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Abstract. Descriptor systems present a general mathematical framework for the modelling,
simulation and control of complex dynamical systems arising in many areas of mechanical, electrical
and chemical engineering. This paper presents a survey of the current theory of descriptor systems,
concerning solvability, stability, model reduction, controllability, observability and optimal control.
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Notation. We will denote by R
n,m the space of n×m real matrices. The matrix

AT stands for the transpose of A ∈ R
n,m. The rank of a matrix A ∈ R

n,m is denoted
by rank A. An identity matrix of order n is denoted by In or simply by I. We will
use Ck(I, Rn) to denote the set of k times continuously differentiable functions from
I ⊆ R to R

n. Finally, ‖ · ‖ denotes the Euclidean vector norm and the spectral matrix
norm.

1. Introduction. The mathematical description of the dynamical behavior of
complex systems as they arise today in all areas of mechanical, electrical and chemical
engineering is typically governed by differential equations, including balance equa-
tions, conservation laws, and constraints that couple these parts together [10, 18, 29,
62, 65]. In order to control the dynamical behavior also input and output variables are
included. Modern CAD tools such as Matlab/Simulink [49] allow to generate these
models automatically. In this paper we only study the time behavior, i.e., we assume
that partial differential equations are already semidiscretized in space.

In a general mathematical framework, control systems can be written in the form

F (t, x, ẋ, u) = 0,(1.1)

y − G(t, x) = 0,(1.2)

where F : I × Dx × Dẋ × Du → R
l and G : I × Dx → R

p are continuous functions,
Dx, Dẋ ⊆ R

n and Du ⊆ R
m are open, I = [t0, tf ] ⊆ R, x : I → R

n is a continuously
differentiable function and ẋ denotes the derivative of x with respect to t ∈ I. Here, x
represents the state, u : I → R

m is the input or control and y : I → R
p is the output of

the system. We will allow that the partial derivative of F with respect to ẋ, denoted
by Fẋ, is rank deficient. Since such systems contain both differential and algebraic
equations, they are called differential-algebraic equations. In the control community,
systems of the form (1.1), (1.2) are known also as descriptor systems, implicit systems

or singular systems.
Example 1.1. As a simple mechanical example, we consider a cart-pendulum

system shown in Figure 1.1 that consists of a cart of mass m1 and a pendulum of
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length L and of mass m2. The motion of this system is described by the system in

first-order form

ẋ1 = x4,
ẋ2 = x5,
ẋ3 = x6,

m1ẋ4 = −2(x1 − x2)λ + u,
m2ẋ5 = −2(x2 − x1)λ,
m2ẋ6 = −2x3λ − m2g,

0 = (x2 − x1)
2 + x2

3 − L2,

(1.3)

where x1 denotes the horizontal position of the cart, x2 and x3 are the horizontal and

vertical positions of the mass m2, λ is a Lagrange multiplier and u is an external

force acting on the cart. If we are interested in the position of the pendulum only, the

output equation has the form y = [x2, x3]
T . The last equation in (1.3) describes an

algebraic constraint on the variables x1, x2 and x3.

PSfrag replacements

m1

m2

L

u

Fig. 1.1. A cart-pendulum system

Linearization of (1.1), (1.2) along a nominal trajectory leads to a linear descriptor
system with variable coefficients

E(t)ẋ = A(t)x + B(t)u,
y = C(t)x,

(1.4)

where E, A : I → R
l,n, B : I → R

l,m and C : I → R
p,n are continuous matrix-valued

functions. If we linearize (1.1), (1.2) along a constant solution, we obtain a linear
descriptor system with constant coefficients

Eẋ = Ax + Bu,
y = Cx,

(1.5)

where E, A ∈ R
l,n, B ∈ R

l,m and C ∈ R
p,n.

2. General analysis.

2.1. Solvability and index concepts. In this subsection we review some re-
sults on the existence and uniqueness of solutions of (1.1).

Definition 2.1. A function x : I → R
n is called a solution of system (1.1) if

x ∈ C1(I, Rn) and x satisfies (1.1) pointwise for a given input function u. It is called
a solution of the initial value problem consisting of (1.1) and

x(t0) = x0,(2.1)

if x is a solution of (1.1) and satisfies (2.1). An initial condition (2.1) is called
consistent if the corresponding initial value problem has at least one solution.
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There also exist weaker solvability concepts, such as impulsive smooth solutions,
which can be used to handle inconsistencies or lower smoothness requirements, see,
e.g., [37, 62].

In some applications such as robust control it is, furthermore, important to inves-
tigate whether the system is solvable for every input function and every initial value
that is consistent with this input.

Definition 2.2. A control problem (1.1) is called consistent if there exists an in-
put function u for which system (1.1) has a solution x. It is called regular (locally
with respect to a given pair (x̂, û) satisfying (1.1)) if it has a unique solution for every
sufficiently smooth input function u in a neighborhood of û and every initial value in
a neighborhood of x̂(t0) that is consistent for the system with the input function u.

