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Abstract

We prove an optimal regularity result in the two dimensional theory of
soft ferromagnetic films. The associate Euler-Lagrange equation is given by
a microlocally degenerate variational inequality involving fractional deriva-
tives. A difference quotient type argument based on a dual formulation in
terms of magnetostatic potentials yields a Hölder estimate for the uniquely
determined gradient projection of the magnetization field.

1 Introduction

We prove an optimal regularity result in the two dimensional theory of soft fer-
romagnetic films. Soft means that the crystalline anisotropy is negligible in the
micromagnetic energy. Recently, a thin film model was derived by A. DeSimone,
R.V. Kohn, S. Müller, and F. Otto, see [7]. The variational principle emerged
as the Γ-limit on the scale of the square of the film thickness. It consists in the
competition of the limiting magnetostatic energy, the alignment with the external
field, and a relaxed saturation constraint:

E(m) =
1

4

∥∥H(m)
∥∥2

Ḣ1/2 −
∫

Ω

h ·m→ min (1.1)

m : Ω ⊂ R2 → R2 with |m| ≤ 1 and H(m) ∈ H1/2(R2; R2),

whereH(m) denotes the two-dimensional Helmholtz projection on gradients (here
m = mχΩ : R2 → R2 is understood to be trivially extended) and ‖f‖2

Ḣ1/2 =∫
|ξ| |f̂(ξ)|2 dξ is given by the homogeneous semi-norm on the fractional Sobolev

spaceH1/2(R2). Note that the magnetostatic interaction term can equivalently by
written as ‖H(m)‖2

Ḣ1/2 = ‖∇′ ·m‖2
Ḣ−1/2 . Thus, the main feature of this variational

principle is that for a gradient field h : R2 → R2, the energy only depends on the
magnetization m via the distributional charge density ρ = ∇′ ·m : R2 → R, and it
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is strictly convex in ρ. Moreover the saturation constraint is relaxed to the convex
constraint |m| ≤ 1. The set of planar magnetization fields {|m| ≤ 1 in Ω} with
prescribed magnetic charge density is large. We can add a gauge, i.e. a rotated
gradient ∇⊥ψ with ψ|∂Ω = 0, which leaves the charge density unchanged, i.e.
E(m + ∇⊥ψ) = E(m). Indeed, given a minimizer m0 of (1.1), one is mainly
interested in restoring saturation, which leads to the following Hamilton-Jacobi
equation ∣∣∇′ψ +m⊥

0

∣∣ = 1 in Ω and ψ = 0 on ∂Ω. (1.2)

Clearly the solution of this (fully nonlinear) first order equation will give rise to
the singular domain structure, that one would expect, cf, [10]. The solvability of
the Dirichlet problem (1.2) highly depends on the regularity of the data, i.e. the
regularity of the variational solution m0. Indeed finding a continuous represen-
tative m0, we can solve (1.2) in the sense of viscosity solutions, see e.g. [3].
From the variational principle (1.1), however, we only expect improved regular-
ity for the uniquely determined gradient portion H(m0). of m0. Accordingly, we
show

Theorem. The uniquely determined gradient part H(m0) of a minimizer m0

of the reduced thin film variational principle (1.1) corresponding to a smooth
gradient field h = −∇′H is locally Hölder continuous with Hölder exponent α =
1/2.

A similar regularity result was achieved in [7] section 5 and covers crystalline
anisotropy as well. The argument, however, is a global one and restricted to
simply connected domains. Our argument relies on a dual formulation of (1.1) in
terms of a magnetostatic potential u : R3 → R correlated via a minimax principle

1

2

∫
R3

|∇u|2 dx+

∫
Ω

|∇′u− h| dx′ → min for u ∈ D1,2(R3) (1.3)

The trace of the magnetostatic potential u is in turn correlated with H(m) by
the vectorial Riesz transform, i.e. u(·, 0) = R ·m = R ·H(m). Thus we can infer
continuity for H(m0) from the dual problem by proving higher regularity of the
associated magnetostatic potential u0.
The advantage of the dual formulation (1.3) is that the variational principle is
strictly convex, entirely local, and does not involve any constraint. Nonetheless
we have to take into account that the functional of the dual problem is no longer
Fréchet differentiable. Hence, to proceed with a difference quotient method, the
functional has to be regularized, but finally we can conclude the desired estimates
by a soft Γ-convergence argument.
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2 A reduced model in thin film micromagnetics

Notation

We denote by x′ ∈ Ω ⊂ R2 the tangential components of a position vector
x = (x′, x3) ∈ Ω×R. We will also attach a prime to differential operators acting
on functions defined on R2, e.g. ∇′ =

(
∂

∂x1
, ∂

∂x2

)
or ∆′ = ∂2

∂x2
1

+ ∂2

∂x2
2
.

