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Abstract

We present a new mathematical approach to metabolic pathway
analysis, characterizing a metabolic network by minimal metabolic be-
haviors and the reversible metabolic space. Our method uses an outer
description of the steady state flux cone, based on sets of irreversible
reactions. This is different from existing approaches, such as elemen-
tary flux modes or extreme pathways, which use an inner description,
based on sets of generating vectors. The resulting description of the
flux cone is much more compact. By focussing on the reversible and
irreversible reactions, our approach provides a different view of the
network, which may also lead to new biological insights.

1 Introduction

Network-based metabolic pathway analysis has received considerable inter-
est in the recent past, see [6] for review. The constraints that have to hold
in a metabolic network, which include stoichiometry and thermodynamic
irreversibility, have led to the definition of the steady state flux cone, which
contains all the possible flux distributions over the network. Two important
concepts have been proposed to describe the flux cone in a mathematical and
biologically meaningful way: elementary flux modes and extreme metabolic
pathways [10, 11, 8, 5, 4].

These two concepts are closely related. Both approaches use an inner
description based on generating vectors of the flux cone, and the extreme
pathways are a subset of the elementary modes [5]. However, from a math-
ematical point of view, not all of these generating vectors are needed to
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describe the cone. This observation is important because the computation
of these vectors in a high-dimensional space often leads to a combinatorial
explosion [6]. Even for small networks, the number of elementary flux modes
or extreme pathways is often very large. This makes a complete analysis of
the entire network impossible and limits the practical applicability of the
approach.

In this paper, we propose a new mathematical approach to metabolic
pathway analysis, which uses an outer description of the steady state flux
cone, which is based on sets of non-negativity constraints. These can be
identified with irreversible reactions, and thus have a direct biochemical
interpretation. Our method is different from existing approaches, such as
elementary flux modes or extreme pathways, which use an inner description.
We characterize a metabolic network by so-called minimal metabolic behav-
iors (MMBs) and the reversible metabolic space (RMS). Like elementary
modes or extreme pathways, these are uniquely determined by the network,
and yield a complete description of the flux cone. However, this description
is much more compact. In addition, by characterizing metabolic pathways
through sets of irreversible reactions, our approach provides a different view
of the network, and thus may lead to new biological insights.

The organization of this paper is as follows. We start in Sect. 2 with some
basic facts about polyhedral cones. In Sect. 3, we recall metabolic pathway
analysis, and give a first presentation of our approach. In Sect.4, we formally
introduce minimal metabolic behaviors and the reversible metabolic space,
and formulate some of their basic properties. Finally, Sect. 5 contains some
computational results in order to compare MMBs and the RMS with extreme
pathways and elementary flux modes.

2 Polyhedral cones

We start with some basic facts about polyhedral cones, see e.g. [9].

A non-empty subset C' C R" is called a (convex) cone if Ax + py € C,
whenever z,y € C and A\,u > 0. A cone C is polyhedral, if C = {z € R" |
Az > 0}, for some real matrix A € R™*". The linear space lin.space(C) =
{z € R" | Az = 0} is then called the lineality space of C.

A cone C is finitely generated if there exist x',..., 2% € R™ such that
C = cone{z!,..., 2%} def Mzt -+ A28 | A, ..., A > 0}, A fundamental
theorem of Farkas-Minkowski-Weyl asserts that a convex cone is polyhedral
if and only if it is finitely generated. For the rest of this paper, we will
consider only polyhedral cones.



An inequality a’z > 0,a € R™\ {0}, is wvalid for C if C C {zr € R" |
a’z > 0}. Theset F = CN{x € R" | a’x = 0} is then called a face of
C. The dimension of F' is defined as the dimension of the linear subspace
generated by F.

Any non-zero element r € C' is called a ray of C. We identify two rays
r and ', and write r = ¢/, if r = A7/, for some A > 0. A ray r is extreme if
there do not exist rays r',r” € C,r" 2 r”, such that r = ' + 1.

