
ON THE EFFICIENT UPDATE OF RECTANGULAR LU FACTORIZATIONS
SUBJECT TO LOW RANK MODIFICATIONS∗

PETER STANGE† , ANDREAS GRIEWANK‡ , AND MATTHIAS BOLLHÖFER§

Abstract.

In this paper we introduce a new method for the computation of KKT matrices that arise from solving constrained,
nonlinear optimization problems. This method requires updating of null-space factorizations after a low rank
modification. The update procedure has the advantage that it is significantly cheaper than a re-factorization of
the system at each new iterate. This paper focuses on the cheap update of a rectangular LU decomposition after
a rank-1 modification. Two different procedures for updating the LU factorization are presented in detail and
compared regarding their costs of computation and their stability. Moreover we will introduce an extension of
these algorithms which further improves the computation time. This turns out to be an excellent alternative to
algorithms based on orthogonal transformations.

Key words. KKT-System, LU factorization, low-rank modification

1. Introduction. This work is motivated by the solution of the following constrained opti-
mization problem:

min
x∈
�

n

f(x) subject to

{

ci(x) = 0 i ∈ I

cj(x) ≤ 0 j ∈ E
where I ∩ E = ∅, (I ∪ E) = {1, ..., k}. (1.1)

If m ≤ k,i.e. cj(x) = 0 for j ∈ E , active constraints are known, optima of this problem are locally
characterized as saddle points of the Lagrange function

L(x, λ) = f(x) + λT c(x) = f(x) +
m∑

i=1

λici(x), where λ = (λ1, ..., λm)T . (1.2)

These saddle points can be computed by solving the stationary condition

0 = ∇x,λL(x, λ) ≡ [g(x, λ), c(x)]

≡ [∇f +

m∑

i=1

λi∇ci(x), c(x)].

This can be done by the quasi-Newton method introduced in [7]. Thereby a sequence of linearized
KKT systems of the form

[
Bk AT

k

Ak 0

][
sk

σk

]

= −

[
gk

ck

]

(1.3)

has to be solved. Here the matrices Ak ∈
�

m×n and Bk ∈
�

n×n (with n ≥ m) approximate
the Jacobian ∇c(x)T of the active constraints and the Hessian of the Lagrange function ∇2

xL =

∇2f(x) +
m∑

i=1

λi∇2ci(x). The vectors sk and σk are the current optimization steps from which the

new point and the new Lagrange multipliers can be obtained by

xk+1 = xk + sk and λk+1 = λk + σk . (1.4)

This is a full step. The convergence can be globalized by reduced steps

xk+1 = xk + αksk and λk+1 = λk + αkσk . (1.5)

∗this work was supported by the DFG-research center Matheon ”Mathematics for key technologies” in Berlin
†Institute for Mathematics, Technische Universität Berlin, Germany
‡Institute for Mathematics, Humboldt-Universität zu Berlin, Germany
§Institute for Mathematics, Technische Universität Berlin, Germany

1



with a step length αk, e.g. obtained by a line search. Throughout the paper we make no as-
sumptions on the sparsity pattern of ∇c and ∇2L, i.e., Ak, Bk might be dense matrices. The
approximate Jacobian Ak and the approximate Hessian Bk will be updated in every step of the
optimization procedure. Here we consider rank-one updates that are linearly invariant and can
be efficiently computed by Automatic Differentiation [5]. With this technique it is feasible to
compute matrix-vector and vector-matrix products with derivative matrices cheaply.
In the sequel we will drop the index k to simplify the notation. The updated matrices Ak+1, Bk+1

will be denoted by A+, B+.

1.1. Updating the Hessian. The Hessian will be modified as shown in [7] by the symmetric-
rank-one update formula (SR1):

B+ = B +
(w − Bs)(w − Bs)T

(w − Bs)T s
≡ B + εhhT , (1.6)

where

w = B+s ≡ g(x+, λ) − g(x, λ) (1.7)

and s ≡ sk as in (1.3).
It can be seen from (1.7) that this update satisfies the direct secant condition. By Automatic
Differentiation the vectors g can be evaluated in the adjoint mode without the knowledge of the
full Jacobian ∇c(x).

1.2. Updating the Jacobian. This matrix can be updated similarly to the Hessian with
the two-sided-rank-one update formula (TR1) [7]:

A+ = A +
(y − As)(µT − σT A)

µT s − σT As
≡ A + δrρT . (1.8)

It satisfies the direct secant condition

A+s = y ≡ c(x+) − c(x) (1.9)

and the adjoint secant condition up to O(‖σ‖‖s‖2)

σT A+ = µT ≡ σT∇c(x+) (1.10)

where σ ≡ σk and s ≡ sk are as in (1.3).
Equation (1.10) can be computed in the reverse or adjoint mode of automatic differentiation. Un-
less the constraint function c(x) is affine the two conditions will not be exactly consistent. But the
deviation will only be of order O(‖σ‖‖s‖2) which is within the scope of quasi Newton methods.
More details about these two updates in this optimization context are given in [7].

