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Abstract

Balancing a matrix by a simple and accurate similarity transformation can improve
the speed and accuracy of numerical methods for computing eigenvalues. We describe
balancing strategies for a large and sparse Hamiltonian matrix H. It is first shown how
to permute H to irreducible form while retaining its structure. This form can be used to
decompose the Hamiltonian eigenproblem into smaller-sized problems. Next, we discuss
the computation of a symplectic scaling matrix D so that the norm of D−1HD is reduced.
The considered scaling algorithm is solely based on matrix-vector products and thus par-
ticularly suitable if the elements of H are not explicitly given. The merits of balancing
for eigenvalue computations are illustrated by several practically relevant examples.

1 Introduction

Computing eigenvalues of Hamiltonian matrices

H =

[

A G
Q −AT

]

, (1)

where A, G, Q ∈ R
n×n and G, Q are symmetric, has been an active field of research during the

last two decades. Nowadays, there are several efficient and structure-preserving eigensolvers
for dense Hamiltonian matrices available [5, 7, 8, 24]. Combined with recently developed
balancing and block reduction algorithms [4, 15] they form more accurate and more efficient
alternatives to standard eigensolvers like the QR algorithm [13].

Algorithms which compute eigenvalues of sparse Hamiltonian matrices are comparably less
developed. Although some structure-preserving Lanczos and Arnoldi like methods have been
investigated [6, 12, 19] there is no implementation publicly available yet. This work should be
understood as a step to proliferate the development of such an implementation. We show how
to balance a sparse Hamiltonian matrix H by a simple and accurate similarity transformation
D−1HD, which reduces the norm of H. This preprocessing step often has positive effects
on the performance and accuracy of eigensolvers and therefore has obtained early attention
in the development of numerical linear algebra [20, 21]. Balancing sparse eigenproblems is
of more recent interest. Although efficient algorithms for approximate sparse balancing were
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already proposed in [10] the resulting balanced matrix D−1HD is in general not Hamiltonian.
However, to be able to apply structure-preserving eigensolvers, D must be chosen in a way so
that the structure of H is not destroyed. In [4], a structure-preserving balancing technique for
Hamiltonian eigenproblems is developed. This technique is suitable for dense eigenproblems
but is not readily applicable to large-scale problems where the Hamiltonian matrix is not given
explicitly. We therefore investigate the question how to perform an approximate balancing
using only information obtained from matrix-vector products with the Hamiltonian matrix.

Permuting H to block upper triangular form with irreducible diagonal blocks is a pre-
processing step in order to guarantee the convergence of the subsequent balancing step. It
may also reduce the time needed by an eigensolver. In Section 2 we show how to achieve
a similar form retaining the Hamiltonian structure. Diagonal transformations that aim to
reduce the norm of the irreducible blocks of H are the topic of Section 3. In particular, a
structure-preserving Krylov-based balancing algorithm similar to one of the algorithms pre-
sented in [10] will be developed. Numerical examples that illustrate the use of the proposed
balancing strategies for eigenvalue computation are given in Section 4.

2 Irreducible forms

A matrix A ∈ R
n×n is called reducible if there is a permutation matrix P ∈ R

n×n so that

P T AP =

[

A11 A12

0 A22

]

, (2)

where A11 and A22 are square matrices of order not less than one. If no such permutation
exists, then A is called irreducible. The matrices A11 and A22 can be further reduced until
A is permuted to block upper triangular form with irreducible diagonal blocks. Constructing
this final irreducible form is equivalent to finding the strongly connected components of the
incidence graph of A and numbering them in their topological order. These connections are
well known and shall not be reviewed here, see e.g. [14].

We now describe the necessary graph theoretic tools that allow us to develop a structure-
preserving irreducible form for Hamiltonian matrices.

Definition 1 Let H ∈ R
2n×2n be a Hamiltonian matrix as defined in (1), then the incidence

graph of H, denoted by GH(V, E), is a directed graph with vertex and edge sets

V = {v1, . . . , vn, w1, . . . , wn},

E = {(vi, vj) : aij 6= 0} ∪ {(vi, wj) : gij 6= 0} ∪

{(wi, vj) : qij 6= 0} ∪ {(wi, wj) : −aji 6= 0}.

