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Abstract

We present a domain decomposition approach for the computation of the electro-
magnetic field within periodic structures. We use a Schwarz method with transpar-
ent boundary conditions at the interfaces of the domains. Transparent boundary
conditions are approximated by the perfectly matched layer method (PML). To
cope with Wood anomalies appearing in periodic structures an adaptive strategy to
determine optimal PML parameters is developed.

We focus on the application to typical EUV lithography line masks. Light prop-
agation within the multi-layer stack of the EUV mask is treated analytically. This
results in a drastic reduction of the computational costs and allows for the simula-
tion of next generation lithography masks on a standard personal computer.
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1 Introduction

The fabrication of semiconductor chips is essentially based on an optical pro-
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Fig. 1. Layout of an EUV lithography line mask. The structure is periodically re-
peated in x1 direction and invariant in x3 direction. The illuminating light is a plane
wave with an arbitrary wave vector ~k = (k1, k2, k3).

the chip by optical projection. State of the art photolithography tools are op-
erated with light of a vacuum wavelength λ ∼ 193nm, [5]. Currently under
development are tools that use extreme ultraviolet light (EUV) with a vacuum
wavelength λ ∼ 13nm. These future systems will contain optical components
including multi-layer structures which serve as mirrors. A typical section of an
EUV lithography line mask is depicted in Figure 1. The line mask is invari-
ant in x3 direction and periodic with period a in x1 direction. The multi-layer
stack may consist of more than 100 layers. The thickness of each layer is below
a wavelength. The incident wave is twofold oblique – oblique with respect to
the mask plane and oblique with respect to the multi-layer structure (conical
incident). The polarization of the incident field is arbitrary.

In Section 2 we introduce the mathematical setting of the arising scatter-
ing problem and derive the radiating boundary condition in terms of Fourier
modes. Further, we show that the exterior Dirichlet as well as Neumann bound-
ary value problem is ill-posed in the presence of so called Wood anomalies, [18].
To deal with the large computational domains we propose a domain decompo-
sition method (Section 5). The overall structure is split into sub-domains. The
multi-layer sub-domain is treated semi-analytically (c.f. Section 2.2) whereas
the other subdomains are discretized by the finite element method utilizing
the PML method to approximate transparent boundary conditions. The PML
method goes back to Bérenger, [2]. Convergence of the method was proven
in [15,16] and [14] for non-periodic problems. As is shown in Section 3 the
PML method fails for periodic domains in the presence of Wood anomalies.
As a remedy we propose in Section 3.1 a new automatic adaption of the layer
size and the spatial discretization within the PML which leads to a quasi
infinite layer thickness in the presence of Wood anomalies. In Section 4 we in-
troduce a variational formulation to couple the PML to the interior problem.
In contrast to Elschner et al. [11,10] the electromagnetic field E = (E1, E2, E3)

2



is discretized with higher order Whitney elements for the (E1, E2) component
and Lagrange elements of the same order in the E3 component. This allows
for the accurate evaluation of Fourier coefficients needed for the coupling to a
multi-layer stack as well for the computation of the far field coefficients.

The domain decomposition approach for the wave equation was first studied
for the scalar Helmholtz equation. Després and Shaidurov proposed to balance
the energy fluxes across domain interfaces for Helmholtz problems, [9,26]. This
idea was further expanded, [1,8,7,13,6,12]. Toselli used the PML method at
the interfaces of the sub-domains, [27]. This idea is closely related to the ideas
of multiple scattering, c.f. [17] with further references. In each sub-domain a
simplified scattering problem is solved and the scattered field is added to the
incoming field for the neighboring domains. We have recently presented an
additive Schwarz algorithm for Helmholtz scattering problems with transpar-
ent boundary conditions at the domain interfaces [20]. In this publication we
used the DtN operator (Dirichlet to Neumann map). Since the definition of
the DtN operator relies on the solvability of the exterior Dirichlet problem a
DtN operator may not exist for periodic structures. Hence we avoid the usage
of the DtN operator for the formulation of the domain decomposition method
in this paper.

The generalization to three dimensional geometries is straightforward.

2 Scattering off periodic line masks

The scattering off a periodic line mask is described by a Maxwell scattering
problem, with Bloch-periodic boundary condition in x1 direction and transpar-
ent boundary conditions in x2 direction. The dependency on the x3 component
is eliminated.

We consider electromagnetic scattering problems governed by the time-harmonic
Maxwell’s equations

curlµ−1 (~x) curlE (~x)− ω2ε (~x)E (~x)= 0, (1a)

div ε (~x)E (~x)= 0, (1b)

which may be derived from the Maxwell’s equations when assuming a time
dependence of the electric field as E(~x, t) = E (~x) exp(−iωt) with angular
frequency ω. The dielectric tensor ε and the permeability tensor µ are L∞

functions of the spatial variable ~x = (x1, x2, x3). In addition we assume that
the tensors ε and µ do not depend on x3, that they are periodic functions in
x1 with period a, i.e. ε(~x + (a, 0, 0)) = ε(~x), µ(~x + (a, 0, 0)) = µ(~x), and that
they are constant for x2 > x2,+ and x2 < x2,− with x2,+ > x2,−. For simplicity
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assume that the dielectric and the permeability tensors are isotropic so they
may be treated as scalar valued functions. Recall that any solution to (1a)
with ω 6= 0 also meets the divergence condition (1b).
A scattering problem may be defined as follows: given an incoming electric
field Einc satisfying the time-harmonic Maxwell’s equations (1a) for x2 > x2,+

and x2 < x2,−, compute the total electric field E, which satisfies (1a) in R3,
such that the scattered field Esc = E−Einc defined for x2 > x2,+ and x2 < x2,−

meets the radiation condition given in Section 2.1. From a physical point of
view, the scattered field has to be outward radiating, so it only transports
energy towards infinity.
It is possible to restrict the problem onto a two dimensional strip [0, a] × R

provided that the incoming field is Bloch periodic in x1, [4] and depends
harmonically on x3, i.e.

