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where P is a probability measure and p 2 [0; 1℄ is some probability level (typially lose to 1) atwhih (1) is required to hold. Inequality (2) is also referred to as a joint probabilisti onstraintas it takes into aount the probability of the entire system (1) to be satis�ed. In general, jointprobabilisti onstraints are diÆult to handle and both their algorithmi treatment and theirtheoretial investigation keep posing a lot of hallenging questions (see [9℄ for a omprehensiveintrodution and [10℄ for a review on reent work in this area). It is muh easier, although notjusti�ed in all situations, to turn eah single inequality of (1) into an individual probabilistionstraint as follows: P (h�i; xi � �i) � pi; (i = 1; : : : ; m): (3)Here, the �i refer to the rows of � and now the probability levels may di�er for eah onstraint.For algorithmi purposes it is of muh interest to know whether or not the set of feasibledeisions x satisfying (3) is onvex. As the intersetion of onvex sets remains onvex, this issueboils down to the investigation of a single linear probabilisti onstraintM = fx 2 RnjP (h�; xi � �) � pg;where � is an n-dimensional random vetor and � is a salar (possibly random). The onvexityof M has been investigated �rst in the lassial papers by Van de Panne and Popp [8℄ andby Kataoka [5℄. They have shown that M is a onvex subset of Rn provided that � has anondegenerate multivariate normal distribution and that p � 0:5. This frequently ited resultleaves open a lot of questions. First, one ould ask about distributions di�erent from normalones or about more general funtions of x under whih the same result an be maintained.Seond, it is lear that the feasible set M beomes smaller when the level p is inreased towards1. Hene, the important observation that M is onvex for p large enough has to be oupledwith the question of nontriviality beause the empty set is onvex too. Third, also large setslike Rn may be onvex. This raises the question if there exists a range of small values of pwhih guarantees onvexity as well. Finally, apart from onvexity and triviality, ompatnessof M is another issue of theoretial and algorithmi interest. Nonempty and ompat feasiblesets guarantee the existene of solutions and allow to derive stability results for solutions whenthe usually unknown distribution of � has to be approximated on the basis of estimations orhistorial observations (see [2℄).The purpose of this paper is to provide a detailed strutural analysis to linear hane on-straints and to give a fairly preise answer to the questions posed. The lassial results of[8℄ and [5℄ an be extended to the lass of elliptially symmetri distributions and to ertainomponent-wise onvex mappings of x. In the lassial setting of normal distributions, it will bepossible to exatly identify the range of p-values for whih onvexity, triviality and ompatness(or nononvexity, nontriviality and unboundedness) hold true. It is interesting to observe, thatthese results strongly depend on whether the right-hand side � is negative or nonnegative. Underthis ase distintion, all strutural results beome rather di�erent and seemingly independent.However, they are not as independent as they might look like. Roughly speaking, the �rst mainresult of this paper states that, for negative right-hand side and large values of p the feasible setlooks like the omplement of the feasible set for nonnegative right-hand side