Since we mainly consider tangential vector fields m : Ω → R2 we deviate from
the notation in [7], where a prime is attached to tangential vector fields. Instead,
we signify a three-dimensional vector field by a fat letter m.

2.1 The thin film variational principle

We shortly review the main setup for the thin film variational principle, that
we are going to consider. For general information on micromagnetic models and
their mathematical treatment, we refer to the monograph [10] and the survey [6].
For the rigorous discussion of the underlying Γ-convergence result we refer to [7].
For a bounded base domain Ω ⊂ R2 of unit area and a thickness parameter t > 0,
let a ferromagnetic film be represented by the cylindrical domain

Ω(t) = Ω× (0, t) ⊂ R3 with magnetization m = (m,m3) : Ω(t) → S2.

We denote by d the exchange length of the magnetic material. Under the influence
of an external magnetic field ht which is supposed to be tangential to the film and
which has the form form ht = t h : R3 → R3, the renormalized micromagnetic
energy per unit volume is given by

Et(m) = κ2 t−
∫

Ω(t)

|∇m|2 dx+ t−2

∫
R3

|H(m)|2 dx− 2−
∫

Ω(t)

h ·m dx,

where κ is an aspect ratio d/t and H(m) is determined by the static Maxwell’s
equations

∇ ·
[
H(m)−m

]
= 0 and ∇×H(m) = 0 in R3.

The operator m 7→ H(m) is just the Helmholtz projection and can be identified
with the zero order pseudo-differential operator ∇∆−1∇ ·m. For the variational
principle

Et(m) → min in
{
|m| = 1 in Ω(t)

}
one is interested in a physically relevant thin film limit, featuring aspects of
the thin film limit of Gioia and James [9] as well as the large body limit of
DeSimone [5] and Tartar [13]. Let us give an informal argument for a such limiting
variational principle. For simplicity we will assume that the magnetization field
is independent of the cross section, i.e. ∂m

∂x3
= 0 in Ω(t). By a scaling argument
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for the exchange energy, this is asymptotically true for thin films, i.e. as t/d→ 0,
see [9] and [7]. Under this assumptions the Fourier transform yields the following
formal expansion for the magnetostatic energy

2

∫
R3

|H(m)|2 dx = t ‖m3‖2
L2(R2) + t2 ‖H(m)‖2

Ḣ1/2(R2)
+ o

(
t2

)
as t tends to zero, where H(m) denotes the two-dimesional Helmholtz projection
of the trivial extension of m characterized by

∇′ ·
[
H(m)−m

]
= 0 and ∇⊥ · H(m) = 0 in D′(R2). (2.1)

Thus, after renormalization, the penalty on |m3| 6= 0 enforces asymptotically,
as t → 0, the magnetization field to be in-plane. Accordingly, the variational
principle reduces to a two-dimensional field theory. This can be made rigorous
in terms of variational convergence:

It is shown in [7] that for each sequence t→ 0 in the regime where d = d(t) → 0
such that

t κ(t)2 log(1/t) → 0 for κ(t) =
d(t)

t

the full variational principle Γ-converges to the thin film variational principle on
planar vector fields m : Ω → R2

E(m) =
1

4

∥∥H(m)
∥∥2

Ḣ1/2(R2)
−

∫
Ω

h ·mdx→ min in
{
|m| ≤ 1 in Ω

}
. (2.2)

The underlying topology is induced by the weak convergence

−
∫ t

0

m(t)(·, z) dz ⇀ (m, 0) weakly in L2(Ω; R3).

Consult the monograph [11] or [2] for the notion and properties of Γ-convergence.

We collect the main features of this Γ-limit:

(i) The limiting magnetization fields are tangential to the magnetic film.

(ii) The exchange energy drops out, and this allows for discontinuous minimiz-
ers of the reduced variational principle.

