
COMMENT ON TWO DISTINCT NOTIONS OF FREE ENERGY

CARSTEN HARTMANN∗

Abstract. We comment on two different notions of the thermodynamical free energy that are
used in Hamiltonian molecular dynamics. Both concepts have different scopes of applications as was
pointed out recently in the context of high–friction Langevin dynamics. We show that problems that
rely on either definition can be treated in a uniform way using constrained molecular dynamics. Not
only proves this useful in designing algorithms that sample the free energy landscape, but it also
clarifies the relation between seemingly contradictory results that are present in the literature.

1. Introduction

The calculation of free energy profiles along certain prescribed coordinates plays
an essential role in physical chemistry and dynamical systems. In particular in molec-
ular dynamics applications there is a variety of phenomena as, for instance, molecular
solvation, enzyme catalysis, or conformation dynamics, the analytical understanding
of which is directly related to the corresponding free energy landscape.

In recent years progress has been made towards algorithms that efficiently sam-
ple free energy profiles, yet the precise mathematical understanding of the notion free

energy as the potential of mean force was lacking. Even worse there are two incom-
mensurable definitions of free energy in the literature, although they both rely on the
same thermodynamical formalism.

From an application viewpoint each of these different definitions makes perfect
sense, depending on the problems considered. However from a dynamical or geomet-
rical viewpoint it is, most notably, the standard free energy, which is prevalent in the
literature, that remains rather obscure, for it is not possible to fully relate it to the
properties of the underlying dynamical system. However we will show that there is a
particular definition of the quantity free energy, that is used in transition state the-
ory, which allows for a concise geometric interpretation in the context of Hamiltonian
dynamics subject to holonomic constraints.

We briefly review the available concepts of the Helmholtz free energy as presented
by E and Vanden-Eijnden [1] for the high–friction Langevin dynamics. Then we show
how the apparently contradictory results in the work of Mülders et al. [3], or Sprik and
Ciccotti [2] can be related to each other within the respective free energy concepts.

2. Two definitions

Consider a separable Hamiltonian on the phase space T ∗Rn ' Rn × Rn

H : T ∗Rn → R , H(q, p) =
1

2
〈p, p〉 + V (q)

which is the sum of kinetic and potential energy.1 Let ξ : Rn → Rs be a reaction
coordinate, and consider fibres Σ = ξ−1(x) for x ∈ Rs which are smooth and compact
submanifolds of codimension s in Rn. To keep things simple we assume that the ξi, ξj

are mutually orthogonal with respect to the Euclidean metric, that is,

〈grad ξi, grad ξj〉 = 0 whenever i 6= j ,
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1We have scaled the coordinates according to 7→ M1/2q, and p 7→ M−1/2p, where M is the
positive–definite, and symmetric mass matrix. This is clearly a symplectic transform, and it allows
us to set M = 1 in what follows.
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where 〈·, ·〉 : TqR
n × TqR

n → R is the standard inner product of Rn. Let the orbits
of H(q, p) have the invariant distribution ρ ∝ exp(−βH(q, p)), where β = 1/T is
the inverse temperature. One possible way to define the Helmholtz free energy is by
means of the marginal density of the reaction coordinate

Q(x) =

∫
Rn×Rn

exp(−βH(q, p))δ(ξ(q) − x)dqdp

which can be expressed as the equivalent surface integral

Q(x) =

∫
Σ×Rn

exp(−βH(q, p))(det Jξ(q))
−1dσ(q, p) . (2.1)

where dσ(q, p) is the surface element of Σ×Rn considered as a submanifold of phase
space T ∗Rn ' Rn × Rn. The matrix Jξ(q) ∈ Rs×s is defined as

Jξ(q) = diag(‖ grad ξ1(q)‖, . . . , ‖ grad ξs(q)‖) , q ∈ Σ ,

where ‖ · ‖ is understood as the usual 2–norm associated with 〈·, ·〉. The free energy
is given by the logarithm of the probability density, that is,

F (x) = −β−1 lnQ(x) . (2.2)

A second definition of the Helmholtz free energy utilizes the probability density of the
submanifold Σ × Rn ⊂ Rn × Rn, which is given by the expression

Z(x) =

∫
Σ×Rn

exp(−βH(q, p))dσ(q, p) (2.3)

Again, this free energy is defined through the thermodynamical relation

G(x) = −β−1 lnZ(x) . (2.4)

Although the first definition is certainly the traditional definition of free energy it
has the unpleasant property that it depends on the parameterization of Σ as can be
readily checked. See the review [1] for details.

