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Abstract

In Kolodko & Schoenmakers [9] and Bender & Schoenmakers [2] a policy
iteration was introduced which allows to achieve tight lower approximations
of the price for early exercise options via a nested Monte-Carlo simulation
in a Markovian setting. In this paper we enhance the algorithm by a sce-
nario selection method. It is demonstrated by numerical examples that the
scenario selection can significantly reduce the number of actually performed
inner simulations, and thus can heavily speed up the method (up to factor 10
in some examples). Moreover, it is shown that the modified algorithm retains
the desirable properties of the original one such as the monotone improvement
property, termination after a finite number of iteration steps, and numerical
stability.

1 Introduction

In recent years the pricing of American options on a high-dimensional system of
underlyings via Monte Carlo has become an ever growing field of interest. While, in
principle, the backward dynamic program provides a recursive representation of the
(time-discretized) price process of an American option, it requires the evaluation of
high order nestings of conditional expectations. Therefore Monte Carlo estimators
for regression functions, which do not run into explosive cost when nested several
times, have been proposed by several authors, see Longstaff & Schwartz [10], Broadie
& Glasserman [5], and Bouchard et al. [4]. None of the methods can be generically
applied, as they depend on a sophisticated choice of basis functions, knowledge of
the transition densities, or the numerical evaluation of iterated Skorohod integrals,
respectively.

An alternative to solving the backward dynamic program recursively are policy iter-
ations for dynamic programming. The main advantage of policy iterations is, that
they yield lower approximations of the price process for any given order of nested
conditional expectations, which are typically of increasing quality the higher the
order. (The latter property is referred to as monotone improvement property.) In
a Markovian setting, this methodology allows to apply the plain Monte Carlo esti-
mator to evaluate the conditional expectations, at least for nestings of order one.
As one can only obtain the approximations corresponding to low order nestings this
way, the quality of a single improvement step is of prime importance. A new policy
improvement algorithm was developed in Kolodko & Schoenmakers [9] and Bender



& Schoenmakers [2] which outperforms for instance the more classical Howard im-
provement (e.g. [12]). Although this new algorithm is applicable rather generically,
the nested Monte Carlo simulation makes it still quite costly.

In the present paper we enhance the policy improvement algorithm by a scenario
selection method, while retaining the monotone improvement property of the original
procedure. In this way the number of actually performed inner simulation can be
reduced, which in some of our numerical examples speeds up the procedure by factor
10. The basic idea is as follows: Suppose the holder of an American option has some
pre-information, for example he knows good closed form approximations of the price
for the corresponding European options. Such approximations are typically available
in the literature for practically relevant options. Given a trajectory of the underlying
system, the investor rules out some time points, at which an optimal strategy cannot
(or at least is very unlikely to) exercise, by the pre-information. Then the policy
improvement is run only at the remaining time points. (Here, the set of remaining
time points depends on the state of the underlying system. Hence we do not simply
reduce to an other American option with a smaller set of exercise dates.)

After a short recap of American options and optimal stopping in discrete time (Sec-
tion 2), we introduce the enhanced algorithm in Section 3.1 and verify the monotone
improvement property. We also prove that the algorithm terminates after a finite
number of iteration steps. The latter result is of theoretical interest rather, since
in practice only one or two iterations can be calculated by plain Monte Carlo. We
also estimate the additional error when time points are ruled out which are only
unlikely but not impossible to be in the range of an optimal policy. In Section 3.2
we provide a pseudo-code for the implementation of the algorithm and prove its
numerical stability in Section 3.3. Examples for American basket-call options on
dividend paying stocks and American basket-put options are presented in Section
4. In particular the enhanced version of the algorithm is compared to the original
version showing that the scenario selection may drastically increase the efficiency.
Some proofs are postponed to the Appendix.

2 Optimal stopping in discrete time

It is well known that by the no arbitrage principle the pricing of American options
is equivalent to the optimal stopping problem of the discounted derivative under a
pricing measure. We now recall some facts about the optimal stopping problem in
discrete time.

Suppose (Z(2): © = 0,1,...,k) is a nonnegative stochastic process in discrete time
on a probability space (£, F, P) adapted to some filtration (F; : 0 <+ < k) which
satisfies

k
Y E|Z(3)| < oo.
=1
We may think of the process Z as a cashflow, which an investor may exercise once.
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The investors’ problem is to maximize his expected gain by choosing the optimal
time for exercising. This problem is known as optimal stopping in discrete time.

To formalize the stopping problem we define S; as the set of F, stopping times
taking values in {7,...,k}. The stopping problem can now be stated as follows:
Find stopping times 7*(z) € S; such that for 0 <7 <k

B [Z(7*(2))] = esssup,cs, B [Z(7)]. (1)

The process on the right hand side is called the Snell envelope of Z and we denote
it by Y*(z). We collect some facts, which can be found in Neveu [11] for example.