Since for a particular input u, system (1.1) represents a differential-algebraic
equation (DAE), it is clear that the solvability theory for control problems is related
to that of DAEs. This theory has undergone major changes in the last 20 years, see
[10, 28, 37, 62]. Using a behavior approach [33, 59], i.e., combining the variables x and
u or even x, u and y into one vector of variables, the theory of descriptor systems can
be obtained from the general theory of over- and underdetermined systems of DAEs,
see [35, 37, 38]. In many applications, systems are not modelled as input-state systems
in the form (1.1), but arise directly in the general form of an over- or underdetermined
system

F (t, x, ẋ) = 0,(2.2)

where no a-priori distinction between input and state variables is made. In this case,
it is necessary to determine from the model the free variables (control inputs) and
which variables can be considered as outputs.

There are many ways to derive the analytical theory and appropriate numerical
methods for a general system of the form (2.2). We follow the derivative array ap-
proach of [15]. Assuming sufficient smoothness, we generate a nonlinear derivative

array

F`(t, x, ẋ, . . . , x(`+1)) = 0,(2.3)

which stacks the original equation (2.2) and all its derivatives up to level ` in one
large system, i.e.,

F`(t, x, ẋ, . . . , x(`+1)) =




F (t, x, ẋ)
d
dtF (t, x, ẋ)

...
d`

dt` F (t, x, ẋ)


 .

We will denote partial derivatives of F` with respect to selected variables q from
(t, x, ẋ, . . . , x(`+1)) by F`;q, e.g.,

F`;x =
∂

∂x
F`, F`;ẋ,...,x(`+1) =[

∂

∂ẋ
F`, . . . ,

∂

∂x(`+1)
F` ].

As basis for the existence of solutions of (2.2) and the construction of numerical
methods, we introduce the following hypothesis, see [35, 37].

Hypothesis 1. Consider a system of nonlinear DAEs (2.2). There exist integers

µ, r, a, d, and v such that the set

Lµ = {xµ ∈ I×R
n×R

n× . . . ×R
n : Fµ(xµ) = 0}
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associated with (2.3) and ` = µ is nonempty, and such that for every point

x0
µ = (t0, x0, ẋ0, . . . , x

(µ+1)
0 ) ∈ Lµ, where x

(j)
0 denotes an algebraic variable, there

exists a sufficiently small neighborhood of x0
µ in which the following properties hold.

1. The set Lµ ⊆ R
(µ+2)n+1 forms a manifold of dimension (µ + 2)n + 1 − r.

2. We have rank Fµ;x,ẋ,...,x(µ+1) = r on Lµ.

3. We have

corank Fµ;x,ẋ,...,x(µ+1) − corank Fµ−1;x,ẋ,...,x(µ) = v

on Lµ, where the corank is the dimension of the corange and corank F−1;x = 0
by convention.

4. We have rank Fµ;ẋ,...,x(µ+1) = r − a on Lµ and there exist smooth full rank

matrix-valued functions Z2 and T2 defined on Lµ of size (µ + 1)l × a and

n × (n − a), respectively, that satisfy

ZT
2 Fµ;ẋ,...,x(µ+1) = 0,

rank ZT
2 Fµ;x = a, ZT

2 Fµ;xT2 = 0

on Lµ.

5. We have rankFẋT2 = d = l− a− v on Lµ and there exists a smooth full rank

matrix-valued function Z1 defined on Lµ of size l × d such that ZT
1 FẋT2 has

full rank.

The smallest possible µ in Hypothesis 1 is called the strangeness index of sys-
tem (2.2) and also of (1.1). Systems with vanishing strangeness index are called
strangeness-free. If F is sufficiently smooth and satisfies Hypothesis 1 with µ, r, a, d
and v, then every solution of (2.2) solves the reduced system

F1(t, x, ẋ) = 0,
F2(t, x) = 0,

(2.4)

with F1 : I×Dx ×Dẋ → R
d and F2 : I×Dx → R

a, see [35, 37]. Making use of locally
computed projection matrices Z1, Z2 and T2, this system can be constructed locally
using the implicit function theorem. It consists of d differential and a algebraic equa-
tions and is strangeness-free. However, it may still have undetermined components,
since the dimension of x is, in general, larger than d + a. By splitting the variables
(or coordinate partitioning), such free variables can be interpreted as controls.

Hypothesis 1 directly leads to numerical methods for the solution of general DAEs.
Such methods have been implemented in FORTRAN subroutine libraries GELDA

[39] and GENDA [41] for linear and nonlinear systems, respectively, and also in a
MATLAB DAE Toolbox [40]. A survey on other available software for DAEs can be
found in [37].