(iii) The magnetostatic energy controls the homogeneous H1/2-norm of the gra-
dient part of the magnetization and does not allow for normal jumps across
a discontinuity line, in particular it enforces tangetial magnetization at the
boundary.

(iv) The saturation condition |m| = 1 is relaxed to the convex constraint that
|m| ≤ 1 on the sample.
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(v) For an external gradient field h = −∇′H, the functional only depends (in a
strictly convex way) on the magnetic surface charge ∇′ ·m induced by the
magnetization m.

Hence the variational principle is convex but highly degenerate and admits many
solutions. An open question is whether there exists a saturated minimizer m0,
i.e. a minimizer which satisfies |m0| = 1 on the sample. This question is directly
connected with our regularity result in view of the notion of viscosity solutions.
Indeed, by property (v) the functional allows to add a solenoidal gauge which
leaves the energy unaltered. In this context, restoring the saturation condition
amounts to the following Dirichlet problem for a stream function ψ

|∇′ψ +m⊥
0 |2 = 1 in Ω with ψ = 0 on ∂Ω,

which is solvable in the sense of viscosity solutions for continuous data, i.e. if
there is a continuous minimizer m0.

2.2 Magnetostatic energy through potentials

It is convenient to describe the magnetostatic energy by a functional of the mag-
netostatic potential u which we define via the following variational principle:
Given a vector field m with H(m) ∈ H1/2(R2; R2) given by (2.1), we consider

I[m](u) =
1

2

∫
R3

|∇u|2 dx−
〈
m,∇′u

〉
→ min . (2.3)

We denote by D1,2(R3) the closure of the space of test funtions C∞
0 (R3) with

respect to the Dirichlet energy. We infer from the Sobolev inequality that

D1,2(R3) = {u ∈ L6(R3) :

∫
|∇u|2 dx <∞} ⊂ H1

loc(R3).

Remark 2.1. Note that the functional I[m] only depends on the magnetization
m via its Helmholtz projection H(m). Indeed, for H(m) ∈ H1/2(R2; R2)〈

m,∇′u
〉

=
〈
H(m),∇′u

〉
for all u ∈ Ḣ1/2(R2).

The trace inequality (that can be derived via Fourier transform)∥∥u∥∥2

Ḣ1/2(R2)
≤ 1

2

∫
R3

|∇u|2 dx for all u ∈ D1,2(R3), (2.4)

implies that the functional I[m] is well defined on D1,2(R3) and with Young’s
inequality there holds, for fixed m the following coercivity property

I[m](u) ≥ 1

4

∫
R3

|∇u|2 dx− 1

2

∥∥H(m)
∥∥2

Ḣ1/2 for all u ∈ D1,2(R3).
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We infer from the strict D1,2-convexity of the functional I[m], the existence of
a unique minimizer for the variational problem (2.3) in the space D1,2(R3). The
magnetostatic potential u associated to a magnetization field m must satisfy the
following compatibility condition, that emerges as the associated Euler-Lagrange
equation

∆u = ∇′ ·m dH2xR2 in D′(R3), (2.5)

where H2 denotes the two-dimensional Hausdorff measure. The relation between
magnetostatic potentials and the limit of the reduced stray field operator is given
by the Fourier representation of the compatibility equation (2.5)∫

R3

|∇u|2 dx =
1

2π

∫
R2

∫
R

|ξ′ · m̂(ξ′)|2

|ξ′|2 + η2
dη dξ′ =

1

2

∥∥H(m)
∥∥2

Ḣ1/2 . (2.6)

Using once more the Fourier representation of the compatibility equation, we see
that u(·, 0) = 1

2
R·m, where R = (−∆′)−1/2∇′ is the (vectorial) Riesz transform.

Note that R ·m = R · H(m). Hence we infer the equivalence

∇′u =
1

2
(−∆′)1/2H(m) : R2 → R2. (2.7)

Consequently we can write the magnetostatic energy as a dual pairing:

1

2

∥∥H(m)
∥∥2

Ḣ1,2 =
1

2

〈
(−∆′)1/2H(m),H(m)

〉
=

〈
∇′u,H(m)

〉
. (2.8)

Now in view of the variational limit problem for thin films (2.2)

E(m) =
1

4

∥∥H(m)
∥∥2

Ḣ1/2 +

∫
Ω

h ·m→ min for m ∈M, (2.9)

where M is the space of admissible magnetizations given by

M =
{
m : Ω → R2 : |m| ≤ 1 , H(m) ∈ H1/2(R2)

}
,

we define equivalently the primal variational principle for thin films:

E(m) =
1

2

∫
R3

|∇u|2 dx−
∫

Ω

h ·mdx→ min for m ∈M (2.10)

where u ∈ D1,2(R3) satisfies ∆u = ∇′ ·m dH2xR2 in D′(R3).

