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Random intersection graphs naturally exhibit a certain amount of transitivity
and hence can be used to model real–world networks. We study the evolution of
the chromatic number of a random intersection graph and show that, in a certain
range of parameters, these random graphs can be coloured optimally with high
probability using different greedy algorithms. Experiments on real network data
confirm the positive theoretical predictions and suggest that heuristics for the clique
and the chromatic number can work hand in hand proving mutual optimality.

1 Introduction and results

The classical random graph model, introduced by Erdős and Rényi in the early
1960s, considers a fixed set of n vertices and edges that exist with a certain prob-
ability p = p(n), independently from each other. It was shown to be inappropriate
for describing real–world networks because it lacks certain features of those such
as a scale free degree distribution and the emergence of local clusters. One of the
underlying reasons that are responsible for this mismatch is precisely the indepen-
dence of the edges, in other words the missing transitivity: if vertices x and y
exhibit a relationship of some kind in a real–world network and so do vertices y
and z, then this suggests a connection between vertices x and z, too.

Intersection graphs. Suppose that we have a vertex set V and another set W .
An intersection graph is a graph with vertex set V , where we assign to each vertex
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v a subset Wv ⊆ W and connect two vertices v, v′ by an edge if and only if their
assigned sets Wv and Wv′ have non-empty intersection.

We call the ground set W from which the assigned sets are chosen universal
feature set and its elements features. If feature w ∈ Wv, we say that feature w is
assigned to vertex v or simply that v has w. The set Wv is called feature set of v.
For a specified w ∈ W , let Vw be the set of vertices v that have feature w. We call
Vw a feature clique, since it obviously induces a clique in the intersection graph. As
usual, Γ(v) denotes the set of neighbours of v, i.e. the set of vertices in V that have
features with v in common.

Well studied examples for intersection graphs are interval graphs on the real line.
In this paper, however, we will only consider finite sets. Obviously every graph is
an intersection graph (simply pick an individual feature assigned only to the two
vertices of every edge), but the fewer features we have, the more apparent becomes
the structure of the shared features inside the graph.

Random intersection graphs. A random intersection graph on n vertices with
a universal feature set W of size m is a random graph with vertex set [n] where each
vertex gets assigned a random set of features by choosing each feature independently
with probability p. A sample of this probability space is denoted by Gn,m,p. We
consider now and in the following m := nα, and will usually distinguish two cases:
α > 1 and 0 < α < 1. If the probability of Gn,m,p having a property A tends to 1
with n tending to infinity, we say that Gn,m,p has property A asymptotically almost
surely (a.a.s.).

It is sometimes convenient to look at the random intersection graph as a random
bipartite graph with bipartition (V,W ) and edges occurring between the two classes
independently with probability p. Such a graph will be called a generator.

Several aspects of random intersection graphs have been studied before. Karoński,
Scheinerman, and Singer-Cohen [11] study subgraph appearance in this model. Fill,
Scheinerman, and Singer-Cohen [5] investigate the equivalence of Gn,m,p to Gn,p,
and Stark [14] analyses its vertex degree distribution. Behrisch and Taraz [3] show
how to reconstruct the feature structure when only the random intersection graph
is given as input. A study of the component evolution is given by Behrisch in [2].
Some results concerning connectivity and cliques can be found in Singer [13]. Ex-
tensions to the model are proposed by Godehardt and Jaworski in [7], who modify
the distribution of the sizes of the feature cliques. The practical relevance of ran-
dom intersection graphs is studied by Newman, Strogatz and Watts in [12] and by
Guillaume and Latapy in [9].

The aim of this paper is to investigate the evolution of the chromatic number of
Gn,m,p. As usual, denote by χ(G) the chromatic number of G and by ω(G) the size
of the largest clique in G. The computation of these two fundamental parameters
is long known to be NP-hard. Our main results are that for a random intersection
graph G = Gn,m,p where m and p lie in a certain range, asymptotically almost
surely χ(G) and ω(G) can be computed efficiently by simple colouring heuristics
and actually coincide.

Theorem 1. Let m := nα with α > 0 fixed and p ≪
√

1
nm

. Then Gn,m,p can a.a.s.

be coloured optimally in linear time and χ(Gn,m,p) = ω(Gn,m,p).
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Theorem 2. Let m := nα with 0 < α < 1 fixed and p ≪ 1
m lnn

. Then Gn,m,p can
a.a.s. be coloured optimally in linear time. Moreover, for np > ln4 n we have a.a.s.

