(s), Gq+1(s), . . . , Gk(s)

)

with Gext,j(s) as in (3.15). It has been shown in [53] that Gext(s) coincides with
the transfer function G(s) of the closed-loop system (2.7). This allows us to apply
Theorem 3.2 and Corollary 3.3 to the extended coupled system with all subsystems
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being asymptotically stable in order to obtain the error bounds for the reduced-order
system, see [53] for details.

Another structure-preserving balancing-based model reduction method for cou-
pled systems has been considered in [60]. It has been proposed there to project the
subsystems (2.1) with Ej = I onto the dominant eigenspaces of the matrices PjjQjj ,
where Pjj and Qjj are the diagonal blocks of the controllability and observability
Gramians P = [Pjl]

k
j,l=1 and Q = [Qjl]

k
j,l=1 of the closed-loop system (2.7). Clearly,

in the generalized state space case we should consider the matrices PjjE
T
j QjjEj .

A drawback of this approach is that the stability is not necessarily preserved in the
reduced-order subsystems (3.6). Furthermore, we cannot make use of the error bound

(3.13) since there are no global error estimates on G̃j − Gj .

3.2.2. Krylov subspace structure-preserving techniques. In this subsec-
tion we review structure-preserving model reduction methods based on Krylov sub-
spaces. These methods have been previously proposed for second-order systems from
structural dynamics, MEMS simulation and electronic circuit design [7, 23, 57] and
then extended to coupled systems in [60]. A general framework for Krylov-based
structure-preserving model reduction methods for partitioned systems can be found
in [41, 42].

As it was mentioned above, for general projection matrices W and T , the reduced-
order system (2.9), (3.1) does not preserve the interconnection structure. This can
be avoided if we take the block diagonal projection matrices W and T as in (3.11).
However, in order to guarantee the moment matching conditions (3.5), the diagonal
blocks in W and T have to satisfy certain subspace conditions given in the following
theorem.

Theorem 3.4. Let Ŵ = [ ŴT
1 , . . . , ŴT

k ]T and T̂ = [ T̂T
1 , . . . , T̂T

k ]T with Ŵj,

T̂j ∈ R
nj ,ℓ. Assume that the reduced-order systems (3.6) are computed by projection

(3.10), where Wj, Tj ∈ Rnj ,ℓj have full column rank and satisfy

Im Ŵj ⊆ Im Wj , Im T̂j ⊆ Im Tj .

Let Mj and M̃j be the moments of the closed-loop systems (2.7), (2.8) and (2.9),
(3.9), respectively.

1. If Kqr
(A−1

0 E ,A−1
0 B) ⊆ Im T̂ and Wi = Ti for i = 1, . . . , k, then Mj = M̃j

for j = 0, . . . , qr − 1.
2. If Kqr

(A−1
0 E ,A−1

0 B)⊆ Im T̂ and Kql
(A−T

0 ET,A−T
0 CT )⊆Im Ŵ, then Mj = M̃j

for j = 0, . . . , qr + ql − 1.

Proof. See [42, Theorem 4.1] and [60, Lemma 7].

A natural way to determine the projection matrices Tj and Wj is to compute

the QR decomposition or the singular value decomposition of the matrices T̂j and

Ŵj such that the columns of T̂ = [ T̂T
1 , . . . , T̂T

k ]T and Ŵ = [ ŴT
1 , . . . , ŴT

k ]T span
the Krylov subspaces Kqr

(A−1
0 E ,A−1

0 B) and Kql
(A−T

0 ET,A−T
0 CT ), respectively. The

matrices T̂j and Ŵj , in turn, can be computed simultaneously by applying Lanczos-
or Arnoldi-type method to the closed-loop system (2.7). The following theorem shows
that T̂j and Ŵj can also be generated by Krylov subspace methods applied to the
subsystems (2.1) separately.
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Theorem 3.5. Consider the closed-loop system (2.7), (2.8). Let s0 ∈ C be

neither an eigenvalue of the pencil λE − A nor an eigenvalue of the pencil λ E − A.

Then

Kqr
( A−1

0 E , A−1
0 B ) ⊆ Kqr

((s0E − A)−1E, (s0E − A)−1B ),

Kql
(A−T

0 ET,A−T
0 CT ) ⊆ Kql

((s0E − A)−TET, (s0E − A)−TCT ).

Proof. These inclusions can be proved similarly to the case E = I, see [60,
Lemma 6].