1. The Snell envelope Y* of Z is the smallest supermartingale that dominates Z.
It can be constructed recursively by backward dynamic programming:

Y*(k) = Z(k)

Y*(i) = max{Z(:), EZ[Y*(i + 1)]}.
2. A family of optimal stopping times is given by

) =infli < j < k: 20) > V().

If several optimal stopping families exist, then the above family is the family
of first optimal stopping times. In that case

) = infi <5<k 2(5) > Y°()}
is the family of last optimal stopping times.

For the remainder of the paper we assume that
P(Z(k)>0)>0. (2)

Clearly, this is no loss of generality: Let k= max{0 <: < k; P(Z(z) >0) > 0}.
Then exercising at ¢ > k cannot be optimal and hence the stopping problem is
equivalent to the one with exercise set {0,..., k}.

3 Enhancing the policy iteration method

3.1 Definition and monotone improvement property

Suppose the buyer of the option chooses ad hoc a family of stopping times (7(z) :
0 < ¢ < k) taking values in the set {0,...,k}. We interpret 7(¢) as the time, at
which the buyer will exercise his option, provided he has not exercised prior to time
1. This interpretation requires the following consistency condition:



Definition 3.1. A family of integer-valued stopping times (7(z) : 0 <17 < k) is said
to be consistent, if

1<7(2) <k, 7(k) =
(2) >1=71(s) =71(e + 1), 0<:<k. (3)

Indeed, suppose 7(z) > ¢, i.e. according to our interpretation the investor has not
exercised the first right prior to time 2 + 1. Then he has not exercised the first right
prior to time ¢, either. This means he will exercise the first right at times 7(z) and
7(2 4+ 1), which requires 7(z) = 7(¢ + 1). A typical example of a consistent stopping
family can be obtained by comparison with the still-alive European options, i.e.

7(7) ::inf{j: i<j<k, Z(j) > max E% [Z(p)]} (4)

~ j1<p<k

In addition to the algorithm introduced in Kolodko & Schoenmakers [9] and further
developed in Bender & Schoenmakers [2] we suppose that the investor has in some
sense a-priori knowledge about an optimal exercise strategy. We consider a random
set A, A C {0,...,k}, for which 14(¢) is Fi-adapted, and & € A almost surely.
Henceforth we will call such a set an adapted random set. Given some consistent
stopping family 7 we then consider a new stopping family by

i)t {75 i <5<k, (20)> mex BPIZCGIAGEA). O

T jH+1<p<k

Note that the stopping family 7 is consistent. In particular 7(k) = k, since max ) =
—oo and k € A. Moreover, by the definition of 7, we have for all 0 <1z < k,

(i) € A. (6)

In (5) the investor exploits his ‘a-priori knowledge’ by not exercising outside the set
A(w). If there exists some optimal stopping family 7* such that

()€ A, 1=0,...,k, P—a.s. (7)

we call A an a-prior: set. For instance, given any F;-adapted lower bound L(z) of
the Snell envelope Y*(2),

Alw)={1: 0<1 <k, Z(3,w) > L(z,w)} (8)

is an a-priori set. For an a-priori set A, (5) means that, due to the new family 7,
the investor will not exercise at a date 7 which is either suboptimal or for optimality
not necessary to exercise since 7*(7) € A.

We call 7 a one-step improvement of 7 for the following reason: Denote by Y (z; 1)
the value process corresponding to the stopping family 7, namely

Y(i;7) = E™ [Z(r(2))]. (9)
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Then due to the next theorem which is in fact a generalization of Theorem 3.6' in
Bender & Schoenmakers [2], the one-step improvement yields a higher value than
the given family, provided 7(z) € A.

Theorem 3.2. Suppose A is an adapted random set, T is a consistent stopping
family such that 7(z) € A a.s. for all 0 < ¢ < k. Consider

7(z) := inf {j 1< 7<k, (Z(7) > max E7i [Z(T(p))]) A (7 € A)}, (10)

j+1<p<k

and let T be a consistent stopping family such that

(1) <7(2) < 7(2), 0<:<k. (11)
Then,
Y(;7) > Y(;7) > n;lgx E%i [Z(T(p))] > Y(3;7), 0<:i<k. (12)

Moreover, Y (1;7) > Z(3) on {1 € A}.
Proof. Define Z4(1) := 14(2)Z(2). Since 7(2) € A, we have by (2)

max E7 [Z4(7(p))] = max EX [Z(7(p))] >0, 0<i<k.

