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Abstract

Many online problems encountered in real-life involve a two-stage decision process: upon
arrival of a new request, an irrevocable first-stage decision (the assignment of a specific re-
source to the request) must be made immediately, while in a second stage process, certain
“subinstances” (that is, the instances of all requests assigned to a particular resource) can be
solved to optimality (offline) later.

We introduce the novel concept of an Online Target Date Assignment Problem (ONLINETDAP)
as a general framework for online problems with this nature. Requests for the ONLINETDAP
become known at certain dates. An online algorithm has to assign a target date to each request,
specifying on which date the request should be processed (e. g., an appointment with a cus-
tomer for a washing machine repair). The cost at a target date is given by the downstream cost,
the optimal cost of processing all requests at that date w. r. t. some fixed downstream offline op-
timization problem (e. g., the cost of an optimal dispatch for service technicians). We provide
general competitive algorithms for the ONLINETDAP independently of the particular down-
stream problem, when the overall objective is to minimize either the sum or the maximum of
all downstream costs. As the first basic examples, we analyze the competitive ratios of our
algorithms for the particular academic downstream problems of bin-packing, nonpreemptive
scheduling on identical parallel machines, and routing a traveling salesman.

1 Introduction

Many real-world online problems exhibit a two-stage structure. In a first stage, an immediate
online action has to be taken, while in a second stage “certain offline subproblems” (which we
will refer to as downstream optimization problems) can be solved to optimality offline. In this
paper we provide a general framework for online problems of this type, the Online Target Date
Assignment Problem (ONLINETDAP).

As an illustration, consider the following scenario arising in the dispatching of service tech-
nicians. When a customer calls in, requesting a maintenance service for his washing machine,
one of the service technicians has to visit the customer at its location and fix the problem. This
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service can be done within a certain time frame, say within a week. The customer must be given
the day (and possibly a more narrow time window) when the technician will arrive, while he is
on the phone and without knowledge of future service requests, that is, it must be given online.
However, until the promised service day arrives, the decision which service technician to send
and in which order the customers should be visited can be safely deferred. In other words, the
exact scheduling and routing of service technicians for a fixed day can be done optimally offline
at the night before.

In this paper, we introduce structures that account for the following dichotomy in many day-
to-day resource dispatching problems: First, a resource has to be assigned to a request (e. g.,
assign a service vehicle to a repair request) and then the processing of all requests assigned to a
certain resource can be optimized (find an optimal tour for each service vehicle). The assignment
decisions influence the overall cost because they determine the input and thus the optimal costs
of the single resource dispatching problems, the downstream optimization problems.

Offline, both stages can be integrated to obtain an overall optimal solution, even in many
practical applications. However, if for each request the first decision, i.e., the assignment deci-
sion, has to be made online, the situation changes: the resulting problem is not offline anymore,
but it is neither just the online version of the integrated dispatching problem; it is something in
between. In stochastic programming the optimal decisions of a second stage optimization are
called a recourse. In a way, in this paper we introduce competitive analysis with recourse.

Our object of study can be seen as the most extreme distinction between the online require-
ment of the first decision and the downstream optimization: We present a model where the first
decision has to be made immediately and irrevocably before the next request is revealed (no
knowledge about the input), while the downstream optimization can be carried out offline (com-
plete knowledge about the input). The resource that has to be assigned to requests in our main
actor, the ONLINETDAP, is a target date, a date at which the service should take place.

There are many variants conceivable of this concept: if the current day is allowed as a target
date then the downstream optimization becomes an online problem as well, although a large por-
tion of the data is known before the target date. It is also possible to relax the online requirement
of the assignment decision: all requests on a single day might be collected, and the target dates
are chosen and communicated at the end of the day. And there are, of course, variants where re-
sources other than dates have to be assigned online (machines, vehicles) before a single resource
offline problem has to be solved.

Problems of this type are abundant in reality, and very often the first decision is online. There
is, however, almost no theoretical background published on this topic for the case where no
stochastic information about future requests is available. And many of the stochastic models,
e. g., Markov Decision Processes [5], cannot be solved for practical problem sizes. Therefore we
feel that the investigation of the most basic structures in such problems seems adequate. Thus,
we get started in this paper by investigating competitive online algorithms for the ONLINETDAP
w. r. t. to classical downstream problems.