The strangeness index generalizes the most commonly used concept of the diffe-

rentiation index, e.g., [10] to over- and underdetermined systems (at least in the linear
case). Roughly speaking, the differentiation index is the minimum of times that all
or part of system (2.2) must be differentiated with respect to t in order to determine
ẋ as a continuous function of t and x. If the differentiation index is well-defined, then
Hypothesis 1 is always satisfied. If both indices are defined, then the strangeness
index is zero if the differentiation index is zero, and it is equal to the differentiation
index lowered by one, otherwise.

Example 2.3. For a given fixed input function u, it is well known that the

multibody system (1.3) has differentiation index 3, see [18]. Since Hypothesis 1 is

satisfied with µ = 2, d = 4, a = 3 and v = 0, this system has strangeness index 2.
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2.2. Index reduction. It is well known [10, 30, 37] that difficulties arise in the
numerical solution of DAEs that are not strangeness-free, i.e., that have differentiation
index larger than 1. Furthermore, in the control context, the solution of such systems
may require derivatives of the input function which is in practice often only piecewise
continuous. Finally, still today, except for special cases, no exact characterization is
known of those systems of differentiation index larger than 1, for which the minimum
principle of optimal control holds, see [25, 63].

For these reasons, in particular in the control context, one usually performs an
index reduction and replaces the higher index system with an equivalent strangeness-
free system that has the same solution set. There exist several different techniques
for index reduction, see, e.g., [24, 28, 35, 36, 37, 38, 48, 50]. Here we briefly consider
only the technique of index reduction by minimal extension [36].

As we have noted above, the reduced strangeness-free system (2.4) can be obtained
from the derivative array (2.3) by computing the projection matrices Z1, Z2 and T2.
Since the derivative array consists of (µ + 1)l equations, where µ is the strangeness
index of the system, the problem sizes that can be handled by this approach are
limited. However, in many applications, like multibody systems or electrical circuits,
the descriptor systems have a special structure that can be used to reduce the com-
putational complexity and memory requirements. If we can identify those equations
that are responsible for high index and that have to be differentiated, then we can
construct a reduced-size derivative array. We can further decrease the computational
effort by introducing a minimal number of new variables, so-called dummy deriva-
tives [50] to obtain an index reduction. We will demonstrate this approach for the
multibody system (1.3) of Example 1.1.

Example 2.4. Differentiating the last equation in (1.3) twice and eliminating

the differentiated variables using other equations, we obtain the equations

0 = (x2 − x1)(x5 − x4) + x3x6,(2.5)

0 = 2λ
(
(m1+m2)(x1 − x2)

2 + m1x
2
3

)
(2.6)

+m1m2

(
gx3−(x5−x4)

2−x2
6

)
+m2(x2−x1)u.

A minimally extended strangeness-free system is obtained by putting equations (1.3),
(2.5) and (2.6) together and replacing ẋ3 and ẋ6 by new variables, say x̂3 and x̂6. In

this way we get a strangeness-free system of the form (2.4) given by

ẋ1 = x4,
ẋ2 = x5,
0 = x6 − x̂3,
0 = −2x3λ − m2g − m2x̂6,

m1ẋ4 = −2(x1 − x2)λ + u,
m2ẋ5 = −2(x2 − x1)λ,

0 = (x2 − x1)
2 + x2

3 − L2,
0 = (x2 − x1)(x5 − x4) + x3x6,
0 = 2λ

(
(m1+m2)(x1 − x2)

2 + m1x
2
3

)

+m1m2

(
gx3−(x5−x4)

2−x2
6

)
+m2(x2−x1)u.

Looking in detail at this system, we may even omit the third and fourth equations that

contain the newly introduced variables, and get a reduced strangeness-free system with

the same number of equations and variables as the original system (1.3).
In recent years, the mathematical techniques for index reduction have been well

established, so that (at least in theory) it is possible to transform most higher index
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systems to an equivalent strangeness-free form with the same solution set. Thus,
in contrast to classical formulations in minimal coordinates, with this approach the
physical interpretation of the variables is not modified and at the same time the
resulting system has better properties concerning numerical simulation and control.

However, the computational effort to obtain this reduced strangeness-free formu-
lation may be high if this is done by the available numerical methods. Furthermore,
this process of index reduction is based on numerical rank decisions, which is a critical
issue in finite precision arithmetic. On the other hand, the analysis of large classes of
application problems shows that this computational effort can be significantly reduced
by carefully analyzing the structure of the problems [36, 37].

With this analysis being available, however, it would be a much better approach
to generate the resulting strangeness-free models in the first place. Thus, we suggest
as a new modelling paradigm that the providers of automatic modelling tools should
use this analysis to generate reduced strangeness-free models right from the beginning.
For the example of multibody systems, as in Example 1.1, this would mean that in
the process of generating the equations, immediately the first and second derivative
of the constraint equations are generated as well, so that the reduced derivative array
is available from the modelling tool, see [66]. A similar approach is also available for
electrical circuit simulation [3, 4].