χ(Gn,m,p) = ω(Gn,m,p) ∼ np.

Note that in principle one could also state in Theorem 1 that for np > ln4 n we
have a.a.s. χ(Gn,m,p) = ω(Gn,m,p) ∼ np, but this is redundant since np > ln4 n and

p ≪
√

1
nm

together imply α < 1 and thus the two theorems overlap in this case.

Applications. We started this section by claiming that the Gn,m,p-model provides
a good approximation of real-world networks. Indeed, we have tested our colouring
heuristics on real–world networks from application areas such as the internet, co-
operation graphs and protein databases. In many cases, the experimental and the
theoretical results agree with each other – see Section 4 for details, in particular
Figure 1 for a graphical representation describing the parameters in the theorems
and how they relate to the experimental results. Still the question remains, why
one should try to colour complex networks. Of course, knowledge of the chromatic
number gives important structural information of a general nature, but while for
instance the clique number is practically meaningful – the size of the largest cluster
in the network – the chromatic number seems to be of less immediate use.1

There is however one important application of the chromatic number, and this
is exactly the clique number. Suppose we have a heuristic that tries to find the
maximal size of a clique. If we also have a heuristic that tries to determine the
minimum number of colours, and both of the proposed numbers coincide (or are
at least very close to each other), then this proves that both numbers have already
reached (near-) optimal values. This is precisely what we did in our experiments:
we applied different heuristics discussed in an earlier paper [3] to find large cliques
(and good clique covers) in the networks. At the same time, we tried to find
good colourings of real–world networks using the greedy algorithms discussed in
this paper. The results showed that, just as predicted by Theorems 1 and 2, the
proposed chromatic number and clique number indeed coincide (or are at least very
close to each other).

In a way this is very reminiscent of the theory of perfect graphs. In fact, Gn,m,p

with m and p as in Theorem 1 is a.a.s. perfect, and we can thus use some of the
perfect graph methodology to give a short proof of the theorem. For parameters m
and p as in Theorem 2, although χ(Gn,m,p) = ω(Gn,m,p) a.a.s., Gn,m,p is not perfect
and hence a different colouring strategy has to be used for this case.

The paper is organised as follows. After a short section containing some auxiliary
tools, we will prove Theorems 1 and 2 in Sections 3.1 and 3.2 respectively. Our
colouring experiments can be found in Section 4, and a brief outlook concludes the
paper.

1One possible application, not to be taken too seriously, could be to distribute film-stars to a minimum number
of hotels (colour classes) in such a way that co-stars of the same movie are not put in the same hotel, just
to avoid trouble.
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2 Auxiliary Lemmas

The following estimates are used without proof:

1 − ab ≤ (1 − a)b ≤ 1 −
ab

2
for 0 ≤ a ≤ 1, ab < 1. (1)

Let X be a non-negative random variable with expectation µ = E [X]. As a special
case of Markov’s inequality the first moment method states that

P [X ≥ 1] ≤ µ. (2)

If X is binomially distributed random variable (n trials, each with probability p),
then µ = np and we shall use the following variants of Chernoff’s inequality (see
Section 2 in [10]):

P [X ≥ µ + t] ≤ exp

(

−
t2

2(µ + t/3)

)

for t ≥ 0, (3)

P [X ≤ µ − t] ≤ exp

(

−
t2

2µ

)

for t ≥ 0, (4)

P [X ≥ t] ≤ exp (−t) for t ≥ 7µ. (5)

We first show that the probability that there is a feature clique in Gn,m,p which
deviates much from its expected size is exponentially small.

Lemma 3. Let Xw := |Vw| be the random variable counting the number of vertices
of a fixed feature w in a random intersection graph Gn,m,p with m := nα and α < 1.
Then

P

[

∃w ∈ W : |Xw − pn| > (pn)
3

4

]

≤ m exp

(

−
(pn)

1

2

3

)

.

Proof. The number of vertices chosen by a feature is a binomially distributed vari-
able. Its deviation from its expected value can therefore be bounded by Chernoff
inequalities (3) and (4). First let w be fixed:

P

[

Xw > pn + (pn)
3

4

]

≤ exp

(

−
(pn)

3

2

2(pn + (pn)
3

4 /3)

)

≤
1

2
exp

(

−
(pn)

1

2

3

)

P

[

Xw < pn − (pn)
3

4

]

≤ exp

(

−
(pn)

3

2

2pn

)

≤
1

2
exp

(

−
(pn)

1

2

3

)

.