P2 p>1
Consequently,
~ _ <, . . . T]
) =int {55 <5<k 2a0) 2 mex PSZGEN) (9
Ary . . . _7:].
) =in{is <3<k Za)> mex BPIZGEN (8

We now apply Theorem 3.6, Proposition 3.11, and Remark 3.10 from [2] to the
cashflow Z4 and obtain

B [Za(r()] > B [24(70)] > max { Za(0), max B [Za(r ()]}

So,
Y (4;7) = B [Z(7(3))] > E7 [Za(7())] > BT [Za(7(2))) = Y (5;7)
by (6), and
Y (4;7) > max {ZA(i), rilgx E% [Z(T(p))]}
since 7(2) € A. d

Remark 3.1. 1t is interesting to note, that 7(z) need not take values in A. For the
case A ={1,...,k} the results coincide with [2].

!Numbering according to the preprint version of the cited article
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The following example shows that assumption 7(z) € A cannot be dispensed with
in Theorem 3.2.

Example 3.3. Suppose € is a binary trial with P(é = 1) = P(é = —1). Define the
process Z by Z(0) = 9/4, Z(1) = Z(3) = 2 and Z(2) = 2 + £. The filtration F; is
assumed to be generated by Z. Then o = 5/2—¢/2 is a stopping time which yields an
expected payoff E[Z(0)] = 5/2. Consequently, immediate exercise at ¢ = 0 cannot
be optimal. With this knowledge we define an a-priori set A(w) = {1,2,3}. We
want to improve upon the trivial starting family 7(2) = ¢, which obviously violates

the condition 7(0) € A. We define
7(0) = inf{j > 0; (Z(j) > max E[Z(p)]) A (j € A)}.

p=1,2,3
A simple calculation gives 7(0) = 1 and hence E[Z(7(0))] = 2 < 9/4 = E[Z(7(0))].

Hence, 7(0) does not improve upon 7(0).

It is natural to iterate the policy improvement (5). Suppose A is an adapted random
set, and 79 is some consistent stopping family satisfying 7o(z) € A for all 0 <7 < k.
Define, recursively,

™Tm = Tm-1,

Y(i) = Y(E;7m), m=1,2,...

By Theorem 3.2, Y;, is an increasing sequence. Taking (13) and Proposition 4.4 in
Kolodko & Schoenmakers [9] into account, we observe that the algorithm terminates
after at most k steps.

Proposition 3.4. Suppose m >k —1. Then,
Tm(1) = Ta(2), Ym(2) =Y}(2),

where 7 and Y denote the first optimal stopping family and the Snell envelope for
the stopping problem with cashflow Z4(1) = 14(2)Z(2). In particular, it follows that

Yo (i) = Y*(2)
form >k —1, if A is an a-priori set.

If A is an a-priori set, the proposition states that the policy improvement algorithm
terminates at the Snell envelope as fast as backward dynamic programming does.
Most importantly, in every iteration step we obtain increased lower approximations
of the Snell envelope, simultaneously at all exercise dates. If A is only an adapted
random set, but not an a-priori set, the algorithm terminates at the Snell envelope
Yy of the cashflow Z4(¢) = 14(2)Z(2) and not at Y*. As we will demonstrate by
numerical examples in Section 4, it can be numerically more efficient to choose an
adapted random set which contains the image of an optimal stopping family with
only high probability. The following theorem estimates the difference between the
two Snell envelopes in such a situation. The proof is postponed to the Appendix.
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Theorem 3.5. Let A be an adaptive random set containing k a.s., and suppose
that for some ¢ > 1, E[|Z(3)|%] < oo for all 0 < i < k. Then for every consistent
stopping famaly T* which is optimal for the cashflow Z the following estimate holds:

E[Y*(i) = Yi())] < KquP ({7°(5) ¢ AD'7,

where

K,i = (k—1)"" max (E[|Z(j)1{o,...,k}\A(j)|q])1/q-

i<j<k—1

In the case A(w) = {1,...,k} the policy iteration presented in this subsection
coincides with the one suggested in [9]. As will be explained in Section 3.2 and
exemplified in Section 4, an appropriate choice of A can significantly reduce the
computational cost for a Monte Carlo implementation of this policy improvement.
In this respect the following corollary, which follows directly from Proposition A.1,
is interesting.

Corollary 3.6. Suppose 7 s a consistent stopping family and A; C A, are adapted
random sets. Define

Hi) = inf{j: i<j<h (2()> max B [Z<T<p>>1>A<jeA1>},

~ j+1<p<k

&(z) := inf {j 1< <k, (Z(j) > max ETi[Z(r(p))) A (5 € Az)}.