and small values ofp. In the more demanding situation of optimization problems involving joint probabilisti on-straints as in (2), an existene theorem an be derived from the ase of single onstraints. Morepreisley, this theorem allows exatly to alulate a ritial p- level above whih ompatnessand nonemptiness of a joint probabilisti onstraint an be guaranteed. Suh result is not onlyinteresting with respet to the existene of solutions but also onerning stability of solutionsets under perturbation (approximation) of the given probability distribution.2



2 ResultsIn the following, we shall onsider onstraint setsM�p := fx 2 RnjP (hq(x); �i � �) � pg (� 2 R; p 2 (0; 1)): (4)Here, � is an s-dimensional random vetor de�ned on some probability spae (
;A; P ) andq : Rn ! Rs is a mapping from the spae of deision vetors to the spae of realizations ofthe random vetor. The indies � and p shall emphasize the fat that we are going to analyzethe struture of the feasible set as a funtion of the right-hand side of the onsidered stohastiinequality and of the probability level p. Putting q(x) = x, one gets bak to the lassial linearprobabilisti onstraint set M�p with deterministi right-hand side. Choosing q(x) = (x;�1) andonsidering the extended (s+ 1)-dimensional random vetor (�; �), M0p reovers the onstraintset with stohasti right-hand side (see introdution). In this latter ase, q is an aÆne linearmapping whih will �gure as an assumption in several subsequent results. As an immediateonsequene of the de�nition (4), one has the following properties:M�p1 �M�p2 8� 2 R 8p1; p2 2 (0; 1) : p1 � p2 (5)q�1(0) �M�p 8� � 0 8p 2 (0; 1) (6)q�1(0) � �M�p � 8� < 0 8p 2 (0; 1) (7)Moreover, the M�p are losed subsets of Rn under mild assumptions. Indeed, we may refer tothe following onsequene of a general losedness haraterization provided in [11℄ (Prop. 3.1),where we keep the meaning of � and P :Lemma 2.1 Let g : Rn�Rs ! Rm be a vetor-valued mapping with lower semiontinuous (inboth variables simultaneously) omponents. Then, the set fx 2 RnjP (g(x; �)� 0) � pg is losed.Corollary 2.1 If in (4), q is a mapping with lower semiontinuous omponents, then M�p islosed for all � 2 R and all p 2 (0; 1).2.1 On the relation between positive and negative right-hand sideBefore investigating properties of M�p , like onvexity, nontriviality and ompatness, we wantto identify the strutural relation between onstraint sets with positive and negative right-hand side. The following theorem tells us that, up to losure and translation, the sets M�p areidential to the omplements of the 'dual' sets M��1�p. Convexity and ompatness are examplesfor properties whih are not a�eted by translation or losure.Theorem 2.1 Let the distribution of � be absolutely ontinuous with respet to the Lebesguemeasure, and let the support of � be all of Rs. Furthermore, assume that q is a surjetive, aÆnelinear mapping. Then, there exists some d 2 Rn suh thatM�p = fdg � ln�M��1�p�o 8� 6= 0 8p 2 (0; 1):Proof. We �x arbitrary � 6= 0, p 2 (0; 1) and start by observing that the funtionx 7�! P (hq(x); �i � �) (8)3