We think that the introduction of the ONLINETDAP will foster various lines of research, e. g.,
dealing with competitive analysis for ONLINETDAP w. r. t. various other, maybe more sophis-
ticated downstream problems, with variants of the ONLINETDAP itself, but also with decision
support methods for variants of the ONLINETDAP outside competitive analysis.

1.0.1 Problem description.

An instance of the ONLINETDAP consists of a sequence of requests σ = r1, r2, . . . and a down-
stream problem Π, an offline optimization problem for which arbitrary subsets of σ are feasible
inputs.

Each request ri has an integral release date t(ri) and must be assigned immediately and irre-
vocably to a target date in the time period t(ri) + 1, . . . , t(ri) + δ(ri), where δ(ri) is the allowed
time for deferring the service of request ri (one week in our service technician scenario), which
is also revealed upon arrival of the request. In this paper we consider only the case of uniform
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downstream problem lower
bound

upper
bound

bin-packing 3/2 2
scheduling

√
2 2

traveling salesman
√

2 2

Minimizing the total downstream cost (min-total
objective).

downstream problem lower
bound

upper
bound

bin-packing 2 min{4, δ}
scheduling 3/2 3− 1/δ
traveling salesman 2 2δ − 1

Minimizing the maximum downstream cost (min-
max objective).

Table 1: Main bounds on the competitive ratio of best possible deterministic online algorithms
for the ONLINETDAP with a certain downstream problem minimizing the total or maximum
downstream cost.

deferral times, that is, δ(ri) = δ for all requests ri, where 1 ≤ δ < +∞. For an algorithm ALG we
denote the particular date to which request ri is assigned by ALG[ri] ∈ {t(ri) + 1, . . . , t(ri) + δ}.

A solution for an ONLINETDAP w. r. t. to downstream problem Π is feasible if

• each request is assigned to a feasible target date, and

• for each single target date, the corresponding instance of Π is feasible, too.

Let σd be the subset of requests assigned to date d by an online algorithm ALG. The optimal cost
of Π on σd is called downstream cost of ALG at date d, and we denote it by downcost(σd).

The overall online cost ALG(σ) of an online algorithm ALG is defined as either the sum of the
incurred downstream costs over all dates (min-total problems), or the maximum of the incurred
downstream costs over all dates (min-max problems). The goal is to find online algorithms whose
competitive ratios are as small as possible. An online algorithm ALG is called c-competitive if the
cost of ALG is never larger than c times the cost of an optimal offline solution. The competitive
ratio of ALG is the infimum over all c ≥ 1 such ALG is c-competitive [2].

1.0.2 Our results.

The ONLINETDAP provides a general framework for a large class of online problems and gives
a novel view on online optimization. We provide general competitive online algorithms for
the ONLINETDAP and analyze them in greater detail w. r. t. classical combinatorial downstream
problems such as bin-packing [4, SR1], nonpreemptive parallel machine scheduling [4, SS8] and
the traveling salesman problem [4, ND22]. The algorithms we propose do not depend on the
downstream problem (although the analysis does). We emphasize that the particular down-
stream problems discussed in this paper should be seen mainly as illustrating examples for the
general framework. Concerning standard online investigations on these problems, [3] gives sur-
veys on online bin-packing and scheduling; the online traveling salesman problem has been con-
sidered in [1].

Within the ONLINETDAP framework, our results are online algorithms and lower and upper
bounds on their performance guarantees, the competitive ratio, obtained by classical competitive
analysis for online algorithms (see, e. g. [2]). In Section 2 we present a 2-competitive algorithm
for the min-total objective, i. e., the objective to minimize the total cost summed over all target
dates.

