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Abstract. In this work we derive an exact discrete artificial boundary condition for the Crank–
Nicolson scheme for solving the Black–Scholes equation for the valuation of American options.

To ensure stability and to avoid any numerical reflections we derive the artificial boundary
condition on a purely discrete level. Since the exact discrete artificial boundary condition includes
a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes
very costly for large–time simulations. As a remedy we construct approximate artificial boundary
conditions with a kernel having the form of a finite sum–of–exponentials, which can be evaluated in a
very efficient recursion. We prove a simple stability criteria for the approximated artificial boundary
conditions. Finally we illustrate the efficiency of the proposed method on several examples and
compare it to previously obtained discretized artificial boundary conditions.
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1. Introduction. The famous Black–Scholes equation is an effective model for
option pricing. It was named after the pioneers Black, Scholes and Merton who
suggested it 1973 [6], [24] and received in 1997 the Nobel Prize in Economics for their
discovery [12]. Mathematically it is a final value problem for a second order parabolic
equation. A concise derivation of the Black–Scholes equation can be found in [32].

An option is a contract that admits the owner the right (not the duty) to buy
(‘call option’ ) or to sell (‘put option’ ) an asset (typically a stock or a parcel of shares
of a company) for a prespecified price E (‘strike price’ ) by the date T to receive some
payoffs. The basic problem here is to specify a fair price to charge for permitting
these rights. A closely related question is how to hedge the risks that arises when
selling these options. ‘European’ options can only be exercised at the expiration date
T . For ‘American’ options exercise is permitted at any time until the expiry date.
The notion European or American are not meant geographically, they just declare the
type of option. We remark that most of the options traded in stock exchanges are of
American style. While for European options the Black–Scholes equation results after
a standard transformation in a boundary value problem (that can be solved explicitly
for cases with constant coefficients and simple payoffs [32]), for American options it
results in a free boundary problem for the heat equation.

In general, closed–form solutions do not exist (especially for American options)
and the solution has to be computed numerically (cf. the references given in [16]).
The standard approach for solving the Black–Scholes equation for American options
consists in transforming the original equation to a heat equation posed on a semi–
unbounded domain with a free boundary [29], [32]. For a new alternative direct
method using the Mellin transformation we refer the reader to [19], [26].

Usually finite differences [30] or finite elements [1] are used to discretize this heat
equation and an artificial boundary condition (ABC) is introduced in order to confine
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the computational domain appropriately. If the solution on the computational domain
coincides with the exact solution on the unbounded domain (restricted to the finite
domain), one refers to this boundary condition as a transparent boundary condition
(TBC). While the numerical treatment of the free boundary has attracted a lot of
attention and different strategies were developed (e.g. [8]) less attention was payed to
the accurate treatment of the artificial boundary even though the analytic TBC for
the heat equation is well–known, cf. [15], [27], [34]. In fact, many textbooks propose
to use a homogeneous Dirichlet boundary condition at some finite distance [32].

Kangro and Nicolaides considered in [20] a multidimensional Black–Scholes equa-
tion for European options and derived pointwise bounds for the error caused by vari-
ous boundary conditions imposed on the artificial boundary. Windcliff, Forsyth and
Vetzal [33] derived necessary stability conditions for a finite difference discretization
of the Black–Scholes equation for European options with the common linear asymp-
totic boundary condition, i.e. assuming that the second derivative of the option value
vanishes as the market price becomes large. Recently, Han and Wu [16] proposed a
discretization strategy of the analytic TBC to solve the Black–Scholes equation for
the American option problem in conjunction with the Crank–Nicolson scheme. The
authors also introduced a simple explicit treatment of the free boundary.

However, ad-hoc discretizations of an analytic TBC may induce numerical reflec-
tions at this artificial boundary and also may destroy the unconditional stability of
the Crank–Nicolson finite difference method. To overcome both problems a so–called
discrete TBC (DTBC) is derived from the fully discretized problem on the unbounded
domain. This discrete TBC is completely reflection–free and conserves the stability
property of the underlying scheme. Since the discrete TBC includes a convolution
with respect to time with a weakly decaying kernel, its numerical evaluation becomes
very costly for large–time simulations. As a remedy we construct an approximate
discrete TBC with a kernel having the form of a finite sum-of-exponentials [3], which
can be evaluated by a very efficient recursion formula.

This paper is organized as follows: first we introduce the Black–Scholes equation
and recall the standard transformations to a forward–in–time heat equation. In §3
we derive the analytic TBC for the heat equation and for the case of time–dependent
parameters. To incorporate the TBC into a finite difference method we review in §4
two approaches to discretize the analytic TBC and construct a DTBC for the Crank–
Nicolson discretization. In §6 we discuss the numerical treatment of the free boundary.
To reduce the numerical effort we present in §5 an efficient implementation by the
sum-of-exponentials approximation. Afterwards we analyze in §7 the stability of the
resulting numerical scheme. Finally we illustrate in §8 the accuracy and efficiency of
the new method with a numerical example and compare it to the known discretized
TBCs of Mayfield [22] and Han and Wu [16].

2. The Black–Scholes equation. In this paper we consider an American call
option. The treatment of an American put option is analogous. The value of a call
option is denoted by V and depends on the current market price of the underlying
asset, S, and the remaining time t until the option expires: V = V (S, t). The Black–
Scholes equation is a backward–in–time parabolic equation and posed on a time–
dependent domain

∂V

∂t
+

1

2
σ2S2 ∂2V

∂S2
+ (r − D0)S

∂V

∂S
− rV = 0, 0 < S < Sf (t), 0 ≤ t < T, (2.1a)
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where σ denotes the annual volatility of the asset price, r the risk–free interest rate
and T is the expiry date (t = 0 means ’today’). We assume that dividends are paid
with a continuous yields of constant level D0 > 0. Note that we have to include the
payment of dividends. Otherwise, for D0 = 0 early exercise does not make sense and
the American call would be equivalent to the European one [24].

In (2.1a) Sf (t) denotes the (a priori unknown) free boundary and is also called
‘early exercise boundary’ or ’optimal exercise price’. The American call option should
be exercised if the value of the asset S is equal or greater than Sf (t) at time t;
otherwise the option should be held. Thus the free boundary Sf (t) separates the
holding region (S < Sf (t)) from the exercise region (S ≥ Sf (t)).

The final condition (‘payoff condition’) at the expiry t = T can be written as

V (S, T ) = (S − E)+, 0 ≤ S < Sf (T ), (2.1b)

with the notation f+ = max(f, 0). Here E > 0 denotes the previously agreed exercise
price or ‘strike’, of the contract and Sf (T ) = max(E, rE/D0).