1.3. Null-space Representation. For the solution of KKT systems it is necessary to solve
the linear system of equations (1.3). One way to do this consists of decomposing the matrices A
and B. Here and throughout the paper we will assume that A has full rank. In contrast to [8]
a complete LU factorization instead of a QR decomposition of the approximate Jacobian will be
performed.

PzAPs = LU (1.11)

where U =
[

U1
︸︷︷︸

∈
�

m×m

U2
︸︷︷︸

∈
�

m×d

]
with d = n − m and U1 nonsingular.

As in [8] the approximate Hessian will be projected to the null- and range-space of AT . The

2



columns of

Z = PsZ̃ with Z̃ =

[
−U−1

1 U2

Id

]

(1.12)

form a basis of the null-space of A. As range-space basis we will use the columns of the permuted
identity augmented by a block of zeros

Y = PsỸ = Ps

[
Im

0

]

∈
� n×m. (1.13)

Combining these spaces to Q =
[
Y Z

]
, (1.3) can be transformed by multiplying from left and

right by Q, respectively its transposed to




E C UT
1 LT Pz

CT M 0
P T

z LU1 0 0









sy

sz

σ



 = −





Y T g
ZT g

c



 , (1.14)

with the notation

E = Y T BY ∈
� m×m, C = Y T BZ ∈

� m×d, M = ZT BZ ∈
� d×d. (1.15)

Initially we assume that M is positive definite. This can be achieved by starting with identity
matrices for A and B. Factorizing the matrix M is necessary to solve system (1.14). To do so we
will use a transposed Cholesky factorization: M = RRT where R is an upper triangular matrix.
This is only possible if in every step M is positive definite. We will ensure this e.g. by damping
the (SR1) or (TR1) update. Further note that because of their structures it is not necessary to
store Y and Z explicitly. Instead we use the implicit representation via the LU decomposition of
A. Consequently our total storage requirement is the same as that for A and B, and far less than
that required by the QR factorization.

1.4. Updating Decompositions. Decomposing the KKT systems (1.3) in the previous de-
scribed way costs O(n3) operations in every Newton step which is quite expensive in the case of
large problems.
The computational effort can be reduced by one order to O(n2) if A and B need not to be re-
factorized in every step. Because of the low-rank corrections to A and B by the (SR1) and (TR1)
update formulas this is possible by updating the factors directly.
Two different procedures for updating the LU factorization will be presented in detail and com-
pared regarding their costs of computation and their stability. Moreover we will introduce an
extension of these algorithms which will further improve the computation time. Numerical ex-
amples confirm that this approach is an excellent alternative to algorithms based on orthogonal
transformations.

2. LU Updating. The LU factorization PzAPs = LU of a dense matrix A ∈
�

m×n has
an algebraic complexity of O(nm2) operations in general. In particular in our application where
we have to solve a sequence of KKT systems the associated sub-matrices undergo a sequence of
low-rank modifications. This requires the factorization of A in every step. Thus it is better to
factorize A only once at the beginning of the computation. Then the factors Pz, Ps, L and U
can be updated directly with an effort of O(mn) operations. Next, two different algorithms of
Bennett [1] and Schwetlick/Kielbasinski [10] respectively Fletcher/Matthews [2] will be illustrated.
Also a new method combining these two algorithms is shown. In addition a new approach for the
case of column permutations will be presented. Further we will show how the updating procedure
can be faster by an efficient row-wise implementation and regarding the structure of the low rank
term. Moreover it will be shown that the algorithm by Bennett is advantageous in the symmetric
positive definite case.
The basic problem can be described as follows. Let the rank-one modification be

A+ = A + uvT , (2.1)

3



where u ∈
�

m and v ∈
�

n and let the decomposition

PzAPs = LU (2.2)

be given and assume that A+ also has full rank. We want to compute new updated factors
L+, U+, P+

z , P+
s such that

A+ = (P+
z )T L+U+(P+

s )T = P T
z LUP T

s + uvT . (2.3)

2.1. Algorithm I - Schwetlick/Kielbasinski. At first we introduce the updating algo-
rithm by Schwetlick/Kielbasinski [10]. It can be used for updating an LU factorization by a
rank-one term only using row pivoting. In this method L is a lower triangular matrix with unit
diagonal. During the procedure the column permutation Ps is kept unchanged. In the case of
rectangular matrices A this may cause problems. After updating it can occur that the leading
part U+

1 of U+ does not have full rank. Then it is necessary to permute a column from the rear
part to the front in order to restore the regularity of U1. A new method how to find and permute
appropriate columns will be described in addition to the main algorithm. The updating procedure
without column pivoting (Ps ≡ I) works as follows:

From (2.3) one obtains

A+ = P T
z L(U + ũvT ) with P T

z Lũ = u. (2.4)

Using a sequence of elementary transformations, the vector ũ will be reduced to a multiple of the
first vector of unity. This will be done by eliminating the components of ũ step by step, starting
from the last one and going upwards. This procedure requires pivoting since the entries of ũ may
be small. The elimination process looks like

Ã = (P T
z P T

u )
︸ ︷︷ ︸

P̃ T

(PuLT−1
u )

︸ ︷︷ ︸

L̃

(TuU + TuũvT )
︸ ︷︷ ︸

Ũ

(2.5)

where

Tu = Tm−1Tm−2 · · ·T1, Pu = Pm−1Pm−2 · · ·P1. (2.6)

In the simplest case we can find a lower triangular matrix Ti such that

A(i) = Pz(LT−1
i )(TiU + TiũvT ) (2.7)

and Ti eliminates ũi+1. If pivoting is required then Ti = Ti,UTi,LPi is used, where

a) Pi is chosen to interchange ũi and ũi+1,

P T
i (PiLP T

i )
︸ ︷︷ ︸

La

(PiU
︸︷︷︸

Ua

+ Piũ
︸︷︷︸

ua

vT )

≡ P T
i

[

@
@@∗

]([

@
@@∗

]

+

(

∗

∗

)

(∗ ∗)

)

b) Ti,L is a lower unit triangular matrix that
eliminates the i + 1-th component of Piũ and
finally

P T
i (LaT−1

i,L )
︸ ︷︷ ︸

Lb

(Ti,LUa
︸ ︷︷ ︸

Ub

+ Ti,Lua
︸ ︷︷ ︸

ub

vT )

≡ P T
i

[

@
@@∗

]([

@
@@∗

]

+

(

0

)

(∗ ∗)

)

c) Ti,U turns (PiLP T
i T−1

i,L )T−1
i,U back to lower

triangular form.

P T
i (LbT

−1
i,U )

︸ ︷︷ ︸

L0

(Ti,UUb
︸ ︷︷ ︸

U0

+ Ti,Uub
︸ ︷︷ ︸

u0

vT )

≡ P T
1

[

@
@@

]([

@
@@∗

]

+

(

0

)

(∗ ∗)

)

4



Repeating the elimination process finally leads to

Ã = (P T
z P T

u )
︸ ︷︷ ︸

P̃ T

(PuLT−1
u )

︸ ︷︷ ︸

L̃

(TuU
︸︷︷︸

Ũ

+ Tuũ
︸︷︷︸

û

vT ) (2.8)

where

Tu = Tm−1Tm−2 · · ·T1, Pu = Pm−1Pm−2 · · ·P1, (2.9)

and Ũ is upper Hessenberg, P̃ is a permutation matrix and L̃ is lower unit triangular. Since û is
a multiple of the first unit vector the rank-one term ûvT can be added to Ũ without destroying
the Hessenberg form. Finally, to eliminate the extra lower sub-diagonal in Ũ a second sequence of
transformations has to be done according to the same principle:

A+ = (̃̃P T P T
d )

︸ ︷︷ ︸

P
+
z

(PdL̃T−1
d )

︸ ︷︷ ︸

L+

(TdŨ)
︸ ︷︷ ︸

U+

(2.10)

where

Td = T1T2 · · ·Tm−1, Pd = P1P2 · · ·Pm−1. (2.11)

The number of operations amounts knm for updating an (m×n) -matrix by this algorithm. Here
is 5 ≤ k ≤ 9 where the best case arises if no permutations are required and the worst bound is
attained in the opposite case i.e. if one has to permute every row.
To achieve numerical stability pivoting is done in [10] if

|ui| < |li+1,iui + ui+1|. (2.12)

This condition ensures that T1,L and T1,U always eliminate a small element by a larger one in
modulus. Further this guarantees the property that all entries in the first lower sub-diagonal of
L remain smaller than one in modulus. Hence all other elements in this matrix can only grow
by a factor of three. Certainly, this strategy causes a large number of permutations whereas the
runtime of the algorithm is growing. For this reason it is advisable to include a damping factor τ
in (2.12):

|ui| < τ · |li+1,iui + ui+1| (2.13)

where 0 < τ ≤ 1. As a compromise between numerical stability and algebraic efficiency we suggest
to chose τ = 0.1.

2.2. Column Permutations. In the case of updating a rectangular LU factorization, col-
umn permutations in U are required to keep the leading part of U nonsingular. They are necessary
if an element on the main diagonal in U1 becomes very small or equals zero. Then this column
ui ∈ U1 must be interchanged with a suitable column uj ∈ U2. This permutation corresponds
with

U+ = UPij (2.14)

where Pij only interchanges the columns i, j and 0 < i ≤ m < j ≤ n.
Assume that after a rank-one modification the matrix U has the following form:

U (1) =







ui

× × × × | × ×
0 ε × × | × ×
0 0 × × | × ×
0 0 0 × | × ×






≡
[
U1 | U2

]
(2.15)

5



where 0 ≤ |ε| � max[| diag(U1)|].