Einc (x1 + a, x2, x3) = Ẽinc (x1, x2) eik1aeik3x3 (2)

where Ẽinc is a periodic function in x1 with period a. The important case of
an incoming plane wave meets these restrictions. The total field E as well
as the scattered field are then themselves Bloch periodic in x1 and depend
harmonically on x3. This can be seen using a symmetry argumentation where
the unique solvability of the scattering problem is assumed.

Below E, Einc and Esc denote the restriction of the respective field onto the
strip [0, a] × R. Let us introduce the domains Ω = [0, a] × [x2,−, x2,+], Ω+ =
[0, a]× [x2,+,∞] and accordingly Ω−. With the definitions

curl 3E=(∂x2
E3 − ik3E2, ik3E1 − ∂x1

E3, ∂x1
E2 − ∂x2

E1)
T ,

div 3εE= ∂x1
εE1 + ∂x2

εE2 + ik3εE3

the scattering problem splits into an interior domain problem

curl 3µ
−1 curl 3E(x1, x2)− ω2εE(x1, x2) =0 (x1, x2) ∈ Ω,

E(0, x2)− E(a, x2)e
ik1a =0,

(3)

an upper exterior domain problem

curl 3µ
−1
+ curl 3Esc,+(x1, x2)− ω2ε+Esc,+(x1, x2) =0 (x1, x2) ∈ Ω+,

Esc,+(0, x2)− Esc,+(a, x2)e
ik1a =0

(4)

and a lower exterior problem on Ω− of similar type.

Subproblems (3) and (4) are coupled by the following matching conditions on
the boundary x2 = x2,+
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(E− (Esc,+ + Einc,+))× ~n+ = 0, (5a)
(

µ−1 curl 3E−
(

µ−1
+ curl 3Esc,+ + µ−1

+ curl 3Einc,+

))

× ~n+ = 0, (5b)

where ~n+ = (0,−1, 0)T denotes the unit normal vector. An analogous con-
dition holds on the boundary x2 = x2,−, coupling the interior and the lower
exterior problem.

2.1 Radiation condition for homogeneous exterior domain problem

The exterior domain problems lack a radiation condition. As both upper and
lower exterior problem can be treated similarly, we consider the upper exterior
domain problem only and drop the ’+’. Without loss of generality and to simply
matters, we assume that x2,+ = 0.

Due to the periodicity of Esc exp(−ik1x1) the field has an expansion into
Fourier modes

Esc(x1, x2) = e+ik1x1

∑

n∈Z

~en(x2)e
ix1n2π/a, (6)

with the Fourier coefficients

~en(x2) =
1

a

∫ a

0
e−ik1ξEsc(ξ, x2)e

−iξ(n2π/a) dξ .

The field En(x1, x2, x3) = ~en(x2) exp(i(n2π/a + k1)x1) exp(ik3x3) is a solution
of Maxwell’s equations (1a) for x2 > 0. Hence inserting En in (1a) yields

En (x1, x2, x3) =~en,+ei(n2π/a+k1)x1eik2,nx2eik3x3 +

~en,−ei(n2π/a+k1)x1e−ik2,nx2eik3x3 ,

with k2,n =
√

k2
0 − (n2π/a + k1)2 − k2

3, where the branch cut of the square
root is along the negative real axis and k0 = ω

√
µε. From this representation

it is easily seen that the field can be decomposed into an incoming and an
outgoing part.

We have to distinguish three cases:

(1) Re k2,n > 0, Im k2,n = 0 (propagating mode) Both parts are propagat-
ing plane waves with wave vectors (n2π/a + k1, k2,n, k3) and (n2π/a +
k1,−k2,n, k3) respectively. The second part transports energy in the −x2

direction. We therefore require ~en,− = 0. This corresponds to the well
known Sommerfeld radiation condition.

(2) Re k2,n = 0, Im k2,n > 0 (evanescent mode) The first part is evanescent in
x2 direction while the second part increases exponentially. Therefore we
again require ~en,− = 0.
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(3) k2,n = 0 (anomalous mode) In this case both parts are equal and constant
in x2 direction. Energy is only transported in x1 and x3 directions. For
the sake of a consistent notation we set ~en,− = 0.

Hence the correct radiation boundary condition is ~en,− = 0 for all n ∈ Z, such
that the Fourier coefficients of the scattered field are given by ~en,sc = ~en,+.
The anomalous case is rare. For example for k1 = 0 and k3 = 0 it only occurs
if a = 2π/(k0n), hence the wavelength must be a multiple of the period a.

2.1.1 Ill-posed exterior Dirichlet/Neumann boundary value problems

In our previous paper [20] the DtN operator was used to state the coupling
between the different domains. However the DtN operator must not exist in
the periodic setting – the exterior Dirichlet problem is ill-posed in the presence
of anomalous modes.