In Section 3 we consider min-max problems for which the objective is to minimize the max-
imum downstream cost that occurs on a target date. Here, we give a general online assignment
algorithm that we prove to be 4-competitive for the ONLINETDAP with the bin-packing down-
stream problem and which is 3-competitive for the scheduling setting. Our main results are
summarized in Table 1.0.2. Finally, we observe for both objective functions that special profiles
for the downstream problem, as e. g., (un-) bounded number of machines or bins per target date,
lead to trivial problems or prevent any deterministic online algorithm from achieving a constant
competitive ratio.
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2 Minimizing total downstream cost

In this section, we consider the ONLINETDAP with the objective to minimize the total down-
stream cost summed up over all target dates (min-total objective). Particular downstream prob-
lems we deal with are bin-packing, scheduling on parallel machines, and the traveling salesman
problem.

We first present our main competitiveness result which is an online algorithm formulated
independently of the downstream problem. Let us say that a target date is used, if a request has
been assigned to it.

Algorithm PackTogetherOrDelay (PTD) Assign a request r to the earliest date in the feasible
range t(r) + 1, . . . , t(r) + δ which is already used. If no used target date is feasible for
request r, then assign it to the latest feasible target date, that is, to t(r) + δ.

The above algorithm always finds a feasible solution under the assumption that the amount of
requests that can be assigned to the same target date is not restricted (we call this the case of
unlimited resources). Under this assumption at any moment in time at most one feasible target
date is used by PTD.

Theorem 2.1. Consider the ONLINETDAP w. r. t. downstream problem Π with the min-total objective.
Assume that there are unlimited resources in Π and suppose that the following properties hold for any
subinstance σ̄ of σ:

i. The optimal offline cost for the downstream problem Π is a monotonously increasing function, that
is, OPT(σ̄) ≤ OPT(σ) (i. e., Π is monotone).

ii. For each disjoint partition σ(1), . . . , σ(k) of the subsequence σ̄ holds the inequality downcost(σ̄) ≤∑k
i=1 downcost(σ(i)) (i. e., Π allows for synergy).

Then, algorithm PTD is 2-competitive.

Proof. For a given sequence of requests σ consider the target dates d1 < d2 < . . . < dk that PTD
chooses. Denote by σodd (and σeven) the subsequence of requests that the algorithm assigns to
target dates di with odd (respective even) index i.

Observe that, if the input to PTD were solely σodd or σeven, then each request would still be
assigned to the same target date as when operating on σ. Therefore,

PTD(σ) = PTD(σodd) + PTD(σeven). (1)

Moreover, we know by definition of the algorithm that the difference between any two used
target dates is at least δ. Thus, the distance between any two different target dates designated for
two requests of the subsequence σodd (or σeven, respectively) is at least 2δ. This implies that no
two requests of the same subsequence σodd (or σeven, respectively) that have not been assigned to
the same target date share a single feasible target date. Therefore, no algorithm can assign such
two requests to the same target date. With property (ii) we conclude that

PTD(σodd) = OPT(σodd) and PTD(σeven) = OPT(σeven).

It follows with (1) and the monotonicity condition (i) that we have online cost

PTD(σ) = OPT(σodd) + OPT(σeven) ≤ 2 OPT(σ).

Note, that in the case that property (ii) only holds in a relaxed version with a factor α, i. e.,
downcost(σ̄) ≤ α

∑k
i downcost(σ(i)), PTD is 2α-competitive.

We will now demonstrate the power of Theorem 2.1 by applying it to various instantiations
of the ONLINETDAP.
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2.1 Downstream bin-packing

In bin-packing n items with sizes s1, . . . , sn need to be packed in unit sized bins. The objective
is to find a packing such that the total size of the items packed in one bin does not exceed the
bin’s capacity and the total number of bins needed to pack the items is minimized. In ON-
LINETDAP w. r. t. bin-packing, a request r = (t(r), s(r)) is given by its release date t(r) and
its size 0 < s(r) ≤ 1. We assume that the number of available bins per day is not bounded
because this would disable any deterministic online algorithm to guarantee a feasible solution.
The objective is to find an assignment of requests to feasible target dates that minimizes the total
sum of used bins of all target dates.

The following theorem gives a lower bound on the competitive ratio of any deterministic
online algorithm.

Theorem 2.2. No deterministic online algorithm for ONLINETDAP w. r. t. bin-packing minimizing the
min-total objective has a competitive ratio less than 3/2.