Then column ui can be seen as an approximate linear combination of the columns in front of
it. In this case U1 is almost rank deficient. To restore nonsingularity, ui is moved to the rear part
U2. The first task is to determine a suitable column uj ∈ U2 which can be interchanged with ui

to restore the regularity of the first block. Therefore at first the element ε must be transformed
to the last diagonal position umm. So we have to remove column ui and re-insert it in the m -th
position. This corresponds to a column permutation in U1:

U (2) = U (1)P (1) =







ui

× × × × | × ×
0 × × ε | × ×
0 × × 0 | × ×
0 0 × 0 | × ×







(2.16)

Now U (2) has become upper Hessenberg and the new lower sub-diagonal entries have to be elimi-
nated with the elementary transformations introduced in Section 2.1.

U (3) = TU (2) =







ũi uj

× × × × | × ×
0 × × × | × ×
0 0 × × | × ×
0 0 0 ε̃ | × umj







(2.17)

Now the small element ε has been moved down in U and we can compare it with the other elements
in the last row of U2. The column uj of U2 associated with largest entry umj in modulus will be
interchanged with ũi.

U+ = U (3)P (2) =







uj ũi

× × × × | × ×
0 × × × | × ×
0 0 × × | × ×
0 0 0 umj | × ε̃







(2.18)

Now the matrix U1 has been transformed to the desired nonsingular form.
The steps (2.16) and (2.17) are only necessary to determine which column of U2 must be permuted.
The permutation itself can be done as the following rank-one update directly interchanging ui and
uj

U+ = U +
(
ui − uj

) (
ej − ei

)T
. (2.19)

So it is more advantageous to perform (2.16) and (2.17) on a temporary vector instead explicitly
on U .

2.3. Algorithm II - Bennett. The algorithm by Bennett is used to update a triangular
factorization by directly changing the factors L and U step by step. All matrices except the
permutations are as in (2.1)-(2.3). To our knowledge this procedure can not be combined with
pivoting. Of course, this can cause numerical instabilities but offers some great improvements in
runtime. Bennetts approach is quite different to Algorithm I. Here the update is done recursively
based on:

A =

[
A11 A12

A21 A22

]

= L1

[
1 0

0 Ã

]

U1 =

[
1 0

L21 I

] [
1 0

0 Ã

] [
U11 U12

0 I

]

, (2.20)

where Ã = A22 − L21U12 represents the Schur complement. L1 is the identity matrix where only
the elements on the first column are replaced by corresponding elements of the first column of L,

6



U1 is defined analogously. Using this notation we can update the matrix factors row by row and
column by column beginning at the top. Given

A+ = A + γuvT = L1

[
1 0

0 Ã

]

U1 + γ

(
u1

u2

)(
v1

v2

)T

(2.21)

we obtain

A+ =

[
1 0

L+
21 I

]

︸ ︷︷ ︸

L
+

1

[
1 0

0 Ã+

] [
U+

11 U+
12

0 I

]

︸ ︷︷ ︸

U
+

1

(2.22)

where

U+
11 = U11 + u1v1 , L+

21 =
L21U11 + u2v1

U+
11

, U+
12 = U12 + u1v

T
2 . (2.23)

In addition the new Schur complement Ã+ can be represented as a remaining rank-one modification
of the former Schur complement in the form

Ã+ = Ã + γ̃ũṽT (2.24)

where

γ̃ =
γ

U+
11

, ũ = u2 − L21u1, ṽT = U11v
T
2 − v1U12. (2.25)

After calculating these terms the procedure can be restarted with the new reduced rank-one
update (2.24) for Ã. The new scalar factor γ can be included in one of the vectors ũ, ṽT . That
way the complete updating process can be done step by step obtaining the new factors L+ and U+.

The number of operations amounts 4nm for updating an (m × n)-matrix by this algorithm, cp.
figure (2.1). This is always better than Algorithm I even if there are no permutations necessary.
Furthermore this method can be easily extended for higher rank modifications. In addition it is
applicable to the symmetric positive definite case.
Moreover, Bennett’s algorithm can be implemented in a way which allows row-wise computa-
tion of the new elements of L and U . This is a significant point in modern computations where
memory accesses needs more and more time compared to floating point operations which become
faster. Similar to Algorithm I where the row-wise memory access can only be done if no pivoting
is required it reduces significantly the computational time for updating the matrix L. Therefore
the modification of L has to be delayed. This corresponds to the ’ikj-variant’ of the Gaussian
elimination which is used e.g. for incomplete LU factorizations [11]. Figure (2.1) displays the new
row-wise Algorithm in contrast to the standard version of Bennett. In figure (2.2) and figure (2.3)
the differences in matrix access between these two algorithms is shown. The hatching shows which
matrix areas have been changed until step i during the updating procedure. Nevertheless the main
problem in this algorithm is that there are no known possibilities to combine pivoting with the
low rank update. This can cause numerical stability problems during the updating procedure.