The ‘spatial’ or asset–price boundary conditions at S = 0, and S = Sf (t) are

V (0, t) = 0, 0 ≤ t ≤ T, (2.1c)

V (Sf (t), t) = (Sf (t) − E)+,
∂V

∂S
(Sf (t), t) = 1, 0 ≤ t ≤ T, (2.1d)

i.e. at S = 0 the option is worthless. Note that we need two conditions at the free
boundary S = Sf (t). One condition is necessary for the solution of (2.1a) and the
other one is needed for determining the position of the free boundary Sf (t) itself.
The first condition in (2.1d) (’value matching’ condition) is the continuity of the
mapping S 7→ V (S, t) since V (S, t) = (S − E)+ = S − E, in the exercise region
S ≥ Sf (t). At S = Sf (t) one requires additionally that V (S, t) touches the payoff
function tangentially (’high contact condition’), i.e. the function S 7→ ∂V (S, t)/∂S
should be continuous at S = Sf (t). The conditions (2.1d) are jointly referred as the
’smooth–pasting conditions’. Note that the later condition can be derived from an
arbitrage argument [30], [32].

Since American options can be exercised at any time, we have the a priori bound

V (S, t) ≥ (S − E)+, S ≥ 0, 0 ≤ t ≤ T.

If V (S, t) < (S−E)+ for one value S > E and t ≤ T then the purchase of a call for V
and the immediate exercise of this option to buy the underlying asset for E (although
its value is S) would lead to an instantaneous risk–free profit of S − V − E > 0, in
violation to the no–arbitrage principle. Of course, this reasoning ignores transaction
costs.

2.1. The transformation to the heat equation. In the sequel we shall show
how to transform (2.1a) into a pure diffusion equation (cf. [32, § 5.4]). First it is
convenient to apply a time reversal and transform (2.1) to a forward–in–time equation
by the change of variable t = T − 2τ/σ2. The new time variable τ stands for (up
to the scaling by σ2/2) the remaining life time of the option. We denote the new
variables by:

Ṽ (S, τ ) = V (S, t) = V
(
S, T − 2τ

σ2

)
, S̃f (τ ) = Sf

(
T − 2τ

σ2

)
,
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r̃ =
2

σ2
r, D̃0 =

2

σ2
D0, T̃ =

σ2

2
T.

The resulting forward–in–time equation then reads:

∂Ṽ

∂τ
= S2 ∂2Ṽ

∂S2
+ (r̃ − D̃0)S

∂Ṽ

∂S
− r̃ Ṽ , 0 < S < S̃f (τ ), 0 ≤ τ < T̃ , (2.2a)

with the initial condition

Ṽ (S, 0) = (S − E)+, 0 ≤ S < S̃f (0) = S0, (2.2b)

and the boundary conditions

lim
S→0

Ṽ (S, τ ) = 0, 0 ≤ τ ≤ T̃ , (2.2c)

Ṽ (S̃f (τ ), τ ) = (S̃f (τ ) − E)+,
∂Ṽ

∂S
(S̃f (τ ), τ ) = 1, 0 ≤ τ ≤ T̃ . (2.2d)

The right hand side of (2.2a) is a well–known Euler‘s differential equation and there-
fore it is standard practice (cf. [29, § 4.1]) to transform (2.2a) to the heat equation.
To do so, we let

α = −1

2
(r̃ − D̃0 − 1), β = −α2 − r̃,

and use the change of variables

S = Eex, Ṽ (S, τ ) = Eeαx+βτv(x, τ). (2.3)

Then problem (2.2) is equivalent to the free boundary problem for the heat equation:

∂v

∂τ
=

∂2v

∂x2
, −∞ < x < xf (τ ), 0 ≤ τ < T̃ , (2.4a)

where xf (τ ) = ln(S̃f (τ )/E). The equation (2.4a) is supplied with the initial condition

v(x, 0) = g(x, 0) =
(
e

1
2 (r̃− eD0+1)x − e

1
2 (r̃− eD0−1)x

)+
, x < xf (0), (2.4b)

with xf (0) = ln(max(1, r/D0)) and the boundary conditions

lim
x→−∞

v(x, τ) = 0, 0 ≤ τ ≤ T̃ , (2.4c)

v(xf (τ ), τ ) = g(xf (τ ), τ ), 0 ≤ τ ≤ T̃ , (2.4d)

e(α−1)x+βτ
(
αv(xf (τ ), τ ) +

∂v(xf (τ ), τ )

∂x

)
= 1, 0 ≤ τ ≤ T̃ , (2.4e)

where

g(x, τ) = e−αx−βτ (ex − 1)+,

It is well–known [24] that the free boundary Sf (t) is a nondecreasing function and

Sf (T ) ≤ Sf (t) ≤ S∗
f , 0 ≤ t ≤ T, (2.5)

with

S∗
f =

√
−β + α√

−β + α − 1
E.

Thus if we set x∗
f = ln(S∗

f/E), then the free boundary xf (τ ) has the property [1]:

0 ≤ xf (τ ) ≤ x∗
f , 0 ≤ τ ≤ T̃ . (2.6)
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Remark. We remark that the original Black–Scholes equation (2.1a) is degener-
ate at S = 0. However, the change of variables (2.3) transformed it into a uniformly
parabolic initial boundary value problem (2.4).

3. The transparent boundary condition. The boundary problem (2.4) is
posed on an unbounded and time–dependent domain Ω(τ ):

Ω(τ ) = {(x, τ) ∈ R
2 |x < xf (τ ), 0 ≤ τ ≤ T̃}.

In the following we briefly present the derivation of the (analytic) TBC at the artificial
boundary x = a. For this purpose we split the domain Ω(τ ) into the bounded time–
dependent interior domain

Ωint(τ ) = {(x, τ) ∈ R
2 | a < x < xf (τ ), 0 ≤ τ ≤ T̃},

and the unbounded time–independent exterior domain

Ωext = {(x, τ) ∈ R
2 |x < a, 0 ≤ τ ≤ T̃}.

3.1. Derivation of the TBC. Here we determine the TBC at x = a < 0 such
that the solution of the resulting initial boundary value problem coincides with the
solution of the problem (2.4) restricted to Ωint. For simplicity we assume that the
initial data v(x, 0) is compactly supported in the interior domain Ωint, i.e. g(x, 0) = 0
for x < a. A strategy to overcome this restriction can be found in [11].

The analytic TBC for the heat equation was derived by several authors, e.g. [1],
[15], [16]. Historically, this TBC was first derived by Papadakis [27] in the context of
the Schrödinger equation. We remark that the derivation of the TBC for a parabolic
convection diffusion equation with reaction term can be found in [10], [11].

For the derivation of the TBC at x = a we consider the interior problem

∂v

∂τ
=

∂2v

∂x2
, (x, τ) ∈ Ωint(τ ),

v(x, 0) = g(x, 0), a < x < xf (0),

vx(a, τ) = (Tav)(a, τ), 0 ≤ τ ≤ T̃ ,

(3.1)

together with the boundary conditions (2.4d), (2.4e) at the free boundary x = xf (τ ).
We obtain the Dirichlet–to–Neumann map Ta by solving the exterior problem:

∂u

∂τ
=

∂2u

∂x2
, (x, τ) ∈ Ωext,

u(x, 0) = 0, x < a,

u(a, τ) = Φ(τ ), 0 ≤ τ ≤ T̃ , Φ(0) = 0,

u(−∞, τ ) = 0, 0 ≤ τ ≤ T̃ ,

(TaΦ)(τ ) = ux(a, τ), 0 ≤ τ ≤ T̃ .