Lemma 2 The incidence graph GH(V, E) of a Hamiltonian matrix H satisfies the following:

a) there is a path from vi to vj if and only if there is one from wj to wi,

b) there is a path from vi to wj if and only if there is one from vj to wi,

c) there is a path from wi to vj if and only if there is one from wj to vi.
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Proof. By induction on the path length k. For k = 2, the conclusions are direct conse-
quences of the definition of the incidence graph and the symmetries of G and Q. Now, assume
that a)–c) hold for any path of maximum length k̄ and that there is a path of length k̄ + 1
from vi to wj . This path is cut; we choose a vertex p = vl or p = wl so that there are paths
of length not greater than k̄ from vi to p and from p to wj . In the case p = vl, the induction
hypothesis shows the existence of paths from wl to wi and from vj to wl. In the other case,
we obtain paths from vj to vl and from vl to wi. In any case, there is a path from vj to wi.
The converse as well as assertions a) and c) are proven analogously.

A directed graph is called strongly connected if for any pair of vertices v and w there is
a path from v to w and one from w to v. The strongly connected components of a directed
graph are its maximal strongly connected subgraphs. Lemma 2 implies consequences for the
structure of the strongly connected components of GH(V, E).

Corollary 3 Let GH(V, E) be the incidence graph of a Hamiltonian matrix H.

V1 := {vi1 , . . . , vik , wj1 , . . . , wjl
}

is the vertex set of a strongly connected component if and only if

V̌1 := {vj1 , . . . , vjl
, wi1 , . . . , wik}

is the vertex set of a strongly connected component.

If V1 ∩ V̌1 6= ∅ then the strong connectivity property and Corollary 3 enforce V1 = V̌1.
The corresponding component will be called of type (II). In the other case, V1 ∩ V̌1 = ∅, we
say that the corresponding components are of type (I). Further information is available about
edges between components.

Lemma 4 Let GH(V, E) be the incidence graph of a Hamiltonian matrix H and let V1 and V2

correspond to strongly connected components of type (I). Then, there is an edge from a vertex
in V1 to a vertex in V2 if and only if there is one from a vertex in V̌2 to a vertex in V̌1, where
V̌1 and V̌2 are defined as in Corollary 3. Moreover, there are no edges between components of
type (II).

Proof. Let (vi, vj) ∈ E with vi ∈ V1 and vj ∈ V2. Then, by definition, wi ∈ V̌1, wj ∈ V̌2 and
by Lemma 2a), (wj , wi) ∈ E. For the second part, let V3 and V4 correspond to two distinct
strongly connected components of type (II) and assume that there are vertices vi ∈ V3, vj ∈ V4

with (vi, vj) ∈ E. This implies wi ∈ V3 and wj ∈ V4 because V = V̌ for type (II) components.
Again, by Lemma 2a), (wj , wi) ∈ E, which means that V3 ∪ V4 is the vertex set of a strongly
connected component contradicting the assumption. The proof is analogous for edges of the
form (vi, wj), (wi, vj) or (wi, wj).

Let us denote V1 ¹ V2 if there is no edge from a vertex in V2 to a vertex in V1. This relation
defines a preorder on the set of strongly connected components, the so called topological
order [14]. Lemma 4 implies that there is always a numbering of the strongly connected
components so that their topological order takes the form

V1 ¹ · · · ¹ Vr ¹ Vr+1 ¹ · · · ¹ Vr+s ¹ V̌r ¹ · · · ¹ V̌1, (3)

where V1, . . . , Vr, V̌1, . . . , V̌r correspond to type (I) components and Vr+1, . . . , Vr+s correspond
to type (II) components of GH(V, E).
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This shows, together with Corollary 3, the existence of a permutation matrix P so that

P T HP =







































A1 ? . . . ? . . . . . . ? . . . ?
. . .

