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 Constraints �R. HenrionWeierstrass Institute, Mohrenstr. 39, 10117 Berlin, GermanyAbstra
tThe paper provides a stru
tural analysis of the feasible set de�ned by linear probabilisti

onstraints. Emphasis is laid on single (individual) probabilisti
 
onstraints. A 
lassi
al
onvexity result by Van de Panne/Popp and Kataoka is extended to a broader 
lass ofdistributions and to more general fun
tions of the de
ision ve
tor. The range of probabilitylevels for whi
h 
onvexity 
an be expe
ted is exa
tly identi�ed. Apart from 
onvexity, alsonontriviality and 
ompa
tness of the feasible set are pre
isely 
hara
terized at the sametime. The relation between feasible sets with negative and with nonnegative right-hand sideis revealed. Finally, an existen
e result is formulated for the more diÆ
ult 
ase of jointprobabilisti
 
onstraints.Key words.probabilisti
 
onstraints, sto
hasti
 programming, 
han
e 
onstraints,sto
hasti
 optimizationMathemati
s Subje
t Classi�
ation (2000):90C151 Introdu
tionMany optimization problems in engineering s
ien
es involve sto
hasti
 linear 
onstraints of theform �x � �; (1)where x is an n-dimensional de
ision ve
tor, � is a sto
hasti
 matrix of order (m;n) and � isa �xed or sto
hasti
 random ve
tor of dimension m (see [12℄, for instan
e). Typi
ally, 'here-and-now' de
isions have to be taken, whi
h means that the random parts of (1) are observedonly after de
iding upon x. Thus, no matter how x is 
hosen, a sure feasibility with respe
tto (1) 
annot be guaranteed. However, depending on the distribution of � (and � wheneversto
hasti
), it is possible to 
hoose x in a way to keep the probability of violating (1) small.More pre
isely, one 
an turn (1) into a probabilisti
 
onstraintP (�x � �) � p; (2)�This work was supported by the DFG Resear
h Center Matheon Mathemati
s for key te
hnologies in Berlin1



where P is a probability measure and p 2 [0; 1℄ is some probability level (typi
ally 
lose to 1) atwhi
h (1) is required to hold. Inequality (2) is also referred to as a joint probabilisti
 
onstraintas it takes into a

ount the probability of the entire system (1) to be satis�ed. In general, jointprobabilisti
 
onstraints are diÆ
ult to handle and both their algorithmi
 treatment and theirtheoreti
al investigation keep posing a lot of 
hallenging questions (see [9℄ for a 
omprehensiveintrodu
tion and [10℄ for a review on re
ent work in this area). It is mu
h easier, although notjusti�ed in all situations, to turn ea
h single inequality of (1) into an individual probabilisti

onstraint as follows: P (h�i; xi � �i) � pi; (i = 1; : : : ; m): (3)Here, the �i refer to the rows of � and now the probability levels may di�er for ea
h 
onstraint.For algorithmi
 purposes it is of mu
h interest to know whether or not the set of feasiblede
isions x satisfying (3) is 
onvex. As the interse
tion of 
onvex sets remains 
onvex, this issueboils down to the investigation of a single linear probabilisti
 
onstraintM = fx 2 RnjP (h�; xi � �) � pg;where � is an n-dimensional random ve
tor and � is a s
alar (possibly random). The 
onvexityof M has been investigated �rst in the 
lassi
al papers by Van de Panne and Popp [8℄ andby Kataoka [5℄. They have shown that M is a 
onvex subset of Rn provided that � has anondegenerate multivariate normal distribution and that p � 0:5. This frequently 
ited resultleaves open a lot of questions. First, one 
ould ask about distributions di�erent from normalones or about more general fun
tions of x under whi
h the same result 
an be maintained.Se
ond, it is 
lear that the feasible set M be
omes smaller when the level p is in
reased towards1. Hen
e, the important observation that M is 
onvex for p large enough has to be 
oupledwith the question of nontriviality be
ause the empty set is 
onvex too. Third, also large setslike Rn may be 
onvex. This raises the question if there exists a range of small values of pwhi
h guarantees 
onvexity as well. Finally, apart from 
onvexity and triviality, 
ompa
tnessof M is another issue of theoreti
al and algorithmi
 interest. Nonempty and 
ompa
t feasiblesets guarantee the existen
e of solutions and allow to derive stability results for solutions whenthe usually unknown distribution of � has to be approximated on the basis of estimations orhistori
al observations (see [2℄).The purpose of this paper is to provide a detailed stru
tural analysis to linear 
han
e 
on-straints and to give a fairly pre
ise answer to the questions posed. The 
lassi
al results of[8℄ and [5℄ 
an be extended to the 
lass of ellipti
ally symmetri
 distributions and to 
ertain
omponent-wise 
onvex mappings of x. In the 
lassi
al setting of normal distributions, it will bepossible to exa
tly identify the range of p-values for whi
h 
onvexity, triviality and 
ompa
tness(or non
onvexity, nontriviality and unboundedness) hold true. It is interesting to observe, thatthese results strongly depend on whether the right-hand side � is negative or nonnegative. Underthis 
ase distin
tion, all stru
tural results be
ome rather di�erent and seemingly independent.However, they are not as independent as they might look like. Roughly speaking, the �rst mainresult of this paper states that, for negative right-hand side and large values of p the feasible setlooks like the 
omplement of the feasible set for nonnegative right-hand side and small values ofp. In the more demanding situation of optimization problems involving joint probabilisti
 
