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Abstract— We consider the design of a logical network topolo-
gy, together with node hardware, link capacities, and a survivable
routing of demands. In addition to all single node failures, the
routing must also survive multiple logical link failures caused by
single failures in the underlying physical network. Furthermore,
the number of logical links supported by a physical link is
bounded. We propose an integer linear programming model
for this design problem, together with a branch-and-cut based
solution approach combined with column generation. The model
and algorithm are tested on three real-world test instances, and
preliminary results are given.

Index Terms— multi-layer networks, survivable network de-
sign, multiple failures, integer programming, branch-and-cut
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I. INTRODUCTION

When designing the logical part of a multi-layer network,
several constraints are imposed by an underlying physical
network. For instance, in SDH/SONET network design, the
number of logical (also called virtual) links traversing a given
physical link is often limited by the number of available fibers
or by the capacity of a radio link. Furthermore, single failures
in the underlying physical layer may cause multiple failures
in the logical network.

In this paper, we propose an integer linear programming
(ILP) model for designing a logical topology, node hardware,
link capacities, and a routing in the logical network which
takes the above constraints caused by an underlying physical
network into account. For the solution of the planning task,
a branch-and-cut based solution approach combined with co-
lumn generation is proposed. Preliminary results on three real-
world test instances stemming from SDH and WDM planning
contexts are given. For the full paper, an NP-completeness
proof for the column generation problem is in preparation.

A. Practical background

We consider the design of a logical network, given an
underlying physical network which might consist of optical
fibers, copper cables, or radio links with corresponding hard-
ware at the nodes. The goal is to design a logical topology
together with suitable hardware (e.g., routers, multiplexers, or
interface cards), link capacities, and a routing which survives
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Fig. 1. Two SDH locations with multiplexers and a distribution frame (DF).
At most one out of several candidate STM-N links using the same fiber link
has to be chosen and equipped with a capacity.

all physical node and link failures, such that total installation
cost in the logical layer is minimized.

An additional constraint is induced by the underlying phy-
sical network: Only a limited number of logical links can
traverse a given physical link at the same time. We assume
that for each potential logical link, a representation by a path
in the physical network is specified, which is used if the logical
link is selected. Part of the decisions to take are which of the
potential logical links to install and which capacity to assign
to them.

There are several practical applications of this planning
scenario. For instance, in Figure 1, several SDH multiplexers
at the same location are connected to a distribution frame (or
patch-panel), which is connected to a similar location by a
dark fiber link. The fiber supports one out of several candidate
logical STM-N links whose capacity is determined by the
interface cards and ports installed at the multiplexers. The
question is which of these logical links should be selected and
which capacity (e.g., STM-1, STM-4, or STM-16) should be
installed on it. Another example is a network design problem
where several STM-1 links may either be installed (or rented)
or not, and an underlying radio link provides a capacity of
4xSTM-1. The logical links have to be selected such that at
most four logical STM-1 links employing this physical link
are used and every demand routed in the logical network
survives all single physical link and node failures. Similar
problems occur in IP/MPLS over WDM network planning,
where demands are routed on lightpaths which are in turn
embedded into the fiber layer.

In any such planning scenario, the model and algorithm
proposed in this paper can be used in a study to evaluate
the network cost with a given set of the above constraints
originating in the underlying physical network. This can help
answering the question whether it would pay to install or to
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lease an additional fiber, or to augment the capacity of a radio
link, for instance.

B. Literature

A major part of the available literature on survivable net-
work design considers single-layer network design with single
link and/or node failures. Only recently, multiple failures
induced by an underlying physical layer have been taken into
account. The following literature overview is restricted to the
latter kind of papers.

Most of these publications concentrate on embedding a
logical topology consisting of WDM lightpaths into a physical
topology consisting of optical fibers, such that the logical
network is not disconnected by any single physical link failure
[1]–[6] or by any single physical link or node failure [7]. From
a mathematical point of view, the presented models describe
a single-layer routing problem: route a set of unit demands
on the fiber topology such that (i) capacity constraints on a
fiber (maximal number of wavelengths) are satisfied and (ii)
any single link or node failure is survived. The objective is
usually to minimize the total number of links of all lightpaths.