T jH+1<p<k

Then obuviously 7 and & are consistent and 7(3) > &(2), 0 <17 < k. So by Proposi-
tion A.1 and Jensen’s inequality we have

(Y(3;7) = Y(35))_ < z_: E” (L Lisw=n (Y (5 7) — 2(7))_],  (15)

k—1

3 EE Ly lise=i (Y5 7) = 2(),] -

i=i

IN

As a special case we may compare one step of the plain version of the algorithm, &
with As(w) = {0,...,k}, with a modified version (5) due to a non-trivial adaptive
random set A; containing k a.s. Obviously, constructing 7 is generally cheaper than
constructing &, and the quality loss with respect to &, due to 7 may be estimated
by (15). In fact (15) means that 7 may be worse than & only if Y'(z; 7) can be below
the cashflow at a time where & says ‘exercise’ but 7 refuses to do so.

3.2 On the implementation

We now give some comments on the practical Monte Carlo implementation of the
policy iteration. Henceforth, we suppose that the cashflow Z is of the form Z(i) =



f(z,X(2)) where f(2,2) is a deterministic function and (X (z), F;) is a — possibly high-
dimensional — Markovian chain. Note that one improvement step of an initial lower
bound Y (0; 79) requires a nested Monte Carlo simulation provided there are no closed
form expressions for the conditional expectations in (5). The introduction of an
adapted random set can significantly reduce the number of actually performed inner
simulations and consequently increases the efficiency of the method. We suggest to
implement an improvement step as follows.

Step 1: Choose an adapted random set A such that (; € A) can be checked in
closed form given a trajectory of X up to time 7. This means, there are Borel sets
B; C R7*!| B, = R*¥*! which are explicitly known to the investor, such that (5 € A)
if and only if (Xo,...,X;) € B,. For instance good closed form approximations
of the price processes of still alive Europeans are often available for practically
relevant products. In such situation let L(z) be a closed form approximation of
their maximum, max;1<p<k E77 [Z(p)]. Typically L(2) = g(i, X;) for some explicitly
known deterministic function g(z,z). Define

Alw) = {¢: Z(i,w) > L(z,w)} (16)
= {2 f(5,X(5,w)) > g(, X (3, w)}.
Obviously, A is in closed form in the above sense. One can just define B; = R’ x

(7(4,)—g(7,))7([0, 00)). Clearly, A is an a-priori set, if L is a lower approximation
of the maximum of still alive Europeans, but only an adapted random set in general.

Step 2: Choose an initial stopping family 7o such that 7o(¢) € A for all 0 <1 < k.
A natural choice is
1o(z) = inf{s < 7 <k; j € A}.

One can alternatively define

7o(s) = inf{s < 5 < k; (f(5,X(5)) 2 H(7)) A (5 € A)}

where H is a close-to-optimal deterministic vector determined by pre-simulation as
suggested in Andersen [1].

Step 3: Construct a lower bound Y (0; 71) due to the improved policy 7 := 7o using
the following pseudo-code.

Simulate M trajectories X(™) m = 1,..., M, starting at X (0);
(m)

Along each trajectory X (™) we compute 7™ ~ 7,"™(0) as follows:
1:=0;

A: Search the first exercise date n > ¢ such that n belongs to A, which
formally means (X(™)(0),...,X(™)(n)) € B,, since A is in closed form.

Ifn==k (ie. Tl(m)(O) = k) then set n(™) =k, else:

Consider 7 as a candidate for Tl(m)(O).
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To decide whether n & Tl(m)(O) or not we do the following;:

Simulate M; trajectories (X(™P)(q), g =1n,...,k), p = 1 Ml, un-
der the conditional measure PX™ (™ (hence X(™P)(n) = X(™)(n));

Along each trajectory (m,p) search all exercise dates > 7 where the
policy 7o says ‘exercise’. From these dates we can detect easily (an

(m,p)(

approximation of) the family (7, q), ¢ > n) along the path (m,p);

Then, for g =17,...,k compute

Dummylq] := — Z f(Tém’p)(q); X(m’p)(Tém’p)(CI)))

Next determine

= ~ Xt (m) ;
Maz_Dummy : nrgl(?gi Dummylq] nrél(?;i E Z(70(q));

Check whether f(n, X™)(n)) > Maz_Dummy:
If yes, set n(™ :=n ~ Tl(m)(());
If no, doz:=7n+ 1 and go to (A);

We so end up with n(™) ~ Tl(m)(());

M
M 1 m m m
Finally compute i Z f(n( ), x( )(77( ))) ~ EZ(11(0)) = Y(0; 7).

m=1

Step 4: Given a consistent stopping family 74 as in Step 2, Y(0; 7o) is a lower bound
of Y*(0). We recommend to construct an upper bound from this lower bound by

the duality method developed by Rogers [13] and Haugh & Kogan [6]. Define,

Vap(057) = B | (207) - M0 (1)

0<5<k

where M(0) =0 and, for 1 <z <k,

1

MG) =) (Y(p;7)— B [Y(p;7)).

p=1

Approximation of this upper bound due to Y(-;7) by Monte Carlo also requires
nested simulation. It is, thus, roughly as expensive as the improvement of 75 de-
scribed in Step 3. For a detailed treatment of efficient computation of dual upper
bounds see for example Kolodko & Schoenmakers [8]. A multiplicative analogon of
the duality method is due to Jamshidian [7].