is ontinuous at eah x =2 q�1(0). Indeed, this ondition, together with the fat that q isontinuous, ensures that the set-valued mappingTy := fu 2 Rsj hq(y); ui � �gsatis�es limy!x Ty = Tx. Here, the set onvergene is taken in the Kuratowski-Painlev�e sense.Along with the assumption, that � has an absolutely ontinuous distribution, this ensures thatlimy!x P (� 2 Ty) = P (� 2 Tx), whenever all the Ty and Tx are losed and onvex (see [7℄, Th.3, Lemma 1 and Proof of Th. 4).To proeed with the proof of our Theorem, we may assume that q(x) = Ax + b for somematrix A having full rank. Put d := �2AT �AAT��1 b:As a onsequene, one has that �q(x) = q(d�x) for all x 2 Rn and, in partiular that x 2 q�1(0)if and only if d� x 2 q�1(0). For arbitrary x =2 q�1(0), the following equivalenes hold true:P (hq(x); �i � �) � p , P (hq(x); �i > �) � 1� p, P (� hq(x); �i < ��) � 1� p, P (hq(d� x); �i � ��) � 1� p: (9)Here, the last equivalene relies on the fat that q(d� x) 6= 0, so that hq(d� x); �i = �� de�nesa hyperplane in Rs, whih has probability zero by our assumption on the distribution of �. Next,we verify the following identity:ln�M��1�p�o = fz 2 RnjP (hq(z); �i � ��) � 1� pg 8z =2 q�1(0): (10)For z 2 l n�M��1�p�o, there exists a sequene zn ! z suh thatP (hq(zn); �i � ��) < 1� p:This entails the inlusion '�' in (10) via the ontinuity of the funtion (8). For the reverseinlusion, let z be given suh that z =2 q�1(0) andP (hq(z); �i � ��) � 1� p:With zn := z � sgn�n AT �AAT ��1 (Az + b);one gets that zn ! z andq(zn) = Azn + b = Az + b� sgn�n (Az + b) = � (1� n�1)q(z) if � > 0(1 + n�1)q(z) if � < 0:Consequently, in ase that � > 0, one arrives at the inlusionfu 2 Rsj hq(zn); ui � ��g = fu 2 Rsj hq(z); ui � ��(1� n�1)�1g � fu 2 Rsj hq(z); ui � ��g:4



Thus, 1� p � P (hq(z); �i � ��)= P (hq(zn); �i � ��) + P ���(1� n�1)�1 < hq(zn); �i � ��� :Now, sine the strip fu 2 Rsj � �(1� n�1)�1 < hq(zn); ui � ��ghas a nonempty interior, its probability must be stritly positive aording to our assumptionthat the support of � is all of Rs. Thus, we get1� p > P (hq(zn); �i � ��)whih amounts to saying that zn 2 �M��1�p�. An analogous argumentation applies to the ase� < 0 upon using the respetive de�nition of zn. This establishes (10).Applying (10) to (9) with z = d�x =2 q�1(0), we may summarize the preeding onsiderationsin the form x 2M�p nq�1(0)() x 2 hfdg � ln�M��1�p�oi nq�1(0): (11)In order to �nish the proof, it remains to verify the equivalenex 2M�p \ q�1(0)() x 2 hfdg � ln�M��1�p�oi \ q�1(0): (12)If x 2 M�p \ q�1(0), then also d � x 2 q�1(0) and � � 0 by (7). Sine � 6= 0, it followsthat �� < 0 and d � x 2 �M��1�p�, again by (7). This proves the impliation '=)' in (12).Conversely, let x 2 hfdg � ln�M��1�p�oi \ q�1(0):One more, d� x 2 q�1(0). By de�nition, there is a sequene xn ! d� x with xn 2 �M��1�p�.Assume �rst, that there is a subsequene of xn, whih we do not relabel, suh that xn =2 q�1(0).Then, also d� xn =2 q�1(0), so that we an apply (11) to d� xn rather than x. This yields thatd� xn 2M�p . On the other hand, M�p is losed aording to Corollary 2.1. It follows thatd� xn ! x 2M�p \ q�1(0);whih establishes the reverse impliation in (12) for a speial ase. It remains to hek the asewhen d � xn 2 q�1(0) for all n. Then, also xn 2 q�1(0) for all n. The assumption � � 0would lead to the ontradition xn 2 M��1�p via (6). So, d � xn 2 M�p , again by (6). The samelosedness argument as in the �rst speial ase yields that x 2M�p \ q�1(0). This ompletes theproof.The following example illustrates, why we have to insist on the ondition � 6= 0 in Theorem 2.1:Example 2.1 In dimension one, let q(x) = x and � have a standard normal distribution. Then,M00:5 = R. All assumptions of Theorem 2.1 are met exept that � = 0. If the theorem wouldhold true, there should exist some d 2 R suh thatM00:5 = fdg � l ��M00:5�	 = fdg � l ; = ;;whih is a ontradition. 5