By linearity of expectation (summing over all possible w) and Markov’s inequality
this implies that

P

[

∃w ∈ W : |Xw − pn| > (pn)
3

4

]

≤ m exp

(

−
(pn)

1

2

3

)

.
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Since we are mostly interested in small feature sets, we need only an upper bound
on their size.

Lemma 4. Let Xv := |Wv| be the random variable counting the number of features
for a fixed vertex v in a random intersection graph Gn,m,p with m := nα and α < 1.
Then for pm ≤ 3 ln n

P [∃v ∈ V : Xv > 21 ln n] ≤
1

n20
.

Proof. Very similarly to the previous lemma, we have for a fixed vertex v and for
pm ≤ 3 ln n

P [Xv > 21 ln n]
(5)

≤ exp(−21 ln n) =
1

n21
.

Again summing over all vertices v yields the statement of the lemma.

3 Proofs

In the following two subsections we describe two simple and well known determin-
istic algorithms that find a proper colouring of a given input graph G = (V,E) in
linear time. Both algorithms are greedy heuristics: they colour the vertices in a
prescribed order and assign to each vertex the smallest colour that has not been
used for any of its neighbours which are already coloured. Thus the main task is
to prove the following: if the input graph G is a random intersection graph Gn,m,p

with parameters n, m and p as given in Theorems 1 and 2, then these algorithms
will asymptotically almost surely produce a colouring with (at most) ω(G) different
colours. Hence the colouring is optimal and χ(G) = ω(G), as required.

The additional claim in Theorem 2 that a.a.s. ω(G) is of order np will follow
from the fact that the largest clique is a feature clique, which according to Lemma
3 is of that order.

3.1 Perfect elimination scheme

The aim of this subsection is to prove Theorem 1. Here is the basic idea of our
colouring algorithm. We first try to order the vertices of the graph as xn, . . . , x1

in such a way that for every vertex xi the ‘remaining neighbourhood’ Γ(xi) ∩
{xi−1, . . . , x1} induces a clique in G. Having established this ordering, we greedily
colour the vertices in the (reverse) order x1, . . . , xn. Observe that this implies that
vertices which are contained in many different cliques, e.g. those that have many
features, will be coloured relatively early.

Such an ordering is called a perfect elimination scheme, in short PES. Tarjan and
Yannakakis [15] proved that, if a graph has a PES, a so-called maximum cardinality
search will produce a PES in linear time. If the graph doesn’t have a PES, then
the procedure returns an arbitrary ordering. This leads to the following greedy
colouring heuristic:

Algorithm 1.

Input: Graph G = (V,E) on n vertices
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Output: colouring of G
GreedyColourPES(G)
(1) A := ∅
(2) for i := 1 to n
(3) choose xi ∈ V \ A such that |Γ(xi) ∩ A| is maximal
(4) A := A + xi

(5) for i := 1 to n
(6) colour xi with the smallest colour not occurring in Γ(xi)

The following three crucial facts have been known for a long time:

1. a graph G has a PES (and it can be found in linear time and can be found as
described above) if and only if G is chordal, i.e. it does not contain an induced
cycle with more than three vertices [15],

2. chordal graphs are perfect [4, Chapter 5.5], thus in particular χ(G) = ω(G),
and

3. if a PES exists for G, then using it as described above the greedy colouring
procedure colours G optimally.

The last observation is a folklore result and obviously true: if the set of the already
coloured neighbours of every vertex xi forms a clique when xi is coloured, then
whenever a vertex xi needs a new colour k, we have just found a clique of size k,
and hence k colours are really needed to colour the graph.

Now all that remains to do is to prove that Gn,m,p is chordal for the given
parameters n, m and p, which will be done in the following lemma.

Lemma 5. Let m := nα for α > 0 fixed and p ≪
√

1
nm

. Then Gn,m,p is a.a.s.

chordal.