on-straints as in (2), an existen
e theorem 
an be derived from the 
ase of single 
onstraints. Morepre
isley, this theorem allows exa
tly to 
al
ulate a 
riti
al p- level above whi
h 
ompa
tnessand nonemptiness of a joint probabilisti
 
onstraint 
an be guaranteed. Su
h result is not onlyinteresting with respe
t to the existen
e of solutions but also 
on
erning stability of solutionsets under perturbation (approximation) of the given probability distribution.2



2 ResultsIn the following, we shall 
onsider 
onstraint setsM�p := fx 2 RnjP (hq(x); �i � �) � pg (� 2 R; p 2 (0; 1)): (4)Here, � is an s-dimensional random ve
tor de�ned on some probability spa
e (
;A; P ) andq : Rn ! Rs is a mapping from the spa
e of de
ision ve
tors to the spa
e of realizations ofthe random ve
tor. The indi
es � and p shall emphasize the fa
t that we are going to analyzethe stru
ture of the feasible set as a fun
tion of the right-hand side of the 
onsidered sto
hasti
inequality and of the probability level p. Putting q(x) = x, one gets ba
k to the 
lassi
al linearprobabilisti
 
onstraint set M�p with deterministi
 right-hand side. Choosing q(x) = (x;�1) and
onsidering the extended (s+ 1)-dimensional random ve
tor (�; �), M0p re
overs the 
onstraintset with sto
hasti
 right-hand side (see introdu
tion). In this latter 
ase, q is an aÆne linearmapping whi
h will �gure as an assumption in several subsequent results. As an immediate
onsequen
e of the de�nition (4), one has the following properties:M�p1 �M�p2 8� 2 R 8p1; p2 2 (0; 1) : p1 � p2 (5)q�1(0) �M�p 8� � 0 8p 2 (0; 1) (6)q�1(0) � �M�p �
 8� < 0 8p 2 (0; 1) (7)Moreover, the M�p are 
losed subsets of Rn under mild assumptions. Indeed, we may refer tothe following 
onsequen
e of a general 
losedness 
hara
terization provided in [11℄ (Prop. 3.1),where we keep the meaning of � and P :Lemma 2.1 Let g : Rn�Rs ! Rm be a ve
tor-valued mapping with lower semi
ontinuous (inboth variables simultaneously) 
omponents. Then, the set fx 2 RnjP (g(x; �)� 0) � pg is 
losed.Corollary 2.1 If in (4), q is a mapping with lower semi
ontinuous 
omponents, then M�p is
losed for all � 2 R and all p 2 (0; 1).2.1 On the relation between positive and negative right-hand sideBefore investigating properties of M�p , like 
onvexity, nontriviality and 
ompa
tness, we wantto identify the stru
tural relation between 
onstraint sets with positive and negative right-hand side. The following theorem tells us that, up to 
losure and translation, the sets M�p areidenti
al to the 
omplements of the 'dual' sets M��1�p. Convexity and 
ompa
tness are examplesfor properties whi
h are not a�e
ted by translation or 
losure.Theorem 2.1 Let the distribution of � be absolutely 
ontinuous with respe
t to the Lebesguemeasure, and let the support of � be all of Rs. Furthermore, assume that q is a surje
tive, aÆnelinear mapping. Then, there exists some d 2 Rn su
h thatM�p = fdg � 
ln�M��1�p�
o 8� 6= 0 8p 2 (0; 1):Proof. We �x arbitrary � 6= 0, p 2 (0; 1) and start by observing that the fun
tionx 7�! P (hq(x); �i � �) (8)3