2.2 ConvexityWe reall the lass of elliptially symmetri distributions, whose density (if it exists) is given byf(x) = (det �)�1=2 g �
x� �;��1 (x� �)�� ;where � is a positive de�nite matrix and g is some nonnegative funtion. In partiular, thes-dimensional normal distribution belongs to this lass with mean vetor �, ovariane matrix� and g(t) = (2�)�s=2 exp (�t=2) :However, the lass of elliptially symmetri distributions is muh broader than just multivari-ate normal ones and inorporates, for instane, multivariate versions of student or exponentialdistributions ([1℄, [3℄). The harateristi funtion of an elliptially symmetri distribution hasthe form �(t) = exp (i ht; �i) h (ht;�ti)for some salar funtion h, alled the 'harateristi generator' of this distribution.In the following, we use the symbol k�kC for the norm indued by a positive de�nite matrixC, i.e.: k�kC = phx; Cxi. Moreover, for a 1-dimensional distribution funtion F we de�ne itsp-quantile as F�1(p) = infftjF (t) � pg:Lemma 2.2 In (4), let q be arbitrary and let � have an elliptially symmetri distribution withparameters �, �, where � is positive de�nite. Denote by h its harateristi generator. ThenM�p = fx 2 RnjF�1(p) kq(x)k� + h�; q(x)i � �g;where F is the 1-dimensional distribution funtion indued by the harateristi funtion �(�) :=h ��2�.Proof. The harateristi funtion of � is��(t) = exp (i ht; �i)h�ktk2�� :Let x 2 Rnnq�1(0) be arbitrary. Then, the saled random variable�x := hq(x); � � �iphq(x);�q(x)i = � q(x)kq(x)k� ; ��� � q(x)kq(x)k� ; ��is a well-de�ned aÆne linear transformation of �. Following the general alulus rule�h;�i+d(�) = exp (i�d) � ��(�)for harateristi funtions, that of �x alulates as��x(�) = exp��i� hq(x); �ikq(x)k� � �� � �kq(x)k� q(x)� = h ��2� :6



In partiular, the distribution of �x does not depend on x. Its distribution funtion is given byF as introdued in the statement of this lemma. It follows thatP (hq(x); �i � �) � p , P ��x � �� h�; q(x)ikq(x)k� � � p, F ��� h�; q(x)ikq(x)k� � � p, F�1(p) kq(x)k� + h�; q(x)i � �:Now, the assertion results from (6) and (7) upon observing that the last inequality holds truefor all x 2 q�1(0) if � � 0 and is violated for all x 2 q�1(0) if � < 0.Proposition 2.1 Let, in addition to the setting of Lemma 2.2, one of the following assumptionshold true:� q is aÆne linearor� q has nonnegative, onvex omponents, �i � 0 for i = 1; : : : ; s and all elements of � arenonnegative..Then, M�p is onvex for all � 2 R and all p > 0:5. If, moreover, the random vetor � in Lemma2.2 has a stritly positive density, then M�p is onvex for all � 2 R and all p � 0:5.Proof. By Lemma 2.2, we are done if we an show that both funtionsh�; q(x)i and F�1(p) kq(x)k�are onvex. This is obvious for h�; q(x)i without restritions on � in ase that q is aÆne linearand for � with nonnegative omponents in ase that the omponents of q are onvex. Let usturn to the seond term now: Sine F is a one-dimensional symmetri distribution funtion, itfollows that F (0) = 0:5. Therefore, F�1(p) � 0 for p > 0:5 and also F�1(p) � 0 for p = 0:5, inthe ase that F has a stritly positive density. It remains to verify thus, that kq(�)k� is a onvexfuntion. This is evident in ase that q is aÆne linear. For the alternative ase, reall that, forany �xed x =2 q�1(0), the optimization problemmaxfhq(x); yi j kyk��1 = 1ghas the solution y� = kq(x)k�1� �q(x):Sine, by assumption, all omponents of q and all elements of � are nonnegative, the omponentsof y� are nonnegative too. This allows to write thatkq(x)k� = hq(x); y�i = maxfhq(x); yi j kyk��1 = 1g = maxfhq(x); yi j kyk��1 = 1; y 2 Rs+g:for all x =2 q�1(0). The same identitykq(x)k� = maxfhq(x); yi j kyk��1 = 1; y 2 Rs+g7