Proof. Let G = Gn,m,p be a random intersection graph and B = (V ∪ W,EB) a
bipartite generator of G. By definition, G is chordal iff it does not contain an
induced cycle of length at least four. Suppose that v1, . . . , vk form an induced cycle
Ck in G. Then there must exist features w1, . . . , wk such that wi is a feature of
both vi and vi+1 for all i ∈ [k−1], and wk is a feature for both vk and v1. Moreover
all the wi are distinct, since otherwise the cycle wouldn’t be induced. This yields a
cycle v1, w1, v2, w2, . . . , vk, wk in the generator B. The probability for such a cycle
in B can obviously be bounded from above by p2k, and multiplying this with the
number of possibilities to choose v1, . . . , vk and w1, . . . , wk we get:

P [G contains an induced Ck] ≤ nkmkp2k = (nmp2)k.
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The probability of G being not chordal is now bounded by:

P [G is not chordal] ≤

min(n,m)
∑

k=4

P [G contains an induced Ck]

≤

min(n,m)
∑

k=4

(nmp2)k

≤
∞
∑

k=0

(nmp2)k − 1 =
1

1 − nmp2
− 1,

which tends to 0 for n tending to infinity because nmp2 tends to 0.

A second moment calculation (see Singer [13]) shows that p =
√

1
nm

is in fact

the threshold function for the appearance of induced cycles of fixed length k ≥ 4

in random intersection graphs. Thus for p ≫
√

1
nm

these graphs are a.a.s. not

chordal.

3.2 Smallest last heuristic

The aim of this subsection is to prove Theorem 2. Again we employ a greedy strat-
egy but this time the precomputed ordering x1, . . . , xn of the vertices is slightly
different. Suppose we have already selected xn, . . . , xi+1. Then among the remain-
ing vertices xi is the vertex with the smallest number of neighbours (among the
remaining vertices). More precisely:

Algorithm 2.

Input: Graph G = (V,E) on n vertices
Output: colouring of G
GreedyColourSmallestLast(G)
(1) A := V
(2) for i := n downto 1
(3) choose xi ∈ A such that |Γ(xi) ∩ A| is minimal
(4) A := A − xi

(5) for i := 1 to n
(6) colour xi with the smallest colour not occurring in Γ(xi)

As there may be more than one such ordering, we denote by χSL(G) the maxi-
mum number of colours that GreedyColourSmallestLast(G) uses for an input
graph G. It is well known [4, Chapter 5.2] that the number of colours used by the
algorithm is always bounded from above by the maximal minimum degree of all
subgraphs of G, plus one:

χSL(G) ≤ 1 + max
H⊆G

δ(H). (6)

From this we derive the following simple proposition.
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Proposition 6. If G is a graph such that

every vertex v has less than ω(G) neighbours of degree at least ω(G), (7)

then
χSL(G) = ω(G) = χ(G).

Proof. We claim that (7) implies that

1 + max
H⊆G

δ(H) ≤ ω(G). (8)

Suppose for a contradiction that there exists a subgraph H with 1 + δ(H) > ω(G).
Let v be a vertex of minimal degree in H, i.e. dH(v) = δ(H) ≥ ω(G). Then for all
neighbours w of v in H we have

dG(w) ≥ dH(w) ≥ dH(v) = δ(H) ≥ ω(G),

and since there are dG(v) ≥ dH(v) = δ(H) ≥ ω(G) neighbours of v in G, this
contradicts the property in (7), which proves the claim in (8).

Now we are done, since

χ(G) ≤ χSL(G)
(6)

≤ 1 + max
H⊆G

δ(H)
(8)

≤ ω(G) ≤ χ(G).

Let us move back to intersection graphs. In the following we call a vertex v rich
if it has at least two features. Obviously, the only way that a vertex can have
degree at least ω(G) is if it is rich. Hence we have the following corollary.

Corollary 7. Suppose that G is an intersection graph such that every vertex has
less than ω(G) rich neighbours, then

χSL(G) = ω(G) = χ(G).

In order to prove that in our random intersection graph, the condition of the
above corollary is a.a.s. satisfied, we first obtain an upper bound on the number of
rich vertices in each feature clique.

Lemma 8. Let m = nα for 0 < α < 1 fixed, p ≥ 10 ln2 n
n

and t ≥ 0. Denote by ωf

the size of a largest feature clique in Gn,m,p. Then in a random intersection graph
Gn,m,p the probability that there exists a feature clique C with more than ωfmp + t
rich vertices is at most

m exp

(

−
t2

2ωfmp + 2t/3

)

Proof. Let C ⊆ V denote an arbitrary feature clique in G. For v ∈ C we denote
by XC,v the random variable which is 1 whenever v is rich and 0 otherwise. Then

P [XC,v = 1] = 1 − (1 − p)m−1
(1)

≤ 1 − (1 − (m − 1)p) ≤ mp.
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Let XC :=
∑

v∈C XC,v count the rich vertices in C. For the expectation of XC we
have:

E [XC ] =
∑

v∈C

P [XC,v = 1] ≤ ωfmp.