. . .
...

...
...

Ar ? . . . . . . ? . . . ?

Hr+1 0 0
...

...
. . . 0

...
...

Hr+s ? . . . ?

−AT
r

. . .
...

. . . ?
−AT

1







































, (4)

is an upper block triangular matrix, where all diagonal blocks are irreducible. Moreover, each
vertex set belonging to a principal submatrix Hr+i satisfies Vr+i = V̌r+i, implying that Hr+i

can be chosen to be Hamiltonian: Hr+i =
[

Ar+i

Qr+i

Gr+i

−AT

r+i

]

. Thus, the spectrum of H contains

the eigenvalues of the unstructured matrices Ai,−AT
i and those of the Hamiltonian matrices

Hr+i. Unfortunately, the irreducible form (4) does not respect the Hamiltonian structure of
H. Therefore, it is now of interest to construct a permutation matrix P̃ which is structure-
preserving and leads to a form P̃ T HP̃ where the essential information of (4) can be easily
read off. First, let us recall some well-known results about symplectic matrices.

Lemma 5 Let U ∈ R
2n×2n be symplectic, i.e., UT JU = J with J =

[

0

−In

In

0

]

, then the

following holds.

1. If H ∈ R
2n×2n is a Hamiltonian matrix then U−1HU is again Hamiltonian.

2. If U is moreover orthogonal then it has the block representation U =
[

U1

−U2

U2

U1

]

with

U1, U2 ∈ R
n×n.

It was already noted in [4] that the group of symplectic permutation matrices is too
restrictive to obtain useful classifications for P T HP . Hence, we propose to broaden the range
of similarity transformations to P̃ T HP̃ , where P̃ = DP is symplectic, D = diag{±1, . . . ,±1}
and P is a permutation matrix. These symplectic generalized permutation matrices clearly
form a group and thus P̃ T HP̃ generates an equivalence relation, which shall now be classified.

Theorem 6 For any Hamiltonian matrix H there exists a symplectic generalized permutation
matrix P̃ so that

H̃ := P̃ T HP̃ =









Ã11 Ã21 G̃11 G̃12

0 Ã22 G̃T
12 G̃22

0 0 −ÃT
11 0

0 Q̃22 −ÃT
21 −ÃT

22









, (5)
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where

Ã11 =













A1 ? . . . ?

0 A2

. . .
...

...
. . .

. . . ?
0 . . . 0 Ar













, Ã22 =













Ar+1 0 . . . 0

0 Ar+2

. . .
...

...
. . .

. . . 0
0 . . . 0 Ar+s













,

G̃22 =













Gr+1 0 . . . 0

0 Gr+2

. . .
...

...
. . .

. . . 0
0 . . . 0 Gr+s













, Q̃22 =













Qr+1 0 . . . 0

0 Qr+2

. . .
...

...
. . .

. . . 0
0 . . . 0 Qr+s













,

and all matrices Ai, i = 1, . . . , r, and
[

Ar+i

Qr+i

Gr+i

−AT

r+i

]

, i = 1, . . . , s, are irreducible.

Proof. First, note that the elementary symplectic matrix

Ej =













Ij−1

0 1
In−1

−1 0
In−j













swaps, when applied to H, the vertices vj and wj of the incidence graph. This allows us
to construct a product of elementary matrices, P̃1 = Ej1Ej2 . . . Ejk

, so that in all type (I)
components of GP̃ T

1
HP̃1

(V, E) the vertex sets Vi contain only v-vertices, V̌i only w-vertices and

Vi º V̌i for i = 1, . . . , r. By a simultaneous reordering of the v- and w-vertices, there is a
permutation matrix P2 such that

H̃ =

[

P T
2 0
0 P T

2

]

(P̃ T
1 HP̃1)

[

P2 0
0 P2

]

has an incidence graph whose strongly connected components correspond to the vertex sets

V1 = {v1, . . . , vk1
}, V2 = {vk1+1, . . . , vk2

}, . . . , Vr = {vkr−1+1, . . . , vkr
},

Vr+1 = {vkr+1, . . . , vkr+1
, w1, . . . , wl1}, . . . , Vr+s = {vkr+s−1+1, . . . , vkr+s

, wls−1+1, . . . , wls},

V̌1 = {w1, . . . , wk1
}, V̌2 = {wk1+1, . . . , wk2

}, . . . , V̌r = {wkr−1+1, . . . , wkr
},

where the topological order is given by (3). Now, the structure of H̃ is a direct consequence
of Lemma 4.