holds trivially true in ase that x 2 q�1(0), hene it is valid for all x 2 Rn. For y 2 Rs+, hq(�); yiis onvex by the assumed onvexity of the omponents of q. Summarizing, kq(�)k� is onvex asa maximum of onvex funtions hq(�); yi.When reduing Proposition 2.1 to a nondegenerate multivariate normal distribution of �, thenits �rst statement evidently reovers the lassial onvexity result of [5℄,[8℄ with random or de-terministi right-hand side (see introdution and beginning of Setion 2). The �rst statementof Proposition 2.1 was shown in [4℄ based on the onept of so-alled �-nulei. In ontrast,our proof essentially relies on the representation Lemma 2.2. This representation allows, in theseond statement of Proposition 2.1, to generalize the onvexity result to nonlinear funtions qof the deision vetor. A di�erent extension of the lassial results to the lass of log-onavesymmetri distributions has been obtained in [6℄. As the elliptially symmetri distributionsonsidered here, the log-onave symmetri distributions also ontain multivariate normal dis-tributions (but apart from it also uniform distributions over symmetri, onvex, ompat sets).From now on we shall assume, for simpliity, that the random vetor � has a nondegeneratemultivariate normal distribution with mean vetor � and (positive de�nite) ovariane matrix�: � � N (�;�). Then, by Lemma 2.2,M�p = fx 2 Rnj��1(p) kq(x)k� + h�; q(x)i � �g; (13)where � denotes the distribution funtion of the one-dimensional standard normal distributionand ��1(p) its p-quantile.Proposition 2.1 tells us for whih range of p-values onvexity of the onstraint set may beexpeted. It does not imply, however, nononvexity of this set for the remaining p-values. Thefollowing proposition lari�es, under whih irumstanes nononvexity may be derived.Proposition 2.2 Let � � N (�;�) with positive de�nite � and let q be a surjetive aÆne linearmapping. Then, M�p is nononvex in any of the following two situations:� < 0; p < 0:5or� � 0; � (�k�k��1) < p < 0:5:Proof. First, let � < 0 and p < 0:5, whene ��1(p) < 0. We hoose Æ 6= 0 suh thathÆ; �i = 0. By surjetivity of q, there is some h suh that q(h) = q(0) + Æ: Again by surjetivityof q, we may hoose some x� 2 q�1(0). By virtue of (7), one has that x� =2M�p . For t 2 R, putxt := x� + th. The aÆne linearity of q implies thatq(xt) = q(x�) + t(q(h)� q(0)) = q(x�) + tÆ:Then, ��1(p) kq(xt)k� + h�; q(xt)i = ��1(p) kq(x�) + tÆk� + h�; q(x�)i :Sine Æ 6= 0 and ��1(p) < 0, it follows thatlimt!1��1(p) kq(xt)k� + h�; q(xt)i = limt!�1��1(p) kq(xt)k� + h�; q(xt)i =1:Consequently, for jtj large enough, one has��1(p) kq(xt)k� + h�; q(xt)i � �;8



whih means that xt 2 M�p aording to (13). In partiular, there is some � > 0 suh thatx� ; x�� 2M�p . On the other hand, x� + x��2 = x� =2M�p :Therefore, M�p is not onvex.Now, let � � 0 and � (�k�k��1) < p < 0:5. In partiular, � 6= 0, beaause otherwise� (�k�k��1) = 0:5. For eah t 2 R, the surjetivity of q allows to hoose some yt suh thatq(yt) = t��1�. Then,��1(p) kq(yt)k� + h�; q(yt)i = ��1(p)t k�k��1 + t k�k2��1= ���1(p) + k�k��1� t k�k��1 !t!1 1;where the onvergene towards in�nity relies on the fat that � 6= 0 and on the fat that theexpression in parentheses is stritly positive by our assumption on the