This may be seen by rewriting Maxwell’s equations separated in Fourier modes.
With ~kn = (k1 +n2π/a, k2,n, k3) the vectors ~en,sc satisfy the algebraic relations

−~kn ×
(

~kn × ~en,sc

)

− k2
0~en,sc =0, (7a)

~en,sc · ~kn =0. (7b)

The first relation stems from Equation (1a) and the second relation from

Equation (1b). If j ∈ Z corresponds to an anomalous mode, that is ~kj = (k1 +

j2π/a, 0, k3), then ~ej,sc = (0, 1, 0) satisfies (7). Hence Esc = ~en,sc exp(i~kj ·~x) is a
solution of the exterior domain problem with zero Dirichlet tangential bound-
ary values. Therefore the Dirichlet boundary value problem is not uniquely
solvable. Furthermore due to the divergence condition (7b) the vector ~ej,sc

must be perpendicular to ~kj. Hence for boundary values with (d1, 0, d3) ·~kj 6= 0
the problem is not solvable at all.
By an analogous argument one shows that the Neumann boundary value prob-
lem is also ill-posed in the presence of anomalous modes.

2.2 Scattering of an isotropic multi-layer stack – the Transfer Matrix method

The Transfer Matrix method which according to [19] was developed by Schus-
ter [25], will be reviewed here shortly. For more details, the reader is referred
to [19,3].

Suppose we are in the situation of Figure 1. Let us consider only the material
stack with m finite layers, positioned at x2,j , j = 0, . . . , m, with x2,j < x2,j+1.

6



For j = 1, . . . , m the layer stack is given by the layer thicknesses x2,j − x2,j−1,
and the material coefficients εj and µj. Additionally for the semi-infinite half-
spaces we have ε0, µ0 and εm+1, µm+1. Since the Transfer Matrix algorithm
is applied to each Fourier mode k1,n separately we drop the subindex n in

this section. In each layer we define the local wave vectors ~kj = (k1, k2,j, k3)

and
←−
k j = (k1,−k2,j, k3) with k2,j =

√

ω2εjµj − k2
1 − k2

3 such that Re k2,j ≥ 0

and Im k2,j ≥ 0. For a given excitation 2 from above of the form Einc =

Am+1,inc exp(i~km+1~x)+Bm+1,inc exp(i
←−
k m+1~x) we want to calculate the reflected

field Esc = Am+1,sc exp(i~km+1~x). From Snell’s law we obtain that the field

in each layer is given by Ej = Aj exp(i~kj~x) + Bj exp(i
←−
k j~x). In the lower

semi-infinite half space a purely outgoing field is assumed, i.e A0 = 0. In
the layers we have 6m unknowns – each A or B has 3 components. In the
lower semi-infinite domain the only unknowns are the three components of B0

of the purely outgoing field. In the upper semi-infinite domain there are six
unknowns for the excitation and three for the reflected field.
These unknown are determined by the following linear conditions arising from
Maxwell’s equations: there are 1 + 2 + 2m + 1 equations from the divergence
condition. At the m + 1 boundaries of the layers there are 2(m + 1) matching
conditions for the tangential components of the Dirichlet data and the same
number of conditions from matching the Neumann data.

Ej−1 × ~n = Ej × ~n

µj−1 curlEj−1 × ~n = µj curlEj × ~n

}

at ~x = ~xj−1 for j = 1, . . . , n + 1.

Here E0 := Einc+Esc. The missing 4 conditions are the tangential components
of the Dirichlet and Neumann data of the given incoming field.
This yields a linear system of equations. To avoid large condition numbers due
to the complex material tensors, in each layer ansatz functions with amplitude
equal to 1 at the layer midpoint are used.

3 Perfectly matched layer method

In the previous section we discussed the homogenous exterior domain problem
and derived transparent boundary conditions for each Fourier mode. Trans-
forming back from Fourier space, this boundary condition would be non-local
and somehow the anomalous case had to be treated separately. The perfectly
matched layer method is an approximate transparent boundary condition, in-
troducing only small reflections that are well under control. The reflections
do not occur at the interface of the computational domain and the PML, but

2 Here it is not assumed that the exciting field transports energy only in one direc-
tion.
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stem from the truncation of the PML. Another major advantage of the PML
method is, that it fits in the finite-element framework, described shortly in
Section 4.1 and thus does not introduce “full” blocks in the discretization.

The PML method is based on a complex continuation of the scattered field.
For γ = (1 + iσ), σ ≥ 0, we define the complex continued field

Eγ =
∑

n∈Z

~esc,nei(n2πa+k1)x1eikn,2γx2eik3x3 .] (8)

With the definition

curl 3,γEγ = (
1

γ
∂x2

Eγ,3 − ik3Eγ,2, ik3Eγ,1 − ∂x1
Eγ,3, ∂x1

Eγ,2 −
1

γ
∂x2

Eγ,1)

the field Eγ satisfies Maxwell’s equations (4) with curl 3 replaced by curl 3,γ .
In the absence of anomalous modes Eγ is evanescent for x2 →∞,

|Eγ | ≤ e−κx2C,

with κ = minn∈Z{Im kn,2, σRe kn,2}. The idea is to restrict the complex con-
tinued exterior domain problem to a truncated domain Ωρ = [0, a] × [0, ρ]
and to impose a zero Dirichlet boundary condition at x2 = ρ. In case κ is
small or even 0, i.e. if we are “close” to an anomalous mode a special adaptive
PML is used, where the thickness ρ is increased like 1/κ and the discretization
points are distributed with an exponentially increasing mesh width guarantee-
ing an effective discretization, c.f. Section 3.1. Thus the unbounded exterior
problem (4) is replaced by the truncated exterior domain problem

curl 3µ
−1
+ curl 3Eγ,ρ(x1, x2)− ω2ε+Eγ,ρ(x1, x2) =0 (x1, x2) ∈ Ωρ,

Eγ,ρ(0, x2)−Eγ,ρ(a, x2)e
ik1a =0,

Eγ,ρ|x2=ρ × ~n =0.