Clearly F is directly available from the marginal density of the reaction coordinate
after a very long simulation of H(q, p), whereas G is not. However it is easy to see
that one can arbitrarily switch between both definitions, exploiting that

exp(−βH) (detJξ)
−1 = exp(−βH − ln detJξ) . (2.5)

Thus comparing (2.1) and (2.3) we can compute either F or G with the same algorithm
simply by adding or subtracting the so–called Fixman potential VF = β−1 ln detJξ.

3. Free energy as the potential of mean force

We shall try to establish a relation between any of the the two free energies and
the corresponding mean force transversally to Σ which a particle is exposed to. Once
this is done we can use the relation (2.5) in order to switch from F to G or vice versa.

Algorithmically we can exploit the dichotomy of the free energy as the potential
of mean force, and run constrained simulations on each fibre Σ = ξ−1(x), sampling
the respective mean force. This procedure is known as thermodynamic integration,
and goes back to Kirkwood [4]. Formally the constrained Hamilton equations read [5]

q̇ = ∇pH(q, p) (3.1)

ṗ = −∇qH(q, p) − λ∇qξ(q) , ξ(q) = x , (3.2)
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where λ denotes the Lagrange undetermined multiplier. As Σ ⊂ Rn, we can take
advantage of the natural inclusion TΣ ⊂ TRn, and, similar to the viewpoint of
Lagrangian mechanics, construct a constrained Hamiltonian HΣ by restricting it ac-
cording to HΣ = H |T∗Σ. The invariant density that is generated by the orbits of the
constrained Hamiltonian HΣ is the function

ρΣ = N−1
Σ exp(−βHΣ)

with the normalization constant

NΣ =

∫
T∗Σ

exp(−βHΣ(q, p) dς(q, p) ,

where dς(q, p) labels the phase space surface element of the constrained phase space
T ∗Σ ⊂ Rn × Rn. We denote averages with respect to the probability density ρΣ by

〈O(q, p)〉Σ =

∫
T∗Σ

O(q, p)ρΣ(q, p) dς(q, p) , (3.3)

and we shall start with the free energy definition (2.4). By properly extending the
surface element dσ(q, p) to the ambient space using a symplectic change of coordinates,
we can take the derivative of (2.4) with respect to parameter x. This yields [6]

∇xG(x) = Z−1(x)

∫
Σ×Rn

X(q, p) exp(−βH(q, p))dσ(q, p) , (3.4)

where the covector field X : (T ∗Rn)|Σ → T ∗Rs is the generalized normal force that is
obtained from differentiating the Hamiltonian with respect to x after the coordinate
change. See [6] for details. The normal force can be decomposed according to2

X(q, p) = −λ(q, pt) + ω(q, pt, pn) , q ∈ Σ ,

where p = pt + pn with pt ∈ T ∗Σ and pn ∈ (T ∗Σ)⊥, and λ(q, p) is the solution of
the Lagrange multiplier in the equations of motion (3.1)–(3.2) on condition that the
constraint is satisfied, that is, the following conditions are met

ξ(q) = x & ξ̇(q) = 0 ⇔ q ∈ Σ & p = pt .