In the context of descriptor control systems, there also exists the possibility to
achieve index reduction and regularization via feedback control. Transforming a con-
trol system via a behavior approach to the form (2.2), we can compute the reduced
problem of the form

F1(t, x, ẋ, u) = 0,
F2(t, x, u) = 0,

(2.7)

that is strangeness-free in the combined vector of variables x and u. However, in
general, if one fixes a specific control u, then (2.7) is not necessarily strangeness-
free. In this case, using an appropriate feedback u = K(t, x), we can construct
a strangeness-free closed-loop problem

F1(t, x, ẋ,K(t, x)) = 0,
F2(t, x,K(t, x)) = 0.

(2.8)

Since the reduced system is defined locally only, it is even sufficient to use a linear
state feedback u = K̃x + w, where the function w has to satisfy appropriate initial
conditions so that the closed-loop system becomes strangeness-free, see [35, 37, 38]
for details. Under some further assumptions, an index reduction is also possible via
output feedback.

2.3. Stability. Although the stability theory for ordinary differential equations
has been established at the end of the 19th century by the fundamental work of
Lyapunov [44], for DAEs only few stability results exist [28, 45, 46, 54, 55, 67, 70].

Definition 2.5. Let X0 be a set of consistent initial vectors for the nonlinear
system (2.2).

1. A solution x̂ of (2.2) is called stable in the sense of Lyapunov if
(i) for all t0 ≥ 0 and for all x0 ∈ X0, the initial value problem

F (t, x, ẋ) = 0, x(t0) = x0(2.9)

has a unique solution x(t, x0) defined on [0,∞), and
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(ii) for every ε > 0 there exists δ = δ(t0, ε) > 0 such that ‖x̂(t)−x(t, x0)‖ < ε
for all t ≥ t0 and for all x0 ∈ X0 with ‖x̂(t0) − x0‖ < δ.

2. A solution x̂ of (2.2) is called asymptotically stable if it is stable and if there
exists δ0 > 0 such that for the solution x(t, x0) of (2.9) with ‖x̂(t0)−x0‖ < δ0,
we have that limt→∞ ‖x̂(t) − x(t, x0)‖ = 0.

Since the stability theory for general nonlinear DAE systems is a difficult open
problem, we restrict ourself in the following to linear time-invariant systems of the
form (1.5) with square matrices E and A. The stability properties of such systems
are well understood and can be characterized in a purely algebraic way using the
Weierstraß canonical form of the matrix pencil λE − A, see [17, 23, 28].

Definition 2.6. A pencil λE − A with E,A ∈ R
m×n is called regular, if m = n

and det(λE − A) 6= 0 for some λ ∈ C. Otherwise, the pencil is called singular.

Let λE −A be regular. Then there exist nonsingular matrices W , T ∈ R
n,n such

that the pencil

λWET − WAT = λ

[
Inf

N

]
−
[

J
In∞

]

is in Weierstraß canonical form. Here J and N are in Jordan canonical form, and N
is nilpotent with index of nilpotency ν. The number ν is called the index of λE − A
and the eigenvalues of J are called the finite eigenvalues of λE −A. Note that for the
linear descriptor system (1.5), the differentiation index is just the index of the pencil
λE −A. Subspaces W, T ⊂ R

n are called left and right deflating subspaces of λE −A
if dim(W) = dim(T ) and W = ET + AT . The matrices

Pl = W−1

[
Inf

0

]
W, Pr = T

[
Inf

0

]
T−1

are the spectral projectors onto the left and right deflating subspaces of λE − A cor-
responding to the finite eigenvalues.

For linear time-invariant systems with a regular pencil, we have the following
characterization of stability.

Theorem 2.7. [28] Let λE − A be a regular pencil and let u = 0.

1. The trivial solution x = 0 of system (1.5) is stable if and only if all the finite

eigenvalues of λE −A lie in the closed left half-plane and the eigenvalues on

the imaginary axis are simple.

2. The trivial solution x = 0 of system (1.5) is asymptotically stable if and only

if all the finite eigenvalues of λE − A lie in the open left half-plane.

Note that if the trivial solution x = 0 of (1.5) with u = 0 is (asymptotically)
stable and if PlBu ∈ Cν(I, Rn), then any solution of the inhomogeneous system (1.5)
is also (asymptotically) stable.

Example 2.8. Linearization of the multibody system (1.3) along the equilibrium
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[ 0, 0, −L, 0, 0, 0, m2g/(2L) ]T yields the linear time-invariant system (1.5) with

E = diag( 1, 1, 1, m1, m2, m2, 0 ),

A =




0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

−m2g/L m2g/L 0 0 0 0 0
m2g/L −m2g/L 0 0 0 0 0

0 0 −m2g/L 0 0 0 2L
0 0 −2L 0 0 0 0




,

B = [ 0, 0, 0, 1, 0, 0, 0 ]T ,

C =

[
0 1 0 0 0 0 0
0 0 1 0 0 0 0

]
.

The pencil λE −A has the finite eigenvalues 0, 0 and ±i
√

(m1 + m2)g/(m1L). Since

the eigenvalue 0 is not simple, the linearized system is unstable.