(9)

This modified truncated exterior problem is coupled to the interior problem
using the modified matching conditions, c.f. (5)

(E− (Eγ,ρ + Einc))× ~n= 0, (10a)

(ε curl 3E− (ε+ curl 3,γEγ,ρ + ε+ curl 3Einc))× ~n= 0. (10b)

Instead of homogenous Dirichlet boundary conditions at x2 = ρ in (9) one can
equally well require that the Neumann data is homogenous, as in the PML
the solution is oscillating and exponentially damped.

3.1 Automatic Adaption of PML
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Algorithm 1 Adaptive PML method

Require: ε, σ, hint, κmin

Compute Np.w and ξmax depending on hint and finite element order
while (not converged) do

ξ0 = 0.0; ξ1 = hint; N = 1;
while (− ln(ε)/(ξNσ) < κmin) do

ξN+1 = ξN + max{hint, 2πσξN/(− ln(ε))/Np.w}.
if (ξN+1 > 1/ε) then

break

else

N = N + 1
end if

end while

Compute solution u with PML discretization {ξ0, ξ1, . . . , ξN}
if ‖u(·, ξN)‖ ≤ ε‖u(·)‖ then

converged
else if ξN > ξmax then

break
else

κmin = κmin/2
end if

end while

As discussed in Section 2.1 and Section 3 the PML method intrinsically fails
in the presence of anomalous modes. For an anomalous mode the field behaves
like exp(i(k1x1 + k3x3)) and hence a complex continuation in x2 direction has
no effect on the decay property of the field. To obtain an effective transparent
boundary condition we exploit the very specific behavior in x2 direction of
the field and propose a mixed a priori and a posteriori refinement strategy
of the perfectly matched layer method including the automatic adaption of
the layer thickness ρ. The algorithm we propose is not restricted to the 2D
periodic setting and was first published in [30] We therefore start from a simple
generic model. As in our paper [23,29] a prismatoidal coordinate system in the
exterior domain with a radial like coordinate ξ and an angular like variable η
is used. In the 2D periodic setting ξ is simply the x2 coordinate and η = x1.
Another example is a spherical coordinate system in 3D (r, φ, θ) with ξ = r
and η = (φ, θ). To proceed we assume the following expansion of the field in
the exterior domain

u (η, ξ) ∼
∫

c(η, α)eikξ(α)ξ d α (11)

with Re kξ(α) ≥ 0 and Im kξ(α) ≥ 0. Hence in ξ direction the field is a
superposition of outgoing or evanescent plane waves. In the periodic setting
such an expansion is explicitly given in (6).
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The complex continuation, ξ 7→ γξ with γ = 1 + iσ, gives

‖uγ (η, ξ) ‖ ∼
∫

‖c(η, α)‖e−κξ (12)

with κ = σRe kξ + Im kξ.
The PML method only effects the outgoing part with Re kξ strictly larger zero.
Field contributions with a large Re kξ component are efficiently damped out.
Furthermore evanescent field contributions are damped out independently of
the complex continuation. For a proper approximation of the oscillatory and
exponential behavior a discretization fine enough is needed to resolve the field.
In contrast to that anomalous modes or “near anomalous” modes with kξ ∼ 0
are neither evanescent nor damped out efficiently by the PML. Hence they
enforce the usage of a large ρ but can be well approximated with a relatively
coarse discretization in ξ due to their smoothness in ξ. These requirements can
only be satisfied by using an adaptive discretization. It is useful to think of the
complex continuation as a high-frequency filter. With a growing distance ξ to
the interior coupling boundary the higher frequency contributions are damped
out so that the discretization can be coarsened.

For a given threshold ε selected according to the global accuracy requirements
as described later we introduce the cut-off function

κco,ε(ξ) = − ln(ε)/ξ .

With that at ξ′ > 0 each component in the expansion (12) with κ > κco,ε(ξ
′)

is damped out by a factor smaller than the threshold ε,

e−κξ′ < e−κco,ε,ε(ξ′)ξ = eln(ε) = ε.

Assuming that this damping is sufficient we are allowed to select a discretiza-
tion which must only approximate the lower frequency parts with κ ≤ κco,ε(ξ)
for ξ > ξ′. If we use a fixed number Np.w of discretization points per (gen-
eralized) wavelength 2π/κ we get the following formula for the a priori de-
termination of the local mesh width h(ξ) = 2πσ/κco,ε(ξ)/Np.w. A good choice
of Np.w depends on the order of finite element used in ξ−direction and need
not to be adapted locally because the field depends smoothly in ξ−direction.
Since κco,ε(ξ)→∞ for ξ → 0 the local mesh width would be zero at ξ = 0. As
it is not reasonable to use a finer discretization in the exterior domain than
in the interior domain we bound the local mesh width by the minimum mesh
width hint of the interior domain discretization on the coupling boundary,

h(ξ) = max{hint, 2πσ/κco,ε,ε(ξ)/Np.w}.

The parameters ε and Np.w are also fixed accordingly to the interior domain
discretization quality. The grid {ξ0, ξ1, ξ2, . . . } is recursively constructed by

ξn+1 = ξn + h(ξn).
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Fig. 2. Test problem for adaptive PML discretization. The lower material has
an refractive index equal to nsub = 1.5, the upper material block consists of air
(nsup = 1.0). By Snell’s law the field is totally reflected for an incident angle equal
to the critical angle ϑc = 180 · arcsin(1.0/1.5)/π ≈ 41.81.
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Fig. 3. Left: Field energy error in the interior domain. The three lines (◦, ˆ , +)
corresponds to different refinement levels of the interior domain. Right: Zoom into
left figure near critical angle.