admissible range of p.Hene, for t large enough, the expression above will exeed �. In other words, by (13), for tlarge enough, yt =2M�p . We �x suh a point and all it �x. Now, we may repeat exatly the sameargumentation as in the �rst part of this proof but with x� replaed by �x. This allows again to�nd points x� ; x�� 2M�p suh that x� + x��2 = �x =2M�p ;and hene, onvexity of M�p is violated one more.2.3 Non-emptiness and ompatnessSo far, we have haraterized the onvexity of the onstraint set. It has to be taken into aount,however, that M�p might be trivially onvex in being idential either to the empty set or to thewhole spae. Therefore, a haraterization of triviality is of interest as well.Proposition 2.3 Let � � N (�;�) with positive de�nite �. Then,M�p = Rn 8� � 0 8p � � (�k�k��1)M�p = ; 8� < 0 8p � � (k�k��1) :Moreover, if q is surjetive, thenM�p 6= ; 8� � 0 8p 2 (0; 1)M�p 6= ; 8� < 0 8p < � (k�k��1) :Proof. A generalized version of the Cauhy-Shwarz inequality (for symmetri, positivede�nite matries) yields the relationjh�; q(x)ij � kq(x)k� k�k��1 : (14)From here, for arbitrary x 2 Rn, one obtains the following pair of inequalities by ase distintion:��1(p) kq(x)k� + h�; q(x)i� � kq(x)k� ���1(p) + k�k��1� � 0 � � 8� � 0 8p � � (�k�k��1)� kq(x)k� ���1(p)� k�k��1� � 0 > � 8� < 0 8p � � (k�k��1) :9



By virtue of (13), this proves the �rst part of our Corollary. The �rst statement of the seondpart of the orollary is evident from (6) beause q�1(0) 6= ; by the assumed surjetivity of q.Conerning the last statement, de�ne for eah t > 0 some xt suh that q(xt) = �t��1� (whihis possible again by surjetivity of q). For any p < � (k�k��1) and any �, it follows that�� h�; q(xt)ikq(x)k� = �+ t k�k2��1t k�k��1 !t!1 k�k��1 > ��1(p):Consequently, there is some xt suh that��1(p) kq(xt)k� + h�; q(xt)i < �:By Lemma (13), this amounts to saying that xt 2M�p .Remark 2.1 Note that the very �rst statement of Proposition 2.3 on�rms that, for � � 0, M�pis onvex not just for p � 0:5 aording to Proposition 2.1 but also for p � � (�k�k��1).For algorithmi purposes, not only onvexity of the onstraint set is of interest but also its om-patness. This, together with the non-emptiness haraterized in Proposition 2.3, will guaranteethe existene of solutions.Proposition 2.4 Let � � N (�;�) with positive de�nite �. Moreover, let q : Rn ! Rn be ahomeomorphism (i.e., a bijetive mapping suh that q and q�1 are ontinuous). Then, for any� 2 R, M�p is unbounded whenever p < � (k�k��1) and ompat whenever p > � (k�k��1). Ifp = � (k�k��1), then M�p is unbounded in the ase that � � 0 and is ompat (atually empty)in the ase that � < 0.Proof. Let 0:5 < p < � (k�k��1). In partiular, � 6= 0, beause otherwise � (k�k��1) = 0:5.Also, by assumption, ��1(p) < k�k��1 . For eah t � 0, put yt := q�1(�t��1�). Then,��1(p) kq(yt)k� + h�; q(yt)i = ���1(p)� k�k��1� t k�k��1 !t!1 �1:Hene, there is some t0 suh that, by (13), yt 2M�p for all t � t0. In other words,q�1 ��[t0;1) ���1�� �M�pSine � 6= 0, one also has that ��1� 6= 0. Therefore, �[t0;1) � ��1� is an unbounded set andq�1 ��[t0;1) � ��1�� is unbounded too beause q is a homeomorphism. Consequently, M�p isan unbounded set. If p � 0:5 then M�p beomes even larger due to (5). This proves the �rstpart of our proposition.If � < 0 and p � � (k�k��1), then M�p = ; by Proposition 2.3, so ompatness followstrivially in this situation. Next, let � � 0 and p > � (k�k��1), whene ��1(p) > k�k��1 . Thelosed ball (w.r.t. the norm indued by �)B := fyj kyk� � ���1(p)� k�k��1��1 �gis ompat, hene q�1(B) is ompat too. On the other hand, for x 2 M�p , one derives from(14) and (13) thatkq(x)k� ���1(p)� k�k��1� � ��1(p) kq(x)k� + h�; q(x)i � �;10