(3.2)

The problem on the exterior domain Ωext is coupled to the problem on the interior
domain Ωint by the assumption that v, vx are continuous across the artificial boundary
at x = a. One can solve (3.2) explicitly by the Laplace–method, i.e. we use the Laplace
transformation of u

û(x, s) =

∫ ∞

0

u(x, τ) e−sτ dτ,
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where we set s = ζ + iξ, ξ ∈ R, and ζ > 0 is fixed, with the idea to later perform the
limit ζ → 0. Now the exterior problem (3.2) is transformed to

ûxx − s û = 0, x < a,

û(a, s) = Φ̂(s).
(3.3)

The solution to (3.3) which decays as x → −∞ is simply û(x, s) = Φ̂(s) e
+
√

s(x−a),
x < a, where +

√
denotes the branch of the square root with nonnegative real part.

Consequently, the transformed TBC is:

ûx(a, s) = +
√

s û(a, s),

and after an inverse Laplace transformation (cf. [5]) the TBC at x = a reads:

vx(a, τ) =
1√
π

∫ τ

0

vτ (a, ξ)√
τ − ξ

dξ. (3.4)

We observe that (3.4) has a weakly singular kernel and is a memory–type non–local
function of τ , i.e. the computation of the solution at some time uses the solution at
all previous times.

Remark. As noted in [16] the solution in Ωext can also be computed with

v(x, τ) = −x − a

2
√

π

∫ τ

0

e−
(x−a)2

4(τ−ξ)
v(a, ξ)

(τ − ξ)3/2
dξ, x < a. (3.5)

Remark. The treatment of an American put option is completely analogous.
Now one has to consider the Black–Scholes equation (2.1a) on the domain S > Sf (t).
The terminal condition at the expiry date t = T then reads

V (S, T ) = (E − S)+, S > Sf (T ), (3.6a)

and the ‘spatial’ boundary conditions at S = Sf (t), S → ∞ are given by

V (Sf (t), t) = (E − Sf (t))+,
∂V

∂S
(Sf (t), t) = −1, 0 ≤ t ≤ T, (3.6b)

lim
S→∞

V (S, t) = 0, 0 ≤ t ≤ T. (3.6c)

Thus the TBC has to be constructed at x = b with b > Sf (t), for all 0 ≤ t ≤ T .

3.2. Time–dependent parameters. It is possible to derive a TBC for Amer-
ican call options with time–varying interest rate r = r(t), dividend yield D = D(t)
and volatility σ = σ(t). This situation is more realistic but the time–dependence of
the parameters r = r(t) and σ = σ(t) is unknown and must be modeled stochastically.
In this case the Black–Scholes equation reads (cf. [32, §6.5])

∂V

∂t
+

1

2
σ2(t)S2 ∂2V

∂S2
+ (r(t) − D(t))S

∂V

∂S
− r(t)V = 0, (3.7)

0 < S < Sf (t), 0 ≤ t < T . Making the substitutions

S̄ = Seα(t), V̄ = V eβ(t), t̄ = γ(t),
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with

α(t) =

∫ T

t

(
r(τ )− D(τ )

)
dτ, β(t) =

∫ T

t

r(τ ) dτ, γ(t) =

∫ T

t

σ2(τ ) dτ,

then (3.7) becomes

∂V̄

∂t̄
=

1

2
S̄2 ∂2V̄

∂S̄2
, 0 < S̄ < S̄f (t̄), 0 ≤ t̄ ≤ T̄ = γ(0). (3.8)

supplied with the initial condition V̄ (S̄, 0) = V (S, T ) because γ(T ) = 0. Since the
right hand side of (3.8) is again of Euler–type one can proceed analogously to §3.1.
The Laplace–transformed exterior problem reads:

x2

2
ûxx − s û = 0, x < a,

û(a, s) = Φ̂(s).

(3.9)

The solution to (3.9) which decays as x → −∞ is simply

û(x, s) = Φ̂(s)
(x

a

)( 1
2−

1
2

+
√

1+8s)

, x < a,

and therefore the transformed TBC is:

ûx(a, s) = a−1

(
1

2
−
√

2
+

√
s +

1

8

)
û(a, s).

Finally an inverse Laplace transformation yields the desired TBC at x = a:

V̄x(a, t̄) =
V̄ (a, t̄)

2a
−

√
2

a
√

π

∫ t̄

0

(
V̄t̄(a, ξ) +

V̄ (a, ξ)

8

)
e−(t̄−ξ)/8

√
t̄ − ξ

dξ. (3.10)

Remark. Most dividend payments on an index (e.g. the Dow Jones Industrial
Average (DJIA) or the Standard and Poor’s 500 (S&P500)) are so frequent that they
can be modeled as a continuous payment. However, if companies make two or four
payments per year then one has to treat the dividend payments discretely and the
question is how to incorporate discrete dividend payments into the Black–Scholes
equation. In the sequel we briefly review the results from [32]. We assume that there
is only one dividend payment during the lifetime of the option at the dividend date
td. Neglecting other factors like taxes, the asset price S must decrease exactly by the
amount of the dividend payment d0. Thus we have the jump condition

S(t+d ) = (1 − d0)S(t−d ),

where t−d , t+d denotes the moments just before and after td. This leads to the following
effect on the option price

V (S, t−d ) = V ((1 − d0)S, t+d ), (3.11)

i.e. the value of the option at S and time t−d is the same as the value immediately after
the dividend date td but at the asset value (1− d0)S. To value a call option with one
divident payment we solve the Black–Scholes equation from expiry t = T until t = t+d
and use the relation (3.11) to compute the values at t = t−d . Finally, we continue to
solve the Black–Scholes equation backwards starting at t = t−d using these values as
initial data. The transparent boundary conditions need not be modified for this case.
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4. Discrete Transparent Boundary Conditions. In this section we shall
address the question how to adequately discretize the analytic TBC (3.4) for a chosen
full discretization of (2.4a) which in this example will be the Crank–Nicolson scheme.
This scheme has been extremely popular for numerical solutions in finance since it is
unconditionally stable and has second order accuracy in time and space. Furthermore
it obeys a discrete maximum principle.

Instead of discretizing the analytic TBC (3.4) with its singularity our strategy is
to derive the discrete TBC of the fully discretized problem. With the uniform grid
points xj = a + j∆x, j = 0, 1, . . . , τn = n∆τ , n = 0, 1, . . . and the approximation

v
(n)
j ≈ v(xj , τn) the Crank–Nicolson scheme for solving the heat equation (2.4a) is:

v
(n+1)
j − v

(n)
j = ρ

(
v
(n+1/2)
j+1 − 2v

(n+1/2)
j + v

(n+1/2)
j−1

)
, (4.1)

with the abbreviation v
(n+1/2)
j = (v

(n+1)
j + v

(n)
j )/2 and the parabolic mesh ratio ρ =

∆τ/(∆x)2. While a uniform grid in x is necessary in the exterior domain, the interior
grid may be nonuniform (e.g. logarithmic) in x. In the sequel we present different
strategies to incorporate the analytic TBC (3.4) into the finite difference scheme (4.1).