3.3. Comparison of two approaches for model reduction of coupled

systems. The computation of the reduced-order model (2.9) by applying a model
reduction method to the closed-loop system (2.7) has a couple of disadvantages. First
of all note that the behavior of coupled systems is determined by different intercon-
nected subsystems that are usually governed by entirely different physical laws and
they often act in different spaces and time scales. There is no general model reduc-
tion technique, which can be considered as optimal, since the reliability, computation
time and approximation quality of reduced-order models strongly depend on system
properties. In model reduction of the closed-loop system (2.7), we ignore the special
properties of the subsystems and destroy the coupling structure. Also in structure-
preserving model reduction, where the projection matrices Wj and Tj are determined
from the closed-loop system (2.7), we do not make use of subsystem s properties. If
we slightly change the coupled system, for example, by adding new subsystems, by
replacing some of them by new ones or by changing the coupling configuration, we
have to re-compute the reduced-order model again.

Subsystem model reduction, where the projection matrices Wj and Tj are com-
puted separately from the subsystems (2.1), is free of these difficulties. In this ap-
proach, every subsystem can be reduced by a most suitable model reduction method
that takes into consideration the structure and properties of the subsystem. If error
estimates for subsystems are available, then using bound (3.13) we can evaluate how
well the subsystems should be approximated to attain a prescribed accuracy in the
reduced-order closed-loop system (2.9). Finally, subsystem model reduction is attrac-
tive for parallelization, since all k subsystems may be reduced simultaneously using k

processors.
On the other hand, separate reduction of the subsystems usually yields the ap-

proximate model (2.9) of larger state space dimension than the system computed by
projection of the closed-loop system (2.7). Furthermore, subsystem model reduction is
often restricted to coupled systems whose subsystems have a small number of internal
inputs and outputs.

4. Numerical examples. In this section we present two numerical examples to
demonstrate the properties of the discussed model reduction approaches for coupled
systems. The computations were performed using MATLAB 7.

Example 4.1. Consider a heated beam whose temperature is steered by a PI-con-
troller as shown in Figure 4.1. The transfer function of the PI-controller is given by
G1(s) = kP + kIs

−1 and it is realized by the descriptor system

[
1 0
0 0

]
ẋ1(t) =

[
0 0
0 1

]
x1(t) +

[
kI

−kP

]
u1(t),

y1(t) =
[

1 1
]
x1(t).

(4.1)
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−

+ yy1u u1

PI

isolation ( ∂θ
∂z

(t, 1)=0)

beam

measurement (y2(t)=θ(t, 1))flux control ( ∂θ
∂z

(t, 0)=u2(t))

Fig. 4.1. A heated beam with a PI-controller.

The heat transfer along the 1D beam of length 1 is described by

∂θ

∂t
(t, z) = κ

∂2θ

∂z2
(t, z),

where t > 0 is the time, z ∈ [0, 1] is the position, θ(t, z) is the temperature distribution
and κ is the heat conductivity of the material. On the left-hand side of the beam, the
temperature flux is controlled by an input u2(t), whereas the beam is assumed to be
perfectly isolated on the right-hand side. From this, we get the boundary conditions

∂θ

∂z
(t, 0) = u2(t),

∂θ

∂z
(t, 1) = 0.

The temperature is measured at z = 1 and it forms the output of the system, i.e.,
y2(t) = θ(t, 1) and y(t) = y2(t). By a spatial discretization of the heat equation with
n2 + 1 equidistant grid points, we obtain the system

E2ẋ2(t) = A2x2(t) + B2u2(t),
y2(t) = C2x2(t),

(4.2)

where E2 = In2
and

A2 = κ(n2 + 1)2




−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1




, B2 =




κ(n2 + 1)
0
...
0
0




, C2 =




0
0
...
0
1




T

.

The interconnection of the PI-controller and the beam is expressed by the relations

u1(t) = u(t) − y2(t), u2(t) = y1(t).

Note that both the subsystems (4.1) and (4.2) are not asymptotically stable, since
their transfer functions G1(s) = C1(sE1 − A1)

−1B1 and G2(s) = C2(sE2 − A2)
−1B2

have a pole at the origin. The stabilizing state feedback matrices can be chosen as

F1 = [ 0, −1 ] , F2 = [−n2 − 1, 0, · · · , 0 ] .

In this case, we obtain an extended coupled system with the stable subsystems
Gext,1(s) and Gext,2(s) as in (3.15) and the interconnection matrices

Kext =

[
0 −1 −1 0
1 0 0 −1

]
, H =

[
1
0

]
, Rext = [ 0, 0, 1, 0 ].
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Fig. 4.2. Example 4.1: (a) the absolute error ‖ eGext,2(iω)−Gext,2(iω)‖2 and the error bound γ;

(b) the absolute errors ‖eG(iω) − G(iω)‖2 and the error bounds γext and γcl.