In short, given a Hamiltonian matrix H, it can be reduced to the form in equation (5)
by first computing a topological sort of its incidence graph, classifying the type (I) and type
(II) components, and permuting the columns and rows of H in the corresponding order.
The following pseudocode implements the described procedure. It calls a subroutine topsort,
which is discussed below.
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Algorithm 7

Input: Matrices A, G, Q ∈ R
n×n, with Q = QT , G = GT , defining a Hamilto-

nian matrix H ∈ R
2n×2n.

Output: A symplectic generalized permutation matrix P̃ ; matrices A, G, Q ∈
R

n×n, with Q = QT , G = GT , defining a Hamiltonian matrix H̃ =
P̃ T HP̃ which has the form (5).

P̃ ← I2n

(V1, . . . , Vk)← topsort
( [

A
Q

G
−AT

] )

FOR i = 1, . . . , k
IF ∃{vj , wj} ∈ Vi THEN type(i)← 2 ELSE type(i)← 1 END IF

END FOR

l← 0
FOR i = 1, . . . , k
IF type(i) = 1 AND l < #(type(i) = 1)/2 THEN

l← l + 1
FOR EACH wj ∈ Vi

P1 ← In − eje
T
j , P2 ← In − P1

A← P1AP1 − P2A
T P2 − P1GP2 − P2QP1

G← P1GP1 + P1AP2 + P2A
T P1 − P2QP2

Q← P1QP1 + P2AP1 + P1A
T P2 − P2GP2

P̃ ← P̃
[

P1

−P2

P2

P1

]

delete wj from Vi, insert vj in Vi

END FOR

END IF

END FOR

p← 0
FOR i = 1, . . . , k
IF p < n THEN

FOR EACH vj ∈ Vi

p← p + 1
P1 ← In + eje

T
p + epe

T
j − eje

T
j − epe

T
p

A← P1AP1, G← P1GP1, Q← P1QP1

P̃ ← P̃
[

P1

0

0

P1

]

END FOR

END IF

END FOR

The called subroutine topsort accepts an arbitrary square matrix as input and returns the
vertex sets of the strongly connected components of its incidence graph in their topological
order. This can be done with Tarjan’s algorithm [23] which uses two depth first searches and
has found an excellent implementation in Fortran 77 [11]. In an object-oriented programming
environment, it is preferable to use an implementation which is able to handle arbitrarily
defined graphs. In this case, no information about the incidence graph has to be stored.
Such subroutines are for example provided by the C++ library LEDA [17]. The complete
Algorithm 7 runs in O(n + nz) time, where nz is the number of nonzeros in H.
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The permutation algorithm proposed in [4, Alg. 3.4] is a special case of Algorithm 7. It
is a structure-preserving version of the permutation algorithm from [21] that is used, e.g., in
LAPACK [2] for solving nonsymmetric eigenproblems. It aims at deflating isolating eigenval-
ues. In graph-theoretic terms, it works on sink and source nodes of GH(V, E) or subgraphs
thereof. A sink (source) node s corresponds to a strongly connected component of GH(V, E)
that satisfies s ¹ Vj (s º Vj) for any other strongly connected component Vj . In the first
phase, the algorithm seeks a sink node s of GH(V, E) and permutes the corresponding diagonal
element to the (n, n) position of H by means of a symplectic generalized permutation matrix
P̃ . For the rest only the matrix P̃ T HP̃ with the first and n-th rows and columns expunged is
considered. The algorithm iterates until no sink node can be found. In the second phase, the
procedure is repeated for source nodes, which are permuted to the (1, 1) position. The worst
case complexity of this algorithm is O(n · nz) which compares unfavorably with the com-
plexity of Algorithm 7. However, it was experimentally observed that Algorithm 7 required
more time than the algorithm in [4] for matrices with density greater than a certain ratio
γ = nz/n2. The exact value of γ depends on the sparsity pattern but a typical observation
was γ ≈ 1/10.