Such topology considerations can serve as a basis for link
protection or link restoration at the logical layer: If the logical
topology has been designed as described, a backup lightpath
can always be found in the physical layer in any of the
considered failure scenarios, provided that either sufficiently
high capacities are available or that enough preemptible traffic
can be dropped in case of a failure. However, a routing of
demands on the lightpaths is not considered in these papers.

In [1], the tabu search heuristic Disjoint Alternate Path
(DAP) is described. In [3], [4], an integer linear programming
(ILP) formulation with an exponential number of cut inequa-
lities is given for link failures, which is generalized to node
failures in [7]. For solving the problem, a tabu search heuristic
is proposed. An alternative ILP formulation with a polynomial
number of constraints is discussed in [6]. In all these papers,
the proposed algorithms are tested on randomly generated
logical topologies. With the exception of [1], the underlying
physical topologies are assumed to be ring networks.

In [2], [5], theoretical results are provided on the existence
of a survivable logical topology based on an underlying
physical ring topology. In [3], [4], [6], the number of lightpaths
traversing a fiber is bounded by the number of available
wavelengths in the presented ILPs, but this constraint is
dropped in the computational tests. Out of the papers using a
tabu search heuristic for the logical topology design problem,
only [7] includes such a constraint. As far as we know, a
constraint of the number of logical links traversing a physical
one has not been considered yet in any paper which goes
beyond topology planning in the design of a logical network.

In [8], the spare capacity assignment problem in the WDM
layer is considered. Given working lightpaths for each demand,
the goal is to find backup lightpaths for a given set of Shared
Risk Link Groups (SRLGs) using link protection, such that
total spare capacity cost is minimized. An ILP formulation is
proposed for the important special case of single and double
link failures. Any number of lightpaths can be routed on a link,

with link cost being proportional to the capacity and the length
of a link. In the test computations on three networks, the ILP
is solved to optimality with respect to a previously enumerated
set of 10 admissible backup paths for each failure situation.
By varying different parameters, the authors investigate the
impact on total network cost of different failure scenarios.

In this paper, we generalize the above approaches. During
the design of the logical network, two constraints imposed
by the underlying physical layer are taken into account: (i)
demands routed in the logical network must survive multiple
logical failures caused by single physical link or node failures,
and (ii) a constraint is given on the number of logical links
traversing a physical one. Furthermore, practical hardware
configuration cost and constraints are taken into account.

We present an ILP model for solving the planning problem
and propose a branch-and-cut algorithm combined with co-
lumn generation for solving it. In view of the high complexity
of the planning problem, a branch-and-cut algorithm provides
a suitable framework which can be enhanced by good primal
heuristics (such as tabu search). Preliminary computational
results on three real-world instances are given which show the
importance of taking constraints from an underlying physical
layer into account. For the final paper, an NP-completeness
proof for the column generation problem is in preparation.

This article is organized as follows. After presenting our
mathematical model in Section II, we propose an integrated
solution approach in Section III. After presentation and discus-
sion of some preliminary results in Section IV, we conclude
this working paper with Section V.

II. MATHEMATICAL MODEL

In this section, our integer programming model for an
integrated planning of

• a logical topology with physical topology constraints,
• logical link capacities,
• a hardware configuration, and
• a survivable routing with respect to physical failures

is presented. The model, based on the one presented in [9],
decomposes into a hardware and a routing part, connected by
the link capacities. In this paper, the model is extended by an
underlying physical graph which gives rise to an additional
class of constraints for installing the logical link capacities.
In the routing part, the underlying physical graph is used to
derive the set of considered failure states to make sure that
the routing in the logical network survives any single physical
link or node failure.

A. Virtual Topology, Hardware, and Link Capacities

The hardware model, illustrated by Figure 2, covers the
selection of a topology, network elements, and interface cards,
as well as the restrictions caused by slot and port constraints.

1) Notation: The network is modeled by an undirected
graph G = (V,E) representing the logical network to be
designed. Given is a set P of port types, e.g., corresponding
to different STM-N interfaces. For every node v ∈ V , a set
Dv of installable node designs is given, representing network
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Fig. 2. Hardware configuration model

elements of different types (multiplexers, cross-connects) or
vendors, or racks with a different number of shelves, for
example. Similarly, for every logical link e ∈ E, a set De of
installable link designs is given which may, e.g., correspond to
different STM-N capacities. The set I refers to the interface
cards, each of which provides a certain number of ports to
link designs and consumes slots at a network element.