whene q(x) 2 B. In other words, M�p � q�1(B). As a losed subset of a ompat set, M�p hasto be ompat too (for losedness see ontinuity of the onstraint funtion in (8)). Finally, let� � 0 and p = � (k�k��1). If � = 0, then ��1(p) = 0 and M�p = Rn aording to (13). In thease � 6= 0, one ould reapeat the onstrution of yt in the beginning of this proof in order toderive that ��1(p) kq(yt)k� + h�; q(yt)i = 0 � � 8t � 0:Then, q�1 ��[0;1) � ��1�� � M�p and unboundedness of M�p would result in the same way asabove.The following theorem provides a ompilation of the results obtained so far. In order to ollet amaximum of information, we restrit the funtions q to the lass of regular aÆne linear mappings,i.e., q(x) = Ax + b, with some regular matrix A. This lass satis�es all assumptions made sofar and overs in partiular the ase of linear hane onstraints with stohasti oeÆientsand deterministi or stohasti right-hand side. The results on onvexity, non-emptiness andompatness proven in the previous setions, are exhaustive in the sense that they ompletelydetermine, for whih onstellations of � and p the feasible sets M�p will be onvex or nononvex,empty or nonempty, ompat or unbounded. In this sense, a full strutural haraterization isestablished. Let us de�ne the following regions in the (p; �)- plane:Ronv(non;,omp) = f(p; �)jM�p is onvex (nonempty, ompat)g:For the purpose of abbreviation, denote Æ := � (k�k��1)� 0:5 and observe that Æ � 0 and that� (�k�k��1) = 0:5� Æ.Figure 1: Illustration of the regions of onvexity (left), non-emptiness (middle) and ompatness(right) in the (p; �)- plane.
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Α 0Theorem 2.2 In (4), let q be a regular aÆne linear mapping and let � � N (�;�) with positivede�nite �. Then,Ronv = f[0; 0:5� Æ℄� [0;1)g [ f[0:5; 1℄� (�1;1)gRnon; = f[0; 1℄� [0;1)g [ f[0; 0:5+ Æ℄� (�1; 0)gRomp = f[0:5+ Æ; 1℄� (�1; 0)g [ f(0:5 + Æ; 1℄� (0;1)g :Proof. Follows from Proposition 2.1 (�rst statement), Remark 2.1, Proposition 2.2, Propo-sition 2.3 and Proposition 2.4.The regions Ronv, Rnon; and Romp are illustrated in Figure 1.11



Remark 2.2 In the speial ase that � = 0, one derives that M�p is onvex for all � � 0 andall p 2 (0; 1).2.4 Appliation to problems with joint probabilisti onstraintsIt is obvious to apply the previously obtained results for single probabilisti onstraints like (4)to systems of individual probabilisti onstraints like (3) beause the feasible set of the lattersystem is just the intersetion of the feasible sets indued by the single ontsraints. Therefore,in this setion, we shall address the more ompliated ase of joint probabilisti onstraints asin (2). Consider the feasible setM = fx 2 RnjP (�q(x) � a) � pg (p 2 (0; 1)): (15)de�ned by a stohasti matrix � of order (m;n) and a deterministi right-hand side a 2 Rm.Here, q : Rn! Rn refers to a (possibly nonlinear) mapping of the deision vetor. ByM i := fx 2 RnjP (hq(x); �ii � ai) � pg (i = 1; : : : ; m);we denote the feasible set indued by the i-th row of �. Of ourse, M is not just the intersetionof the M i. However, for any i, one has the obvious inlusion M � M i. This simple fat allowsto derive the following useful ompatness ondition for joint probabilisti onstraints:Theorem 2.3 In (15), assume that