The asymptotic stability of (1.5) can also be characterized via a projected gener-
alized continuous-time Lyapunov equation

ET XA + AT XE = −PT
r QPr, X = PT

l XPl(2.10)

with unknown matrix X.
Theorem 2.9. [67] The trivial solution x = 0 of system (1.5) with u = 0

is asymptotically stable if and only if the projected Lyapunov equation (2.10) has

a unique symmetric, positive semidefinite solution X for every symmetric, positive

definite matrix Q.

Thus, analogous to the case of ordinary differential equations, in theory, we can
either use Lyapunov equations or eigenvalues to characterize the (asymptotic) sta-
bility of constant coefficient systems. However, the eigenvalues of λE − A may be
very ill-conditioned in the sense that they may change largely even for small pertur-
bations in E and/or A. Hence, eigenvalues that are computed numerically in finite
precision arithmetic, may not always provide the correct information on the stability
of dynamical systems.

Example 2.10. Let E = I20 and

A(ε) =




−1 10
. . .

. . .

. . . 10
ε −1




.

All eigenvalues of λE −A(0) are −1 and lie in the open left half-plane. However, for

ε = 10−18, the matrix pencil λE − A(ε) has an eigenvalue λ = 20
√

10 − 1 which is in

the right half-plane.

As an alternative to the use of eigenvalues in stability analysis, one can employ
spectral parameters as in [27, 67]. These parameters not only characterize stability
but also the sensitivity of the eigenvalues to perturbations in the matrix or matrix
pencils.

Consider a stability parameter κ(E,A) = 2‖E‖‖A‖‖X‖, where X is symmetric,
positive semidefinite and satisfies the projected Lyapunov equation (2.10) with Q = I.
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We set κ(E,A) = ∞ if (2.10) does not have positive semidefinite solutions. If κ(E,A)
is finite, then all the finite eigenvalues of λE − A lie in the closed half-plane

{
z ∈ C : Re(z) ≤ − ‖A‖2

‖E‖2κ(E,A)

}
.

The parameter κ(E,A) can also be used to estimate the solution x(t, x0) of the con-
sistent initial value problem

Eẋ = Ax, x(0) = Prx0.(2.11)

We have a bound for x as a function of t and x0 given by

‖x(t, x0)‖ ≤ ce−t‖A‖/(‖E‖κ(E,A))‖Prx0‖(2.12)

with c =
√

κ(E,A)‖E‖‖(EPr+A(I − Pr))−1‖, see [67]. This estimate shows that the
solution of (2.11) decreases exponentially if κ(E,A) is bounded.

A fundamental problem in the robustness analysis for descriptor systems is to
estimate perturbations in the matrix coefficients that do not change the stability
properties of the system. Such perturbations can be described by the stability radius

defined via

rV
(
E,A

)
= inf

{
‖[∆E, ∆A ]‖ : [∆E, ∆A ] ∈ V and

∃λ ∈ C
+ s.t. det

(
λ(E + ∆E) − (A + ∆A)

)
= 0

}
,

where V ⊂ C
n,2n is a vector space of admissible perturbations and C

+ denotes the
closed right half-plane. The stability radius rV

(
E,A) measures the smallest perturba-

tion in V such that the perturbed matrix pencil λ(E +∆E)− (A+∆A) is singular or
has a finite eigenvalue in the closed right half-plane. The stability radius for standard
state space systems with E = I has been first considered in [32] and numerically
reliable methods for its computation have been proposed in [12, 31, 60]. Unfortu-
nately, these results are not immediately applicable to descriptor systems, since not
only the spectrum but also the index and the regularity may change under pertur-
bations. In general, any small perturbation of a pencil with singular E may yield an
unstable system. Therefore, we have to restrict the set of perturbations. This can
be done either with structured perturbations that preserve the physical properties of
the system or with perturbations that do not change the structure of the deflating
subspace corresponding to the infinite eigenvalue of λE − A. A lower bound for the
stability radius for the pencil λE − A, allowing perturbations in A only, is given in
[61]. A computable expression for the stability radius for regular pencils of index at
most one is studied in [14]. Computationally accessible upper and lower bounds for
smallest norm de-regularizing perturbations are discussed in [13].

3. Control theoretic concepts.

3.1. Controllability and observability. In this subsection we discuss control-
lability and observability of descriptor systems. In contrast to standard state space
systems, for descriptor systems there are several different concepts of controllability
and observability.

Definition 3.1. Consider a descriptor system (1.1), (1.2).
1. System (1.1), (1.2) is called completely controllable (C-controllable) if for any

given initial state x0 ∈ R
n and final state xf ∈ R

n, there exists a control
input u that transfers the system from x0 to xf in finite time.
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2. System (1.1), (1.2) is called completely observable (C-observable) if the zero
output of the descriptor system with u = 0 implies that this system has the
trivial solution x = 0 only.