We have the following Euler-Lagrange equation as optimality condition.

Lemma 2.1. Any solution m0 of the above variational principle with associated
magnetostatic potential u0 solves the following variational inequality

〈∇′u0 − h,m0〉 ≤ 〈∇′u0 − h,m〉 for all m ∈M.

Proof. For any m in the convex space M we introduce the admissible family
of variations mε = (1 − ε)m0 + εm. Carrying out the differentiation for the
functional in (2.9) with respect to ε gives

d

dε
E(mε)

∣∣∣
ε=0

= E ′(m0)〈m0 −m〉 =
〈1

2
(−∆′)

1
2H(m0)− h,m0 −m

〉
≤ 0,

but by (2.7) this is equivalent to 〈∇′u0 − h,m0 −m〉 ≤ 0, q.e.d.
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2.3 Dual formulation

In the following we assume h to be a smooth gradient field. For an admissible
pair (m,u), i.e. m and u satisfy the compatibility equation (2.5), and in view of
(2.8) and Remark 2.1, the energy E(m) may be written as

E(u,m) = −1

2

∫
R3

|∇u|2 dx−
〈
h−∇′u,H(m)

〉
. (2.11)

By the trace inequality (2.4), this functional is well defined on the product space
D1,2(R3)×M.

We show that the variational principle (2.10) can be formulated as a saddle point
problem over the product space D1,2(R3)×M. We will infer from the theory of
saddle points a dual formulation of the thin film variational principle which only
involves the magnetostatic potential. For this purpose we define a functional F
on the space of magnetostatic potentials by

F(u) = − inf (E(u,m) : m ∈M) . (2.12)

Since u 7→ E(u,m) is concave for each m ∈ M, we infer that F is convex, see
e.g. [8]. Moreover for a sufficiently regular potential u, the functional F(u) can
explicitly be written as

F(u) =
1

2

∫
R3

|∇u|2 dx+

∫
Ω

|∇′u− h| dx′. (2.13)

We call the variational principle which consists in minimizing the functional u 7→
F(u) in the space of magnetostatic potentials D1,2(R3) the dual variational
principle with respect to the original (or primal) thin film variational problem
(2.10) for magnetizations m. The connection between the dual and the primal
problem is described as follows:

Lemma 2.2. Let m0 be a solution of the thin film variational principle (2.10),
then the associated magnetostatic potential u0 coincides with the unique minimizer
of the functional F over D1,2(R3). Moreover |E(m0)| = F(u0).

Proof. We need to show that (u0,m0) is a saddle point for the functional

(u,m) 7→ E(u,m) for (u,m) ∈ D1,2(R3)×M

defined in (2.11), that is for all m ∈M and u ∈ D1,2(R3) there should hold

E(u,m0) ≤ E(u0,m0) ≤ E(u0,m). (2.14)

Then the saddle point theorem, see [8] chapter 3 or [14] Theorem 2.F, implies in
particular that u0 is a maximizer of the functional

u 7→ inf (E(u,m) : m ∈M) for u ∈ D1,2(R3),
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that is in our definition a minimizer of F(u). Moreover the energies agree

E(u0,m0) = sup
{
inf (E(u,m) : m ∈M) : u ∈ D1,2(R3)

}
.

Hence by our definition of F and the fact that E(u0,m0) = E(m0) for the admis-
sible pair (u0,m0)

− inf (E(m) : m ∈M) = inf
(
F(u) : u ∈ D1,2(R3)

)
.