Proof. The adversarial sequence starts with a request r1 released at time 0 with size s(r1) < 1/2.
Consider an online algorithm, ALG, that does not assign this request to its deadline δ. Then
at time ALG[r1] a second request is released with size s(r2) = 1 − s(r1). ALG cannot assign this
request to the same date as the first request and therefore it needs two bins, whereas the optimum
needs only one.

Now consider an online algorithm ALG that assigns the first request to its deadline δ. Then
at time t(r2) = 1 a second request with size s(r2) = s(r1) is released. If the algorithm does not
pack this item with the first request, then it needs two bins and the optimum needs only one.
Otherwise, at time t(r3) = δ − 1 and t(r4) = δ two requests are released both with size s(r3) =
s(r4) = 1− s(r1). To pack these items, ALG needs two extra bins, thus in total three bins, whereas
the optimum would pack request r1 and r3 to date δ and item r2 and r4 to δ + 1, needing only
two bins.

Since the properties of Theorem 2.1 are met, we immediately have the following result.

Theorem 2.3. The competitive ratio of PTD minimizing the total number of used bins for ONLINETDAP
w. r. t. bin-packing is 2.

That PTD cannot achieve a better competitive ratio than 2, can be shown by the following
instance. For given k ∈ N, k ≥ 3, let ε < 1/(2k − 4) and σ = σ(1) ∪ . . . ∪ σ(k). σ(1) consists of the
following three requests:

r1 = (0, 1), r2 = (1, 1/2− ε), r3 = (δ, 1/2 + ε).

For i = 2, . . . , k, the subsequence σ(i) is defined by

σ(i) = ((iδ − 1, 1/2 + (i− 2)ε), (iδ, 1/2− (i− 2)ε)).

The cost of PTD on this sequence is PTD(σ) = 2k + 1. On the other hand, the number of required
bins of the optimal offline algorithm is OPT(σ) = k + 1. By letting k → ∞, the lower bound
follows.
We conjecture that the following online algorithm, PACKFIRSTORDELAY, has a better perfor-
mance guarantee than PTD although the analysis for the general problem seems more difficult.

Algorithm PackFirstOrDelay (PFD) If there is a used target date to which the current request r
can be assigned without increasing the number of necessary bins, then the earliest of these
dates is chosen. Otherwise, assign the latest possible date, t(r) + δ.

This algorithm achieves a better solution on the lower bound instance for PTD from above.
However, there exist instances for which PFD performs worse than PTD, as for example: r1 =
(0, 2/5), r2 = (0, 1/5), r3 = (0, 1/5), r4 = (δ − 1, 2/5), r5 = (δ − 1, 2/5), and r6 = (δ − 1, 2/5).

If all items have identical size the problem becomes much easier.
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Theorem 2.4. Consider the ONLINETDAP w. r. t. bin-packing with the min-total objective. Then, PFD
is optimal if all item sizes are equal.

Proof. Assume that the bin-packing instance at each date is solved in such a way that at most one
bin is partially filled. Given a sequence σ, let PFD(σ) = f + p, where f is the number of full bins
and p is the number of partially filled bins. Let d0 < d1 < . . . < dp be the dates on which PFD has
partially filled bins. Let σ′ be the subsequence consisting of all requests that are packed in a full
bin and for each partially filled bin the request that opened this bin. Note that PFD(σ′) = PFD(σ).

We partition σ′ into subsequences σ` consisting of all requests r ∈ σ′ with d`−1 ≤ t(r) < d`. As
the last request in σ` and the first request in σ`+1 are both assigned using the delay tactic of PFD,
we know that there is no overlap in the feasible target dates of requests of different subsequences.
Hence, OPT(σ′) =

∑
` OPT(σ`). Moreover, PFD packs the items of a subsequence in all but one

fully filled bins and thus PFD(σ`) = OPT(σ`). Combining these equalities, we get

PFD(σ) = PFD(σ′) =
∑

`

PFD(σ`) =
∑

`

OPT(σ`) = OPT(σ′) ≤ OPT(σ).