Pointed cones. A polyhedral cone C'is called pointed if lin.space(C) =
{0}. Any pointed cone C has a canonical representation

C = cone{r!,... r*}, (1)

where 71, ... r® are the (distinct) extreme rays of C. This representation,
which is used in the extreme pathway approach, is minimal and unique up
to multiplication with positive scalars.

Non-pointed cones. If C' is not pointed, there is no longer such a
unique minimal representation. Let t be the dimension of the lineality space
of C. Instead of the extreme rays, we consider now the minimal proper
faces G1,--- ,G® of C, which are the faces of C' of dimension ¢ 4+ 1. Each
G' can be represented by a row vector a;-r and a submatrix A} of A, with

/
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Gi={zecClalz>0,Az =0}, (2)

and lin.space(C) = {x € C' | al'z =0, A 2 = 0}.

If we select for each i = 1,...,s a vector ¢¢ € G*\ lin.space(C), and
vectors b0, ... b" € lin.space(C) such that lin.space(C) = cone{b°, ... b},
we get

C = cone{g*,..., g%, 0%, ... b} (3)

For additional information, we refer to [9, p.105-106].

Equation (3) generalizes (1), but this representation is no longer unique.
We may choose an arbitrary base of lin.space(C), and arbitrary rays ¢ in
G* \ lin.space(C). As we will see in the following sections, considering the
minimal proper faces leads to a new way for describing and analyzing the
flux cone associated with a metabolic network.

3 Metabolic pathway analysis

From a mathematical point of view, metabolic pathway analysis as consid-
ered here can be described as follows [6]. We are interested in the set of all



Figure 1: Metabolic network

solutions of the constraint system
Sv=0,v; >0, for i e Irr. (4)

where S is the m X n stoichiometric matrix of the network, with m metabo-
lites (rows) and n reactions (columns), and v € R™ is the fluzr vector.
Irr C {1,...,n} denotes the set of irreversible reactions in the network.
The set of all solutions of the constraint system (4), which corresponds to
the set of all possible fluxes through the network at steady state, defines a
polyhedral cone,

C={veR"|Sv=0, v; >0,i € Irr} (5)
which is called the fluz cone.

Example 3.1 Consider the metabolic network depicted in Fig. 1. It con-
sists of seven metabolites (4,...,G), and twelve reactions (1,...,12). The
steady state flux cone is defined by C' = {v € R'? | Sv = 0,v; > 0 for all i €
Irr}, with the set of irreversible reactions Irr = {1,2,6,7,8}, and the stoi-
chiometric matrix
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If all reactions are irreversible (and also in some other cases), the flux
cone is pointed, and has a minimal and unique set of generators, which corre-
spond to the extreme rays. In general, however, the flux cone is not pointed,
and there is no such canonical representation. In the extreme pathways ap-
proach, the network is reconfigured and all reversible internal reactions are
split into a forward and a backward reaction, which both are constrained to
be non-negative [8]. This implies that the flux cone becomes pointed and
thus has a minimal and unique (up to multiplication by a positive scalar)
set of generators, which correspond to the extreme rays of the (reconfig-
ured) cone. However, the reconfiguration has undesirable consequences. On
the one hand, the number of variables and constraints increases, and the
constraint system becomes more difficult to solve. On the other hand, a
significant number of pathways in the reconfigured cone are extreme for
the only reason that the reversible internal reactions have been decomposed
into forward and backward reactions. In the initial cone, these extreme
pathways are linearly dependent. In addition, the number of extreme path-
ways (and even more the number of elementary modes) is often very large,
even for small networks, which limits the practical applicability of the ap-
proach. Computational results illustrating these observations can be found
in Sect. 5.