4.1. Discretization strategies for the TBC. Here we want to compare three
strategies to discretize the TBC (3.4) which is a rather delicate question with its mildly
singular convolution kernel. First we review two known discretization techniques from
Mayfield [22] and Han and Wu [16].

Discretized TBC of Mayfield. To compare our results we first review the ad-
hoc discretization strategy of Mayfield applied to the heat equation (2.4a). According
to the approach of Mayfield [22] for the Schrödinger equation, one way to discretize
the analytic TBC (3.4), at x = a, in the equivalent form

v(a, τ) =
1√
π

∫ τ

0

vx(a, ξ)√
τ − ξ

dξ (4.2)

is

∫ τn

0

vx(a, τn − ξ)√
ξ

dξ ≈ 1

∆x

n−1∑

m=0

(v
(n−m)
1 − v

(n−m)
0 )

∫ τm+1

τm

dξ√
ξ

=
2
√

∆τ

∆x

n−1∑

m=0

(v
(n−m)
1 − v

(n−m)
0 )√

m + 1 +
√

m
.

This approach leads to the following discretized TBC for the heat equation:

v
(n)
1 − v

(n)
0 =

√
π∆x

2
√

∆τ
v
(n)
0 −

n−1∑

m=1

ℓ̃(m)
(
v
(n−m)
1 − v

(n−m)
0

)
, (4.3)

with the convolution coefficients given by

ℓ̃(m) =
1√

m + 1 +
√

m
. (4.4)
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Discretized TBC of Han and Wu. Recently a very similar discretization
strategy was introduced in [16]. The authors discretized the analytic TBC (3.4) in
the following way

∫ τn

0

vτ (a, ξ)√
τn − ξ

dξ ≈
n−1∑

m=0

vτ (a, ξm)

∫ τm+1

τm

dξ√
τn − ξ

= 2∆τ
n−1∑

m=0

vτ (a, ξm)√
τn − τm+1 +

√
τn − τm

.

This approach leads to the condition

v
(n)
1 − v

(n)
−1 =

4√
π

1√
ρ

n∑

m=1

v
(m)
0 − v

(m−1)
0√

n − m +
√

n − m + 1
. (4.5)

By applying a purely implicit scheme to the heat equation at the artificial boundary
x0 = a, i.e.

v
(n)
0 − v

(n−1)
0 = ρ

(
v
(n)
1 − 2v

(n)
0 + v

(n)
−1

)
,

one can eliminate the fictitious value v
(n)
−1 in (4.5) to obtain the discretized TBC of

Han and Wu [16]:

(1 + 2ρ + B) v
(n)
0 − 2ρ v

(n)
1 = (1 + B) v

(n−1)
0 − B

n−1∑

m=1

ℓ̃(n−m)
(
v
(m)
0 − v

(m−1)
0

)
, (4.6)

with the abbreviation B = 4
√

ρ/
√

π and the convolution coefficients given in (4.4).
On the fully discrete level the discretized TBCs like (4.3), (4.6) are not exactly

transparent any more and can lead to an unstable numerical scheme. This was proven
for a discretized TBC of the form (4.3) by Mayfield [22] in the case of the Schrödinger
equation.

The discrete transparent boundary condition. In order to avoid any nu-
merical reflections at the artificial boundary and to ensure unconditional stability of
the resulting scheme we will construct in the next subsection a discrete TBC instead
of choosing an ad–hoc discretization of the analytic TBC (3.4) like Mayfields approach
[22] or the approach of Han and Wu [16]. The discrete TBC completely avoids any
numerical reflections at the boundary at no additional computational costs (compared
to ad–hoc discretization strategies like (4.3), (4.6)).

4.2. Derivation of the DTBC. We mimic the derivation from §3 on a purely
discrete level: we obtain the DTBC by solving the discrete exterior problem, i.e. (4.1)
for j ≤ 1.

We apply for j fixed the Z–transformation:

Z{v(n)
j } = v̂j(z) :=

∞∑

n=0

v
(n)
j z−n, |z| > Rv̂j

,

(Rv̂j
denotes the convergence radius of the Laurent series) to solve (4.1) for j ≤ 1

explicitly. Again we assume for the initial data, v
(0)
j = 0, j ≤ 1 and obtain the

transformed exterior scheme

2

ρ

z − 1

z + 1
v̂j(z) = v̂j+1 − 2v̂j + v̂j−1, j ≤ 1. (4.7)
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The two linearly independent solutions of the resulting second order difference equa-
tion (4.7) take the form

v̂j(z) = (ν1,2)
j+1(z), j ≤ 1,

where ν1,2(z) are the solutions of the quadratic equation

ν2 − 2
[
1 +

1

ρ

z − 1

z + 1

]
ν + 1 = 0.

Since we are seeking decreasing modes as j → −∞ we have to require |ν1| > 1 and
obtain the Z–transformed discrete TBC as

v̂1(z) = ν1(z) v̂0(z). (4.8)

It only remains to calculate the inverse Z–transform of ν1(z) to obtain the discrete
TBC from (4.8). In a tedious calculation this can be performed explicitly (cf. [11])
and the discrete TBC becomes:

v
(n)
1 = ℓ(n) ∗ v

(n)
0 =

n∑

k=1

ℓ(n−k)v
(k)
0 , n ≥ 1, (4.9)

with convolution coefficients ℓ(n) given in [11]. Since the asymptotical behaviour
ℓ(n) ∼ 4(−1)n/ρ of the convolution coefficients may lead to subtractive cancellation
in (4.9) we prefer to use the following summed coefficients in the implementation

s(n) := ℓ(n) + ℓ(n−1), n ≥ 1, s(0) := ℓ(0). (4.10)

The DTBC then reads

v
(n)
1 − s(0)v

(n)
0 =

n−1∑

k=1

s(n−k)v
(k)
0 − v

(n−1)
1 , n ≥ 1, (4.11)

with the convolution coefficients

s(0) = 1 +
1 +

√
1 + 2ρ

ρ
, s(1) = 1 − 1

ρ
− 1

ρ
√

1 + 2ρ
,

s(n) = −
√

1 + 2ρ

ρ

P̃n(µ) − λ−2P̃n−2(µ)

2n − 1
, n ≥ 2,

(4.12)

where P̃n(µ) := λ−nPn(µ) denotes the “damped” Legendre polynomials (P̃0 ≡ λ−1,

P̃−1 ≡ 0). The parameters λ, µ are given by

λ =

√
1 + 2ρ

+
√

1 − 2ρ
, µ =

1√
1 + 2ρ +

√
1 − 2ρ

.

Alternatively, the convolution coefficients can be computed by the recursion formula

s(n+1) =
2n − 1

n + 1
µλ−1s(n) − n − 2

n + 1
λ−2s(n−1), n ≥ 2, (4.13)

which can be used after calculating s(n), n = 0, 1, 2 by the formula (4.12).
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Fig. 4.1. Convolution coefficients s(n) (4.12) (left axis, dashed line) and error |s(n) − s̃(n)| of
the approximated convolution coefficients (5.1) (right axis, solid line); ρ = 1, L = 20.