is 
ontinuous at ea
h x =2 q�1(0). Indeed, this 
ondition, together with the fa
t that q is
ontinuous, ensures that the set-valued mappingTy := fu 2 Rsj hq(y); ui � �gsatis�es limy!x Ty = Tx. Here, the set 
onvergen
e is taken in the Kuratowski-Painlev�e sense.Along with the assumption, that � has an absolutely 
ontinuous distribution, this ensures thatlimy!x P (� 2 Ty) = P (� 2 Tx), whenever all the Ty and Tx are 
losed and 
onvex (see [7℄, Th.3, Lemma 1 and Proof of Th. 4).To pro
eed with the proof of our Theorem, we may assume that q(x) = Ax + b for somematrix A having full rank. Put d := �2AT �AAT��1 b:As a 
onsequen
e, one has that �q(x) = q(d�x) for all x 2 Rn and, in parti
ular that x 2 q�1(0)if and only if d� x 2 q�1(0). For arbitrary x =2 q�1(0), the following equivalen
es hold true:P (hq(x); �i � �) � p , P (hq(x); �i > �) � 1� p, P (� hq(x); �i < ��) � 1� p, P (hq(d� x); �i � ��) � 1� p: (9)Here, the last equivalen
e relies on the fa
t that q(d� x) 6= 0, so that hq(d� x); �i = �� de�nesa hyperplane in Rs, whi
h has probability zero by our assumption on the distribution of �. Next,we verify the following identity:
ln�M��1�p�
o = fz 2 RnjP (hq(z); �i � ��) � 1� pg 8z =2 q�1(0): (10)For z 2 
l n�M��1�p�
o, there exists a sequen
e zn ! z su
h thatP (hq(zn); �i � ��) < 1� p:This entails the in
lusion '�' in (10) via the 
ontinuity of the fun
tion (8). For the reversein
lusion, let z be given su
h that z =2 q�1(0) andP (hq(z); �i � ��) � 1� p:With zn := z � sgn�n AT �AAT ��1 (Az + b);one gets that zn ! z andq(zn) = Azn + b = Az + b� sgn�n (Az + b) = � (1� n�1)q(z) if � > 0(1 + n�1)q(z) if � < 0:Consequently, in 
ase that � > 0, one arrives at the in
lusionfu 2 Rsj hq(zn); ui � ��g = fu 2 Rsj hq(z); ui � ��(1� n�1)�1g � fu 2 Rsj hq(z); ui � ��g:4



Thus, 1� p � P (hq(z); �i � ��)= P (hq(zn); �i � ��) + P ���(1� n�1)�1 < hq(zn); �i � ��� :Now, sin
e the strip fu 2 Rsj � �(1� n�1)�1 < hq(zn); ui � ��ghas a nonempty interior, its probability must be stri
tly positive a

ording to our assumptionthat the support of � is all of Rs. Thus, we get1� p > P (hq(zn); �i � ��)whi
h amounts to saying that zn 2 �M��1�p�
. An analogous argumentation applies to the 
ase� < 0 upon using the respe
tive de�nition of zn. This establishes (10).Applying (10) to (9) with z = d�x =2 q�1(0), we may summarize the pre
eding 
onsiderationsin the form x 2M�p nq�1(0)() x 2 hfdg � 
ln�M��1�p�
oi nq�1(0): (11)In order to �nish the proof, it remains to verify the equivalen
ex 2M�p \ q�1(0)() x 2 hfdg � 
ln�M��1�p�
oi \ q�1(0): (12)If x 2 M�p \ q�1(0), then also d � x 2 q�1(0) and � � 0 by (7). Sin
e � 6= 0, it followsthat �� < 0 and d � x 2 �M��1�p�
, again by (7). This proves the impli
ation '=)' in (12).Conversely, let x 2 hfdg � 
ln�M��1�p�
oi \ q�1(0):On
e more, d� x 2 q�1(0). By de�nition, there is a sequen
e xn ! d� x with xn 2 �M��1�p�
.Assume �rst, that there is a subsequen
e of xn, whi
h we do not relabel, su
h that xn =2 q�1(0).Then, also d� xn =2 q�1(0), so that we 
an apply (11) to d� xn rather than x. This yields thatd� xn 2M�p . On the other hand, M�p is 
losed a