This way ξn grows exponentially with n. To truncate the grid we assume that
components in the expansion with κ < κmin can be neglected so that the
grid {ξ0, ξ1, . . . , ξN} is determined by κco,ε,ε(ξN) < κmin ≤ κco,ε,ε(ξN−1). In the
periodic setting there exists such a κmin > 0 in case no anomalous mode is
present.
As an a posteriori control we check if the field is indeed sufficiently damped
out at ξN , ‖u(·, ξN)‖ ≤ ε‖u(·)‖. 3 Otherwise we recompute the solution with
κmin → κmin/2 4 . Since for an anomalous mode the field is not damped at all
we restrict the maximum ξN to ξN < π/k0/ε. The pseudocode to the algorithm
is given in Algorithm 1.

To demonstrate the performance of the adaptive PML algorithm we compute
the reflection of a plane wave at a material jump, c.f. Figure 2. We vary the
angle of incidence from ϑ = 20◦ to ϑ = 60◦. Further the incoming field is
rotated along the x3 axis by an angle of 45◦, so that the incidence is twofold
oblique (conical). Hence the unit direction of the incoming field is equal to k̂ =

3 Here we assume homogenous Neumann boundary conditions for the truncation
of the PML layer. If homogenous Dirichlet boundary conditions are chosen for the
truncation of the PML layer, the sufficient damping of the Neumann data may be
checked instead.
4 This strategy proved useful in many experiment. However we consider to refine
it.
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Fig. 4. Left: Thickness of the PML layer. At the critical angle the thickness is
up to 104 times larger than the diameter of the interior domain. Right: Number
of discretization points ξj used in the radial direction (x2). Although the needed
thickness of the layer is huge the number of unknowns used in the PML layer remains
moderate.

Step ∆E ∆E ′

0 0.359850 0.335129

1 0.159358 0.166207

2 0.048779 0.049502

3 0.012911 0.012912

4 0.003274 0.003266

5 0.000205 0.000820

6 0.000206 0.000205

7 0.000051 0.000051

Table 1
Convergence of field energy at critical angle of incidence. The first column cor-
responds to the interior mesh refinement step. The relative error of the electric
field energy in the interior domain is given in column two, ∆E = |‖Eex‖2L2 −
‖Eh‖2L2 |/|‖Eex‖2L2 . In column three the relative error of the magnetic field energy
∆E′ = |‖ curlEex‖2L2−‖ curl Eh‖2L2 |/|‖ curl Eex‖ is given. For fixed PML thickness
the solution converges as the interior mesh is refined.

(cos 45◦ sin ϑ, cos ϑ, sin 45◦ sin ϑ). The interior domain we used has as size of
1.5×1 in wavelength scales. To measure the error we compute the field energy
within the interior domain and compare it with the analytic value. In Figure 3
the error is plotted for different refinement levels of the interior domain. The
“+” line corresponds to the finest level. In Figure 4 the automatically adapted
thickness of the PML is plotted (left) and the number of discretization points
N in ξ direction (right). As expected a huge layer is used at the critical angle,
whereas the total number of discretization points remains moderate. As can
be seen in Figure 3 the maximum error appears at the critical angle. From
that one may suspect a failure of the automatic PML adaption. But a closer
analysis reveals that the chosen discretization in the PML layer is sufficient
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as can be seen from Table 1. Here the thickness of the perfectly matched
layer has been fixed and we further refined the interior domain. This way we
observe convergence to the true solution but the convergence rate is halved
at the critical angle. Hence the maximum error at the critical angle comes
from an insufficient interior discretization. We conjecture that this is due to a
dispersion effect. Since the wave is traveling along the x1 direction it reenters
the periodic domain leading to large “path length”.

4 Variational form

The coupled problem given by (9), (3) and (10) can be casted into a variational
problem on the Sobolev space H0,ρ ( curl 3, Ω ∪ Ωρ) of H( curl 3) fields with
generalized zero Dirichlet values at x2 = ρ.

For a given test function Φ ∈ H0,ρ ( curl 3, Ω ∪ Ωρ) the following identity holds
true,

γ
∫

Ωρ

Φ · curl 3,γµ
−1 curl 3,γEγ

= γ
∫

Ωρ

curl 3,γΦ · µ−1 curl 3,γEγ −
∫

x2=0
Φ · µ−1 curl 3Esc × ~n, (13)

where Eγ(x1, x2, x3) = Esc(x1, γx2, x3), c.f. (8). We first proof this identity for
γ ∈ R \ {0} . Using the non-euclidian coordinate change

T−1 : (x1, x2, x3) 7→
(

x1, γ
−1x2, x3

)

and applying the transformation rules for differential forms, see [28], one gets

∫

Ωγρ

Φ∗ · curl 3µ
−1 curl 3Esc =

∫

Ωρ

Φ∗ · curl 3µ
−1
∗

curl 3E∗ and (14a)
∫

Ωγρ

curl 3Φ
∗ · µ−1 curl 3Esc =

∫

Ωρ

curl 3Φ∗ · µ−1
∗

curl 3E∗ (14b)

with

µ∗ = |J|J−1µJ−t (15a)

E∗(x1, x2, x3) =JtEsc(x1, γx2, x3) (15b)

Φ∗(x1, x2, x3) =JtΦ(x1, x2, x3) = JtΦ∗(x1, γx2, x3). (15c)

J = diag(1, γ, 1) is the constant Jacobian of T. Note that Φ∗, E∗ are the pulled
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back fields to Φ∗ and Esc in the sense of differential form calculus.
We have

γ
∫

Ωρ

Φ · curl 3,γµ
−1 curl 3,γEγ =

∫

Ωρ

Φ∗ · curl 3µ
−1
∗

curl 3E∗ (16a)

γ
∫

Ωρ

curl 3,γΦ · µ−1 curl 3,γEγ =
∫

Ωρ

curl 3Φ∗ · µ−1
∗

curl 3E∗ (16b)

which is verified by inserting (15) and using curl 3,γ = |J|−1J curl 3J
t.