In general, descriptor systems will not be completely controllable or completely
observable, since there exist constraint equations that fix the solution and the output
onto a certain manifold. For this reason one also considers the following definition.

Definition 3.2. For system (1.1), a set R ⊆ Rn is called reachable from x0 if
there exists a control input u that transfers the system from x0 to some xf ∈ R in
finite time. System (1.1) is called controllable within the reachable set R (R-control-

lable) if one can reach any state in R from any consistent initial state x0.

The corresponding dual concept to controllability within the reachable set needs
an appropriate projection to the variables that are associated with the dynamical part
of the systems. For general nonlinear descriptor systems this is difficult to describe.
For linear time-invariant systems, however, an appropriate dual concept is as follows.

Definition 3.3. System (1.5) is called observable within the reachable set

(R-observable) if the zero output of the descriptor system with u = 0 implies that
all solutions of this system satisfy Prx = 0, where Pr is the projection onto the right
deflating subspace corresponding to the finite eigenvalues of λE − A.

Another problem arises for descriptor systems if input functions are used that are
only piecewise continuous. If the strangeness index is larger than 0, then, since the
solution may depend on the derivative of the input function, it may happen that for
such controls no classical solution exists. In the case of linear time-invariant systems,
it is possible to characterize the solution set using impulsive smooth distributions
[37, 62]. In this situation the following concepts can be introduced.

Definition 3.4. Consider a linear descriptor system (1.5).

1. System (1.5) is called impulse controllable (I-controllable) if for any given
initial state x0 ∈ R

n, there exists a state feedback control u = Kx + w, such
that the pencil λE − (A + BK) of the closed-loop system is regular and of
index ν ≤ 1.

2. System (1.5) is called impulse observable (I-observable) if the output of (1.5)
is continuous, when we use a step function as input.

For linear time-invariant systems (1.5) these controllability and observability con-
cepts can be characterized algebraically/geometrically in terms of the matrices E, A,
B and C, see [11, 16, 17, 71, 72].

Theorem 3.5.

1. System (1.5) is C-controllable if and only if rank [αE − βA, B] = n for all

(α, β)∈C
2\{(0, 0)}.

2. System (1.5) is C-observable if and only if rank
[
αET−βAT, CT

]
= n for all

(α, β)∈C
2\{(0, 0)}.

3. System (1.5) is R-controllable if and only if rank [λE − A, B] = n for all

λ ∈ C.

4. System (1.5) is R-observable if and only if rank
[
λET − AT , CT

]
= n for all

λ ∈ C.

5. System (1.5) is I-controllable if and only if rank [E, AKE , B] = n, where the

columns of KE span the kernel of E.

6. System (1.5) is I-observable if and only if rank
[
ET , AT KET , CT

]
= n,

where the columns of KET span the kernel of ET .

One can also show, see [17], that system (1.5) with a regular pencil λE − A is
C-controllable if and only if it is R-controllable and rank [E, B] = n. Furthermore,
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system (1.5) is C-observable if and only if it is R-observable and rank
[
ET , CT

]
= n.

Note that the descriptor system (1.5) with a regular pencil λE − A of index
ν ≤ 1 is I-controllable and I-observable. In view of the general analysis given in
Section 2.2, one can show for linear time-invariant systems that the property of the
system to be strangeness-free in the behavior setting is equivalent to I-controllability,
see [35, 37, 38].

Example 3.6. Consider again the linear system (1.5) with E, A, B and C as in

Example 2.8. Since

rank [E, AKE , B] = rank
[
ET , AT KET , CT

]
= 6,

this system is neither I-controllable nor I-observable and it is obvious that the system

is not C-controllable and C-observable either. On the other hand, we have

rank [λE − A, B] = rank
[
λET − AT , CT

]
= 7,

for all λ ∈ C, i.e., the descriptor system is R-controllable and R-observable.

4. Model order reduction. Modelling of complex physical and technical pro-
cesses described by partial differential equations, such as fluid flow or elastic mechan-
ical structures, leads after semidiscretization in space to descriptor systems of very
large order n, while the number m of inputs and the number p of outputs are typically
small compared to n. Despite the ever increasing computational speed, simulation,
optimization or real time controller design for such large-scale systems is impossible
because of large storage requirements and computation time. A classical way out of
this dilemma is the approach of model order reduction, where the original system is
approximated by a reduced order system that is in some measure close to the original
model. In the linear time invariant case (1.5) this would be a systems of the form

Ẽ ˙̃x = Ã x̃ + B̃ u, ỹ = C̃ x̃,(4.1)

where Ẽ, Ã ∈ R
`,`, B̃ ∈ R

`,m, C̃ ∈ R
p,` and ` ¿ n. Apart from having a much smaller

state space dimension, it is also important that the reduced-order model preserves
essential properties of the original system, like regularity, stability and passivity, and
that the approximation error is small. There exist many different model reduction
approaches for standard-state space systems, see [2, 8], but only two of them have
been generalized for descriptor systems. These are balanced truncation [52, 53, 58, 68]
and moment matching approximation [7, 19, 20, 22]. In this section we briefly describe
the general idea of these model reduction methods.