the rows �i of � are normally distributed aording to �i �N (�i;�i) with positive de�nite ovariane matries �i for i = 1; : : : ; m. Moreover, let q be ahomeomorphism (e.g., q(x) = x). Then, M is ompat provided thatp > mini=1;::: ;m��k�ik��1i � :Proof. Aording to the assumption, there exists some i 2 f1; : : : ; mg suh that p >��k�ik��1i �. Then, M i is ompat by Proposition 2.4. Consequently, M is bounded due toM �Mk. By Lemma 2.1, M is also losed. Summarizing, M is ompat.As an immediate orollary to Theorem 2.3, one derives the following existene result for theoptimization problem minff(x)jx 2Mg (16)with joint probabilisti onstraints:Corollary 2.2 In (16), let f be lower semiontinuous. LetM satisfy the hypotheses of Theorem2.3 in the speial ase that q(x) = x. Moreover let a � 0 (omponentwise). Then, there exists asolution to (16) provided that p > mini=1;::: ;m��k�ik��1i � :12



Proof. The assumptions a � 0 and q(x) = x imply that 0 2 M . Hene, M is nonempty.The result follows from Theorem 2.3 via the Weierstrass Theorem.Theorem 2.3 and Corollary 2.2 hold true for large enough probability levels p whih are typiallyenountered in appliations of probabiliti onstraints. Moreover, the required level is easilyalulated just on the basis of the parameters �i and �i. The additional ondition of a � 0in Corollary 2.2 is needed to ensure nonemptiness of the feasible set (whih does not a�et theompatness result of Theorem 2.3). From the reverse point of view, a general ondition foremptiness an be derived as follows:Theorem 2.4 The feasible set M in (15) is empty ifp � mini2I ��k�ik��1i � ;where I := fi 2 f1; : : : ; mgjai < 0g.Proof. With the same inlusion as used in the proof of Theorem 2.3, one may apply the�rst statement of Proposition 2.3.We note that ompatness and nonemptiness of feasible sets are ruial onditions not only forexistene but also for stability of solutions and optimal values in problems like (16) when approx-imating the underlying, usually unknown probability distribution by another one whih may bebased on historial data (see [2℄). Often, there is no hane diretly to hek the nonemptinessand ompatness of a feasible set de�ned by a pure probabilisti onstraint. Theorem , however,on�rms that, for suÆiently high probability levels p, this assumption holds true in our aseand, moreover, the notion 'suÆiently high' an be easily quanti�ed exatly.AknowledgementThe author wishes to thank Prof. A. Seeger (University of Avignon) for proposin, and moreover,the term 'suÆiently high' an be easily quanti�ed.g an improved version of Proposition 2.1Referenes[1℄ Chmielewski, M.A., Elliptially Symmetri Distributions: A Review and Bibliography, Int.Stat. Rev. 49 (1981), 67-74.[2℄ Henrion, R. and R�omish, W., H�older and Lipshitz stability of solution sets in programswith probabilisti onstraints, Math. Programming, 100 (2004), 589-611.[3℄ Johnson, N.L. and Kotz, S., Distributions in Statistis: Continuous Multivariate Distribu-tions, Wiley, New York, 1972.[4℄ Kan, Y., Appliation of the Quantile Optimization, In: K. Marti (Ed.): Stohasti Opti-mization Tehniques, Let. Notes. Eon. Math. Syst., Vol. 513, Springer, Berlin, 2002, pp.285-308.[5℄ Kataoka, S., A Stohasti Programming Model, Eonometria 31 (1963), 181-196.[6℄ Lagoa, C.M., Li, X. and Sznaier, M., Probabilistially Constrained Linear Programs andRisk-Adjusted Controller Design, to appear in SIAM J. Control Optim.13
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