Remark
In the case of updating the LDLT factorization of a symmetric positive definite matrix, this
method corresponds to the algorithm introduced in [3]. It turns out that this updating technique
is an excellent alterative to methods using plane rotations.

7



Standard recursive LU updating

1: for i = 1 to m do
2: //diagonal update
3: Uii = Uii + ui ∗ vi

4: vi = vi/Uii

5: for j = i + 1 to m do
6: //L update
7: uj = uj − ui ∗ Lji

8: Lji = Lji + vi ∗ uj

9: end for
10: for j = i + 1 to n do
11: //U update
12: Uij = Uij + ui ∗ vj

13: vj = vj − vi ∗ Uij

14: end for
15: end for

Row-wise recursive LU updating

1: for i = 1 to m do
2: for j = 1 to i − 1 do
3: //delayed L update
4: ui = ui − uj ∗ Lij

5: Lij = Lij + vj ∗ ui

6: end for
7: //diagonal update
8: Uii = Uii + ui ∗ vi

9: vi = vi/Uii

10: for j = i + 1 to n do
11: //U update
12: Uij = Uij + ui ∗ vj

13: vj = vj − vi ∗ Uij

14: end for
15: end for

Fig. 2.1. Standard and Row-wise Algorithms for the Rank-One Modification of the LU Factorization

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

PSfrag replacements

i

i

Fig. 2.2. Standard Bennett Algorithm

�����������������������������
�����������������������������
�����������������������������
�����������������������������

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	


�
�
�
�
�
�


�
�
�
�
�
�


�
�
�
�
�
�


�
�
�
�
�
�


�
�
�
�
�
�


�
�
�
�
�
�


�
�
�
�
�
�


�������������
�������������
�������������
�������������
�������������
�������������
�������������

PSfrag replacements
i

Fig. 2.3. Row-wise Bennett Algorithm

2.4. Algorithm III - Extension. Here a new combination of the previous described algo-
rithms will be presented. Thereby the good features from both will be combined. Furthermore
the method will be improved for update vectors beginning with a leading part consisting of zero
elements. This is useful in the KKT application introduced in this paper, where linear constraints
causes such zero entries.

This algorithm will be done sequentially by the following three stages:

• exploiting leading zeros in u resp. v to the update
• starting with Algorithm II as long as it is stable
• switching to Algorithm I in the case that pivoting is required

In each step the whole updating problem will be reduced as displayed in Figure (2.4).

PSfrag replacements

U11 U21

U22L22L21

L11

Ũ11 Ũ12

Ũ22L̃22L̃21

L̃11

L̂ Û

Fig. 2.4. Alg.III

8



Step 1:
If one of the update vectors has a leading block of zero entries, only a sub-matrix of A has to be
changed. We will illustrate the influence on the factors in the case uT =

(
0 uT

2

)
. Here only the

lower part of A will be modified:

A+ =

[
A+

1

A+
2

]

=

[
A1 + 0 · ρT

A2 + u2v
T

]

=

[
L11U11 L11U12

L21U11 + u2v
T
1 L21U12 + L22U22 + u2v

T
2

]

. (2.26)

That means that the matrix parts L11, U11 and U12 remain unchanged. The other parts can be
computed as follows. Given

L+
21U

+
12 = L21U12 + ũ2v

T
1

we obtain the formula to calculate L+
21

(L+
21 − L21)U12 = ũpv

T
1 ⇐⇒ L+

21 = L21 + ũpv
T
1 U−1

11 .

Now the remaining new sub-matrices L+
22 and U+

22 can be computed in form of a new dense LU
updating problem. This is represented by

L+
21U12 + L+

22U
+
22 = L21U12 + L22U22 + ũ2v

T
2 ⇐⇒

(L+
21 − L21)U12 + L+

22U
+
22 = L22U22 + ũ2v

T
2 ⇐⇒

L+
22U

+
22 = L22U22 + ũ2 (vT

2 − vT
1 U−1

11 U12)
︸ ︷︷ ︸

ṽT

. (2.27)

From (2.27) we conclude that it is sufficient to consider the reduced updating problem for L22 and
U22.

This computation can be done in an analogous way if the vector v has leading zero entries.