Using the Chernoff bound we get:

P [XC ≥ ωfmp + t] ≤ P [XC ≥ E [XC ] + t]

(3)

≤ exp

(

−
t2

2E [XC ] + 2t/3

)

≤ exp

(

−
t2

2ωfmp + 2t/3

)

.

Of course the events ‘XC ≥ ωfmp + t’ are not independent of each other for
overlapping feature cliques C, but using linearity of expectation and the Markov
inequality (2) we can bound the probability of existence of a feature clique with
too many rich vertices by the expression in the lemma.

Proof of Theorem 2. We want to apply Corollary 7 and hence need to show that in
G = Gn,m,p every vertex has less than ω(G) rich neighbours. Recall that m := nα

with 0 < α < 1 fixed and p ≪ 1
m ln n

. First observe that we can assume that
pn > ln4 n, since otherwise p would be so small that we could apply Theorem 1
instead. Set

t := max(3 ln n,
√

nmp2 ln n),

and consider an arbitrary small ε > 0. We shall make use of the following two
technical observations (involving t) that will be verified later:

21 ln n((1 + ε)nmp2 + t) ≤ (1 − ε)np, (9)

m exp

(

−
t2

2(1 + ǫ)nmp2 + 2t/3

)

≤ nα−1. (10)

Again denote by ωf the size of a largest feature clique in G = Gn,m,p and con-
sider the following events that have already been discussed in Lemmas 3, 4 and 8
respectively:

A: for all w ∈ W : ||Vw| − pn| < εpn,

B: for all v ∈ V : |Wv| ≤ 21 ln n,

C: every feature clique C has at most ωfmp + t rich vertices.

Let Yv be the number of rich neighbours of a vertex v. Then Yv is bounded from
above by the number of feature cliques containing v, multiplied with the number
of rich vertices per feature clique, and we can then compare this to the size of a
feature clique, which is a lower bound for ω(G). So if all the events A,B, C hold,
then

Yv ≤ 21 ln n ((1 + ε)pn mp + t)
(9)

≤ (1 − ε)np
(A)
< ωf − 1 < ω(G), (11)

which would immediately prove (most of) the statements in Theorem 2 because of
Corollary 7. To prove that ω(G) ∼ np, note that by the estimate in (11) there is
no vertex v with ωf − 1 rich neighbours, and hence there exists no clique of size ωf

containing only rich vertices. In turn, this implies that ω(G) = ωf , since a clique
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which is not (subset of) a feature clique contains only rich vertices, and we are done
because ωf ∼ np by property A.

Let us complete the proof by showing that a.a.s. all the events A,B, C hold.
Obviously

P [A ∩ B ∩ C] = 1−P
[

Ā
]

−P
[

A∩ B̄
]

−P
[

A ∩ B ∩ C̄
]

≥ 1−P
[

Ā
]

−P
[

B̄
]

−P
[

A ∩ C̄
]

,

so it suffices to check that all the probabilities P
[

Ā
]

, P
[

B̄
]

, P
[

A ∩ C̄
]

tend to zero.
For the first two this is immediately implied by Lemma 3 (which applies because
of m < n and pn > ln4 n) and Lemma 4 respectively. For the latter it follows from
Lemma 8 and observing that

P
[

Ā ∩ C
]

≤ m exp

(

−
t2

2(1 + ε)pn mp + 2t/3

)

(10)

≤ nα−1,

which does tend to zero, since α < 1.
Thus all that remains to be done is to check the two technical observations (9)

and (10). Considering (9), we distinguish two cases. For
√

nmp2 > 3 we have

21 ln n((1 + ε)nmp2 +
√

nmp2 ln n) ≤ 40nmp2 ln n + 21
√

nmp2 ln2 n

= np(40mp ln n + 21
√

m/n ln2 n).

which is smaller than (1 − ε)np because of mp ≪ 1
ln n

and α < 1.

And for
√

nmp2 ≤ 3

21 ln n((1 + ε)nmp2 + 3 ln n) ≤ 40nmp2 ln n + 63 ln2 n

≤ 360 ln3 n + 63 ln2 n.

which is smaller than (1 − ε)np because of ln3 n
n

≪ p.