4.1. Balanced truncation. Balanced truncation is one of the most effective
and well studied model reduction approaches used in control theory [26, 42, 53].
Consider the descriptor system (1.5) with a regular pencil λE − A. Applying the
Laplace transform to (1.5) we find

y(s) = C(sE − A)−1Bu(s) + C(sE − A)−1Ex(0),

where u(s) and y(s) are the Laplace transforms of the input u(t) and the output y(t),
respectively. The rational matrix-valued function

G(s) = C(sE − A)−1B(4.2)

is called the transfer function of (1.5). It describes the input-output relation of (1.5)
in frequency domain.
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For any rational function G, one can find matrices E, A, B and C such that
(4.2) holds [17]. A descriptor system (1.5) with these matrices is called a realization

of G and denoted by G = [E, A, B, C ]. The dimension of the matrices E and A
defines the order of the realization. The transfer function G may have many different
realizations that may be even of different orders. A realization [E, A, B, C ] of G

is called minimal if the dimension of the matrices E and A is as small as possible.
However, since G is invariant under state space transformation, its realization of
fixed order is not unique. This means that if [E, A, B, C ] is a realization of G, then
[WET, WAT, WB, CT ] is also a realization of G for any nonsingular matrices W
and T .

For a given realization G = [E, A, B, C ] such that all eigenvalues of λE − A
have negative real part, we define the proper controllability and observability Gramians

Gpc and Gpo as the unique symmetric, positive semidefinite solutions of the projected

generalized continuous-time Lyapunov equations

E GpcA
T + AGpcE

T = −PlBBTPT
l , PrGpcP

T
r = Gpc

and

ETGpoA + ATGpoE = −PT
r CTCPr, PT

l GpoPl = Gpo.

The improper controllability and observability Gramians Gic and Gio are defined as the
unique symmetric, positive semidefinite solutions of the projected generalized discrete-

time Lyapunov equations

AGicA
T − E GicE

T = (I − Pl)BBT (I − Pl)
T , PrGicP

T
r = 0

and

ATGioA − ETGioE = (I − Pr)
T CTC(I − Pr), PT

l GioPl = 0.

The proper and improper Hankel singular values of system (1.5) denoted by ςj and θj ,
respectively, are defined as the square roots of the nonzero eigenvalues of the matrices
GpcE

TGpoE and GicA
TGioA. If the realization G = [E, A, B, C ] is minimal, it has

exactly nf proper and n∞ improper Hankel singular values, where nf and n∞ are
the dimensions of the deflating subspaces of λE − A corresponding to the finite and
infinite eigenvalues, respectively.

Definition 4.1. A minimal realization G=[E,A,B,C ] is called balanced if

Gpc = Gpo =

[
Σ 0
0 0

]
, Gic = Gio =

[
0 0
0 Θ

]
,

where Σ = diag(ς1, . . . , ςnf
) and Θ = diag(θ1, . . . , θn∞

).
A minimal realization can always be transformed by a state space transformation

into a balanced form [68]. If the realization is not minimal, then it has uncontrollable
and unobservable states that can be truncated without changing the input-output
relation. Using the input-output energy interpretation of the proper Hankel singular
values, see [68], we can also truncate the states of the balanced system that correspond
to the small nonzero Hankel singular values. Such states are simultaneously difficult
to reach and to observe and, hence, they have a small impact on the energy transfer
from input to output. Unfortunately, this does not hold for the improper Hankel
singular values. The equations associated with the improper Hankel singular values
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describe constraints of the system, i.e., they define a manifold in which the solution
dynamics takes place. Therefore, a truncation of the states corresponding to the
small nonzero improper Hankel singular values may lead to a physically inappropriate
approximation.

Note that to perform order reduction we do not need to transform the descrip-
tor system into a balanced form explicitly. Instead, we can combine balancing and
truncation by performing the projection

Ẽ = WT
` ET`, Ã = WT

` AT`, B̃ = WT
` B, C̃ = CT`,

where the projection matrices W`, T` ∈ R
n,` determine the left and right subspaces

associated with dominant proper and nonzero improper Hankel singular values. These
matrices can be efficiently computed by a generalized square root method described in
[52, 68]. One can show that the reduced-order system G̃ = [ Ẽ, Ã, B̃, C̃ ] computed
by this method is asymptotically stable, minimal and balanced [52, 68]. Moreover,
we have the following upper bound for the H∞-norm of the error

‖G̃ − G‖H∞
:= supω∈R

‖G̃(iω) − G(iω)‖
≤ 2(ς`f+1 + . . . + ςnf

),

where ς`f+1, . . . , ςnf
are the truncated proper Hankel singular values. This bound

allows an adaptive choice of the state space dimension ` = `f + `∞ of the reduced
model depending on how accurate the approximation is needed. The main difficulty
in balanced truncation model reduction for large-scale descriptor systems is that four
matrix Lyapunov equations have to be solved. However, recent results on low rank
approximations to the solutions of Lyapunov equations [43, 57, 69] make the balanced
truncation model reduction approach also feasible for large-scale problems.