Step 2:

Given the remaining submatrices L22, U22 and the update vectors ũ2, ṽ
T , we initially start using

Algorithm II where v2 is replaced by ṽ. As we will see in Section (4), this algorithm will be
significantly faster than Algorithm I. For reasons of efficiency we will chose the row-wise version.
Algorithm II will be used as long as it is stable (see step 3). If we have to stop it for stability,
then L+

21 is not yet computed. Thereby L21 will be modified using L̃11, Ũ11. This will be done by
the standard version of Algorithm II.

Step 3:
In step i we switch to Algorithm I if

|U+
ii | ≤ τ · max(|U+

i2 |) where (0 ≤ τ ≤ 1). (2.28)

This condition is used to safeguard the updating process and it avoids tiny pivots. Up from this
point the remaining matrix parts L̂ and Û will be updated by Algorithm I. Notice that row and
column permutations applied to L̂ and Û will also be performed on L+

21, L̃
+
21, U

+
12, Ũ

+
12.

3. KKT Updating. At first we have to modify the approximate Jacobian

A+ = A + δrρT , (3.1)

where δ, r and ρ are as in Section 1.2. These terms are computed as part of the optimization
process using s and σ according to (1.8) after solving (1.3). Here we assume that A and A+ have
full rank. This can be guaranteed, e.g. by damping the update (3.1). The modification (3.1) can
be done by one of the algorithms described in Section 2.
Whenever A will be modified we have to adjust its corresponding null-space Z. Due to the
regularity of the approximate Jacobian, Z is regular in every step.

9



3.1. Updating the Null-Space. If the approximate Jacobian is updated by a rank-one
term, the modification of the corresponding null-space to A is of rank-one, too. This rank correc-
tion can be computed in a way that Z maintains its trapezoid structure. So we obtain

Z+ = Z + ∆zρT
z , where ∆z ∈

� n, ρz ∈
� d. (3.2)

Modifications only occur in the matrix product Ẑ = −U−1
1 U2 of Z. Hence only the upper part

of ∆z denoted by ∆z̄ ∈
�

m is non-zero. These vectors ∆z̄ and ρz can be calculated using the
Sherman-Morrison-formula [4]. The new significant null-space is given by

Ẑ+ = −(U+
1 )−1U+

2 = −
[
U1 + r̃ρ̃T

1

]−1[
U2 + r̃ρ̃T

2

]
(3.3)

where ρ̃T =
[
ρ̃T
1 ρ̃T

2

]
= ρT Ps and r̃ = δL−1P T

z r. Straightforward computation yields

Ẑ+ = Ẑ −U−1
1 r̃

︸ ︷︷ ︸

∆z̄

[

(ρ̃T
2 ) −

(ρ̃T
1 )U−1

1

[
(U2) + r̃(ρ̃T

2 )
]

1 + (ρ̃T
1 )U−1

1 r̃

]

︸ ︷︷ ︸

ρT
z

, (3.4)

which represents the null-space modification as rank-one correction corresponding to the update
of A. Since a column interchange in A can also be read as a rank-one update, the null-space
modification of Ẑ can be computed analogously. In the particular case of an additional column
interchange in A, it is necessary to collect the two separate rank-one updates into a single rank-two
update to avoid numerical problems.
With the knowledge of ∆z and ρz the projected Hessian can be adjusted with respect to the
null-space of A. In the following this will be described in detail.

3.2. Updating the Projected Hessian. The projected Hessian has to be modified when-
ever one of the following three cases occurs:

(a) the SR1 update (1.6): B+ = B + εhhT

(b) modification of the null-space (3.2): Z̃+ = Z̃ + ∆zρT
z

(c) column permutation in A: P +
s = PijPs

(a) The matrices E and C are updated with respect to the rank-one correction of B. We obtain

E+ = Y T B+Y = Y T (B + εhhT )Y = Y T BY
︸ ︷︷ ︸

E

+εY T hhT Y (3.5)

and

C+ = Y T B+Z = Y T (B + εhhT )Z = Y T BZ
︸ ︷︷ ︸

C

+εY T hhT Z. (3.6)

The update of the projected null-space M = ZT BZT can be represented by

ZT B+Z = R+RT
+ = ZT

(
B + εhhT

)
Z = RRT + εhzh

T
z , (3.7)

where hz = ZT h. As long as the rank-one update is constructed to preserve positive definiteness,
it can be computed with several algorithms for updating the Cholesky factorization [3, 4]. Here
we have to pay attention to choose ε such that M remains positive definite. This can be achieved
e.g. by damping the rank-one term or by pre-adjusting the Hessian [8].

(b) The changes in E and C caused by the null-space modification of Z can be done in a very
similar way to case (a). In contrast to the first case, M underlies a rank-two modification

R+RT
+ = ZT

+BZ+ =
(
ZT + ρz∆zT

)
B
(
Z + ∆zρT

z

)
= ZT BZ
︸ ︷︷ ︸

RRT

+ρzb
T
z + bzρ

T
z + µρzρ

T
z , (3.8)

10



where bz = ZT B∆z and µ = ∆zT B∆z. Once more we have to avoid to loose positive definiteness
of M . This can be achieved using the strategies described in [8].