In our experiments, we took the numerical values kP = kI = κ = 1, n2 = 1000. The
second subsystem Gext,2 has been approximated by a reduced model G̃ext,2 of order
ℓ2 = 21 computed by balanced truncation. Figure 4.2 (a) shows the absolute error

‖G̃ext,2(iω) − Gext,2(iω)‖2 for the frequency range ω ∈ [ 10−1, 104 ] and the error
bound γ that is twice the sum of the truncated Hankel singular values of Gext,2. We
chose ℓ2 such that γ < 10−6. The resulting approximate closed-loop system with
the transfer function G̃(s) has order ℓ = 23. Figure 4.2 (b) shows the absolute error

‖G̃(iω)−G(iω)‖2 and the a posteriori error bound γext = γ min{c1, c2}, where c1 and

c2 are as in Theorem 3.2 with G, K and R replaced by G̃ext = diag(Gext,1, G̃ext,2),
Kext and Rext, respectively. Comparing the approximation errors, we see that due the
coupling the error in the closed-loop system is larger than the error in the subsystem.

Furthermore, we applied the balanced truncation method to the closed-loop sys-
tem and selected the order of the reduced model as a minimal integer ℓ such that
the error bound γcl = 2(σℓ+1 + . . . + σn) is smaller than γext. We obtained the
reduced model of order ℓ = 5 with the approximation error comparable with the er-
ror in subsystem model reduction, see Figure 4.2 (b). Note, however, if we change
the parameters kP , kI and κ, then the closed-loop system is also changed, and we
need to re-compute the reduced model. On the other hand, the reduced closed-loop
system computed by subsystem model reduction can easily be modified by changing
the first subsystem and re-scaling the matrix coefficients in the reduced-order second
subsystem.

Example 4.2. Consider the delay-differential system

ẋ(t) = −x(t − 1) + u(t),
y(t) = x(t).

(4.3)

This system can be represented as an interconnection of

ẋ1(t) = 0 · x1(t) +
[
1, −1

]
u1(t),

y1(t) = x1(t)
(4.4)
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with the system Ĝ2 representing the pure unit delay ŷ2(t) = u2(t − 1). The coupling
relations are

u1(t) =

[
0
1

]
ŷ2(t) +

[
1
0

]
u(t),

u2(t) = y1(t), y(t) = y1(t).

The second subsystem has the transfer function Ĝ2(s) = e−s and, due to its irra-
tionality, its system realizations have an infinite dimensional state space [17, 52]. The
delay can be achieved by the following partial differential equation with boundary
control and observation

∂f

∂t
(t, z) = −

∂f

∂z
(t, z),

f(t, 0) = u2(t),
f(t, 1) = ŷ2(t).

(4.5)

A spatial discretization of this equation with n2 equidistant grid points leads to the
subsystem as in (4.2) with E2 = In2

and

A2 = n2




−1 1
−1 1

. . .
. . .

−1 1
−1




, B2 =




0
0
...
0
n2




, C2 =




1
0
...
0
0




T

.

The transfer function of this subsystem is given by

G2(s) =
n2

(n2 + s)n2
.

The closed-loop system is a finite dimensional approximant of the originally infinite
dimensional delay-differential system (4.3). The estimation of the discretization error
in the H∞-norm is treated in [52].

The first subsystem (4.4) is not asymptotically stable since G1(s) has a pole at
the origin, whereas the second subsystem satisfies G2 ∈ H∞. A stabilizing state
feedback matrix can be taken as F1 = [ 0, 2 ]

T
. The interconnection matrices are

Kext =




0 −1 0 0
0 0 −1 1
1 0 0 0


 , H =




1
0
0


 , Rext = [ 1, 0, 0, 0 ].

For the second subsystem, we chose n2 = 1000. This subsystem has been approxi-
mated by a reduced model of order ℓ2 = 41 computed by the balanced truncation
method. The absolute values of the frequency responses G̃2(iω) and G2(iω) of the
original and reduced-order subsystems are given in Figure 4.3 (a), whereas the absolute

error ‖G̃2(iω)−G2(iω)‖2 and the error bound γ = 2(σ
(2)
ℓ2+1 + . . .+σ

(2)
n2 ) are presented

in Figure 4.3 (b). In Figure 4.4 (a) we plotted the absolute values of the frequency

responses G(iω) and G̃(iω) of the original and the reduced-order closed-loop systems.

Figure 4.4 (b) shows the error ‖G̃(iω) − G(iω)‖2 and the a posteriori error bound
γext = γ min{c1, c2}, where c1 and c2 are as in Theorem 3.2 with G, K and R

replaced by G̃ext = diag(Gext,1, G̃2), Kext and Rext, respectively.
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Fig. 4.3. Example 4.2: (a) the absolute values of frequency responses G2(iω) and eG2(iω);

(b) the absolute error ‖ eG2(iω) − G2(iω)‖2 and the error bound γ.
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Fig. 4.4. Example 4.2: (a) the absolute values of frequency responses G(iω) and eG(iω);

(b) the absolute error ‖eG(iω) − G(iω)‖2 and the error bound γext.
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