On every node v ∈ V and on every link e ∈ E, at most one
design must be chosen. If a node or link is not equipped with
a design, it is not included in the final topology. Every node
design d ∈ Dv offers Sd ∈ Z+ slots. An interface card i ∈ I
requires Si ∈ Z+ slots and provides P i

p ∈ Z+ ports of type
p ∈ P . Each link design d ∈ De requires P d

p ∈ Z+ ports of
type p ∈ P and provides a routing capacity of Cd

e ∈ Z+ to
the routing.

2) Variables: For every node v ∈ V and every node design
d ∈ Dv , the variable xd

v ∈ {0, 1} indicates whether d is
installed at v or not. Similarly, for every link e ∈ E and every
link design d ∈ De, the variable xd

e ∈ {0, 1} indicates whether
d is installed at e or not. Finally, for every node v ∈ V and
every interface card i ∈ I, the variable xi

v ∈ Z+ states how
often i is installed at v.

3) Constraints: The following set of linear inequalities mo-
dels the compatibility requirements of the hardware installed
in the network: ∑

d∈Dv

xd
v ≤ 1 ∀v ∈ V (1)∑

d∈De

xd
e ≤ 1 ∀e ∈ E (2)

∑
e∈δ(v)

∑
d∈De

P d
p xd

e −
∑
i∈I

P i
px

i
v ≤ 0

∀v ∈ V ,
∀p ∈ P (3)

∑
i∈I

Sixi
v −

∑
d∈Dv

Sdxd
v ≤ 0 ∀v ∈ V (4)

xi
v ∈ Z+, xd

v, xd
e ∈ {0, 1}

Inequalities (1) and (2) state that at most one design must
be chosen on each node and on each logical link. The port
inequalities (3) ensure that for every node and every port type,
the installed interface cards provide enough ports for the link
designs on incident links. The slot inequalities (4) state that
for every node, the number of slots required by the installed
interface cards must not exceed the number of slots provided
by the installed node designs.

4) Extension by a physical graph: We now extend the
model by an underlying physical graph Gp = (Vp, Ep), where
Vp ⊇ V , and assume that a physical representation is specified

for each logical link which is used if the link is selected. Given
the restriction that no more than cep logical links may traverse
physical link ep ∈ Ep, the decision to be made is which
links should be chosen from the potential logical topology
and which capacity should be assigned to them.

Let ep ∈ e denote the fact that the physical path by which
the logical link e ∈ E would be realized contains the physical
link ep ∈ Ep. The above constraint can be written as∑

e∈E:ep∈e

∑
d∈De

xd
e ≤ cep ep ∈ Ep. (5)

Since at most one link design may be chosen on each logical
link, the left-hand side counts exactly the number of logical
links routed over ep.

B. Objective

The objective is to minimize total installation cost for
network elements, interface cards, and logical links. With
every node design d ∈ Dv installable at a node v ∈ V , a
cost value Kd

v ∈ Z+ is associated. Likewise, each interface
card i ∈ I incurs a cost Ki ∈ Z+, and the cost of link design
d ∈ De on link e ∈ E is Kd

e ∈ Z+. The objective function
can be written as

min
∑
v∈V

(∑
d∈Dv

Kd
vxd

v +
∑
i∈I

Kixi
v

)
+
∑
e∈E

∑
d∈De

Kd
e xd

e . (6)

C. Survivable Routing

The computations for this paper are based on the formula-
tion from [9], but multiple failures in the logical layer caused
by failures in the underlying physical graph are taken into
account now. We will now briefly present the routing model.
Let

ye :=
∑

d∈De

Cd
e xd

e

denote the total link capacity of logical link e ∈ E (with
respect to some link design vector x).

Given is a set of failure states s ∈ S which have to be
considered in the design of the logical network. Each of them
is characterized by its failing components in the logical layer,
i.e., s ⊂ V ∪ E. The failure situations considered in our
computations are those induced by the failure of a single node
v ∈ Vp (in any layer) or of a single physical link ep ∈ Ep.
In particular, several logical links may fail at the same time,
caused by an underlying physical failure. Such failure states
are also known as Shared Risk Link Groups [8].