2.2 Downstream parallel-machine scheduling

In this section, we consider the ONLINETDAP w. r. t. nonpreemptive machine scheduling of jobs
on identical parallel machines to minimize the makespan, i. e., the latest completion time of all
jobs on all machines of one date. The overall objective is now to minimize the sum of makespans
over all target dates. For convenience we will use standard scheduling terminology, i. e., a re-
quest r is a job that has a processing time denoted by p(r). We denote a request by an ordered
pair of release date and processing time, r = (t(r), p(r)). The number of machines available per
date is denoted by m. Note, that in case m = 1, the problem is trivial since any target date assign-
ment yields a total downstream cost of

∑
r∈σ p(r), for any sequence σ. Therefore, we assume for

the remainder of this section that more than one machine are available each date.
Consider the general online algorithm PTD. Also for this setting with the scheduling down-

stream problem, Theorem 2.1 applies and PTD is 2-competitive. The analysis is tight as the fol-
lowing sequence shows:

r1 = (0, ε), r2 = (PTD[r1]− 1, 1), r3 = (PTD[r1], 1),

where ε < 1. The costs incurred by the algorithm are PTD(σ) = 2, whereas optimal offline costs
are OPT(σ) = 1 + ε. Thus, we have shown:

Theorem 2.5. The deterministic online algorithm PTD has a competitive ratio of 2 for the ONLINE-
TDAP for downstream scheduling on identical parallel machines (m > 1) subject to minimize the sum of
makespans induced on all target dates.

Moreover, we obtain the following general lower bound result for this problem setting.

Theorem 2.6. No deterministic online algorithm can achieve a competitive ratio less than
√

2 for the
ONLINETDAP minimizing the total downstream cost caused by nonpreemptive scheduling on more than
one machine.

Proof. In order to obtain this bound consider for a given online algorithm ALG the following
sequence:

r1 = (0, 1), r2 = (ALG[r1]− 1, 1 +
√

2).

If ALG assigns a target date different from ALG[r1] to request r2, then no further requests are
given. Thus, ALG’s cost is ALG(r1, r2) = 2 +

√
2, whereas an offline optimum yields a solution

with cost OPT(r1, r2) = 1 +
√

2 , which gives a ratio of
√

2.
Assume that ALG assigns request r2 to the same date as r1, and a third request r3 = (ALG[r1], 1+√

2) is given. Then the cost of the online algorithm is 2 + 2
√

2, whereas the optimal offline costs
are 2 +

√
2. Again, the ratio of the incurred costs of ALG and OPT is

√
2.
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Note that the lower bound construction heavily depends on different processing times of
jobs. Let us briefly consider the restricted setting where we assume that all requests have equal
processing time. In this case, we can easily transform the ONLINETDAP w. r. t. parallel machine
scheduling into an ONLINETDAP w. r. t. bin-packing: Each request (t(rj), p(rj)) is transformed
into a request (t(rj), s(rj) = 1/m), i. e., to each job corresponds an item of size 1/m, where m is
the number of machines in the scheduling problem and we assume unit bin capacity in the bin-
packing problem. Both problems are equivalent; therefore the results from the previous section
carry over, and thus, we have with PFD an optimal online algorithm.

Corollary 2.7. PFD is an optimal algorithm for the ONLINETDAP with downstream problem scheduling
of jobs with equal processing times for the min-total objective.

2.3 Traveling salesman problem

In this section, we consider the ONLINETDAP with the downstream problem of finding a mini-
mal tour of a traveling salesman problem, i. e., for a given set of points in a metric space (request
set) a tour has to be found, from the origin through all points ending in the origin. The overall
objective is now to minimize the sum of the optimal tour lengths on all target dates.

For this problem setting we provide the following general lower bound.

Theorem 2.8. No deterministic online algorithm has a competitive ratio less than
√

2 for the ONLINE-
TDAP w. r. t. a traveling salesman problem on R+ as the downstream problem minimizing the total down-
stream cost.