3.3 Stability

As described in the previous section, for practical implementation one typically has
to approximate the conditional expectations in the exercise criterion. We now extend
a stability result from Bender & Schoenmakers [2] to the case of a nontrivial adapted
random set. Let A be an adapted random set and 7 be a consistent stopping family
which satisfies 7(i) € A for all 0 < ¢ < k. Further suppose ¢)(7) is a sequence of
Fi-adapted processes €¥)(7) such that

lim ™) =0, P—a.s.

N oo

A perturbed version of the one step improvement is then defined by

PG = inf{j i <G <k, (26) > max B5[2(r(p))] + €M())

~ j+1<p<k

)} (18)

b

INVES
The sequence eN)
tation. We may and will assume that e()(k) = 0, since no conditional expectation

accounts for the errors when approximating the conditional expec-

is to be evaluated at 7 = k. In accordance with the previous section we suppose
that the criterion 7 € A can be checked in closed form. We first recall that even
with a trivial a-priori set we can neither expect

%(N)(i) — 7(z) in probability

nor

Y(0; 7)) — Y(0;7)

in general. For corresponding counterexamples we refer to [2]. However, we can
generalize a stability result from [2] where the error is measured in terms of the
shortfall instead of the absolute value. As emphasized in [2], preventing shortfall
(viz. change to the worse) is the relevant criterion to look at since our goal is
improvement.

Theorem 3.7. For oll 0 <1 <k,

lim (YV(47®™) - Y(57))_ =0,

N oo

where the limit is P-almost surely and in L'(P).
Proof. Since ¢V)(k) = 0 we may write as in (13),

) = int{jc i <5<k, Za(3) > max B [Za(r(p)] + <)},

~ j+1<p<k

where Z4(2) = 14(2)Z(2). The assertion now follows from Theorem 4.4 in [2] applied
to the cashflow Z4. O
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Remark 3.2. Theorem 3.7 provides stability of one improvement step. More gen-
erally, one can prove that the shortfall of the expected gain corresponding to m
perturbed steps of the algorithm below the expected gain corresponding to m theo-
retical steps converges to zero. In the case of the trivial a-priori set A = {0,...,k}
this statement is made precise and proved in [2], Section 4.2. This result carries over
to the case of a general adapted random set. Here it is crucial that the criterion
(7 € A) involves no approximation so that it is guaranteed that e.g. 7V)(3) € A for
all0 <2< k.

4 Numerical examples

We now illustrate our algorithm with two examples: Bermudan basket-call and
basket-put options on 5 assets. We assume, that each asset is governed under the
risk-neutral measure by the following SDE:

dSi(t) = (r — 8)Si(t)dt + o Si(t)dWi(t), 1<i<5,

where (Wi(t),...,Ws(t)) is a standard 5-dimensional Brownian motion. Suppose
that an option can be exercised at k& + 1 dates Ty, ..., Tk, where 0 = To, ..., T = 3
are uniformly distributed at [0, 3]. The price of the Bermudan option is given by (1)
with

S1(T3) + : + 55(T) — K)* for the call option and

Su(T3) + ...+ S5(Th)
5
For our simulation, we take the following parameter values,
T = 005, g = 02, 51(0) == ... 55(0) == So, K = 100,
6 = 0.1 for call option, ¢ = 0 for put option.

Z(1) = e

Z() =e (K — )t for the put option.

We consider a call and a put option ‘out-the-money’, ‘at-the-money’, and ‘in-the-
money’ at ¢ = 0. For an adapted random set A, given by (16) due to a particular
process, we consider the initial stopping family 7(¢) = inf{j > 7 : j € A} and
construct the lower bound Y (0;7), the improved lower bound Y (¢;7) with 7 given
by (5), and the dual upper bound Y,,(0;7). For comparison, we also compute the
standard one-step improvement of the lower bound Y'(0; 7), where

#(3) ::inf{j: i<j<k, Z(j)> max E” [Z(T(p))]}-

T jH1<p<k

4.1 Basket-call

For this example we take an a-priori set A given by (16) due to
L(7):= max e "ET((Sy(T,)-- Ss(T)* - K), 0<j<k,  (19)

J+1<p<k
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which is a lower approximation of the Snell envelope since