3 Scaling

Suppose we have transformed the Hamiltonian matrix to the form (5). The Hamiltonian
eigenproblem now decomposes into eigenproblems for matrices of the form

HI =

[

AI GI

0 −AT
I

]

, HII =

[

AII GII

QII −AT
II

]

,

where AI and HII are irreducible matrices. In this section we describe scaling algorithms
that aim to reduce the norms of these matrices while preserving their Hamiltonian structure.

Dense matrices are easily handled; the standard balancing procedure described in [20, 21]
can be applied to AI to construct a diagonal matrix D such that the rows and columns of
D−1AID are as close in norm as possible. If the matrix HI is transformed to

[

D−1 0
0 D

] [

AI GI

0 −AT
I

] [

D 0
0 D−1

]

=

[

D−1AID D−1GID
−1

0 −(D−1AID)T

]

,

then also the matrix −(D−1AID)T is balanced in this sense. Such a scaling of a (not nec-
essarily block-upper triangular) Hamiltonian matrix based on balancing just A is also used
in [5].1 How to equilibrate row and column norms of HII by a symplectic scaling matrix is
described in [4, Alg. 4.4].

Both procedures require the calculation of row and column norms, implying that ma-
trix elements must be given explicitly. This requirement is sometimes not satisfied, a large
and sparse matrix might only be defined through its action on a vector. For these cases,
only balancing algorithms which are solely based on a few matrix-vector multiplications, and
possibly matrix-transpose-vector multiplications, can be used. Such algorithms were devel-
oped by Chen and Demmel [10] for general matrices. One of the algorithms, the so called
KrylovAtz, is based on the following fact.

1Note: if using the corresponding implementation (Algorithm 800 from the ACM Collected Algorithms,
CALGO, see http://www.acm.org/calgo), it is beneficial to replace the balancing part by either one of the
strategies developed here or in [4].
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Lemma 8 Let A ∈ R
n×n be an irreducible matrix with non-negative entries and spectral

radius ρ(A). Let x and y be the normalized right and left Perron vectors of A, i.e., Ax = ρ(A)x
and AT y = ρ(A)y with ‖x‖2 = ‖y‖2 = 1. If

D = diag(
√

x1/y1,
√

x2/y2, . . . ,
√

xn/yn), (6)

then ‖D−1AD‖2 = ρ(A).

Proof. See e.g. [10].
This scaling achieves minimal 2-norm as ‖X−1AX‖2 ≥ ρ(A) for any nonsingular matrix

X. Also, the right and left Perron vectors of D−1AD equal D−1x = Dy, thus the condition
number of the spectral radius becomes minimal. If A contains negative entries we can apply
Lemma 8 to |A| := [|aij |]

n
i,j=1 to construct a (possibly suboptimal) diagonal scaling matrix

D. It was observed in [10] that this choice of scaling improves the accuracy of the computed
eigenvalues for almost all considered examples. Nevertheless, it is not clear how to predict
the potential gain in accuracy. Applying the proposed scaling to a Hamiltonian matrix yields
a symplectic scaling matrix as the following lemma shows.

Lemma 9 Let H ∈ R
2n×2n be an irreducible Hamiltonian matrix and S = |H|. If x and

y are the normalized right and left Perron vectors of S, then the diagonal matrix D defined
in (6) is symplectic.