On the other hand integration by parts yields

∫

Ωρ

Φ∗ · curl 3µ
−1
∗

curl 3E∗

=
∫

Ωρ

curl 3Φ∗ · µ−1
∗

curl 3E∗ −
∫

x2=0
Φ∗ ·

(

µ−1
∗

curl 3E∗ × ~n
)

(17)

and a respective equation for Esc, µ, and Φ∗ with the domain of integration
Ωγρ. These together with equations in (14) give

∫

x2=0
Φ∗ ·

(

µ−1
∗

curl 3E∗ × ~n
)

=
∫

x2=0
Φ∗ ·

(

µ−1 curl 3Esc × ~n
)

. (18)

Using that Eγ = J−tE∗ and using that the tangential components of Φ∗ are
equal to Φ, one derives from (16) and (18) the desired identity (13) for real
γ. Since each term is a holomorphic function in γ the identity (13) holds true
for γ ∈ C \ {0}.

The coupled problem given by (9), (3) and (10) in weak form is given by

∫

Ω
curl 3Φ · µ−1 curl 3E− ω2Φ · εE +

γ
∫

Ωρ

curl 3,γΦ · µ−1 curl 3,γEγ − ω2Φ · εEγ

= −
∫

x2=0
Φ · µ−1( curl 3E− curl 3Esc)× ~n

(19)

Due to the Neumann coupling condition curl 3E × ~n = curl 3Esc × ~n +
curl 3Einc × ~n the boundary term is equal to

∫

x2=0 Φ · µ−1 curl 3Einc × ~n.
This is not yet the basis for a Galerkin ansatz in H0,ρ ( curl 3, Ω ∪ Ωρ) as
there is a jump of the Dirichlet data across the boundary x2 = 0, precisely
Eγ + Einc = E|x2=0. Let Π(Einc × ~n) ∈ H0,ρ ( curl 3, Ωρ) denote an exten-
sion of a field with tangential Dirichlet data equal to Einc × ~n at x2 = 0 to
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H0,ρ ( curl 3, Ωρ) and add this to Eγ to obtain

∫

Ω
curl 3Φ · µ−1 curl 3E− ω2Φ · εE +

γ
∫

Ωρ

curl 3,γΦ · µ−1 curl 3,γ(Eγ + Π(Einc × ~n))− ω2Φ · ε(Eγ + Π(Einc × ~n))

= −
∫

x2=0
Φ · µ−1( curl 3Einc × ~n) +

γ
∫

Ωρ

curl 3,γΦ · µ−1 curl 3,γΠ(Einc × ~n)− ω2Φ · εΠ(Einc × ~n) .

(20)

This motivates the definition of the composed field u ∈ H0,ρ ( curl 3, Ω ∪ Ωρ)
by u|Ω = E and u|Ωρ

= Esc + Π(Einc × ~n) and of the following bilinear form:

a(Φ,u) := aΩ(Φ|Ω,u|Ω) + aΩρ
(Φ|Ωρ

,u|Ωρ
) (21)

with
aΩ(Φ,u) :=

∫

Ω
curl 3Φ · µ−1 curl 3u− ω2Φ · εu , (22)

aΩρ
(Φ,u) := γ

∫

Ωρ

curl 3,γΦ · µ−1 curl 3,γu− ω2Φ · εu . (23)

With
bΓ(Φ,Ψ) :=

∫

Γ
Φ · µ−1Ψ . (24)

we end up with the variational problem: find u ∈ H0,ρ ( curl 3, Ω ∪ Ωρ) such
that for all Φ ∈ H0,ρ ( curl 3, Ω ∪ Ωρ)

a(Φ,u) = aΩρ
(Φ, Π(Einc × ~n))− b(Φ, curl 3Einc × ~n) . (25)

Here we have avoided the definition of a DtN-operator. The total field is
calculated as the solution of a coupled system (computational domain coupled
to the PML), where the Dirichlet and Neumann data enter the equation on the
“right-hand side”. If u is a solution of Maxwell’s equations (1), the integration
by parts identity can be rewritten using these bilinear forms as

aΩ(Φ,u)− b(Φ,− curl 3u× ~n) = 0 (26)

This formula will be useful to represent the Neumann data. Note that in (26)
~n is the “inward” normal with respect to Ω.

4.1 Finite element discretization

To discretize the variational problem (25) we use vectorial finite elements
on a triangular mesh in the interior domain and on a quadrilateral mesh in
the PML. The three sub-meshes – lower PML mesh, interior domain mesh and
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upper PML mesh – fit non-overlapping. In the PML we use a rectangular mesh
[0, x1,2, . . . , a]× [x2,+, x2,+ + ξ1, . . . , x2,+ + ξN ] where ξ1, . . . , ξN are determined
as described in Section 3.1. Since the Sobolev space H0,ρ( curl 3, Ω ∪ Ωρ) is
isomorphic to H0,ρ( curl 2D, Ω ∪ Ωρ)×H1

0,ρ(Ω ∪ Ωρ) with the two dimensional
curl operator curl 2D(u1, u2) = ∂x1

u2 − ∂x2
u1 we use higher order Whitney

elements to discretize the first and second component of the electric field
and standard Lagrange elements for the third field component of the same
order. This finite element space is also used for waveguide mode computations,
c.f. [24] and the references therein.