N < 7 <Y*(4 <3<k
L(J)_jg{lg;kE Z(p)<Y*3), 0<5<k

The process G(t) := (Si(t)--- 55(t))1/5 has a log-normal distribution and can be

represented as
G(t) = elr 2o WO+ Wa ()

Then W(t) = %(Wl (t)+---+ Ws(t)) is a standard Brownian motion and we thus

G(t) = e(r—%&Z)t—I—&W(t) . 6—0.40'2t with & = i
() .
So the right hand side of (19) can be given in closed form by the well-known Black-
Scholes formula (BS),

e—erEfj(G(Tp) . K)+ _ e—erEfj(e(r—g&Z)Ter&W(Tp) . Keo.402Tp)e—o.402Tp
= LT BS(Q(Ty), T, 8,5, Ke®* T T, — T}).

First we simulate Y (0; 7) by 10" Monte Carlo trajectories and next simulate Y (0; 7)
and Y (0;7). To reduce the number of nested (inner) Monte Carlo paths, we use the
representations

=

Y/
Y/

)
)

Here we simulate the second term using 2 - 10° outer Monte Carlo trajectories and
1000 inner trajectories. Further, Y,,(0;7) — Y (0;7) is simulated by 20 000 outer
and 1000 inner trajectories. The results are given in Table 1, where we can see
that although the initial stopping family gives a rather crude lower bound (the gap
between Y'(0;7) and its dual upper bound Y,,(0; 7) is 4%-17% relative to the value),
the improvements Y'(0;7) and Y (0;7) are pretty close to the Bermudan price (the

Y(0;7)+ E[Z(7(0)) — Z(7(0))] and

0;
0; Y(0;7) + E[Z(7(0)) — Z(7(0))] (20)

<

error is less then 1.7% relative to the value).

It is important to note the following. For simulating Y (0;7) we need to estimate
the conditional expectations by nested Monte Carlo simulation at each exercise date
until the decision to exercise is made. However, since a closed form expression of
the process L is available, we can avoid the nested Monte Carlo simulation at many
exercise dates by rejecting the dates, which are not in A, see Section 3.2. In Table 1,
columns 7 and 8, we display the average number of points (per trajectory), where
the nested Monte Carlo simulation has been carried out for constructing Y'(0;7) and
Y (0; 7) respectively. We see, that pre-selecting exercise dates by checking Z(z) <
L(z) for each ¢ reduces the number of nested Monte Carlo simulations up to 7
times. However, the values of Y(0;7) and Y (0; 7) are the same within one standard
deviation.
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Table 1.

| k| So || Y(0;7) (SD) [ Y(0;%) (SD) | Y(0;7) (SD) || Yup(0;7) (SD) | N | N |
90 [l 0.369(0.001) | 0.383(0.001) | 0.387(0.002) || 0.384(0.001) [ 1.0 [ 2.0
3| 95 | 0.906(0.001) | 0.938(0.002) | 0.935(0.002) || 0.934(0.001) [ 1.1 |1.9
100 || 1.978(0.001) | 2.025(0.003) | 2.023(0.003) | 2.027(0.002) | 1.1 | 1.8
103 || 3.000(0.000) | 3.057(0.003) | 3.053(0.003) | 3.057(0.002) | 1.1 |1.7
90 || 0.376(0.000) | 0.415(0.002) | 0.415(0.002) || 0.416(0.002) [ 1.1 [4.9
6 | 95 | 0.934(0.001) | 1.028(0.003) | 1.025(0.003) || 1.030(0.002) | 1.1 | 4.7
100 || 2.140(0.001) | 2.290(0.004) | 2.294(0.004) || 2.298(0.003) | 1.2 | 4.1
103 || 3.000(0.000) | 3.160(0.004) | 3.158(0.004) | 3.173(0.003) | 1.3 | 3.5
90 || 0.368(0.000) | 0.425(0.002) | 0.430(0.002) || 0.431(0.002) [ 1.1[7.8
9| 95 | 0.917(0.001) | 1.053(0.003) | 1.050(0.003) || 1.071(0.003) | 1.2 | 7.3
100 || 2.136(0.001) | 2.366(0.005) | 2.361(0.005) | 2.395(0.004) || 1.4 | 6.1
103 || 3.000(0.000) | 3.247(0.005) | 3.245(0.005) | 3.282(0.004) | 1.4 | 5.0

4.2 Basket-put

In our next example we determine a process L(7) by a moment-matching procedure.
Let us define f(T5) := (S1(T) + ...+ S5(73))/5 for 0 < 7 < k and take 7,p with
7 < p < k. First, we approximate f(Tp) by