(c) In the case of column permutations applied to A at first we adjust the projected Hessian
similarly to case (b) but use a rank-two term. This rank-two correction consists of the modifica-
tions in Ẑ caused by the rank-one update of A (1.8) and by the column permutation in U (2.19),
compare Section 3.1. Furthermore, the two rows in Ps which were interchanged, cause additional
changes in E, C and M .
As before the row interchange in the null-space P +

s Z̃+ = PijPsZ̃+ can be read as a rank-one
update which leads us to case (b) again. At last the permutation Ps occurring in the range-space
basis Y (1.13) has to be regarded, too. This requires to remove and re-compute some single rows,
resp. single columns in E and C. We will show this for the matrix C.
Starting with C = Ỹ T P T

s BPsZ̃ we obtain C(b) = Ỹ T P T
s BP+

s Z̃+ after a low rank correction from
the right. Our objective is to compute

C+ = Ỹ (P T
s )+BP+

s Z̃+ = Ỹ P T
s P T

ij BP+
s Z̃+. (3.9)

Suppose that C(b) is given, then C+ can be obtained from C(b) by replacing the i-th row cT
i by

cT
j , i.e.

C(b) =












cT
1
...

cT
i

...
cT
m












=⇒ C+ =












cT
1
...

cT
j

...
cT
m












, (3.10)

where 1 ≤ i ≤ m < j ≤ n and cT
j can be computed as cT

j = eT
j P T

s BZ. To do so, we need the

single row [eT
j P T

s B] of B. Since B is not explicitly stored we have to use its representation

[
Y T

ZT

]

B
[
Y Z

]
=

[
E C
CT RRT

]

=⇒ B = Ps

[
Im 0

−ẐT Id

][
E C
CT RRT

] [

Im −Ẑ
0 Id

]

P T
s . (3.11)

4. Numerical Results. In this section we will compare the algorithms described previously
regarding their runtime. The tests were done on an Athlon-XP 2100+ machine with 256kB CPU
cache and 512 MB main memory. We implemented the algorithms in C using the operating system
Linux and the gcc compiler with the option ’-o3’.
At first we will compare the computation time of several low-rank update algorithms for rectan-
gular matrices. After that we will solve a KKT problem arising from constrained optimization by
the quasi Newton approach of Section 1.

4.1. Rectangular LU Updating. The updating algorithms Alg.I, Alg.II and the QR-
updating algorithm of [10] will be compared in runtime. In our computation we started with
the identity and applied our algorithms to 50 randomly generated rank-one modifications. The
computation times in Table 4.1 are given in seconds. Alg.I represents the updating method of
Schwetlick. It is used in four different variations. The first two cases use τ = 0 which means that
no row permutation will be done. These two variants differ in the way L is updated. The third ver-
sion (τ = 1) represents the original algorithm described in [10]. Version 4 of Schwetlick’s method
uses the relaxed parameter τ = 0.1 which typically reduces the number of row interchanges. Alg.II
shows the method of Bennett which is applied in its original form [1] and in the new row-wise
implementation (Figure 2.1). The performance of the QR-updating algorithm is shown in the
column ’QR’.

11



Table 4.1

Comparing LU Updating

dimension Alg.I Alg.I Alg.I Alg.I Alg.II Alg.II QR
m × n τ = 0 τ = 0, row-wise τ = 1 τ = 0.1 row-wise

3000× 3000 49.1 28.2 76.5 51.5 28.7 13.6 90.2
1500× 6000 30.4 23.8 45.7 31.1 19.3 14.0 49.8
750× 12000 25.0 22.8 37.2 25.9 16.4 14.0 44.3
6000× 6000 434.2 112.6 635.0 448.0 269.7 55.5 695.1
3000× 12000 177.1 95.6 268.0 182.4 118.1 56.5 271.3
1500× 24000 116.4 99.4 165.4 120.3 75.7 58.9 205.6

As we can see, the row-wise version of Alg.II is always the fastest. Especially in the cases of
large matrix dimensions it is significantly faster than all other methods. Of course it offers no
possibilities to prevent numerical instabilities by pivoting.
Among all algorithms that address stability it has turned out that Alg.I with τ = 0.1 performs
best. It is approx. 30% faster than in the case where τ = 1 and it is approx. 40% faster than the
QR update.
For these experiments based on random updates we did not use column pivoting since we observed
that column interchanges were hardly necessary for this class of problems. For this reason Alg.III
which combines Alg.I and Alg.II will be discussed in the next example.