Let D be a set of point-to-point communication demands.
For every demand uv ∈ D, a demand value duv ∈ Z+

is specified which has to be routed in the failure-free state.
Furthermore, a diversification parameter δuv ∈ (0, 1] is given
for each demand, denoting the maximum fraction of the
demand value which is allowed to fail in any considered failure
state. By setting this parameter to 0.5 and doubling the demand
value, the following formulation provides a good relaxation
of 1+1 protection which is computationally tractable using a
column generation procedure.
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Fig. 3. Algorithmic approach.

A demand uv ∈ D may be routed on one or more paths from
the set Puv , which comprises all simple uv-paths (i.e., without
loops). In failure state s ∈ S, the subset Ps

uv ⊆ Puv denotes all
surviving uv-paths. Using non-negative integer flow variables
fuv(P ) ∈ Z+ for all demands uv ∈ D and all paths P ∈ Puv ,
the routing part of the model reads as follows:∑

P∈Puv

fuv(P ) ≥ duv uv ∈ D (7)

∑
uv∈D

∑
P∈Puv :

e∈P

fuv(P ) ≤ ye e ∈ E (8)

∑
P∈Puv\Ps

uv

fuv(P ) ≤ δuvduv
∀uv ∈ D,
∀s ∈ S (9)

fuv(P ) ∈ Z+

The demand constraints (7) and capacity constraints (8)
formulate a multicommodity flow problem. For every failure
state, the diversification constraints (9) ensure for each demand
that at most the specified fraction of the demand value fails
in any failure state. Notice that the extension of this model by
further requirements such as hop limits is straightforward by
restricting the set of admissible paths appropriately.

III. BRANCH-AND-CUT WITH COLUMN GENERATION

Our proposed solution approach is similar to Benders de-
composition [10]. The central procedure is a branch-and-cut
algorithm [11] based on an LP relaxation which contains only
hardware variables and constraints, but no routing information.
To strengthen the LP relaxation, cutting planes are separated
during the whole branch-and-bound process, such as Gomory
mixed-integer rounding cuts [12], GUB cover inequalities [13],
and generalizations [14] of metric inequalities [15].

Each time integer an link design vector x̄ is identified during
the branch-and-bound process, the corresponding (integer) link
capacity vector

ȳe =
∑

d∈De

Cd
e x̄d

e

is tested for feasibility with respect to the (missing) routing
constraints. If no feasible routing exists within ȳ, a violated
metric inequality is derived from the dual objective function of
the routing formulation, which is then added to the relaxation
in order to cut off the infeasible capacities. If, on the other
hand, a feasible routing can be found within these capacities,

a cheapest hardware configuration over these link capacities
is computed using a separate integer program based on the
hardware formulation. This process is illustrated in Figure 3.

To test whether a feasible routing exists within given link
capacities ȳe, the continuous relaxation of the routing ILP
(7)–(9) is solved with ȳ as right-hand side in the capacity
constraints (8). As the routing LP has an exponential number
of path variables, column generation has to be employed in
order to decide whether a routing exists or not.

Quality guarantees for a given solution are available if the
branch-and-cut process yields a valid lower bound on the
optimal solution value. In particular, this lower bound can be
used to prove optimality of a solution. It is valid as long as no
optimal capacity vector ȳ is cut off by a separated inequality.

The integrality of the routing variables does not affect the
validity of the lower bound: ȳ is only cut off by a metric
inequality if no fractional routing exists, in which case no
feasible integer routing exists, either. If a fractional routing is
found, we try to turn it into a feasible integer solution using
rounding and rerouting techniques.

Furthermore, all necessary path variables have to be found
either in the computation of an initial path set, or during the
column generation process. It has already been shown that
finding two physically edge- or node-disjoint paths in the
logical layer is NP-hard [7], [16]; we employ two heuristics
for finding such paths.

The pricing problem, i.e., the question which further path
variables should be added to the LP, is polynomially solvable
with the presented formulation as long as only single logical
link or node failures are considered [14]. As soon as multiple
failures are involved, we strongly suspect the pricing problem
to be NP-hard; a proof is in progress and will be included
in the final paper. Currently, we are solving the pricing
problem for multiple failures approximately. As a possible
consequence, a feasible capacity vector might be cut off by
an invalid inequality if not enough path variables have been
generated to allow for a feasible (fractional) routing. This
may lead to an invalid lower bound if an optimal vector is
accidently cut off.