FT) = 1) exo (13 = 30T~ T) + os(W(T) - W(T) )

where the parameters 7; and o, are taken in such a way that the first two moments

of f(T,) and f;(T,) are equal conditional F;:

rj:r,
5

22 Sm(T5)5n(T;) exp(lm=no?(T, — T5))

1 1 m,n=1
05 = n ;

Tp - Tj

see, e.g., Brigo et al. [3]. Then, we approximate E%i Z(p) by E%i[e " Tr(K — f;(T},)) ]
using the Black-Scholes formula,

E7i e (K — fi(Tp)"] = e " BS(f(Ty), 7,05, K, T, — Tj),
and define

N = e " <3<k
L(g) =€ max BS(f(Ty),r,05 KT, = T;), 0<j<k

The process L thus provides a close approximation for the maximum of still alive
Europeans. Even the initial stopping family 7 leads to a reasonable lower approxi-
mation Y (0;7) of the Bermudan price (less then 4% relative). Although we can not
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claim that L is a lower bound of the Snell envelope Y* (and thus A is not neces-
sarily an a-priori set), the improved lower bound Y (0;7) coincide with Y (0;7) and
with the dual upper bound Y,,(0;7) within one standard deviation. See Table 2,
where we used 107 Monte Carlo trajectories for Y'(0;7) and 2000 trajectories (with
1000 nested trajectories) for Y,,(0;7) — Y(0; 7). To simulate Y(0;7) and Y (0;7) we
apply representation (20), where the second term is estimated with 10° outer and
1000 inner trajectories.

As in the previous example, using an a-priori information for improved stopping
family reduces the number of nested simulations up to 7 times, see Table 2, columns
7-8. Here we denote N and N the average number of the nested Monte Carlo
simulation (per trajectory), which have been performed for constructing Y (0;7)
and Y'(0;7) respectively.

Table 2

| k| So [ Y(0;7) (SD) | Y(0;7) (SD) | Y(0;7) (SD) | Yup(0;7) (SD) || N | N |
97 [ 3.000(0.000) | 3.001(0.002) [ 3.005(0.003) | 3.006(0.001) [ 1.0 [1.7

3 | 100 || 2.156(0.001) | 2.162(0.003) | 2.160(0.003) || 2.160(0.001) [ 1.0 | 1.8
105 || 1.095(0.001) | 1.099(0.002) | 1.100(0.002) | 1.100(0.001) | 1.0 | 1.9
110 || 0.537(0.001) | 0.537(0.001) | 0.536(0.001) || 0.538(0.001) || 1.0 | 2.0
97 [ 3.000(0.000) | 3.051(0.005) | 3.052(0.005) || 3.050(0.004) [ 1.2 |3.5

6 | 100 || 2.361(0.001) | 2.400(0.005) | 2.395(0.005) || 2.406(0.004) | 1.1 |4.0
105 || 1.170(0.002) | 1.190(0.003) | 1.191(0.003) | 1.190(0.002) | 1.1 | 4.6
110 || 0.571(0.001) | 0.581(0.002) | 0.579(0.002) | 0.578(0.001) | 1.0 | 4.9
97 [ 3.000(0.000) | 3.119(0.006) | 3.104(0.006) | 3.120(0.006) | 1.3 | 5.0

9 | 100 || 2.386(0.001) | 2.481(0.006) | 2.475(0.005) || 2.482(0.006) | 1.3 | 6.2
105 || 1.180(0.001) | 1.226(0.004) | 1.223(0.004) | 1.228(0.004) | 1.1 |7.3
110 || 0.580(0.001) | 0.603(0.003) | 0.600(0.003) || 0.602(0.003) || 1.1 | 7.7

A Proof of Theorem 3.5

We first prove the next Proposition.
Proposition A.1. Let 7 and o be two consistent stopping families, such that o(2) <
7(1), 0 <1< k. Then,

Y(47) — Y(50) = ile@=(Y(3;7) — Z(5))]-

k—1
Y BRI
=i
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Proof. We have,

Y(i;7) =Y (550) = B 14500 (Z(7(3) — Z(0(2)))

= Z E]:i1T(i)>jla-(i):j(Z(T(i)) — Z(3))

i=i

= z_: E}-i1T(i)>j]-a-(i)=j(Z(T(j)) — Z(3))
N z_: B 1r(iy>51aty=i (BT Z(7(3)) — Z(5))

k-1
= Z E'Tilf(i)>j1a(i):j(y(j§ T)— Z(3)).
j=t

Here we use that, due to the consistency, if 1 < 7 < 7(2), then 7(7) = 7(2). O

As a second preliminary result for the proof of Theorem 3.5 we have the following
lemma.