We check the saddle property (2.14). The first inequality follows by〈
H(m0),∇′u

〉
=

∫
R3

∇u0 · ∇u dx ≤
1

2

∫
R3

|∇u0|2 dx+
1

2

∫
R3

|∇u|2 dx,

where we used the compatibility equation (2.5) and the trace inequality (2.4).
Hence

E(u,m0) ≤
1

2

∫
R3

|∇u0|2 dx−
∫

Ω

h ·m0 dx
′ = E(m0) for all u ∈ D1,2(R3),

and we conclude since E(u,m) and E(m) agree on the set of admissible pairs. For
the second inequality it is enough to show that m0 is a minimizer of the linear
form

m 7→ − 〈h−∇′u0,H(m)〉
which is the same as solving the following variational inequality

〈∇′u0 − h,m0〉 ≤ 〈∇′u0 − h,m〉 for all m ∈M.

But this is true since m0 is a minimizer of m 7→ E(m) in the convex space M and
therefore solves the above variational inequality, as shown in Lemma 2.1.

We state our final result with a slight regularity improvement for the trace of the
magnetostatic potential.

Proposition 2.1. Let m0 be a minimizer of the reduced thin film variational
principle (2.10). Then the associated magnetostatic potential u0 ∈ D1,2(Ω) is
unique in the class of minimizers with respect to the external gradient field h,
and it is a minimizer for the dual variational principle

F(u) → min in D1,2(R3),

where F is given by (2.13). Moreover u0 has bounded variation in Ω.

Proof. We only need to show that u|Ω has bounded variation. But by density
C∞

0 (R3) ⊂ D1,2(R3) we might choose a smooth minimizing sequence (uk) for the
convex functional (2.12) which admits the form (2.13) for smooth functions. We
infer by the uniform L1-boundedness of (∇′uk|Ω) that the weak D1,2-limit u0 has
bounded bounded variation in Ω and is a minimizer by lower semicontinuity.
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3 The regularity result

The form of the thin film variational principle (2.2) suggests that we cannot hope
for a regularity result for every minimizing magnetization field m, but only for
the uniquely determined gradient part, or its divergence, the magnetic charge.
Hence the difficulty to prove regularity for the primal problem consists in the
incompatibility of the constraint |m| ≤ 1 and the Helmholtz projection. The
dual problem is made up of minimizing the following functional

F(u) =
1

2

∫
R3

|∇u|2 dx+ G0(u) → min (3.1)

over the set of potentials u ∈ D1,2(R3) where the functional G0 is given by

G0(u) =

∫
Ω

|∇′(u+H)| dx′ for ∇′u ∈ L1(Ω) (3.2)

with the potential H corresponding to a smooth gradient field h = −∇′H. With
G0(u) considered as the total variation of the signed measure ∇′(u+H) in Ω we
get a natural extension to functions of bounded variation, cf. e.g. [1].

We endow the space D1,2(R3) with the topology τ induced by the weak L2-
convergence of the gradient. Note that by the trace theorem L2-boundedness
of the gradient implies local H1/2-boundedness of the restriction to {x3 = 0}.
Furthermore by the Sobolev embedding theorem we get local bounds in L4(R2)
for the trace and by the local compactness properties of Bessel potentials local
Lp-compactness is ensured for 1 ≤ p < 4. Note that boundedness in D1,2(R3)
does not give any meaning to the gradient ∇′u|Ω as a measurable function nor as
a regular signed measure. Therefore it is reasonable to assign the value +∞ to
the functional F(u) for u|R2 /∈ BV (Ω), i.e.

D1,2(R3) 3 u 7→ F(u) ∈ R ∪ {+∞}.

It seems important to mention that the functional G0(u), incorporating the total
variation of u, cannot be considered as a lower order perturbation of the magne-
tostatic portion of the energy. In fact by the trace theorem, the Dirichlet energy
in R3 only controls the H1/2-norm on R2. But neither BV embeds into H1/2

nor vice versa. This reflects, in view of the primal problem, that neither the
H1/2-norm of the gradient controls the size, i.e. the constraint |m| ≤ 1, nor can
the H1/2-norm be controlled by a pointwise bound.