Proof. Consider the following simple instance: At time 0, request r1 with distance 1 from the
origin is given. In order to be better than 2-competitive an algorithm has to assign the request
to target date δ, because otherwise an identical request would be given at the chosen target date.
Now, a second request r2 appears at time 1 with distance 1 +

√
2 to the origin. If the algorithm

assigns it to some target date different from δ, then no more requests are released and the ratio
of costs of an online algorithm to those of the optimum is

√
2. Otherwise, a third request at the

same location of request r2 is released at time δ. In this case the ratio of costs is
√

2.

As before, the conditions in Theorem 2.1 are also met for the traveling salesman problem as
the downstream problem.

Theorem 2.9. PTD has a competitive ratio of 2 for the ONLINETDAP w. r. t. minimizing the tour length
in a traveling salesman problem as a downstream problem for the min-total objective.

In order to show that this result is tight, consider two requests released at time 0 and 1, with
distances ε and 1 from the origin, respectively. Let the distance between r1 and r2 be equal to the
sum of their distances to the origin, 1+ε. If a third request is released at time δ in exactly the same
position as r2, then the ratio of total sum of route length for PTD to OPT tends to 2 for ε → 0.

3 Minimizing maximum downstream cost

In this section, we consider ONLINETDAP subject to minimize the maximum downstream cost
over all target dates for the downstream problems bin-packing, scheduling on parallel machines,
and the traveling salesman problem.

As in the previous section, we firstly present a general online algorithm that is independent
of the specific downstream problem.

Algorithm Balance (BAL) Assign a given request to the earliest feasible target date such that
the increase in the objective value, i. e., the maximum downstream cost over all dates, is
minimal.
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Notice that processing each request requires BAL to solve several instances of the downstream
problem optimally. However, computing optimal solutions may not be feasible under real-time
aspects because of the complexity of the downstream problem. But in the analysis of our algo-
rithm we only use such upper bounds on the offline optimum that are also satisfied by simple
approximation algorithms. Therefore, all results presented in this section still hold true if the
optimization is done approximately and all algorithmic computations can be accomplished in
polynomial time.

3.1 Downstream bin-packing

We analyze the ONLINETDAP with bin-packing as downstream problem subject to minimizing
the maximum number of used bins over all target dates. The notation and downstream problem
definition is similar as in Section 2.1.

Our first result is a general lower bound on the competitive ratio of any online algorithm.

Theorem 3.1. For the ONLINETDAP with min-max objective for downstream bin-packing no determin-
istic online algorithm has a competitive ratio of less than 2.

Proof. In order to obtain this bound we consider a sequence σ with the following two first re-
quests: r1 = (0, ε) and r2 = (0, ε) for some ε < 1/2.

If the considered online algorithm ALG assigns the same target date to both requests, then
sequence σ is completed by the requests:

r3 = (0, 1− ε), r4 = (0, 1− ε), rj = (0, 1) 5 ≤ j ≤ δ + 2.

Obviously, we have ALG(σ) ≥ 2 and OPT(σ) = 1.
Suppose now that the online algorithm assigns different target dates to the requests r1 and r2,

then the following additional requests are given:

r3 = (0, 1− 2ε), rj = (0, 1) 4 ≤ j ≤ δ + 2.

Again, any deterministic online algorithm is forced to open at least two bins on some date,
i. e., ALG(σ) ≥ 2, whereas the optimum has only cost OPT(σ) = 1.

Next we analyze the algorithm BAL for the ONLINETDAP with downstream bin-packing.

Theorem 3.2. The algorithm BAL is 4-competitive for the ONLINETDAP with downstream bin-packing
subject to minimizing the maximum number of used bins over all target dates.

Proof. The crucial observation is the following: Given a request r, the total size of all items as-
signed by BAL within the time frame t(r) + 1, . . . , t(r) + δ is bounded from below by half the
number of bins required, whenever more than one bin is used in this period of dates.

This claim can be shown by induction on the number of requests assigned to any of the con-
sidered dates. Obviously, the claim holds when none of the considered dates has yet been used.
Assume that the claim is true after k requests have been assigned to the dates t(r) + 1, . . . , t(r) + δ
and let rk+1 be another request. If s(rk+1) ≥ 1/2, the claim obviously also holds after assign-
ing rk+1. So assume that s(rk+1) < 1/2. If BAL can assign rk+1 to some date without increasing
the number of used bins at that date, we are also done. But if BAL needs to use a new bin at the
assigned date, we know that previously the load of each bin at the dates t(r)+ 1, . . . , t(r)+ δ was
at least 1− s(rk+1) > 1/2, which proves the claim.