Bloch periodicity is enforced by a multiplication of basis functions associated
with one of two corresponding periodic boundaries of the domain by the Bloch
factor, c.f. [4]. An interior edge element function remains unchanged, c.f. Fig-
ure. 5 (left). The support of a basis function associated with a periodic edge
on the boundary consists of two triangles, c.f. Figure. 5 (right). The restric-
tion of the basis function to the left triangle is defined as the standard shape
function, whereas the shape-function on the right triangle is multiplied by the
Bloch factor exp(ik1a). The construction of Bloch periodic Lagrange elements
is similar.

Fig. 5. First order edge elements on a simple grid. In the interior the tangential
component is continuous across element boundaries. At the Bloch periodic boundary
there is a phase shift.

5 Domain Decomposition Method

The idea for the Schwarz algorithm with transparent boundary conditions
at the interfaces is to calculate the solution on every sub-domain separately
using transparent boundary conditions and iteratively add the scattered field
of each sub-domain to the incoming field for the neighboring sub-domains.
The presentation here is restricted to the multiplicative Schwarz-algorithm.
In its most general form the domain-decomposition algorithm is given in (27).
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Fig. 6. Schematic sketch of the various domains and PMLs. Left: The computational
domain Ω is split in three sub-domains. Right: The sub-domain Ω2, with its three
different PMLs.

There En
j denotes the nth iterate on sub-domain Ωj. Ωj,ρ,i is the PML domain

to Ωj at the interface to Ωi. and by Ωj,ρ we denote the PML domain to Ωj at
the interface to the exterior, c.f. Figure 6.

set Ej = 0 for all j

while not converged

for all sub-domains j

find Ej such that

aj(Φ,Ej) = aΩj,ρ
(Φ, Π(Einc × ~n)) +

∑

i

aΩj,ρ,i
(Φ, Π(Ei × ~n))

− bΓj
(Φ, curl 3Einc × ~n)−

∑

i

bΓj,i
(Φ, curl 3Ei × ~n)

∀Φ ∈ H0,ρ( curl 3, Ωj ∪ Ωj,ρ ∪i Ωj,ρ,i)

(27)

This algorithm requires the evaluation of Neumann data curl 3Ei × ~n along
the boundary. Moreover at cross points, i.e at points given by Ωj,ρ,k∩Ωj,ρ,i 6= ∅
for i 6= k or Ωj,ρ,k∩Ωj,ρ 6= ∅, the “incoming” field is not a solution of Maxwell’s
equations, as it may have jumps.
This difficulty maybe overcome by choosing sub-domains with a large overlap
and by coupling the incoming field to the computational not at the boundary
but at some additional artificial boundary in the interior. Here we do not pur-
sue this strategy, but avoid cross-points, by dividing the computational domain
horizontally in several sub-domains. Thus the sub-domains are arranged in a
linear way. Each sub-domain has only two well separated boundaries neglect-
ing the periodic boundary, and at most two neighboring domains. Inserting an
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Fig. 7. Decomposition of the problem into two infinite sub-domains. The scatter-
ing problem is solved by the Finite Element Method in the upper domain and
quasi-analytically in the lower domain.

additional post-processing step, the Neumann-data can be evaluated weakly.

set Ej = 0 for all j

while not converged

for all sub-domains j

find Ej such that

aj(Φ,Ej) = +aΩj,ρ
(Φ, Π(Einc × ~n)) +

∑

i

aΩj,ρ,i
(Φ, Π(Ei × ~n))

− bΓj
(Φ, curl 3Einc × ~n)−

∑

i

bΓj,i
(Φ, curl 3Ei × ~n)

∀Φ ∈ H0,ρ( curl 3, Ωj ∪ Ωj,ρ ∪i Ωj,ρ,i)

for all subdomainsj
∑

i

bΓj,i
(Φ, curl 3Ej × ~n) + bΓj

(Φ, curl 3Ej × ~n) = −aΩj
(Φ,Ej)

(28)

In order to distinguish for k 6= l the contribution bΓj,k
(Φ, curl 3Ej × ~n) from,

say bΓj,l
(Φ, curl 3Ej × ~n), it is required that there are no test functions that

have a support in elements adjacent to Γj,k and Γj,l simultaneously.

5.1 Schwarz algorithm for EUV

For the special application – scattering off an EUV-line mask – one can make
use of the “simple” geometry of the double layer stack that serves as a mirror
employing the Transfer Matrix algorithm of Section 2.2.

A simple situation is depicted in Figure 7. The upper domain contains the
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mask line whereas the lower domain consists of the multi-layer stack and the
lower substrate block. Instead of solving Maxwell’s equations by the finite ele-
ment method in the multi-layer stack, the incoming field is Fourier transformed
and for each Fourier mode the Transfer Matrix algorithm is used to calculate
the scattered field. This can even be simplified. If the tangential component
of each Fourier-mode vector field is written as the linear combination of two
linear independent polarizations, it is sufficient to compute the reflection coef-
ficients of the multi-layer layer stack for each mode and each polarization only
once. The number of Fourier mode ranges from = nmin to nmax. To determine
these, we set kmax = 0.1 · 2π/hmax, where hmax is the maximum segment size
of a finite element at the boundary. Then nmax is the greatest integer such
that k1 + nmax2π/a < kmax, i.e and nmin is the greatest integer, such that
kx − nmin2π/a > −kmax.