The Lagrange multiplier can easily be computed by differentiating the constraint
equation ξ(q) = x twice with respect to time, and then inserting the result into the
equations of motion (3.1)–(3.2). Note that the constraint ξ̇ = 0 or p = pt, respectively,
has not been enforced in the derivation of (3.4); otherwise ω = ω(q, pt, 0) would be
zero. However it is a remarkable feature of mechanical systems subject to holonomic
constraints that the constraint force, and hence the Lagrange multiplier, is defined
solely by points lying in the constrained phase space bundle [8]. The map ω is linear
in both pt and pn; hence it vanishes on average with respect to the conditional average
it appears in equation (3.4).3

2This decomposition is based on the fundamental equations for submanifolds (Gauss formulae and
Weingarten equations), which, as a matter of fact, mark a far more general property of vector-fields
attached to submanifolds. See [7] for some basic facts about submanifolds.

3Strictly speaking, ω is the cotangent bundle version of the connection 1-form of the frame
associated with the normal bundle over Σ, where due to the mass scaling at the beginning we have
p = q̇. Physically speaking the normal connection couples vectors fields tangential and normal to Σ.
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Note that it is only the normal momentum pn that distinguishes the constrained
average which is computed on T ∗Σ from the conditional average on (T ∗Rn)|Σ ' Σ×
Rn. But as the constraint force does not depend on the normal momenta [5], nor does
the Lagrange multiplier, we can replace the conditional average by the constrained
average 〈 · 〉Σ, and we recover indeed the result of Mülders and his co–workers [3]

∇xG(x) = −〈λ(q, p)〉Σ . (3.5)

In point of fact this result was derived by Mülders et al. imposing the constraint from
the outset. Anyway this does not make a difference, as should be clear now.

4. Algorithmic realization

By definition the mean force (3.4) is an integrable vector field on S ⊂ Rs, and
we can recover G(x) by numerical integration over the components of the reaction
coordinate. The last equation is very useful in order to compute the mean force during
the course of the numerical integration of the constrained Hamiltonian system: the
mean force is simply obtained by a time average of the Lagrange multiplier, provided
the dynamics is ergodic with respect to the constrained invariant density ρΣ; no further
function evaluations are required. We can even use the same simple formula to access
F (x), too. Taking into account (2.5) enables us to compute the corresponding mean
force −∇xF in a straightforward manner [9]. We find

∇xF (x) = −〈µ(q, p)〉Σ,aug . (4.1)

where the former Hamiltonian has been augmented by the Fixman potential VF of
the reaction coordinate H 7→ H + β−1 ln det(Jξ). Accordingly µ is the Lagrange
undetermined multiplier that corresponds to the modified Hamiltonian, and 〈 · 〉Σ,aug

denotes the respective constrained average. It is easy to check that

〈O(q, p)〉Σ,aug =
〈(detJξ(q))

−1O(q, p)〉Σ
〈(detJξ(q))−1〉Σ

which is the famous blue moon relation of Carter et al. [10], but note that nowhere
throughout the calculation we have imposed the constraint ξ̇ = 0. Moreover we have

µi(q, p) = λi(q, p) − β−1 1

‖ grad ξi(q)‖2
〈grad ξi(q), gradVF 〉

which is in perfect agreement with the formulae that have been derived in various
works [2, 11, 12, 13] for the case when Σ is a hypersurface of codimension one in Rn. In
this case the unaveraged force field X(q, p) is even identical to the Lagrange multiplier
λ(q, pt), for, as a general property of embedded submanifolds of codimension one,
the coefficient of the normal connection identically vanishes, and so does ω(q, pt, pn)
in the expression below (3.4). Moreover it has been shown recently [14] that the
codimension–one–formula for the mean force also applies for each of the components
of the mean force if the reaction coordinates are orthogonal.

However likely important, our simple considerations reveal the origin of the terms
that appear additionally to the averaged Lagrange multiplier λ(q, pt) when calculating
F (x) by means of thermodynamic integration methods. These terms are neither
geometrically nor dynamically relevant or meaningful. In fact it is purely a matter
of the particular definition starting either from the marginal distribution (2.1) or the
conditional density (2.3). This links the seemingly contradictory results derived in
the papers by Sprik and Ciccotti [2], or Mülders et al. [3], each of which is consistent
within the respective concept of free energy.
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