4.2. Moment matching. An alternative model reduction approach for descrip-
tor systems is the moment matching approximation which can be formulated as fol-
lows. Suppose that s0 ∈ C is not an eigenvalue of the pencil λE − A. Then the
transfer function G(s) = C(sE −A)−1B can be expanded into a Laurent series at s0

as

G(s) = C
(
I − (s − s0)(s0E−A)−1E

)−1
(s0E−A)−1B

= M0 + M1(s − s0) + M2(s − s0)
2 + . . . ,

where the matrices

Mj = −C
(
(s0E − A)−1E

)j
(s0E − A)−1B

are called the moments of the descriptor system (1.5) at s0. The moment matching
approximation problem for the descriptor system (1.5) consists in determining a ra-

tional matrix-valued function G̃(s) such that the Laurent series expansion of G̃(s) at
s0 has the form

G̃(s) = M̃0 + M̃1(s − s0) + M̃2(s − s0)
2 + . . . ,(4.3)

where the moments M̃j satisfy the moment matching conditions

Mj = M̃j , j = 0, 1, . . . , k.(4.4)
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If s0 = ∞, then Mj are the Markov parameters of (1.5) and the corresponding approxi-
mation problem is known as partial realization. Computation of the partial realization
for descriptor systems of a special structure has been considered in [9]. For s0 = 0,
the approximation problem (4.3), (4.4) reduces to the Padé approximation problem.
Efficient algorithms based on Arnoldi and Lanzcos procedures for solving this problem
have been presented in [19, 21]. For an arbitrary complex number s0 6= 0, the mo-
ment matching approximation is the problem of rational interpolation or shifted Padé

approximation that has been considered in [7, 19, 20, 22]. Apart from a single inter-
polation point one can construct a reduced-order system with the transfer function
G̃(s) that matches G(s) at multiple points {s0, s1, . . . , sk}. Such an approximation
is called a multi-point Padé approximation or a rational interpolant [1]. It can be
computed efficiently for descriptor systems by the rational Krylov subspace method
[22, 64] While the moment matching approximation can be efficiently computed also
for very large scale problems, stability and passivity are not necessarily preserved
in the resulting reduced-order model, so that usually a postprocessing is needed to
guarantee these properties.

5. Optimal control. Classical control applications such as stabilization of a sys-
tem or path following can often be formulated in terms of optimal control problems.
However, currently the theoretical basis of optimal control, such as the minimum
principle is an open problem for general descriptor systems that are not strangeness-
free. Only in very special cases necessary and sufficient conditions like the minimum
principle have been derived [25, 51, 56, 63].

Let us consider linear systems with variable coefficients and consider the linear-
quadratic optimal control problem of minimizing the cost functional

I(x, u) =

tf∫

t0

[
x
u

]T [
Q(t) S(t)
ST(t) R(t)

] [
x
u

]
dt

subject to the initial value problem

E(t)ẋ = A(t)x + B(t)u, x(t0) = x0,(5.1)

where E,A ∈ C(I, Rl,n), B ∈ C(I, Rl,m), Q ∈ C(I, Rn,n), R ∈ C(I, Rm,m),
S ∈ C(I, Rm,n) and Q(t) = QT (t), R(t) = RT (t) for all t ∈ I = [t0, tf ]. It has

been shown in [34, 47] that if the matrix

[
Q(t) S(t)
ST(t) R(t)

]
is positive definite for

all t ∈ I and if x∗(t), λ∗(t) and u∗(t) satisfy the boundary value problem for the
generalized Euler-Lagrange equations

E(t)




ẋ

λ̇
u̇


 = A(t)




x
λ
u


 ,

x(t0) = x0, ET (tf )λ(tf ) = 0,

(5.2)

where

E(t) =




E(t) 0 0
0 −ET(t) 0
0 0 0


 ,

A(t) =




A(t) 0 B(t)

Q(t) AT(t) + ĖT(t) S(t)
ST(t) BT(t) R(t)


 ,
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then x∗(t) and u∗(t) is the optimal solution of the optimal control problem min I(x, u)
subject to (5.1). Unfortunately, these conditions are, in general, not necessary, since
the solution of the boundary value problem (5.2) may not exist or may not be unique.
Necessary optimality conditions for descriptor systems of strangeness index zero have
been obtained in [5, 6, 34, 51].

6. Conclusion. Descriptor systems present a general framework for the model-
ling, simulation, control and optimization of complex physical systems. The mathe-
matical analysis and numerical solution methods are well established, see [37] for
a recent graduate textbook. However, major problems remain open. These include
the stability analysis, the minimum principle, as well as model reduction methods for
large-scale nonlinear descriptor systems.
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