From a practical point of view, however, notice that (i) even
with approximate pricing, missing path variables are often
identified, (ii) an invalid separated inequality need not cut
off all optimal solutions, and (iii) this approach still allows
for better solutions than just enumerating some fixed set of
admissible paths. In fact, we generated such a restricted path
set in the beginning and use it as a starting point for the column
generation procedure. In regard of these considerations, even
if the obtained lower bound might be invalid in some cases,
it is probably not far from a valid one.

IV. PRELIMINARY COMPUTATIONAL RESULTS

We have implemented the approach presented in the pre-
vious section and tested it on three real-world test instances
of different size stemming from SDH and WDM planning
contexts. The number of nodes, logical links, and demands
in the test instances are (10, 17, 10) for the instance p1, (48,
92, 73) for p2, and (44, 129, 861) for p3, respectively.
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cep p1 p2 p3
1 14308000 infeasible -
2 10800000 63474000 -
3 10800000 63248000 -
5 10800000 62966000 7358207

10 10800000 63550000 7346222
∞ 10800000 63044000 7119533

TABLE I
BEST SOLUTION VALUES FOR THE THREE TEST INSTANCES

Table IV reports on preliminary results for these test instan-
ces. The first column gives the problem name, while the next
two columns contain the number of logical paths allowed to
traverse any given physical link and the best obtained solution
value for each of the problem instances. The computation
times range from several seconds to the time limit of 5,5 hours.

With a branch-and-cut based algorithm, three scenarios can
happen: (i) optimality of a solution can be proven, (ii) it can
be shown that no solution exists, or (iii) a solution is computed
but little can be said about its quality; this situation is similar
to the case where only a primal heuristic is employed.

In the test runs on the 10-node instance, our lower bound
was always equal to the upper bound or no unexplored nodes
were left in the branch-and-cut process, which indicates that
the obtained solutions are probably optimal. It turns out that
with only one logical link being allowed to traverse any
physical link, the logical network cost increases by more
than 30%, compared to the case where two logical links per
physical link are allowed! In this case, it would probably pay
off to install a further fiber on selected physical links.

For the large and dense 44-node instance (average node
degree 5.8, almost full demand matrix), we could compute
solutions for a limit of 5 and 10 logical links per physical
link, as well as for the unrestricted case. As expected, the
solution values are decreasing as the restriction is relaxed.
For cep ∈ {1, 2, 3}, no solutions could be identified, and it
is not known whether the corresponding planning problems
are feasible or not. For the final paper, we will try to further
improve our bounds so as to either identify a solution or to
get indications that no solution exists.

For the 48-node instance, the problem was reported to be
infeasible in the case cep

= 1, after adding some cutting
planes to the hardware formulation. For larger limits, solutions
were found, but the solution values are not monotonically
decreasing. However, notice that a solution for a given value of
cep is also feasible for a larger value, which provides a means
to improve some of the solution values. On this instance, the
solution values do not differ very much, which means that
laying down new fibers would probably not pay off.

V. CONCLUSION

In this paper, the design of a logical network including
hardware, link capacities, and a survivable routing has been
considered. Several constraints arising from an underlying
physical layer have been taken into account in the planning
process: Multiple logical failures may be caused by single

physical failures, and a physical link supports only a limited
number of logical links, e.g., due to fiber restrictions.

We have proposed an integer programming model and a
branch-and-cut algorithm with column generation to solve the
problem. Despite the high complexity of the problem, we
could compute solutions on realistic large and dense networks
with up to 44 nodes and 192 links using the described solution
approach. For one of the large test instances, we could give
strong indications that the planning problem has no solution if
only one logical link is allowed to traverse a physical link. We
observed that such a limitation can easily lead to infeasibility
of the planning problem or to a significant increase network
cost. It is therefore of major practical importance that such
constraints be taken into account in the planning process.

In the full paper, a proof will be included that the pricing
problem in column generation is NP-hard, and further com-
putational studies will be presented and discussed in more
detail.
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