Now we can prove that BAL is 4-competitive. Let rk be the first request in a given sequence σ
such that the maximum downstream cost is attained, i. e., BAL(r1, . . . , rk) = BAL(σ). Notice that
the assigned target date for rk is BAL[rk] = t(rk) + 1. Let σ̄ be the subsequence of all requests
from σ up to rk that have been assigned a target date d ≥ t(rk) + 1. On the one hand, we have:

OPT(σ) ≥ 1
2δ − 1

∑
r∈σ̄

s(r) >
1
2δ

∑
r∈σ̄

s(r). (2)
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On the other hand, BAL uses in total δ(BAL(σ) − 1) + 1 bins in the time period from t(rk) + 1
to t(rk) + δ. Since we may assume BAL(σ) > 1 (otherwise there is nothing to show), the sum of
all item sizes assigned to theses dates is at least half the number of bins required by BAL. This
implies,

1
2

(δ(BAL(σ)− 1) + 1) ≤
∑
r∈σ̄

s(r).

Together with (2), we can bound the cost of BAL by

BAL(σ) ≤ 2
δ

∑
r∈σ̄

s(r) + 1− 1
δ

< 4 OPT(σ) + 1− 1
δ
.

Finally, the integrality of BAL(σ) and OPT(σ) gives BAL(σ) ≤ 4 OPT(σ).

For small values δ the FIRSTFIT Algorithm that assigns a given request r to its earliest feasible
target date t(r) + 1, improves the competitiveness result of Theorem 3.2. It is easy to see that
FIRSTFIT has a competitive ratio of δ.
As in Section 2.1, the situation improves significantly for equal item sizes.

Theorem 3.3. The algorithm BAL is 2-competitive for the ONLINETDAP with downstream bin-packing
subject to minimizing the maximum number of used bins over all target dates if all requests have equal
sizes.

Proof. Let rk be the first request in a given sequence σ such that the maximum downstream cost is
attained, i. e., BAL(r1, . . . , rk) = BAL(σ). Moreover consider on date t(rk) + 1 an optimal packing
which only uses one bin partially. With respect to such an optimal packing all bins at the dates
d > t(rk) except one on the date t(rk) + 1 are filled with a maximum number of items, because
of equal item sizes. Since OPT requires the same number of bins distributed onto at most 2δ − 1
dates, we have

OPT(σ) ≥ 1
2δ − 1

δ(BAL(σ)− 1) >
1
2
(BAL(σ)− 1).

This implies BAL(σ) < 2 OPT(σ) + 1, which gives the theorem by the integrality of BAL(σ) and
OPT(σ).

Theorem 3.4. For the ONLINETDAP with min-max objective for downstream bin-packing where all
requests have equal sizes, no deterministic online algorithm has a competitive ratio of less than 3/2.

Proof. Let s denote the size of all requests, and consider an arbitrary online algorithm ALG and
the following sequence σ of requests. δb1/sc requests are given at date 0. In order to achieve a
competitive ratio better than 2, ALG must not use more than one bin each date. Next, at date 1
additionally (δ + 2)b1/sc requests are given, which gives ALG(σ) ≥ 3 and OPT(σ) = 2.

3.2 Downstream parallel-machine scheduling

In this section we consider the ONLINETDAP w. r. t. nonpreemptive machine scheduling on par-
allel machines subject to minimize the maximum makespan over all target dates. Notations and
the exact downstream problem definition is used as in Section 2.2. Note, that if an infinite num-
ber of machines is available at each date, i. e., m = ∞, then the problem becomes trivial since any
feasible solution yields a downstream cost of maxr∈σ p(r), for any sequence σ. In the following
we assume a bounded number of machines.