3.1 Regularization and functional convergence

Note that the functional G0(u) is not (continuously) differentiable on the space of
D1,2(R3)-restrictions nor on BV (Ω). Therefore we regularize the functional G0(u)
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and use Γ-convergence theory to infer convergence of minimizers and minimal
energies. We define

Gε(u) =

∫
Ω

√
ε2 + |∇′(u+H)|2 dx′. (3.3)

Let uε be a minimizer of the functional

Fε(u) =
1

2

∫
R3

|∇u|2 dx+
ε

2

∫
Ω

|∇′u|2 dx′ + Gε(u),

which we consider as a functional on D1,2(R). Then we know that a priori uε ∈
H1

loc(R3)∩H1(Ω) which is enough to proceed with a difference quotient method to
show higher regularity. In particular, Gε is continuously differentiable on H1(Ω)
as we will see below. Moreover minimal energies are uniformly bounded, indeed
inf Fε ≤

∫
Ω
(ε+ |∇′H|) dx′.

Lemma 3.1. Let uε be the unique minimizer of Fε in D1,2(R2). Then as ε tends
to zero, uε ⇀ u0 in D1,2(R3) where u0 is the unique minimizer of F in D1,2(R2).
Moreover minimal energies converge Fε(uε) → F(u0).

Proof. Note that by the monotonicity of ε 7→ Fε(u) the sequence of functionals
(Fε) Γ-converges to the lower-semicontinuous regularization F∗ of F for any sec-
ond countable topology τ we choose. If in particular a sequence of minimizer uε

converge to some function u0 with respect to τ . Then Fε(uε) → inf F and u0 is
a minimizer of F∗. See e.g.[2], Proposition 2.48 for this result.
Now by the uniform convexity and the uniform D1,2-coercivity of the regular-
ized functionals Fε for ε > 0 and their pointwise limit F , we infer the existence
and uniqueness of minimizers uε and u0 for the associated variational problems.
Moreover we have F∗ = F and we conclude the convergence of uε to u0 in the
weak D1,2-sense and the convergence of minimal energies as ε tends to zero.

3.2 Higher Regularity for the tangential gradient

The Γ-convergence result of the previous section allows us to derive a priori
bounds for the tangential gradient of the magnetostatic potential ∇′u by those
associated to the regularized variational principle Fε(u) → min. We indicate he
standard regularization of the modulus function and its gradient by

|p|ε =
√
ε2 + |p|2 and σε(p) =

p

|p|ε
.

Then for each ε > 0 and each p = p(x′) ∈ L1(Ω; R2) the derivative

Dσε(p) =
1

|p|ε

(
1− p

|p|ε
⊗ p

|p|ε

)
(3.4)
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is symmetric and non-negative and measurable as a function of x ∈ Ω. For ε = 0
and generic p(x′) = ∇′v(x′) 6= 0 the unit vector σ(p) = p

|p| for p = p(x′) is normal

to the level set {v = v(x′)}. Moreover, κ(x′) = ∇′σ(p)(x′) is the curvature matrix
at v(x′).

Now let for any vector field p ∈ L1(Ω; R2), any unit vector ê, and 0 ≤ λ ≤ 1

p(x′, s, λ) = λ p(x′ + s ê) + (1− λ)p(x′).

Then p(·, s, λ) ∈ L1(Ω̃; R2) for each subdomain Ω̃ ⊂ Ω and s < dist(Ω̃, ∂Ω), and

As
ε(x

′) =

∫ 1

0

Dσε

(
p(x′, s, λ)

)
dλ, for x′ ∈ Ω̃ (3.5)

is symmetric and non-negative and measurable as a function on the subdomain
Ω̃ ⊂ Ω. Notice that

As
ε ∈ L∞

(
Ω̃; R2×2

)
with |As

ε| ≤ c(ε) for all s > 0.

The definition for As
ε is motivated by the fact that for a finite difference quotient

operator

δsp(x
′) =

1

s

(
p(x′ + sê)− p(x′)

)
according to a fixed unit vector ê and δs we have

δs
(
σε(p)

)
= As

ε(x
′) δsp for all p ∈ L1(Ω).

The formal adjoint δ∗s is given by 1
s

(
p(x′ − sê) − p(x′)

)
. Now for u ∈ W 1,1(Ω)

and a test function φ ∈ W 1,1(Ω), the variation of Gε at u in the direction of φ is
given by

d

dt

∣∣∣
t=0
Gε(u+ t φ) = G ′ε(u)〈φ〉 =

∫
Ω

σε(∇′(u+H)) · ∇′φ dx′.