To overcome these problems, we propose a new description of the flux
cone. Mathematically speaking, we switch from an inner description of
the cone, based on generating flux vectors, to an outer description, based
on constraints. In our case, these constraints are inequalities of the form
v; > 0,¢ € Irr, which can be identified with irreversible reactions, and thus
have a direct biochemical interpretation. Working on a possibly non-pointed
flux cone C, we will associate with each minimal proper face a character-
istic set of irreversible reactions, which we call a minimal metabolic behav-
ior (MMB). In addition, we include in our description the lineality space
lin.space(C'), which will be called the reversible metabolic space (RMS). For
a non-pointed cone, this space is different from {0}. It contains useful bi-
ological information, which is no longer handled if we replace a reversible
reaction with two irreversible ones. The set of all MMBs together with the
RMS yields a complete description of the flux cone. As we will see, it is
much more compact than generating sets based on extreme pathways or ele-
mentary flux modes. In addition, by focussing on reversible and irreversible
reactions, this approach provides a different view of the network, which may
also lead to new biological insights.



4 Minimal metabolic behaviors

In this section, we formally introduce minimal metabolic behaviors and the
reversible metabolic space.

4.1 Characterizing minimal proper faces

We start by characterizing the minimal proper faces of the flux cone through
irreversible reactions of the network.

Definition 4.1 Let G be a minimal proper face of the flux cone (5) and let
j € Irr be an irreversible reaction. We say that G is defined by j if there
exists I; C Irr such that G = {v € C | v; >0, v; =0, for all i € I}, and
lin.space(C) ={v e C|v; =0, v; =0, for all i € [;}.

It follows from the general theory (see Sect. 2) that each minimal proper
face G of C is defined by at least one irreversible reaction. However, this
reaction need not be unique. In general, there will be several irreversible re-
actions satisfying the conditions of Def. 4.1. These are further characterized
in the next theorem and in Corollary 4.3.

Theorem 4.2 Let G be a minimal proper face defined by j € Irr. For an
irreversible reaction k € Irr, the following are equivalent:

o There exists g € G \ lin.space(C) with g > 0.

o G is defined by k and there exists a > 0 with v, = a-vj, for allv € G.

Proof: “«<”: Immediate from the definition.

“=": Suppose g € G \ lin.space(C') such that g > 0. Since G is defined
by j, we get g; > 0. For all v € G\ lin.space(C), there exist A > 0 and
w € lin.space(C') such that v = A- g+ w. It follows that v; = X-g; > 0,v, =

X gr > 0, and therefore vy /v; = gr/g; ef o> 0, independently from wv.
This shows that vy, = o -v; > 0, for all v € G\ lin.space(C).

For all v € lin.space(C), we have v; = vy = 0. It follows for all v € G
that v, = a - v;, and that v; > 0 iff v, > 0. Choosing I}, = I;, this implies
G={vel|v >0, v,=0, forall i € I};}, and lin.space(C) = {v € C |
vg =0, v; =0, for all i € I}, which proves that G is defined by k. O

Corollary 4.3 Let G be a minimal proper face of C' and let j € Irr be an
irreversible reaction. Then the following are equivalent:



1. G is defined by j.
2. vj >0, for some v € G\ lin.space(C).

3. vj >0, for all v € G\ lin.space(C).

4.2 Main definitions

We are now ready to define the key notions of this paper.
Definition 4.4 Given a minimal proper face G of the flux cone (5), the set
D ={jeIrr|v; >0, for some v € G}

of all irreversible reactions defining G is called the minimal metabolic behav-
ior (MMB) associated with G. The reversible metabolic space (RMS) is the
lineality space lin.space(C).

Each minimal proper face G of the flux cone is thus characterized by
a set D of irreversible reactions. As the next theorem shows, all pathways
v € G\ lin.space(C) have the following common property: the flux through
all irreversible reactions belonging to D is positive, i.e., v; > 0, for j € D,
while the flux through all the other irreversible reactions is zero, i.e., v; = 0,
for j € Irr \ D.

The pathways v € lin.space(C') belonging to the reversible metabolic
space consist of reversible reactions only, which contribute to the flexibility
of the network. This information is no longer present if the network is
reconfigured in order to obtain a pointed cone.

Theorem 4.5 Let G be a minimal proper face of the cone (5) and D the
corresponding MMB. Then

G={veC|v;>0, forallj€ D, v; =0, forallie Irr\ D}.