ording to Corollary 2.1. It follows thatd� xn ! x 2M�p \ q�1(0);whi
h establishes the reverse impli
ation in (12) for a spe
ial 
ase. It remains to 
he
k the 
asewhen d � xn 2 q�1(0) for all n. Then, also xn 2 q�1(0) for all n. The assumption � � 0would lead to the 
ontradi
tion xn 2 M��1�p via (6). So, d � xn 2 M�p , again by (6). The same
losedness argument as in the �rst spe
ial 
ase yields that x 2M�p \ q�1(0). This 
ompletes theproof.The following example illustrates, why we have to insist on the 
ondition � 6= 0 in Theorem 2.1:Example 2.1 In dimension one, let q(x) = x and � have a standard normal distribution. Then,M00:5 = R. All assumptions of Theorem 2.1 are met ex
ept that � = 0. If the theorem wouldhold true, there should exist some d 2 R su
h thatM00:5 = fdg � 
l ��M00:5�
	 = fdg � 
l ; = ;;whi
h is a 
ontradi
tion. 5



2.2 ConvexityWe re
all the 
lass of ellipti
ally symmetri
 distributions, whose density (if it exists) is given byf(x) = (det �)�1=2 g �
x� �;��1 (x� �)�� ;where � is a positive de�nite matrix and g is some nonnegative fun
tion. In parti
ular, thes-dimensional normal distribution belongs to this 
lass with mean ve
tor �, 
ovarian
e matrix� and g(t) = (2�)�s=2 exp (�t=2) :However, the 
lass of ellipti
ally symmetri
 distributions is mu
h broader than just multivari-ate normal ones and in
orporates, for instan
e, multivariate versions of student or exponentialdistributions ([1℄, [3℄). The 
hara
teristi
 fun
tion of an ellipti
ally symmetri
 distribution hasthe form �(t) = exp (i ht; �i) h (ht;�ti)for some s
alar fun
tion h, 
alled the '
hara
teristi
 generator' of this distribution.In the following, we use the symbol k�kC for the norm indu
ed by a positive de�nite matrixC, i.e.: k�kC = phx; Cxi. Moreover, for a 1-dimensional distribution fun
tion F we de�ne itsp-quantile as F�1(p) = infftjF (t) � pg:Lemma 2.2 In (4), let q be arbitrary and let � have an ellipti
ally symmetri
 distribution withparameters �, �, where � is positive de�nite. Denote by h its 
hara
teristi
 generator. ThenM�p = fx 2 RnjF�1(p) kq(x)k� + h�; q(x)i � �g;where F is the 1-dimensional distribution fun
tion indu
ed by the 
hara
teristi
 fun
tion �(�) :=h ��2�.Proof. The 
hara
teristi
 fun
tion of � is��(t) = exp (i ht; �i)h�ktk2�� :Let x 2 Rnnq�1(0) be arbitrary. Then, the s
aled random variable�x := hq(x); � � �iphq(x);�q(x)i = � q(x)kq(x)k� ; ��� � q(x)kq(x)k� ; ��is a well-de�ned aÆne linear transformation of �. Following the general 
al
ulus rule�h
;�i+d(�) = exp (i�d) � ��(�
)for 
hara
teristi
 fun
tions, that of �x 
al
ulates as��x(�) = exp��i� hq(x); �ikq(x)k� � �� � �kq(x)k� q(x)� = h ��2� :6