Considering (10), we distinguish two cases again. For
√

nmp2 > 3 we have

m exp

(

−
nmp2 ln2 n

2(1 + ǫ)nmp2 + 2
3

√

nmp2 ln n

)

≤ m exp

(

−
nmp2 ln2 n

nmp2 ln n

)

= m exp (− ln n) = nα−1.

and for
√

nmp2 ≤ 3

m exp

(

−
9 ln2 n

2(1 + ǫ)nmp2 + 2
33 ln n

)

≤ m exp

(

−
9 ln2 n

100 + 2 ln n

)

≤ m exp (− ln n) = nα−1.

4 Experiments

We have tested our algorithms on eight real–world networks from different appli-
cation areas. The first five graphs are the same as in [9]. “Internet” describes part
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Internet H Web � Authors � Actors ⋆ Proteins ♠
n 75885 325729 16400 392340 2113

|E| 357317 1090108 29552 15038083 2203

α 1.1049 1.0210 0.9653 0.9129 0.9886

logn p -0.9527 -0.9356 -0.9166 -0.7880 -0.9463

Greedyχ 22 155 11 294 6

GreedyPESχ 21 156 8 294 6

GreedySLχ 20 155 8 294 6

largest clique 20 155 8 294 6

Mercator N DIP ♣ Drugs •

n 284805 5119 2000

|E| 449246 14434 163969

α 1.0200 0.9488 0.3713

logn p -0.9643 -0.8731 -0.3197

Greedyχ 38 42 381

GreedyPESχ 33 42 381

GreedySLχ 33 42 381

largest clique 19 42 381

Table 1: Statistics on the performance of the algorithms on eight real–world networks

of the internet computer network, “Web” is the link graph of a complex website,
“Authors” denotes a coauthoring graph, “Actors” denotes a costarship graph of
actors as found in the internet movie database, and “Proteins” is an interaction
graph of proteins. For details see [9] and [1]. The “Mercator” graph is a graph of
the internet at router level taken from [8]. Moreover “DIP” stands for “Dictionary
of Interfaces in Proteins” and is a similarity graph of protein parts (vertices are
protein interfaces that are adjacent if they are similar) studied in [6]. “Drugs” is the
result of a search for “relatives” of 13 substances in a database of 2000 drugs where
an edge connects a pair of drugs which are relatives to the same test substance.
Details concerning this network are described in [16].

These are the graphs for which we tried to find good colourings. Greedyχ,
GreedyPESχ and GreedySLχ denote the number of colours needed by a greedy
colouring procedure that colours the vertices in the natural order (in which they
were read), in a PES ordering (cf Algorithm 1) and in a smallest last ordering (cf
Algorithm 2) respectively. The following table also states the size of the largest
clique we were able to find in the graphs using the clique cover algorithm described
in [3]. Obviously the difference between the proposed number of colours and the
proposed size of a largest clique is an upper bound of the distance of either number
to the optimal value.

The results show that the smallest last heuristic seems to perform well on real–
world graphs. In seven cases we were able to colour the graph optimally using
the heuristic described. Figure 1 gives a graphical representation of the parameter
ranges of Theorems 1 and 2 and shows that, as illustrated by the positions of our
example networks, the algorithms work well even outside these ranges.
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−0.5
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completechordal (Theorem 1)

no edges

p

GreedySL optimal (Theorem 2)

Figure 1: Ranges for p and α where we colour optimally and experimental results

5 Outlook

For the ranges not covered by Theorems 1 and 2, the chromatic number seems to
be more difficult to estimate. From the aforementioned result by Singer [13] it is

clear that those graph are no longer chordal for p ≫
√

1
nm

while the results on

the clique cover [3] suggest that the feature cliques stay the dominant structural

element up to p < min{1
5m− 2

3 , n
8m2 }.

In higher ranges, the approximation of the chromatic number by the size of the
largest feature clique will not be very good. Using a different approach [17], we
tried to establish a better lower bound via the independence number. Using the
fact that the chromatic number of any graph is at least as high as the number of
vertices divided by the size of a largest independent set, we obtain a lower bound
on the chromatic number which beats the size of the largest feature clique, as the
following result shows.

Theorem 9 ([17]). Let ε > 0 be fixed and let m := nα with α > 0 fixed and lnn
m

≪

p ≪
√

ln n
m

. Then a.a.s. the random intersection graph Gn,m,p has no independent

set of size

(2 + ε)
ln n

mp2
,

12



which implies that

χ(Gn,m,p) ≥
p2mn

(2 + ε) ln n
≫ pn.

Lower bounds on the independence number (which match the upper bounds by
a logarithmic factor) can also be found in [17].
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