In Fig. 4.1 the values of the summed coefficients s(n) are presented in a logarithmic
plot. One clearly observes their rapid decay property s(n) = O(n−3/2) [11] which
motivates a simplified discrete TBC by restricting (4.11) to a convolution over the
“recent past” (last M time levels):

v
(n)
1 − s(0)v

(n)
0 =

n−1∑

k=n−M

s(n−k)v
(k)
0 − v

(n−1)
1 , n ≥ 1, (4.14)

We note that the stability of the resulting scheme is still not proven yet.

For a concise discussion of several discretization strategies of analytic TBCs, the
derivation of the DTBC for a class of difference schemes for a general convection
diffusion equation and a stability proof of the recursion formula (4.13) we refer to
[11].

5. Approximation by Sums of Exponentials. An ad-hoc implementation
of the discrete convolution (4.11), with convolution coefficients s(n) from (4.12), has
still one disadvantage. The boundary condition is non–local in time and therefore
computationally expensive. In fact, the evaluation of (4.11) is as expensive as for the
discretized TBCs (4.3), (4.6). As a remedy, we proposed in [3] the sum-of-exponentials
ansatz. In the work to come, we briefly review this approach.

In order to derive a fast numerical method to calculate the discrete convolution
in (4.11), we approximate the coefficients s(n) by the following (sum of exponentials):

s(n) ≈ s̃(n) :=





s(n), n = 0, 1
L∑

l=1

bl q−n
l , n = 2, 3, . . . ,

(5.1)
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where L ∈ N is a fixed number. Note that the approximation properties of s̃(n) depend
on L, and the corresponding set {bl, ql}. Below we propose a deterministic method of
finding {bl, ql} for fixed L.

The “split” definition of {s̃(n)} in (5.1) is motivated by the different nature of the
first two coefficients in (4.12). Including them into the discrete sum-of-exponential
would then yield less accurate approximation results.

Let us fix L and consider the formal power series:

f(x) := s(2) + s(3)x + s(4)x2 + . . . , |x| ≤ 1. (5.2)

If there exists the [L − 1|L] Padé approximation

f̃(x) :=
PL−1(x)

QL(x)

of (5.2), then its Taylor series

f̃(x) = s̃(2) + s̃(3)x + s̃(4)x2 + . . .

satisfies the conditions

s̃(n) = s(n), n = 2, 3, . . . , 2L + 1, (5.3)

due to the definition of the Padé approximation rule.
Theorem 5.1 ([3]). Let QL(x) have L simple roots ql with |ql| > 1, l =

1, . . . , L. Then

s̃(n) =

L∑

l=1

bl q−n
l , n = 2, 3, . . . , (5.4)

where

bl := −PL−1(ql)

Q′
L(ql)

ql 6= 0, l = 1, . . . , L. (5.5)

It follows from (5.3) and (5.4) that the set {bl, ql} defined in Theorem 5.1 can be
used in (5.1) at least for n = 2, 3, .., 2L+1. The main question now is: Is it possible to
use these {bl, ql} also for n > 2L + 1? In other words, how good is the approximation

s̃(n) ≈ s(n), n > 2L + 1.

The above analysis permits us to give the following description of the approxima-
tion to the convolution coefficients s(n) by the representation (5.1) if we use a [L−1|L]
Padé approximant for (5.2): the first 2L coefficients are reproduced exactly, see (5.3);
however, the asymptotic behaviour of s(n) and s̃(n) (as n → ∞) differs strongly (alge-
braic versus exponential decay). A typical graph of |s(n) − s̃(n)| versus n for L = 20
is shown in Fig. 4.1.

So far we have discussed how to calculate and approximate the DTBC for one fixed
discretization. However, a nice property of this approach consists of the following:
once the approximate convolution coefficients {s̃(n)} are calculated for a particular
mesh ratio ρ, it is easy to transform them into appropriate coefficients for any mesh
ratio ρ∗.
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Theorem 5.2 ([3]). Let a rational function

ˆ̃s(z) := s(0) +
s(1)

z
+

L∑

l=1

bl

qlz − 1
(5.6)

approximate the Z-transform of the convolution kernel {s(n)}∞n=0 corresponding to a
DTBC for the equation (4.1) with a given mesh ratio ρ (ˆ̃s is the Z-transform of {s̃(n)}
from (5.1)). Then, for another mesh ratio ρ⋆, one can take the approximation

ˆ̃s⋆(z) := s
(0)
⋆ +

s
(1)
⋆

z
+

L∑

l=1

b⋆
l

q⋆
l z − 1

, (5.7)

where

s
(0)
⋆ := ˆ̃s(a/b) (:= s(0) if b = 0),

b⋆
l := blql

a2 − b2

(a − qlb)(qla − b)

1 + q⋆
l

1 + ql
, q⋆

l :=
qla − b

a − qlb
, (5.8)

a := (
1

ρ
+

1

ρ⋆
), b := (

1

ρ
− 1

ρ⋆
).

While the Padé–algorithm provides a method to calculate approximate convo-
lution coefficients s̃(n) for a fixed mesh ratio ρ, this transformation rule yields the
natural link between different mesh ratios ρ⋆ (and L fixed).

Example. For L = 20 we calculated the coefficients {bl, ql} with the mesh ratio
ρ = 1 and then used the Transformation rule 5.2 to calculate the coefficients {b∗l , q∗l }
for the mesh ratio ρ⋆ = 0.8. Fig. 5.1 shows that the resulting convolution coefficients

s̃
(n)
∗ are in this example even better approximations to the exact coefficients s(n) than

the coefficients s̃(n), which are obtained directly from the Padé algorithm discussed
in Theorem 5.1. Hence, the numerical solution of the corresponding heat equation is
also more accurate.

5.1. Fast Evaluation of the Discrete Convolution.. Let us consider the
approximation (5.1) of the discrete convolution kernel appearing in the DTBC (4.11).
With these “exponential” coefficients the convolution

C(n) :=
n−1∑

m=1

s̃(n−m)v
(m)
0 , s̃(n) =

L∑

l=1

bl q−n
l , (5.9)

where |ql| > 1, of a discrete function v
(m)
0 , m = 1, 2, . . . , with the kernel coefficients

s̃(n), can be calculated by recurrence formulas, and this will reduce the numerical
effort significantly.

A straightforward calculation (cf. [3]) yields: The value C(n), from (5.9) for n ≥ 2,
can be represented by

C(n) =

L∑

l=1

C
(n)
l , (5.10)
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Fig. 5.1. Approximation error of the approximate convolution coefficients for ρ = 0.8: The

error of s̃
(n)
∗ (- - -) obtained from the transformation rule and the error of s̃(n) (—) obtained from

a direct Padé approximation of the exact coefficients s(n).

where

C
(1)
l ≡ 0,

C
(n)
l = q−1

l C
(n−1)
l + bl q−1

l v
(n−1)
0 , n = 2, 3, . . . , l = 1, . . . , L. (5.11)

In summary we now list the steps of the proposed method to evaluate an approx-
imate DTBC:

1. Prescribe L in (5.1), take ρ = 1, and calculate s(n), n = 0, . . . , 2L + 1, by
formula (4.12).

2. Use the [L − 1|L]–Padé algorithm for the series (5.2) with s̃(n) := s(n), n =
2, 3, . . . , 2L + 1 in order to find {bl, ql} for (5.1) in accordance with Theorem 5.1.
The steps 1. and 2. are made once and for all; see Appendix with the table of coeffi-
cients for L = 5, 10.