Proof. Let P =
[

0

In

In

0

]

, then PS = ST P and thus x = Py which implies that D is

symplectic.
It remains to compute the Perron vectors x and y of |H|. In principle, one could apply the

power method to |H| to approximate these vectors. However, if H is not explicitly defined
then also the action of |H| on a vector must be approximated by matrix-vector products which
involves only the matrix H itself. For a general matrix A, a statistically motivated procedure
based on products with a random vector z, where the entries zi equal 1 or −1 with probability
1/2, was presented in [10]. It makes use of the fact that multiplying A by z approximates
one step of the power method applied to |A| with starting vector [1, 1, . . . , 1]T . For Hamilto-
nian matrices, the following lemma shows how to guarantee that these approximations yield
symplectic scaling matrices.

Lemma 10 Let H ∈ R
2n×2n be a Hamiltonian matrix partitioned as in (1), and let z ∈ R

2n.
If

H̄ =

[

A G
Q AT

]

, P =

[

0 In

In 0

]

, (7)

then p = H̄z and r = H̄T Pz satisfy r = Pp implying that

D = diag(
√

r1/p1, . . . ,
√

r2n/p2n)

= diag(
√

pn+1/p1, . . . ,
√

p2n/pn,
√

p1/pn+1, . . . ,
√

pn/p2n)

is symplectic.

Proof. The statement is a direct consequence of the fact that P H̄ is symmetric.
This leads us to the following adaption of KrylovAtz to Hamiltonian matrices.
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Algorithm 11

Input: An irreducible Hamiltonian matrix H ∈ R
2n×2n.

Output: A symplectic diagonal matrix D so that D−1HD is approximately bal-
anced in the sense of Lemma 8.

D ← I2n

FOR k = 1, 2, . . .
z ← vector of length 2n with random ±1 entries
z ← Dz, p← H̄z, p← D−1p
FOR i = 1, . . . , n
IF pi 6= 0 AND pn+i 6= 0 THEN

dii ← dii ·
√

pi/pn+i

dn+i,n+i ← dn+i,n+i ·
√

pn+i/pi

END IF

END FOR

END FOR

Two remarks are in order.

Remark 12 Algorithm 11 works with H̄, see (7), instead of H implying that the action of
the matrices A, G and Q on a vector must be known. Alternatively, one could make use of
the relation

H̄

[

zu

zl

]

= H

[

zu

0

]

+

[

In 0
0 −In

]

H

[

0
zl

]

.

Remark 13 Based on the experimental results presented in [10] we propose to replace the
condition pi 6= 0 in the inner loop of Algorithm 11 by |pi| > δ‖H‖F . Although there is little
theoretical justification for adding such a cutoff value δ it turns out that the choice δ = 10−8

often results in smaller norms for the scaled matrices.

A noted above, the algorithm described here, with or without cutoff value, is suboptimal.
The limitations of this approach are the same as described in [10]. The numerical examples in
the next section demonstrate that in most cases, an (almost) optimal matrix norm reduction
is achieved in most of the investigated examples.

4 Numerical Examples

Since most applications of Hamiltonian eigenproblems have their background in control theory
we used for our numerical experiments two benchmark collections from this area. The first
collection [1] contains examples of continuous-time algebraic Riccati equations (CAREs) of
the form

Q + AT X + XA−XGX = 0.

Computing eigenvalues and invariant subspaces of the corresponding Hamiltonian matrix H =
[

A
Q

G
−AT

]

plays a fundamental role in most algorithms to solve CAREs; see, e.g., [3, 18, 22].

The second collection by Chahlaoui and Van Dooren [9] aims at model reduction problems
for linear time-invariant systems. Each example provides matrices A ∈ R

n×n, B ∈ R
n×m,

and C ∈ R
p×n. Here, the corresponding Hamiltonian matrix H =

[

A
CT C

BBT

−AT

]

can be used to

determine the closed-loop poles of the system which in turn can help to evaluate the quality
of the closed-loop performance of the reduced-order model.
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Example n Hper Hirr

Ex. 1.6 [1] 30 8× (1× 1) 8× (1× 1)
2× (2× 2)

1× (52× 52) 1× (48× 48)

Ex. 2.4 [1] (ε = 0) 4 1× (4× 4) 2× (2× 2)

Ex. 2.9 [1] 55 4× (1× 1) 10× (1× 1)
2× (2× 2)

1× (106× 106) 1× (96× 96)

Ex. 4.3 [1] 60 56× (1× 1) 56× (1× 1)
(µ = 4, δ = 0, κ = 0) 1× (8× 8) 2× (4× 4)

Table 1: Sizes of the decoupled eigenproblems after application of Hper and Hirr.