Proof: Suppose j € D. Then by definition G = {v € C | v; > 0, v; =
0, for ¢ € I;}, for some I; C Irr. From Corollary 4.3, we see that I; C
Irr \ D. It follows that {v € C | v; >0, forall j € D, v; =0, for all i €
Irr \ D} C G. To show the reverse inclusion, suppose v € G. Then v; > 0,
for all 7 € D. Suppose v; > 0, for some i € Irr \ D. From Corollary 4.3, we
would get ¢ € D, which is a contradiction. O



Figure 2: Metabolic network with representative pathways

Note that the set D is uniquely determined by G. If G!,... G*® are the
minimal proper faces of the flux cone C, the corresponding sets D', ..., D*
define the possible minimal metabolic behaviors of C, which together with
the reversible metabolic space lin.space(C') completely describe C.

Example 4.6 In the metabolic network from Fig. 1, the minimal metabolic
behaviors and the corresponding minimal proper faces are as follows:

D' = {1,2}, G' = {veC|v;>0,ie D' v;=0,j€ Irr\ D},
D? = {6,7}, G? = {veC|v>0,i€ D?v;=0,j€ Irr\ D?},
D3 = {6,8}, G = {veC|v;>0,ie€D3v;=0,j€ Irr\ D3}.

Note that the irreversible reaction 6 is participating in the definition of two
minimal proper faces, G and G3. Fig. 2 shows three pathways

g = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)
g = (0, 0, 0, =1, 0, 1, 1, 0, 0, 0, 0, 0)
.93 = (07 07 07 _17 07 17 07 17 17 17 07 0)

representing, respectively, the minimal proper faces G', G2, and G3.
The reversible metabolic space lin.space(C) = {v € C' | v; = 0,7 € Irr},
has dimension 2. It can be generated by the pathways

) )

b = (0, 0-1, 0, 1, 0, 0, 0, 1, 1
(0, 0—1, 0, 1, 0, 0, 0, 0, 0,

b2

I
[a)
N—

—
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An arbitrary pathway v € G*,i = 1,2, 3, can be written as linear combi-
nation v = ag® + \b! + ub?, with a > 0, \, 4 € R.

The next results shows that, inside a minimal proper face G, the fluxes
through the irreversible reactions in D are proportional to each other.

Corollary 4.7 Let D be the minimal metabolic behavior associated with the
minimal proper face G. Then for all j,k € D, there exists o > 0 such that
v = a-vj, for allv € G. In particular, v; = 0 implies v, = 0, and v; > 0
implies vy, > 0, for allv € G,

4.3 Pseudo-irreversible reactions

We will now distinguish a special class of reversible reactions.

Definition 4.8 Given the flux cone (5), let Rev = {1,...,n} \ Irr denote
the set of reversible reactions. Then the set

Rev® = {i € Rev | v; = 0, for all v € lin.space(C)}
is called the set of pseudo-irreversible reactions.

The next proposition shows that pseudo-irreversible reactions become
irreversible inside minimal proper faces. Within each minimal proper face
G, any pseudo-irreversible reaction will take a unique direction, which is
imposed by the MMB D associated with G. This allows one to identify

the subspace of the cone in which a reversible reaction can take only one
direction.

Proposition 4.9 Let G be a minimal proper face of C and let i € Rev®
be a pseudo-irreversible reaction. Then exactly one of the following three
conditions holds:

1. v; >0, for allv € G\ lin.space(C).
C).

3. v; <0, for allv € G\ lin.space(C).

(
2. v; =0, for all v € G\ lin.space(
Proof: Suppose g € G \ lin.space(C). For any v € G \ lin.space(C') there

exists A > 0 and w € lin.space(C) such that v = X - g + w. It follows that
sign(v;) = sign(A - g;) = sign(g;), independently from v. O

Example 4.10 In our example, we have Rev® = {4}, and Rev \ Rev® =
{3,5,9,10,11,12}. In the context of the MMB D!, the pseudo-irreversible
reaction 4 becomes positive, i.e., vq > 0, for all v € G! \ lin.space(C), while
it becomes negative in the context of D? and D?3.