6 Numerical Examples

An academic example

The simple geometry of this example is depicted in Figure 8. It consists of
three domains Ω1 and Ω2, each with a quadrilateral material inhomogeneity
and Ω3 a layer stack of four layers below Ω2. The period is a = 1. The different
shadings correspond to different materials as indicated. The permeability is
equal to 1 everywhere. The permittivity is given by ε1 = 1.01, ε2 = 1.52,
ε3 = 1.03, ε4 = 1.54, ε5 = 1.55, ε6 = 1.06, ε7 = 1.57, ε8 = 1.08. The semi-
infinite top and lower strips, with refraction indices ε9 = 1 and ε0 = 1 are not
shown. These are completely modeled by the PML method. Hence there are
rather big jumps in the material coefficients at domain interfaces.

The incoming field is a plane waves with wave vector ~kinc = (1,−2, 1) and

wave length, λ = 0.84. The strength is ~sinc = (1, 1, 1)× ~kinc/||(1, 1, 1)× ~kinc||.

In the experiment the relative error is measured against the discrete solution
obtained by solving the scattering problem on the whole domain. In solving the
the scattering problem on the whole domain, the PML is chosen adaptively.
These PML parameters are then fixed and used for all subdomains. Three
cases are distinguished.

(1) Schwarz algorithm with two domains (D2): One domain is Ω1 and the
second domain is the union of Ω2 and Ω3. Thus the layers are discretized
by finite elements. In Figure 8 this corresponds to the dark gray lines.

(2) Schwarz algorithm with two domains (D2-EUV): One domain is Ω1, the
second domain is Ω2. Ω3 the layer stack is treated analytically and is like
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Fig. 8. Material distribution (left) and magnitude of the electric field (middle) for
a simple test problem. Convergence plot (right) for ~kinc = (1,−2, 1), λ = 0.84 and
different refinement levels.

a boundary condition for Ω2. That is, if the subproblem on Ω2 is solved we
iterate internally between Ω2 and Ω3 and stop if the error is below 10−9

or after at most 100 iterations. In the domain decomposition algorithm
only the number of iterations between Ω1 and Ω2 is counted. In Figure 8
this corresponds to the black lines.

(3) Schwarz algorithm with three domains (D3): We are using a multiplicative
Schwarz algorithm with three subdomains. Within one “iteration cycle”,
we first solve for E1, then for E2 and finally for E3. In Figure 8 this
corresponds to the light gray lines.

For these three cases the error versus the number of Schwarz iteration cycles
is shown in Figure 8 (right). The experiment is performed for three different
refinement levels, where “×” corresponds to the coarsest level with 5920 de-
grees of freedom on the whole domain including the PML, the next finer level
labeled with “∗” is obtained by one uniform refinement of the initial grid and
the finest level labeled with “2” by two uniform refinements of the initial grid.
In case (D2-EUV) the error saturates at a level that clearly depends on the
refinement of the interior grid. This behavior can be expected as the number
of Fourier coefficients that are taken into account to couple the layer-stack an-
alytically in the Schwarz iteration is inverse proportional to the mesh-width.
In case (D2) and (D3) the error saturates at 1e − 14, which is close to ma-
chine precision. This surprisingly good convergence behavior will be further
analyzed in a subsequent paper.
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Fig. 9. Left: Sketch of an EUV line mask. Right: Error versus the number of degrees
of freedom in finite element mesh. The dashed error curve is obtained using the
domain decomposition algorithm, decomposing the computational domain in two
sub-domains (the line and the multi-layer stack) and treating the multi-layer stack
separately. The solid error curve is obtained discretizing the whole computational
domain.

Real life EUV mask

A schematic sketch of a more realistic EUV line mask is shown in Figure 9.
There only three out of ten MoSi double layers are shown. The periodicity a
is 40nm. The line made of silicon (Si) and the chromium absorber (Cr) have a
width of 20nm and a height of 15nm. The first silicon layer’s height is 10nm.
Each molybdenum layer (Mo) has a height of 6nm and the subsequent silicon
layers have a height of 8nm. The wavelength is 14nm. The permeability is 1.0
everywhere. The permittivities are εMo = 1.69 + 0.016i, εSi = 1.21 + 0.002i,
εCr = 1.43 + 0.24i and εAir = 1.0.

Starting from a coarse mesh the grid is pre-refined to have at least 3, 4, 5, 6,
7, 8, 9, 16 and 20 points per wavelength locally. The solution obtained with
20 points per wavelength is taken as a reference solution to measure the error.
We use a domain decomposition algorithm and decompose the mask into Ω1

(line, absorber, air) and Ω2 (multilayer-stack). The multilayer-stack is treated
analytically as described in Section 5.1. Additionally we are using a damping
factor of 0.66 in the domain decomposition algorithm to speed up convergence.
The PML is chosen adaptively as described in Section 3.1.

Figure 9 shows the error versus the number of degrees of freedom in the fi-
nite element grid including the PML. To obtain the solid line, the multi-layer
stack is discretized using finite elements. Clearly, if the multi-layer stack is
not discretized, but treated analytically and coupled to Ω1 in the domain-
decomposition algorithm, the number of degrees of freedom is reduced drasti-
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cally. The above calculations where performed on an AMD Opeteron PC with
16GB of RAM. The arising linear system problems are solved with the sparse
LU method PARDISO, [21,22].

This reduction of the number of degrees of freedom due to the domain de-
composition approach, allows to compute realistic masks on standard 32–bit
computers.
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