Lemma A.2. Suppose 7* 1s some optimal stopping family for the cashflow Z. Then
A*(w) = {7*(z,w), 0 <@ < k} is an a-priori set. Moreover,

T*@):mf{jzz'; (2() > max E%Z(r ()))A(jeA*>}

7+1<p<k

provided T* is consistent.

Proof. Since {1 € A*} = Upc;ji{7*(4) = 1} € F; and 7%(3) € A*, A* is an a-priori
set. Suppose now that additionally 7* is consistent. Then, by consistency and
optimality of 7, and by the supermartingal property of the Snell envelope, we have

inf{j >1; (Z(j) > max FE JZ( *(p )))/\(jEA*)}

7+1<p<k

= inf{j > 45 (Z(5) > max ET7iZ(m*(p))) A (5 € A*)}

71<p<k

~ inf {j > 4; (4(j) 2 max EVY*(p)) A (j € A*)}

71<p<k

= inf{y >4 (Z(7) 2 Y (7)) A (7 € A7)}
Moreover, by consistency, 7 € A* if and only if 7*(5) = 5. Hence,

inf{j >4 (Z()>Y (')) (7 € A}
= inf{j >4 (Z(r(5

= inf{j >1; 7°(J)

) 2 Y (@) A (T (5) = )}
3} =7"(2).
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Note, for the second identity we applied the well-known fact, that evaluated at
any optimal stopping time the Snell envelope Y* equals the cashflow Z. Thus,
(Z(1*(7)) > Y*(7*(4))) is always satisfied for all 0 < 7 < k. O

After these preparations we prove Theorem 3.5.

Proof of Theorem 8.5. Let T be a consistent and optimal stopping family for the
cashflow Z. We define 7 and & as in Corollary 3.6 for Ax(w) = {7(3,w), 0 <1 < k}
and A;(w) = Ay(w) N A(w). Then 7 > 6 and & = 7 is optimal due to Lemma A.2.
Hence by Proposition A.1 we have,

k—1

E[Y*(i) = Y(5;7)] = ) Ellsysslew=(2(5) — Y (5;7))]

j=t
As 7 takes values in A and is possibly suboptimal for the cashflow Z,, we obtain
Y (i;7) = B7([Za(7(1))] < YA(2).
Consequently, by Holder’s inequality,

E[Y*(2) = Yi()] < E[Y*(2) = Y (3;7)]

k—1

< Z E [1gigaliriy=n2(5)]
< max (BUZ0) g0, ana Q)7 Y P () =} 0 (5 ¢ AR
< max (E[Z() 10, xnald)T) " (k — i)/

SjSkk_—ll 1-1/q
x (Z PUr() =730 {5 ¢ A})) .
The obvious equation
S P({rl) = 3104 ¢ AY) = P ({7(3) ¢ 4D

concludes. O

References

[1] Andersen, L. (1999) A simple approach to the pricing of Bermudan swaptions
in a multifactor LIBOR market model. Journal of Computational Finance, 3,

5-32.

16



[2] Bender, C., Schoenmakers, J. (2004) An iterative procedure for the multiple
stopping problem. Preprint.

[3] Brigo, D., Mercurio, F., Rapisarda, F., Scotti, R. (2004) Approximated
moment-matching dynamics for basket-options pricing. Quantitative Finance,
4, 1-16.

[4] Bouchard, B., Ekeland, I., Touzi, N. (2004) On the Malliavin approach to Monte
Carlo approximation of conditional expectations. Finance and Stochastics, 8,

45-71.

[5] Broadie, M., Glasserman, P. (2004) A stochastic mesh method for pricing high-
dimensional American options. Journal of Computational Finance, 7(4), 35-72.

[6] Haugh, M. B., Kogan, L. (2004) Pricing american options: a duality approach.
Operations Research, 52, 258-270.

[7] Jamshidian, F. (2004) Numeraire-invariant option pricing & american, bermu-
dan, and trigger stream rollover. Working paper

[8] Kolodko, A., Schoenmakers, J. (2004) Upper Bound for Bermudan Style Deriva-
tives. WIAS Preprint 877 (2003), Monte Carlo Methods and Applications, 10(3-
4), 331-343.

[9] Kolodko, A., Schoenmakers, J. (2004) Iterative construction of the optimal
Bermudan stopping time. WIAS Preprint 926 (2004), Finance and Stochastics,
forthcoming.

[10] Longstaff, F. A., Schwartz, R. S. (2001) Valuing American options by simula-
tion: a simple least-squares approach. Review of Financial Studres, 14, 113-147.

[11] Neveu, J. (1975) Discrete parameter martingales. North-Holland: Amsterdam.
[12] Puterman, M. (1994) Markov decision processes. New York: Wiley.

[13] Rogers, L. C. G. (2002) Monte Carlo valuation of American options. Math.
Finance, 12, 271-286.

17