4.1 Permutation algorithms

We compared the permutation algorithm in [4, Alg. 3.4], in the following denoted by Hper,
with the proposed Algorithm 7, denoted by Hirr. Both algorithms attempt to decouple the
Hamiltonian eigenproblem into smaller-sized problems. Hirr is potentially more successful, as
explained at the end of Section 2. Indeed, we observed this phenomena in the four examples
that are listed in Table 1. For instance, Hper applied to Example 2.9 [1] isolates four
eigenvalues, which means that the other eigenvalues can be computed from a 106 × 106
Hamiltonian matrix. Hirr isolates ten eigenvalues. The other eigenvalues are contained in
two 2 × 2 matrices and a 96 × 96 Hamiltonian matrix. As costs for computing eigenvalues
crucially depend on the size of the largest decoupled eigenproblem, we may conclude that it
will be beneficial to use Hirr as a cheap preliminary reduction step. However, it should be
noted that all examples of [9] correspond to irreducible Hamiltonian matrices, showing the
limitation of such an approach.

4.2 Matrix norm reduction

We examined the capability of Algorithm 11, in the following denoted by Htz, to reduce the
norms of Hamiltonian matrices. If a cutoff value δ, see Remark 13, was used then Algorithm 11
is denoted by Cut. We let the number of iterations in Htz and Cut vary from 1 to 10, the
cutoff δ from 0.1 to 10−10 by powers of 10, and measured the minimal Frobenius norm of
the scaled matrices. Those norms were compared with the Frobenius norms of the scaled
matrices returned by Algorithm 4.4 [4], or for short Bal. All tests were done in Matlab.
Table 2 summarizes the results we obtained with the two benchmark collections. For the
examples not listed either scaling strategy makes no or little difference to the matrix norm.
In most cases, Bal, Htz and Cut give very similar results. A notable exception is Example
4.4, where Htz reduces the norm of H only by two orders of magnitude while Bal and Cut

reduce it by more than five orders of magnitude. Furthermore, only Bal is capable to reduce
the norm of the ISS example from [9].

It was proposed in [10] to use 5 as the default number of iterations and δ = 10−8 as the
default cutoff value. Using those instead of optimal values, the norms of the scaled matrices
returned by Cut are usually no more than by a factor of ten larger. The only exception in
the benchmark collections is Example 1.6 where the norm of the scaled matrix, using Cut
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Example n ‖H‖F Bal Htz Cut

Ex. 1.6 [1] 30 1.4× 1008 1.2× 1003 1.3× 1003 1.3× 1003

Ex. 2.2 [1] 2 1.0× 1006 2.9× 1005 5.9× 1005 2.7× 1005

Ex. 2.3 [1] 2 1.4× 1006 2.0× 1004 1.4× 1006 1.8× 1005

Ex. 2.7 [1] 4 1.0× 1012 2.1× 1006 1.9× 1006 1.9× 1006

Ex. 2.9 [1] 55 4.4× 1010 4.0× 1003 4.1× 1003 2.7× 1003

Ex. 4.4 [1] 421 8.6× 1011 2.5× 1006 7.2× 1009 3.5× 1006

Beam [9] 348 1.0× 1005 5.0× 1003 6.3× 1003 5.7× 1003

Build [9] 48 2.2× 1004 8.0× 1002 5.4× 1003 2.9× 1003

CDPlayer [9] 120 1.5× 1006 3.3× 1005 3.6× 1005 3.4× 1005

ISS [9] 270 2.9× 1004 8.8× 1002 3.4× 1004 3.4× 1004

Table 2: Norms of Hamiltonian matrices with and without scaling.

with default values, is 1.7× 105.