3. For given ratio ρ⋆, use formulas (5.8), with ρ = 1 and {bl, ql} from step 2,
for the calculation of {b⋆

l , q
⋆
l }.

4. Implement the recurrence formulas (5.10)–(5.11) to calculate the approxi-

mate convolutions in (4.11). The coefficients s
(0)
∗ , s

(1)
∗ have to be calculated by use of

(4.12).

We remark that the Padé approximation must be performed with high precision
(2L−1 digits mantissa length) to avoid a ‘nearly breakdown’ by ill conditioned steps in
the Lanczos algorithm. If such problems still occur or if one root of the denominator
is smaller than 1 in absolute value, the orders of the numerator and denominator
polynomials are successively reduced.
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6. Numerical treatment of the free boundary. In this section we shall
describe briefly how to treat numerically the free boundary xf (τ ) in (2.4). For more
details on the optimal exercise time we refer the reader to [4].

Up to now no exact analytical formula for the free boundary profile xf (τ ) in (2.4)
is known but several authors derived approximate expressions for valuing American
call and put options, e.g. [14]. Recently, in a promising approach [28], Ševčovič ob-
tained a semi–explicit formula for an American call in the case r > D0. By transform-
ing (2.1) to a nonlinear parabolic equation on a fixed domain and applying Fourier sine
and cosine transformations he derived a nonlinear singular integral equation deter-
mining the shape of the free boundary. This integral equation can be solved effectively
by means of successive iterations.

However, since the Black–Scholes equation (2.1a) couples V (S, t) to Sf (t) we
prefer to determine the option value numerically in connection with the free boundary.
To do this, many different numerical methods are developed, e.g. the standard method
consists in the reformulation to a linear complementary problem and solution by the
projected SOR method of Cryer [9]. Alternatively, penalty and front–fixing methods
were developed (e.g. in [13], [25]). A disadvantage of these methods is the change of
the underlying model. A different approach [17] is based on a recursive calculation of
the early exercise boundary, estimating the boundary only at some points and then
approximating the whole boundary by Richardson extrapolation. Explicit boundary
tracking algorithms are e.g. a finite difference bisection scheme [21] or the front–
tracking strategy of Han and Wu [16]. In this work we will use the later approach of
Han and Wu, which will be described now briefly.

In [16] the authors applied the strong maximum principle for parabolic equations

to the Black–Scholes equation for the derivative ṼS and the equation (2.2a) extended
to the time–independent domain S > 0 (which is known in the literature as the
Jamshidian equation [18]). The outcome is a very useful inequality [16, Eq. (30] for
the numerical determination of the location of the free boundary xf (τ ): for a given τ
the free boundary is the only point that fulfils both the equation (2.4a) and the high
contact condition VS(S, t) = 1, i.e. (2.4e). If the boundary condition v(x, τ) = g(x, τ)
is posed at some point x > xf (τ ) then v(x, τ) < g(x, τ) will occur for some x < xf (τ ).
To solve the Crank–Nicolson scheme (4.1) Han and Wu used the common Thomas
algorithm [31] for the arising tridiagonal system. Once the boundary condition

v
(n+1)
J+1 = g

(n+1)
J+1 , (6.1)

with g
(n)
J = g(xJ , τn), is given at some grid point xJ+1 then the backward sweep of

the Thomas algorithm calculates the solution v
(n+1)
j for all 0 ≤ j ≤ J . The index J

is simply the largest index such that

v
(n+1)
J ≥ g

(n+1)
J (6.2)

holds.

Remark. For the American call (in contrast to the American put) it is possible
to derive a series for the location of the optimal exercise boundary close to expiry using
standard asymptotic analysis (cf. [2], [32]). This local analysis of the free boundary
Sf (t) yields

Sf (t) ∼ Sf (T )

(
1 + ξ0

√
1

2
σ2(T − t) + . . .

)
, as t → T, (6.3)
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where ξ0 = 0.9034 . . . is a ’universal’ constant of call option pricing. Equation (6.3)
can be rewritten as

xf (τ ) ∼ ln

[
Sf (T )

E

(
1 + ξ0

√
τ + . . .

)]
, as τ → 0. (6.4)

With only a very few terms one gets a fairly accurate result and thus (6.4) will
serve us as a check of the above mentioned tracking strategy of Han and Wu. Note
that this result is especially useful in the first time levels of a numerical calculation
where rapid changes in xf (τ ) influence the whole solution region.

7. Stability analysis of the artificial boundary condition. Here we analyze
the stability of the Crank–Nicolson scheme (4.1) along with the DTBC (4.11) or its
approximated version. Since we will focus on the fact that the (approximated) DTBC
does not destroy the unconditional stability of the underlying finite difference scheme,
we consider the following problem on the half–space j ≥ 0:





v
(n+1)
j − v

(n)
j = ρ

(
v
(n+1/2)
j+1 − 2v

(n+1/2)
j + v

(n+1/2)
j−1

)
, j ≥ 1,

v
(0)
j = g(xj , 0), j = 0, 1, 2, . . .

with v
(0)
0 = v

(0)
1 = 0,

v̂1(z) = ℓ̂(z)v̂0(z),

(7.1)

where the transformed boundary kernel ℓ̂(z) = ν1(z) is given by (4.8). In the sequel
we want to bound the exponential growth of solutions to the numerical scheme (7.1)
for a fixed mesh ratio. We will prove an estimate of the discrete solution to (7.1) in
the discrete ℓ2–norm:

‖v(n)‖2
2 := ∆x

∞∑

j=1

|v(n)
j |2. (7.2)

Theorem 7.1 (Growth condition). Let the transformed boundary kernel ℓ̂ satisfy

Re ℓ̂(βeiϕ) ≥ 1, ∀ 0 ≤ ϕ ≤ 2π, (7.3)

for some (sufficiently large) β ≥ 1. Assume also that ℓ̂(z) is analytic for |z| ≥ β.
Then, the solution of (7.1) satisfies the a-priori estimate in the discrete ℓ2–norm:

‖v(n+1)‖2 ≤ βn
(
‖v(0)‖2 +

√
(β − 1)ρ

2
‖∆−v(0)‖2

)
, n ∈ N0. (7.4)

Proof. The proof is based on a discrete energy estimate for the new variable

u
(n)
j := v

(n)
j β−n,

which fulfills

β−n
(
v
(n+1)
j ± v

(n)
j

)
= u

(n+1)
j ± u

(n)
j + (β − 1)u

(n+1)
j ,

and therefore satisfies

u
(n+1)
j − u

(n)
j = ρ

(
u

(n+1/2)
j+1 − 2u

(n+1/2)
j + u

(n+1/2)
j−1

)
(7.5a)

+ (β − 1)
[ρ
2

(
u

(n+1)
j+1 − 2u

(n+1)
j + u

(n+1)
j−1

)
− u

(n+1)
j

]
, j ≥ 1

u
(0)
j = v

(0)
j , j = 0, 1, 2 . . . , (7.5b)