4.4 Deleting an irreversible reaction from the network

The next proposition shows that the deletion of an irreversible reaction j
from the network breaks down all the minimal metabolic behaviors in which
7 participates. This can be used to determine which irreversible reactions
should be deleted from a network in order to stop the production of some
metabolites.

Proposition 4.11 Given the flux cone C' and an irreversible reaction j €
Irr, let C" be the flux cone C" = CN{v € R" | v; = 0}. Then the MMBs
D’ of C' are exactly the MMBs D of C for which j € D. The reversible
metabolic space does not change, i.e., lin.space(C’) = lin.space(C).

Proof: Follows from the Strengthened Main Lemma in [3]. O

4.5 Computing minimal metabolic behaviors

A simple algorithm to determine the MMBs of a metabolic network is as
follows. First compute a set of generators of the flux cone C, using some ex-
isting software for polyhedral computations such as cdd [3]. Second, for each
minimal proper face G, represented by some generator g € G \ lin.space(C),
identify the set D of irreversible reactions j € Irr, with v; > 0. Another pos-
sible approach is to apply the Fourier-Motzkin elimination to eliminate the
variables corresponding to the reversible internal reactions. This results in a
constraint system that contains only variables corresponding to irreversible
reactions.

It follows from the general theory in Sect. 2 that in order to obtain
a minimum cardinality set of generators for the flux cone C, we have to
choose for each minimal proper face G¥ a vector ¢* € G* \ lin.space(C),
together with a generating set {b°,... '} of lin.space(C). If we decom-
pose gk = (glfw,gzeyo,gzev\ Reyo) into components corresponding to irre-
versible, pseudo-irreversible, and reversible reactions, then the components
in (g’fw,g’;zeyo) are uniquely determined up to multiplication by positive
scalar. There remains some freedom in the choice of the components in
g’;ze@\ Rewo- Work in the context of the software cdd [2] discusses how to
obtain generators with a maximum number of zeroes in this part.
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5 Computational results

In this section, we compare the different approaches on some example net-
works from the KEGG pathway database!. As there is no information about
the exchange fluxes of the system, we suppose that there is an unconstrained
exchange flux for each metabolite that is not consumed or produced by an
internal reaction in the network. The computations of the elementary flux
modes, the extreme pathways, the minimal metabolic behaviors and the re-
versible metabolic space were done using the software metatool [7], cdd [3],
and 1rs [1]. The results are given in Tables 1 and 2.

Table 1 shows the number of elementary flux modes, extreme pathways,
MMBEs, and the dimension of the RMS. It shows that the size of our rep-
resentation, given as the sum of the number of MMBs and dim(RMS), is
typically much smaller than the number of extreme pathways or elemen-
tary flux modes. In various examples, the reduction is by several orders of
magnitude.

Table 2 describes the distribution of the elementary flux modes and the
extreme pathways inside the steady state flux cone. We can see that a
very large number of elementary flux modes and extreme pathways lies in
the interior of the cone. In addition, the number of elementary flux modes
and extreme pathways belonging to the minimal proper faces (MMB) is
much larger than the number of MMBs. This shows that many elemen-
tary modes/extreme pathways belong to the same minimal proper face,
which mathematically can be represented by a single vector. Similarly, the
number of elementary modes/extreme pathways belonging to the reversible
metabolic space is much larger than its dimension, so that there are many
dependencies.

6 Conclusion and possible biological implications

Minimal metabolic behaviors and the reversible metabolic space provide a
new mathematical description of the possible fluxes through a metabolic
network at steady state. Compared to existing approaches, this description
is much more compact. Instead of generating a very large number of vectors,
it is based on sets of non-negativity constraints (MMBs). These can be
identified with irreversible reactions, and thus have a direct biochemical
interpretation.

With each MMB, we may associate one or several biological functions

Mttp://www.genome.ad. jp/kegg/pathway . html
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¢l

Metabolic Network Network size Number of Number dim
Number of Reactions EFMs | EPs | of MMBs | RMS
metabolites | irrev. | rev.