For η ∈ C∞
0 (Ω×R) we introduce the test function φε = δ∗s(η

2δs(uε+H)) ∈ H1
0 (Ω).

G ′ε(uε)〈φε〉 =

∫
Ω

〈
δs(∇′(uε +H))

∣∣As
ε(x

′)
∣∣∇′(η2δs(uε +H))

〉
dx′

=

∫
Ω

〈
δs(∇′(uε +H))

∣∣As
ε(x

′)
∣∣ δs(∇′(uε +H))

〉
η2 dx′

+ 2

∫
Ω

〈
δs(∇′(uε +H))

∣∣As
ε(x

′)
∣∣∇′η

〉
δs(uε +H) η dx′.

Now the second term can be bounded from above using Cauchy-Schwarz and
Young’s inequality. Hence G ′ε(uε)〈φε〉 is bounded from below by

1

2

∫
Ω

〈
δs(∇′(uε +H))

∣∣As
ε(x

′)
∣∣ δs(∇′(uε +H))

〉
η2 dx′

−4

∫
Ω

〈
∇′η

∣∣As
ε(x

′)
∣∣∇′η

〉
|δs(uε +H)|2ε dx′.

11



We conclude by the weak formulation of the Euler-Lagrange equations for the
functional Fε

0 =

∫
R3

∇uε · ∇φε dx+ ε

∫
Ω

∇′uε · ∇′φε dx+ G ′ε(uε)〈φε〉

using Young’s inequality, that for the minimizer uε following the estimate

1

2

∫
R3

|∇δsuε|2 η2 dx+
ε

2

∫
Ω

|∇′δsuε|2 η2 dx′

+
1

2

∫
Ω

〈
δs(∇′(uε +H))

∣∣As
ε(x

′)
∣∣ δs(∇′(uε +H))

〉
η2 dx′

≤ 2

∫
R3

|∇η|2 |δsuε|2 dx+ 2 ε

∫
Ω

|∇′η|2 |δsuε|2 dx′

+4

∫
Ω

〈
∇′η

∣∣As
ε(x

′)
∣∣∇′η

〉
|δs(uε +H)|2ε dx′ ≤ c(ε) sup |∇η|2Fε(uε)

holds true with a constant c(ε). Thus we proved the following a priori regularity
result for the approximating potentials uε which allows us to derive refined bounds
for the limit u0 in a more transparent way.

Lemma 3.2. For finite ε > 0 we have ∇′uε ∈ H1
loc(Ω×R) ∩H1

loc(Ω). Moreover,

0 =

∫
R3

∇∂αu · ∇Φα dx+ ε

∫
R2

∇′∂αu · ∇′Φα dx+

∫
Ω

〈
∂αpε

∣∣Dσε(pε)
∣∣ Φα

〉
η2 dx′

holds true for every testfunction Φ ∈ C∞
0 (Ω× R; R2).

With Φα
ε = η2 ∂αuε and the notation pε = ∇′(uε +H) the analogous estimate

1

2

∫
R3

|∇∇′uε|2 η2 dx+
ε

2

∫
Ω

|∇′∇′uε|2 η2 dx′

+
1

2

∑
α=1,2

∫
Ω

〈
∂αpε

∣∣Dσε(pε)
∣∣ ∂αpε

〉
η2 dx′

≤ 2

∫
R3

|∇η|2 |∇′uε|2 dx+ 2 ε

∫
Ω

|∇′η|2 |∇′uε|2 dx′

+4

∫
Ω

〈
∇′η

∣∣Dσε(pε)
∣∣∇′η

〉
|∇′(uε +H)|2ε dx′.

Using that 〈v |Dσε(p) |v〉 ≤ |p|ε ≤ |v|2 for every v, p ∈ R2, we immediately get
the following uniform estimate:∫

R3

|∇∇′uε|2 η2 dx+

∫
Ω

〈
∇′pε

∣∣Dσε(pε)
∣∣∇′pε

〉
η2 dx′ ≤ 8 sup |∇η|2 Fε(uε). (3.6)

Taking the limit inferior in (3.6) and taking into account the convergence of
minimizers and minimal energies as stated in Lemma 3.1 we have shown:
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Proposition 3.1. The solution u0 ∈ D1,2(R3) of the dual variational principle
has tangential derivatives ∇′u0 ∈ H1

loc(Ω× R) and for every η ∈ C∞
0 (Ω× R) the

following estimate holds true∫
R3

|∇∇′u0|2 η2 dx ≤ 8 sup |∇η|2 F(u0).