In parti
ular, the distribution of �x does not depend on x. Its distribution fun
tion is given byF as introdu
ed in the statement of this lemma. It follows thatP (hq(x); �i � �) � p , P ��x � �� h�; q(x)ikq(x)k� � � p, F ��� h�; q(x)ikq(x)k� � � p, F�1(p) kq(x)k� + h�; q(x)i � �:Now, the assertion results from (6) and (7) upon observing that the last inequality holds truefor all x 2 q�1(0) if � � 0 and is violated for all x 2 q�1(0) if � < 0.Proposition 2.1 Let, in addition to the setting of Lemma 2.2, one of the following assumptionshold true:� q is aÆne linearor� q has nonnegative, 
onvex 
omponents, �i � 0 for i = 1; : : : ; s and all elements of � arenonnegative..Then, M�p is 
onvex for all � 2 R and all p > 0:5. If, moreover, the random ve
tor � in Lemma2.2 has a stri
tly positive density, then M�p is 
onvex for all � 2 R and all p � 0:5.Proof. By Lemma 2.2, we are done if we 
an show that both fun
tionsh�; q(x)i and F�1(p) kq(x)k�are 
onvex. This is obvious for h�; q(x)i without restri
tions on � in 
ase that q is aÆne linearand for � with nonnegative 
omponents in 
ase that the 
omponents of q are 
onvex. Let usturn to the se
ond term now: Sin
e F is a one-dimensional symmetri
 distribution fun
tion, itfollows that F (0) = 0:5. Therefore, F�1(p) � 0 for p > 0:5 and also F�1(p) � 0 for p = 0:5, inthe 
ase that F has a stri
tly positive density. It remains to verify thus, that kq(�)k� is a 
onvexfun
tion. This is evident in 
ase that q is aÆne linear. For the alternative 
ase, re
all that, forany �xed x =2 q�1(0), the optimization problemmaxfhq(x); yi j kyk��1 = 1ghas the solution y� = kq(x)k�1� �q(x):Sin
e, by assumption, all 
omponents of q and all elements of � are nonnegative, the 
omponentsof y� are nonnegative too. This allows to write thatkq(x)k� = hq(x); y�i = maxfhq(x); yi j kyk��1 = 1g = maxfhq(x); yi j kyk��1 = 1; y 2 Rs+g:for all x =2 q�1(0). The same identitykq(x)k� = maxfhq(x); yi j kyk��1 = 1; y 2 Rs+g7



holds trivially true in 
ase that x 2 q�1(0), hen
e it is valid for all x 2 Rn. For y 2 Rs+, hq(�); yiis 
onvex by the assumed 
onvexity of the 
omponents of q. Summarizing, kq(�)k� is 
onvex asa maximum of 
onvex fun
tions hq(�); yi.When redu
ing Proposition 2.1 to a nondegenerate multivariate normal distribution of �, thenits �rst statement evidently re
overs the 
lassi
al 
onvexity result of [5℄,[8℄ with random or de-terministi
 right-hand side (see introdu
tion and beginning of Se
tion 2). The �rst statementof Proposition 2.1 was shown in [4℄ based on the 
on
ept of so-
alled �-nu
lei. In 
ontrast,our proof essentially relies on the representation Lemma 2.2. This representation allows, in these
ond statement of Proposition 2.1, to generalize the 
onvexity result to nonlinear fun
tions qof the de
ision ve
tor. A di�erent extension of the 
lassi
al results to the 
lass of log-
on
avesymmetri
 distributions has been obtained in [6℄. As the ellipti
ally symmetri
 distributions
onsidered here, the log-
on
ave symmetri
 distributions also 
ontain multivariate normal dis-tributions (but apart from it also uniform distributions over symmetri
, 
onvex, 
ompa
t sets).From now on we shall assume, for simpli
ity, that the random ve
tor � has a nondegeneratemultivariate normal distribution with mean ve
tor � and (positive de�nite) 
ovarian
e matrix�: � � N (�;�). Then, by Lemma 2.2,M�p = fx 2 Rnj��1(p) kq(x)k� + h�; q(x)i � �g; (13)where � denotes the distribution fun
tion of the one-dimensional standard normal distributionand ��1(p) its p-quantile.Proposition 2.1 tells us for whi
h range of p-values 
onvexity of the 
onstraint set may beexpe
ted. It does not imply, however, non
onvexity of this set for the remaining p-values. Thefollowing proposition 
lari�es, under whi
h 
ir
umstan
es non
onvexity may be derived.Proposition 2.2 Let � � N (�;�) with positive de�nite � and let q be a surje
tive aÆne linearmapping. Then, M�p is non
onvex in any of the following two situations:� < 0; p < 0:5or� � 0; � (�k�k��1) < p < 0:5:Proof. First, let � < 0 and p < 0:5, when
e ��1(p) < 0. We 
hoose Æ 6= 0 su
h thathÆ; �i = 0. By surje
tivity of q, there is some h su
h that q(h) = q(0) + Æ: Again by surje
tivityof q, we may 
hoose some x� 2 q�1(0). By virtue of (7), one has that x� =2M�p . For t 2 R, putxt := x� + th. The aÆne linearity of q implies thatq(xt) = q(x�) + t(q(h)� q(0)) = q(x�) + tÆ:Then, ��1(p) kq(xt)k� + h�; q(xt)i = ��1(p) kq(x�) + tÆk� + h�; q(x�)i :Sin
e Æ 6= 0 and ��1(p) < 0, it follows thatlimt!1��1(p) kq(xt)k� + h�; q(xt)i = limt!�1��1(p) kq(xt)k� + h�; q(xt)i =1:Consequently, for jtj large enough, one has��1(p) kq(xt)k� + h�; q(xt)i � �;8