∆+û0(z) = (ℓ̂(βz) − 1) û0(z). (7.5c)
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The transformed discrete TBC (7.5c) can be written in physical space as

∆+u
(n)
0 =

ℓ̃(n)

βn
∗ u

(n)
0 =

n∑

m=0

(
ℓ̃(n−m) βm−n

)
u

(m)
0 ,

where ℓ̃(n) := ℓ(n) − δ0
n is given in (4.9) and ∆+u

(n)
0 = u

(n)
1 − u

(n)
0 denotes the usual

forward difference. First we multiply (7.5a) by u
(n)
j /β and then by u

(n+1)
j :

u
(n)
j

(
u

(n+1)
j − u

(n)
j

)
= ρu

(n)
j

(
u

(n+1/2)
j+1 − 2u

(n+1/2)
j + u

(n+1/2)
j−1

)

− β−1(β − 1)u
(n)
j

[ρ
2

(
u

(n)
j+1 − 2u

(n)
j + u

(n)
j−1

)
+ u

(n)
j

]
,

(7.6a)

u
(n+1)
j

(
u

(n+1)
j − u

(n)
j

)
= ρu

(n+1)
j

(
u

(n+1/2)
j+1 − 2u

(n+1/2)
j + u

(n+1/2)
j−1

)

+ (β − 1)u
(n+1)
j

[ρ
2

(
u

(n+1)
j+1 − 2u

(n+1)
j + u

(n+1)
j−1

)
− u

(n+1)
j

]
.

(7.6b)

Note that we used equation (7.5a) to modify the last term of (7.6a). Next we add
(7.6a) and (7.6b), sum it up for the range j = 1, 2, . . . and obtain using the summation
by parts rule:

∞∑

j=1

[
(u

(n+1)
j )2 − (u

(n)
j )2

]
= −2ρ

∞∑

j=1

(∆−u
(n+1/2)
j )2

− (β − 1)
ρ

2

∞∑

j=1

(∆−u
(n+1)
j )2 +

β − 1

β

ρ

2

∞∑

j=1

(∆−u
(n)
j )2

− (β − 1)

∞∑

j=1

(u
(n+1)
j )2 − β − 1

β

∞∑

j=1

(u
(n)
j )2

− ρ

2β
(u

(n)
0 + βu

(n+1)
0 )∆+(u

(n)
0 + βu

(n+1)
0 ),

(7.7)

where ∆−u
(n)
j = u

(n)
j − u

(n)
j−1 denotes the backward difference. Now summing (7.7)

from time level n = 0 to n = N yields:

β‖u(N+1)‖2
2 = β−1‖u(0)‖2

2 −
(β2 − 1)

β

N∑

n=1

‖u(n)‖2
2

− 2ρ

N∑

n=0

‖∆−u(n+1/2)‖2
2 −

(β − 1)2

β

ρ

2

N∑

n=1

‖∆−u(n)‖2
2

+
(β − 1)

β

ρ

2
‖∆−u(0)‖2

2 − (β − 1)
ρ

2
‖∆−u(N+1)‖2

2

− ρ

2β

N∑

n=0

(u
(n)
0 + βu

(n+1)
0 )∆+(u

(n)
0 + βu

(n+1)
0 ).

(7.8)
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Noting that β ≥ 1, we obtain from (7.8) the following estimate:

‖u(N+1)‖2
2 ≤ β−2‖u(0)‖2

2 +
(β − 1)

β2

ρ

2
‖∆−u(0)‖2

2

− ρ

2β2

N∑

n=0

(u
(n)
0 + βu

(n+1)
0 )∆+(u

(n)
0 + βu

(n+1)
0 ).

(7.9)

It remains to show that the boundary–memory–term in (7.9) is of positive type. To
this end we define (for N fixed) the two sequences,

g(n) :=

{
u

(n)
0 + βu

(n+1)
0 , n = 0, . . . , N,

0, n > N,

f (n) :=
ℓ̃(n)

βn
∗ g(n) =

n∑

m=0

ℓ̃(n−m)

βn−m
g(m), n ∈ N0,

i.e.
∑N

n=0 f (n) g(n) ≥ 0 is to show. The Z–transform Z{f (n)} = f̂(z) is analytic for

|z| > 0, since it is a finite sum. The Z–transform Z{f (n)} then satisfies f̂(z) =

(ℓ̂(βz) − 1)ĝ(z) and is analytic for |z| ≥ 1. Using Plancherel’s Theorem for Z–
transforms we have

N∑

n=0

f (n)g(n) =
1

2π

∫ 2π

0

f̂(eiϕ)ĝ(eiϕ) dϕ =
1

π

∫ π

0

Re
{
f̂(eiϕ) ĝ(eiϕ)

}
dϕ

=
1

π

∫ π

0

|ĝ(eiϕ)|2
(
Re
{
ℓ̂(βeiϕ)

}
− 1
)
dϕ,

(7.10)

where we have used the fact that f̂(z̄) = f̂(z), ĝ(z̄) = ĝ(z), since fn, gn ∈ R. Using
(7.10) for the boundary term in (7.9) now gives:

‖u(N+1)‖2
2 ≤ β−2‖u(0)‖2

2 +
(β − 1)

β2

ρ

2
‖∆−u(0)‖2

2

− ρ

2πβ2

∫ π

0

|(1 + βeiϕ)û0(e
iϕ)|2

(
Re
{
ℓ̂(βeiϕ)

}
− 1
)
dϕ.

Our assumption on ℓ̂ therefore implies

‖u(N+1)‖2 ≤ β−1‖u(0)‖2 +

√
β − 1

β

√
ρ

2
‖∆−u(0)‖2, ∀N ≥ 0,

and the result of the theorem follows.

Example: The exact DTBC. For the case of the exact discrete DTBC the
assumption of Theorem 7.1 can easily be checked: This property of ℓ̂ can be shown
for β = 1 in the following way. On the unit circle z = eiϕ, 0 ≤ ϕ ≤ 2π, we have

y(z) :=
1

ρ

(z − 1

z + 1

)
=

1

ρ

(
i tan

ϕ

2

)
, 0 ≤ ϕ ≤ 2π.

Therefore we obtain the requested property

Re {ℓ̂(z)} = 1 + Re
{

+

√
y(z)

(
2 + y(z)

)}
≥ 1,

for z = eiϕ, 0 ≤ ϕ ≤ 2π, i.e. for the exact discrete TBC we have the estimate

‖v(n)‖2 ≤ ‖v(0)‖2, n ∈ N. (7.11)
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Remark. Above we have assumed that the Z–transformed boundary kernel ℓ̂(z)
is analytic for |z| ≥ β. Hence its real part is a harmonic function there. Since the

average of ℓ̂(z) on the circles z = βeiϕ equals ℓ(0) = ℓ̂(z = ∞), condition (7.3) implies

Re ℓ̂(z = ∞) ≥ 1. Then we have the following simple consequence of the maximum
principle for the Laplace equation:

If condition (7.3) holds for some β0, it also holds for all β > β0.