In this problem setting where the number of available machines per date is bounded (m < ∞)
the following instance shows a lower bound of 3/2 on the competitive ratio of any deterministic
online algorithm. Given mδ requests with release date 0 and processing time 1, only an algo-
rithm ALG that assigns m jobs to each date can be better than 2-competitive. However, at date 1
are given m(δ + 2) more requests with processing time 1, then ALG has a makespan of at least 3
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whereas the optimum makespan over all dates equals 2. Note that this request sequence contains
only requests with equal processing time. Thus, we have shown the following:

Theorem 3.5. No deterministic online algorithm can achieve a competitive ratio less than 3/2 for the
ONLINETDAP w. r. t. scheduling to minimize the maximum makespan over all target dates, where the
number of available machines per date is bounded and the processing times for all requests are equal.

We next prove that the general algorithm BAL for the ONLINETDAP w. r. t. scheduling on
parallel machines is (3− 1/δ)-competitive.

Theorem 3.6. BAL is (3 − 1/δ)-competitive for the ONLINETDAP with downstream scheduling to
minimize the maximum makespan over all target dates for a bounded number of available machines per
date.

Proof. Consider a request sequence σ served by BAL and let r denote the first request that causes
the maximum makespan. Consider the schedule obtained by BAL before r is released with respect
to the offline optimum and let w denote the load of a least loaded machine over all feasible target
dates.

Then, the BAL’s makespan is at most w + p(r). Since all feasible target dates for r have load of
at least wm, the total load in that time period is at least wmδ + p(r).

Any of the corresponding requests in that time period could not be issued earlier than δ dates
before the release date of request r. Hence, even an optimal offline algorithm OPT obeying feasi-
bility conditions has at least the following cost on sequence σ:

OPT(σ) ≥ wmδ + p(r)
(2δ − 1)m

>
wδ

2δ − 1
.

Hence, we have:

w <

(
2− 1

δ

)
OPT(σ).

Since OPT(σ) is bounded from below by p(r), we conclude

BAL(σ) ≤ w + p(r) <

(
2− 1

δ

)
OPT(σ) + OPT(σ) =

(
3− 1

δ

)
OPT(σ).

The following sequence σ shows for ε → 0 that BAL is not better than 2-competitive:

ri =


(0, 1/2 + ε) if i ∈ {1, . . . ,m(δ − 1)},
(0, 1) if i ∈ {m(δ − 1) + 1, . . . ,mδ},
(δ − 1, 1) if i ∈ {mδ + 1, . . . ,m(2δ − 1) + 1}.

Note, that this lower bound construction is based on jobs with different processing times. Now,
let us briefly consider the restricted setting where we assume that all requests have equal process-
ing time. Then, the downstream problem scheduling is equivalent to the bin-packing problem of
uniform items as we described in Section 2.2. Hence, the results from the previous section carry
over.

Corollary 3.7. The algorithm BAL is 2-competitive for the ONLINETDAP with min-max objective for
downstream scheduling if all jobs have identical processing times. Furthermore, no deterministic online
algorithm can achieve a competitive ratio of less than 3/2 in this setting.
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3.3 Traveling salesman problem

In this section we analyze the traveling salesman problem as downstream problem for the ON-
LINETDAP with objective to minimize the maximum downstream cost. Similar to the down-
stream problems considered before, the algorithm BAL is trivially (2δ − 1)-competitive since the
requests assigned to the date at which the maximum tour length is attained can at most be spread
over 2δ−1 dates. On the other hand, we have the following lower bound on the competitive ratio
of any online algorithm.

Theorem 3.8. No deterministic online algorithm for the ONLINETDAP w. r. t. the traveling salesman
problem as downstream problem minimizing the maximum tour length achieves a competitive ratio less
than 2.

Proof. Consider a metric space induced by the unweighted star graph with at least δ + 1 leaves.
First, δ requests in δ different leaves are given at date 0. In case an algorithm ALG assigns more
than one request to one date, it cannot be better than 2-competitive. Otherwise, let r be the request
with ALG[r] = 1. At date 1 another request associated with the point not yet used is released as
well as a request for the point of request r, yielding ALG(σ) ≥ 2. In contrast, OPT(σ) = 1
since OPT is able to assign both requests for the same point to the same target date.
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