whi
h means that xt 2 M�p a

ording to (13). In parti
ular, there is some � > 0 su
h thatx� ; x�� 2M�p . On the other hand, x� + x��2 = x� =2M�p :Therefore, M�p is not 
onvex.Now, let � � 0 and � (�k�k��1) < p < 0:5. In parti
ular, � 6= 0, bea
ause otherwise� (�k�k��1) = 0:5. For ea
h t 2 R, the surje
tivity of q allows to 
hoose some yt su
h thatq(yt) = t��1�. Then,��1(p) kq(yt)k� + h�; q(yt)i = ��1(p)t k�k��1 + t k�k2��1= ���1(p) + k�k��1� t k�k��1 !t!1 1;where the 
onvergen
e towards in�nity relies on the fa
t that � 6= 0 and on the fa
t that theexpression in parentheses is stri
tly positive by our assumption on the admissible range of p.Hen
e, for t large enough, the expression above will ex
eed �. In other words, by (13), for tlarge enough, yt =2M�p . We �x su
h a point and 
all it �x. Now, we may repeat exa
tly the sameargumentation as in the �rst part of this proof but with x� repla
ed by �x. This allows again to�nd points x� ; x�� 2M�p su
h that x� + x��2 = �x =2M�p ;and hen
e, 
onvexity of M�p is violated on
e more.2.3 Non-emptiness and 
ompa
tnessSo far, we have 
hara
terized the 
onvexity of the 
onstraint set. It has to be taken into a

ount,however, that M�p might be trivially 
onvex in being identi
al either to the empty set or to thewhole spa
e. Therefore, a 
hara
terization of triviality is of interest as well.Proposition 2.3 Let � � N (�;�) with positive de�nite �. Then,M�p = Rn 8� � 0 8p � � (�k�k��1)M�p = ; 8� < 0 8p � � (k�k��1) :Moreover, if q is surje
tive, thenM�p 6= ; 8� � 0 8p 2 (0; 1)M�p 6= ; 8� < 0 8p < � (k�k��1) :Proof. A generalized version of the Cau
hy-S
hwarz inequality (for symmetri
, positivede�nite matri
es) yields the relationjh�; q(x)ij � kq(x)k� k�k��1 : (14)From here, for arbitrary x 2 Rn, one obtains the following pair of inequalities by 
ase distin
tion:��1(p) kq(x)k� + h�; q(x)i� � kq(x)k� ���1(p) + k�k��1� � 0 � � 8� � 0 8p � � (�k�k��1)� kq(x)k� ���1(p)� k�k��1� � 0 > � 8� < 0 8p � � (k�k��1) :9



By virtue of (13), this proves the �rst part of our Corollary. The �rst statement of the se
ondpart of the 
orollary is evident from (6) be
ause q�1(0) 6= ; by the assumed surje
tivity of q.Con
erning the last statement, de�ne for ea
h t > 0 some xt su
h that q(xt) = �t��1� (whi
his possible again by surje
tivity of q). For any p < � (k�k��1) and any �, it follows that�� h�; q(xt)ikq(x)k� = �+ t k�k2��1t k�k��1 !t!1 k�k��1 > ��1(p):Consequently, there is some xt su
h that��1(p) kq(xt)k� + h�; q(xt)i < �:By Lemma (13), this amounts to saying that xt 2M�p .Remark 2.1 Note that the very �rst statement of Proposition 2.3 
on�rms that, for � � 0, M�pis 
onvex not just for p � 0:5 a