Glycolysis / Gluconeogenesis 32 18 29 19464 1745 17 13
Citrate cycle (TCA cycle) 22 4 25 3870 1588 5 12
Pentose phosphate pathway 34 19 24 5155 1630 20 8
Pentose and glucuronate interconversions 50 13 46 2258 231 8 23
Fructose and mannose metabolism 46 37 31 2411 2102 30 6
Galactose metabolism 41 22 28 623 524 14 9
Starch and sucrose metabolism 47 35 30 2097 1718 31 5
Pyruvate metabolism 28 40 29 47708 | 27390 38 16
Glyoxylate and dicarboxylate metabolism 50 34 28 18785 1987 32 11
Propanoate metabolism 34 20 29 877 233 18 13
Butanoate metabolism 40 23 30 2138 541 19 11
Nitrogen metabolism 41 53 14 601 612 45 9
Sulfur metabolism 18 26 4 321 326 29 1

Table 1: Metabolic networks, with corresponding elementary flux modes (EFM), extreme pathways (EP), minimal
metabolic behaviors (MMB), and the dimension of the reversible metabolic space (dim(RMS)). Contrary to the
calculation of EFMs, the calculation of the EPs required a reconfiguration of the network. Except for the two-cycle
extreme pathways, the set of EPs is always a (proper or non-proper) subset of the EFMs.
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Characteristic pathways in Two- | Number | dim
Metabolic Network MMBs RMS Interior cycle of RMS
EFMs | EPs | EFMs | EPs | EFMs | EPs EPs MMBs

Glycolysis / Gluconeogenesis 1226 529 48 46 18190 1095 29 17 13
Citrate cycle (TCA cycle) 1608 568 502 258 1760 480 24 5 12
Pentose phosphate pathway 489 340 25 25 4641 1217 23 20 8
Pentose and glucuronate interconversions 1076 32 642 76 540 3 44 8 23
Fructose and mannose metabolism 154 148 14 14 2243 1895 31 30 6
Galactose metabolism 212 152 45 45 366 254 28 14 9
Starch and sucrose metabolism 108 107 8 8 1981 1565 30 31 5
Pyruvate metabolism 2016 1776 146 146 | 45546 | 25293 29 38 16
Glyoxylate and dicarboxylate metabolism 869 124 112 18 17804 1801 26 32 11
Propanoate metabolism 449 93 133 32 295 50 26 18 13
Butanoate metabolism 357 244 35 34 1746 201 28 19 11
Nitrogen metabolism 183 171 22 22 396 384 13 45 9
Sulfur metabolism 44 44 1 1 276 276 4 29 1

Table 2: The distribution of the elementary flux modes (EFMs) and the extreme pathways (EPs) in the three
parts of the steady state flux cone: the minimal proper faces (MMB), the lineality space (RMS), and the interior
of the cone. Each pair of opposite extreme pathways is considered as one reversible pathway belonging to the

RMS. The two-cycle extreme pathways made from a forward and a backward reaction are indicated separately.




corresponding to the transformation of certain metabolites in the direction of
the irreversible reactions that define the MMB. The same biological function
can be realized by several MMBs. This reflects the redundancy and robust-
ness present in biological systems. The reversible metabolic space, which
consists of reversible reactions only, can be used by the biological system to
balance the ratio between certain metabolites. Some irreversible reactions
turn out to participate in the definition of several MMBs. The number of
MMBs in which some irreversible reaction participates is an indicator of
its importance. Its deletion will break down these MMBs and thus change
the global behavior of the system. The deletion of reversible reactions may
affect the ratio between certain metabolites, but will not necessarily change
the overall behavior of the network.

Since the flux cone is defined by both stoichiometric and thermody-
namic irreversibility constraints, the reversibility of biochemical reactions is
a meaningful biological property, which should be dealt with explicitly. Our
description involving both MMBs and the RMS highlights the importance
of the reversible reactions for the analysis of a network.

Finally, MMBs suggest a modular approach to the study of metabolic
networks. Each MMB (i.e, the pathways belonging to the corresponding
minimal proper face) could be seen as a module that can cooperate with
other modules through the reversible reactions. The overall metabolic net-
work could then be understood as a combination of these different modules.
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