The regularity result above is proved in [7] by a different method. In contrast to
our local method on the basis of the dual problem, they used a global method
on the basis of the primal problem. The argument relies on the usage of one-
parameter subgroups of the conformal diffeomorphisms from Ω onto itself to
proceed with an abstract difference quotiont argument. It includes also the case of
finite anisotropy but is restricted to simply connected domains. We conclude this
section with some further geometric implication on the level sets of u0+H steming
from the BV -control under additional assumptions, namely that pε = ∇′(uε +H)
converges locally uniformly as ε → 0. First we need the following interpolation
inequality:

Lemma 3.3. Let p = pε ∈ L1 ∩H1
loc(Ω; R2) and η ∈ C∞

0 (Ω). Then we have

1

2

∫
Ω

|p| |∂ασ(p)| η dx′ ≤
∫

Ω

〈
∂αp

∣∣Dσε(p)
∣∣ ∂αp

〉
η2 dx′ +

∫
Ω

|p|ε dx′.

Proof. We have the following poitwise identity

|p|ε
〈
∂αp

∣∣Dσε(p)
∣∣ ∂αp

〉
≥ |p|

〈
∂αp

∣∣Dσ(p)
∣∣ ∂αp

〉
= |p|2 |∂α σ(p)|2.

One the other hand we get from Young’s inequality

|p|2

|p|ε
|∂ασ(p)|2 η2 + |p|ε ≥

1

2
|p| |∂ασ(p)| η

and the claim follows after integration.

Recall that
∫

Ω
|pε|ε = Gε(uε). Thus, in view of Proposition 3.6, the lemma implies∫

Ω

|pε| |∇′σ(pε)| η dx′ ≤ c
(
1 + sup |∇η|2

)
Fε(uε). (3.7)

Proposition 3.2. Suppose that ∇′uε → ∇′u0 uniformly on EΛ b Ω open and
|∇′(u0 +H)| ≥ Λ > 0 on EΛ. Then σ

(
∇′(u0 +H)

)
has bounded variation in EΛ

and the following estimate holds true∫
EΛ

∣∣∇′σ
(
∇′(u0 +H)

)∣∣ ≤ c

Λ

(
1 + sup |∇η|2

)
Fε(uε).

Notice that |pε| is just the Jacobian of uε +H and κε = ∇′σ(pε) the curvature of
the level set of uε +H. Then the coarea formula (cf. e.g. [1]) gives∫

Ω

|pε| |∇′σ(pε)| η dx′ =
∫

R

∫
{uε+H=Λ}

|κε| η dH1 dΛ. (3.8)
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3.3 Implications for the magnetic field

Now let m0 ∈M be a solution of the reduced thin film variational principle (2.10)
with associated magnetostatic potential u0 ∈ D1,2(R3). In view of Lemma 2.2 and
Proposition 3.1 we infer from the trace inequality (2.4) that η∇′u0 ∈ H1/2(R2,R2)
and by the Sobolev embedding H1/2(R2) ↪→ L4(R2) that

∇′u0 ∈ L4
loc(Ω; R2).

For |m| ≤ 1 we infer from the Lp-boundedness of the Helmholtz transform

‖H(m0)‖L4 ≤ c ‖m0‖L4 ≤ c |Ω|1/4.

This implies by Calderón’s commutator lemma (cf. e.g. [4, 12])∥∥ηH(m0)
∥∥

Ḣ1
4
≤

∥∥η∇′u0

∥∥
L4 +

∥∥[
(−∆′)1/2, η

]
H(m0)

∥∥
L4

≤ c
∥∥η∇′u0

∥∥
H1/2 + c

∣∣Ω∣∣1/4 ∥∥∇′η
∥∥

L∞
.

We conclude by the Sobolev embedding H1
4 (R2) ↪→ C1/2(R2) the following regu-

larity result:

Theorem. The uniquely determine gradient part H(m0) of a minimizer m0 of
the reduced thin film variational principle corresponding to a smooth gradient field
h = −∇′H is locally Hölder continuous with Hölder exponent α = 1/2.
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