8. Numerical examples. In this section we consider the two examples of Amer-
ican call options from [8], which were also used in [16]. We compare the numerical
result from using our new (approximated) discrete TBC to the solution using the
discretized TBC (4.3) or (4.6) and use the explicit free boundary treatment from [16]
described in §6. Since the method of [16] turned out to be superior to the projected
SOR method with asymptotic boundary conditions we will compare our results only
to the method of Han and Wu. In the sequel the dimension of time is year and
dimension of value is US dollar.

8.1. Example 1. We consider an American call with an expiry of T = 0.5 years
and a dividend yield D0 = 0.03. The risk–free interest rate is r = 0.03, the volatility
is σ = 40% p.a. and the exercise price is E = $100. We choose a mesh ratio ρ = 1
and computed N = 400 time steps with different artificial boundary conditions at the
left boundary a = x0 = −1.0 which corresponds to an asset price S = Eea ≈ 36.79.
Fig. 8.1 shows the option values V (S, 0) calculated with the exact discrete TBC (4.11).
We recall the fact that all option values for x < a can be calculated using (3.5) at the

final time τ = T̃ , i.e. at t = 0.
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Fig. 8.1. Option values V at time t = 0 (i.e. at τ = eT ).

An upper bound of the free boundary xf (τ ) was calculated by (2.5) as x∗
f = 1.5.

However the largest value of xf (τ ) is much smaller; it is about 0.62. The time evolution
of the nondecreasing free boundary xf (τ ) is plotted in Fig. 8.2.
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Fig. 8.2. Time evolution of the free boundary xf (τ) (the largest value of xf (τ) is about 0.62)

Next we want to investigate the stability of the scheme using the approximated
discrete TBC (5.1) with L = 20 exponentials. Thus we have to check numerically the
growth condition (7.3) needed for stability. It turned out that (7.3) is fulfilled for all

β ≥ 1.42. In Fig. 8.3 the real part of the transformed kernel ˆ̃ℓ(z) of the approximated
DTBC on the circle z = β eiϕ with β = −1.42 is presented.
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Fig. 8.3. Growth condition Re
ˆ̃
ℓ(z = β eiϕ) ≥ 1 for the approximated discrete transparent

boundary condition of §5 with L = 20. The stability condition (7.3) is satisfied for all β ≥ 1.42
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Finally we want to compare the error when using the different artificial bound-
ary conditions described previously. Since the discrete TBC (4.11) yields the exact
numerical solution to the discrete problem (4.1) (up to round–off errors), we will take
this solution as a reference solution vref . In order to make the induced errors more
apparent we reduce the computational domain using a = −0.2 (which corresponds

to an asset price S = Eea ≈ 81.87). We plot in Fig. 8.4 the errors ‖v(n) − v
(n)
ref‖2

2

measured in the discrete ℓ2–norm (cf. (7.2)) on the computational interval.
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Fig. 8.4. Error ‖v(n) − v
(n)
ref

‖2
2 for different artificial boundary conditions.

The discretized TBC of Han & Wu (4.6) induced a smaller error than the dis-
cretized TBC of Mayfield (4.3) and the approximated discrete TBC (5.1) with L = 10.
However, increasing the number of exponentials to L = 20 the approximated discrete
TBC outperforms all other boundary conditions in this comparison.

In the second example we will consider a longer expiry time which is a more
challenging task for the artificial boundary conditions.

8.2. Example 2. Now the parameters are expiry T = 3 years, risk–free interest
rate r = 0.03, dividend yield D0 = 0.07, volatility σ = 40% p.a., exercise price
E = $100, number of time steps N = 400 and mesh ratio ρ = 1. Fig. 8.5 shows the
option values V (S, 0) calculated with the exact discrete TBC (4.11) and a = −1.0.

Here the upper bound of the free boundary xf (τ ) was calculated to be x∗
f = 0.8722

and the largest value of xf (τ ) is about 0.71. Thus the estimate (2.5) is quite good in
this example. In Fig. 8.6 the time evolution of the free boundary xf (τ ) is plotted.

As in the previous example we compare the error when using the different artificial
boundary conditions and shrink the domain using a = −0.2 to make the differences

in the approaches more visible. The resulting errors ‖v(n) − v
(n)
ref‖2

2 in the discrete

ℓ2–norm are shown in Fig. 8.7. The results are comparable to the ones of Example 1
(cf. Fig. 8.4). The discretized TBC of Han & Wu (4.6) yielded more accurate results
than the discretized TBC of Mayfield (4.3) and the approximated DTBC (5.1) with
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Fig. 8.5. Option values V at time t = 0 (i.e. at τ = eT ).
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Fig. 8.6. Time evolution of the free boundary xf (τ) (the largest value of xf (τ) is about 0.71)

L = 10. But again the approximated DTBC with L = 20 exponentials turned out to
be the best in this example. Note that the accuracy of the approximated DTBCs can
be easily improved by increasing the parameter L in (5.1).

9. Conclusions and Outlook. In this paper we have derived an exact discrete
artificial boundary condition for the Crank–Nicolson scheme for solving the Black–
Scholes equation for the pricing of American options.
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2 for different artificial boundary conditions.

To reduce the numerical effort we introduced a sum–of–exponentials approxi-
mation that leads to an artificial boundary condition that can be evaluated very
efficiently. To ensure stability we proved a simple criteria and showed that it held
for the exact artificial boundary condition. In the numerical examples all considered
artificial boundary conditions yielded satisfactory results. However, the introduced
approximated discrete TBC is faster (it does not increase the order of complexity of
the interior scheme) and more accurate than existing discretized TBCs. Moreover its
stability can be checked numerically in advance.

In this work we focused on standard options (known as plain–vanilla options) of
American type. However, future work will deal with extensions: forward and future
contracts, options on futures, general pay–off functions (e.g. ‘cash–or–nothing call’)
with transaction costs and instalment options. Also, we will derive our DTBC for
the Crandall–Douglas Scheme [23] which is fourth-order accurate in ‘space’ (i.e. asset
price).

Appendix A. In the following table we list the coefficients {ql, bl} of the sum–
of–exponentials boundary condition with the convolution kernel (5.1) for the cases
L = 5, and L = 10 with the “normalized” mesh ratio ρ = 1.

The coefficients b∗l , q
∗
l for another mesh ratio ρ∗ can then be obtained from the

explicit formulas in the Transformation rule 5.2. A Maple Code that was used to to
calculate the coefficients ql, bl in the approximation (5.1) can be downloaded from the
first author’s homepage: www.math.tu-berlin.de/˜ehrhardt/.
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ql bl

-4.1208652177 -.27811124956
1.0967679400 -.18959940485e-1

L=5 1.4922001539 -.10590997564
2.9552027966 -.55958332115
248.92225574 -3015.7838647
-9.9136756987937 -1.9875713184493
-4.4195037755990 -.20293132298409
-3.2680718769142 -.30208445829485e-1
1.0274687817901 -.28888450814493e-2
1.1170922091207 -.12593213109395e-1

L=10 1.2954421237783 -.33173856847540e-1
1.6304865463006 -.76395446779077e-1
2.3151684017807 -.18317560643301
4.1269461454773 -.58495741977923
16.738352410466 -8.1688546950878
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