ording to Proposition 2.1 but also for p � � (�k�k��1).For algorithmi
 purposes, not only 
onvexity of the 
onstraint set is of interest but also its 
om-pa
tness. This, together with the non-emptiness 
hara
terized in Proposition 2.3, will guaranteethe existen
e of solutions.Proposition 2.4 Let � � N (�;�) with positive de�nite �. Moreover, let q : Rn ! Rn be ahomeomorphism (i.e., a bije
tive mapping su
h that q and q�1 are 
ontinuous). Then, for any� 2 R, M�p is unbounded whenever p < � (k�k��1) and 
ompa
t whenever p > � (k�k��1). Ifp = � (k�k��1), then M�p is unbounded in the 
ase that � � 0 and is 
ompa
t (a
tually empty)in the 
ase that � < 0.Proof. Let 0:5 < p < � (k�k��1). In parti
ular, � 6= 0, be
ause otherwise � (k�k��1) = 0:5.Also, by assumption, ��1(p) < k�k��1 . For ea
h t � 0, put yt := q�1(�t��1�). Then,��1(p) kq(yt)k� + h�; q(yt)i = ���1(p)� k�k��1� t k�k��1 !t!1 �1:Hen
e, there is some t0 su
h that, by (13), yt 2M�p for all t � t0. In other words,q�1 ��[t0;1) ���1�� �M�pSin
e � 6= 0, one also has that ��1� 6= 0. Therefore, �[t0;1) � ��1� is an unbounded set andq�1 ��[t0;1) � ��1�� is unbounded too be
ause q is a homeomorphism. Consequently, M�p isan unbounded set. If p � 0:5 then M�p be
omes even larger due to (5). This proves the �rstpart of our proposition.If � < 0 and p � � (k�k��1), then M�p = ; by Proposition 2.3, so 
ompa
tness followstrivially in this situation. Next, let � � 0 and p > � (k�k��1), when
e ��1(p) > k�k��1 . The
losed ball (w.r.t. the norm indu
ed by �)B := fyj kyk� � ���1(p)� k�k��1��1 �gis 
ompa
t, hen
e q�1(B) is 
ompa
t too. On the other hand, for x 2 M�p , one derives from(14) and (13) thatkq(x)k� ���1(p)� k�k��1� � ��1(p) kq(x)k� + h�; q(x)i � �;10



when
e q(x) 2 B. In other words, M�p � q�1(B). As a 
losed subset of a 
ompa
t set, M�p hasto be 
ompa
t too (for 
losedness see 
ontinuity of the 
onstraint fun
tion in (8)). Finally, let� � 0 and p = � (k�k��1). If � = 0, then ��1(p) = 0 and M�p = Rn a

ording to (13). In the
ase � 6= 0, one 
ould reapeat the 
onstru
tion of yt in the beginning of this proof in order toderive that ��1(p) kq(yt)k� + h�; q(yt)i = 0 � � 8t � 0:Then, q�1 ��[0;1) � ��1�� � M�p and unboundedness of M�p would result in the same way asabove.The following theorem provides a 
ompilation of the results obtained so far. In order to 
olle
t amaximum of information, we restri
t the fun
tions q to the 
lass of regular aÆne linear mappings,i.e., q(x) = Ax + b, with some regular matrix A. This 
lass satis�es all assumptions made sofar and 
overs in parti
ular the 
ase of linear 
han
e 
onstraints with sto
hasti
 
oeÆ
ientsand deterministi
 or sto
hasti
 right-hand side. The results on 
onvexity, non-emptiness and
ompa
tness proven in the previous se
tions, are exhaustive in the sense that they 
ompletelydetermine, for whi
h 
onstellations of � and p the feasible sets M�p will be 
onvex or non
onvex,empty or nonempty, 
ompa
t or unbounded. In this sense, a full stru
tural 
hara
terization isestablished. Let us de�ne the following regions in the (p; �)- plane:R
onv(non;,
omp) = f(p; �)jM�p is 
onvex (nonempty, 
ompa
t)g:For the purpose of abbreviation, denote Æ := � (k�k��1)� 0:5 and observe that Æ � 0 and that� (�k�k��1) = 0:5� Æ.Figure 1: Illustration of the regions of 
onvexity (left), non-emptiness (middle) and 
ompa
tness(right) in the (p; �)- plane.
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Α 0Theorem 2.2 In (4), let q be a regular aÆne linear mapping and let � � N (�;�) with positivede�nite �. Then,R
onv = f[0; 0:5� Æ℄� [0;1)g [ f[0:5; 1℄� (�1;1)gRnon; = f[0; 1℄� [0;1)g [ f[0; 0:5+ Æ℄� (�1; 0)gR
omp = f[0:5+ Æ; 1℄� (�1; 0)g [ f(0:5 + Æ; 1℄� (0;1)g :Proof. Follows from Proposition 2.1 (�rst statement), Remark 2.1, Proposition 2.2, Propo-sition 2.3 and Proposition 2.4.The regions R
onv, Rnon; and R
omp are illustrated in Figure 1.11