In a further example we will update a rectangular matrix 50 times by structured rank-one modi-
fications. That means we want to use a sequence of rank-one corrections in the way as we expect
in the optimization procedure. Starting with vectors which have a large norm leads to a lot of
pivoting at the beginning. Step by step we reduce this vector norm so that no permutations will
be required finally. We will compare Alg.III to the QR-based method, to Alg.I using full pivoting
and to the fast Bennett method. In Table 4.2 the runtime for the total updating process is pre-

Table 4.2

Comparing Structured Updating

QR-based LU -based
n m Alg.I Alg.II Alg.III

6000 6000 695.1 639.91 55.52 198.23
6000 3000 179.15 169.6 27.89 65.27
3000 3000 90.2 75.75 9.65 30.82
3000 1500 28.51 22.8 6.83 13.45

sented. We can see that all LU -based algorithms, Alg.I, Alg.II (row-wise) and Alg.III are faster
than the QR-version. Furthermore it turns out that only Alg.III can take an advantage of the
special structure of the updating sequence.

4.2. KKT solving. In this section we will compare methods for solving a whole KKT prob-
lem. On one hand QR-based algorithms for factorizing and updating Ak together with Givens-
techniques for modifying Bk are considered. On the other hand the new LU -methods from Alg.I
and Alg.III applied to Ak are used in combination with the algorithm of [3] for Bk. We use an
optimization environment which is provided by Andrea Walther1. This code uses a globalizing
approach based on line search. For computing the required derivatives the AD-tool ADOL-C [6]
is used.
We will solve the following optimization problem [9]:

1Institute for Scientific Computing, D-01062 Dresden, Germany

12



Minimize f

f(x) =

n−1∑

i=1

(
xi + xi+1

)2
(4.1)

subject to

ci ≡ xi + 2xi+1 + 3xi+2 − 1 = 0 (1 ≤ i ≤ n − 2). (4.2)

We initialize x as a random vector where (−0.5 ≤ xi ≤ 0.5). The derivative matrices in the first
step are chosen as A0 =

[
I 0

]
and B0 = I .

In fact of the quadratic-linear structure of this problem, the optimal solution should be achieved
after n iterations. As we can see in Table 4.3 the LU -based method is significantly faster than the

Table 4.3

KKT Example

n LU -based steps QR-based steps

100 0.21 102 0.37 102
200 2.27 208 5.2 207
400 19.21 410 43.42 408

QR-based version. Further, the number of iterations are close to the expected theoretical value.

5. Conclusions. We have introduced several new efficient algorithms for updating LU-
factorizations after low-rank modifications. The algorithm of Kielbasinski/Schwetlick was ex-
tended for rectangular matrices using additional column pivoting without loosing its quadratic
complexity. This is a central point for applying LU decompositions to non-square systems. More-
over we improved the algorithm of Bennett regarding to efficient matrix access in memory. In
addition a new method for special structured updates was developed.
These new algorithms can significantly improve different applications. This is shown in the case
of solving nonlinear constraint optimization problems. Numerical results prove that our method
is much faster than, e.g. using a QR-based version. So far we have not discussed the case when
Bk turns to be indefinite. Currently the updates are sufficiently damped. The generalization to
the indefinite case will be discussed in an upcoming paper.
Our promising numerical results indicate that our low-rank-modification algorithms can also be
used efficiently in a wide field of applications.

13



REFERENCES

[1] J. Bennett, Triangular factors of modified matrices, Numerische Mathematik, 7 (1965), pp. 217–221.
[2] R. Fletcher and S. Matthews, Stable modification of explicit lu factors for simplex updates, Mathematical

Programming, 30 (1984), pp. 267–284.
[3] R. Fletcher and M. Powell, On the modification of ldl

t factorizations, Mathematics of Computation, 28
(1974), pp. 1067–1087.

[4] G. Golub and C. van Loan, Matrix Computations, The Johns Hopkins University Press, second ed., 1989.
[5] A. Griewank, Evaluating Derivatives, Principles and Techniques of Algorithmic Differentiation, Number 19

in Frontiers in Appl. Math. SIAM, 2000.
[6] A. Griewank, D. Juedes, and J. Utke, Adol-c, a package for the automatic differentiation of algorithms

written in c/c++, ACM Trans. Math. Software 22, (1996), pp. 131–167.
[7] A. Griewank and A. Walther, On constrained optimization by adjoint based quasi-newton methods, Opti-

mization Methods and Software, 17 (2002), pp. 869–889.
[8] A. Griewank, A. Walther, and M. Korzec, Maintaining factorized kkt systems subject to rank-one updates

of hessians and jacobians, (2005).
[9] W. Hock and K. Schittkowski, Test examples for nonlinear programming codes, Lectures Notes in Eco-

nomics and Mathematical Systems, (1987).
[10] A. Kielbasinski and H. Schwetlick, Numerische lineare Algebra, Verlag Harri Deutsch, 1988.
[11] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing, Boston, 1996.

14