Remark 2.2 In the spe
ial 
ase that � = 0, one derives that M�p is 
onvex for all � � 0 andall p 2 (0; 1).2.4 Appli
ation to problems with joint probabilisti
 
onstraintsIt is obvious to apply the previously obtained results for single probabilisti
 
onstraints like (4)to systems of individual probabilisti
 
onstraints like (3) be
ause the feasible set of the lattersystem is just the interse
tion of the feasible sets indu
ed by the single 
ontsraints. Therefore,in this se
tion, we shall address the more 
ompli
ated 
ase of joint probabilisti
 
onstraints asin (2). Consider the feasible setM = fx 2 RnjP (�q(x) � a) � pg (p 2 (0; 1)): (15)de�ned by a sto
hasti
 matrix � of order (m;n) and a deterministi
 right-hand side a 2 Rm.Here, q : Rn! Rn refers to a (possibly nonlinear) mapping of the de
ision ve
tor. ByM i := fx 2 RnjP (hq(x); �ii � ai) � pg (i = 1; : : : ; m);we denote the feasible set indu
ed by the i-th row of �. Of 
ourse, M is not just the interse
tionof the M i. However, for any i, one has the obvious in
lusion M � M i. This simple fa
t allowsto derive the following useful 
ompa
tness 
ondition for joint probabilisti
 
onstraints:Theorem 2.3 In (15), assume that the rows �i of � are normally distributed a

ording to �i �N (�i;�i) with positive de�nite 
ovarian
e matri
es �i for i = 1; : : : ; m. Moreover, let q be ahomeomorphism (e.g., q(x) = x). Then, M is 
ompa
t provided thatp > mini=1;::: ;m��k�ik��1i � :Proof. A

ording to the assumption, there exists some i 2 f1; : : : ; mg su
h that p >��k�ik��1i �. Then, M i is 
ompa
t by Proposition 2.4. Consequently, M is bounded due toM �Mk. By Lemma 2.1, M is also 
losed. Summarizing, M is 
ompa
t.As an immediate 
orollary to Theorem 2.3, one derives the following existen
e result for theoptimization problem minff(x)jx 2Mg (16)with joint probabilisti
 
onstraints:Corollary 2.2 In (16), let f be lower semi
ontinuous. LetM satisfy the hypotheses of Theorem2.3 in the spe
ial 
ase that q(x) = x. Moreover let a � 0 (
omponentwise). Then, there exists asolution to (16) provided that p > mini=1;::: ;m��k�ik��1i � :12



Proof. The assumptions a � 0 and q(x) = x imply that 0 2 M . Hen
e, M is nonempty.The result follows from Theorem 2.3 via the Weierstrass Theorem.Theorem 2.3 and Corollary 2.2 hold true for large enough probability levels p whi
h are typi
allyen
ountered in appli
ations of probabiliti
 
onstraints. Moreover, the required level is easily
al
ulated just on the basis of the parameters �i and �i. The additional 
ondition of a � 0in Corollary 2.2 is needed to ensure nonemptiness of the feasible set (whi
h does not a�e
t the
ompa
tness result of Theorem 2.3). From the reverse point of view, a general 
ondition foremptiness 
an be derived as follows:Theorem 2.4 The feasible set M in (15) is empty ifp � mini2I ��k�ik��1i � ;where I := fi 2 f1; : : : ; mgjai < 0g.Proof. With the same in
lusion as used in the proof of Theorem 2.3, one may apply the�rst statement of Proposition 2.3.We note that 
ompa
tness and nonemptiness of feasible sets are 
ru
ial 
onditions not only forexisten
e but also for stability of solutions and optimal values in problems like (16) when approx-imating the underlying, usually unknown probability distribution by another one whi
h may bebased on histori
al data (see [2℄). Often, there is no 
han
e dire
tly to 
he
k the nonemptinessand 
ompa
tness of a feasible set de�ned by a pure probabilisti
 
onstraint. Theorem , however,
on�rms that, for suÆ
iently high probability levels p, this assumption holds true in our 
aseand, moreover, the notion 'suÆ
iently high' 
an be easily quanti�ed ex
atly.A
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