4.3 Eigenvalue computation

Balancing may have a strong positive impact on the accuracy of eigencomputations. The first
point we want to illuminate is the merits of decoupling. Let us consider Example 2.9 [1].
We applied a Matlab implementation of the square-reduced method [5], (Sqred), to the
corresponding 110×110 Hamiltonian matrix. The relative errors of seven selected eigenvalues
are displayed in the second column of Table 3. The ’exact’ eigenvalues used to obtain these
errors were computed with the QR algorithm in quadruple precision. Next, we used Hper

as a preliminary reduction step, which isolates ±λ1,±λ2. Consequently, these eigenvalues
are computed without any round-off error. All the other eigenvalues were computed using
Sqred applied to the remaining 106 × 106 block. The third column of Table 3 contains the
resulting relative errors. With Hirr ten eigenvalues, ±λ1,±λ2, . . . ,±λ5, are isolated and four
eigenvalues ±λ6,±λ7 are contained in two 2×2 blocks. The latter eigenvalues were computed
applying the QR algorithm to the 2×2 blocks which yields, as can be seen in the last column
of Table 3, relatively small errors. In fact, they are almost 10 orders more accurate than the
eigenvalues obtained by Sqred with and without Hper.

Eigenvalue Sqred Hper+Sqred Hirr

λ1 = −20 1.7× 10−05 0 0
λ2 = −20 1.7× 10−05 0 0
λ3 ≈ −5.30 1.2× 10−10 4.5× 10−11 0
λ4 ≈ −33.3 1.2× 10−12 7.7× 10−11 0
λ5 ≈ −221 3.8× 10−13 4.2× 10−12 0
λ6 ≈ −5.16 + 5.26ı 1.9× 10−06 2.6× 10−05 5.5× 10−15

λ7 ≈ −5.16− 5.26ı 1.9× 10−06 2.6× 10−05 5.5× 10−15

Table 3: Relative errors of eigenvalues computed by the square-reduced method with and
without permuting.

We also investigated the influence of scaling on the accuracy of sparse eigensolvers. For
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Figure 1: Relative errors of eigenvalues computed by Arpack and Shira with and without
scaling for Example 2.9.

this purpose, we applied the Fortran implementation of Arpack [16] to the 96 × 96 irre-
ducible Hamiltonian matrix H̃ obtained after Hirr had been applied to Example 2.9 [1]. The
parameter tol in the stopping criterion, see [16, Sec. 2.3.5], was set to machine precision
and the dimension of the Arnoldi basis was limited to 40. All computations were performed
in a Compaq Visual Fortran environment. Arpack computed the 20 eigenvalues of largest
magnitude, the relative errors of those eigenvalues which have negative real part are displayed
in the left graph of Figure 1. Also displayed are the relative errors when Arpack is applied to
the operators D−1

Bal
H̃DBal and D−1

Cut
H̃DCut, where DBal and DCut are the symplectic scaling

matrices computed by Bal and Cut, respectively. The graph on the right shows the same
quantities, but computed using a Fortran implementation of Shira [19] instead of Arpack.
Shira is basically Arpack applied to the operators H̃2, D−1

Bal
H̃2DBal and D−1

Cut
H̃2DCut

with slight modifications to guarantee that the Arnoldi basis satisfies a certain relationship.
Figure 1 shows that for both, Arpack and Shira, either scaling strategy yields considerable
improvements with respect to eigenvalue accuracies. It should be noted, though, that such
drastic improvements can not always be expected. In case a matrix is well-balanced and no
eigenvalues (or blocks) can be isolated, there is often no considerable affect of any balancing
strategy. On the other hand, is is quite common for real-world applications to be badly scaled
or to lead to a natural decoupling of eigenvalues so that improvements can often be observed.

Example 4.4 from [1] demonstrates that balancing is a must in some applications. The
QR algorithm applied to the corresponding Hamiltonian matrix without balancing does not
converge. Arpack encounters a similar error, the QR algorithm fails to compute the eigen-
values of some Ritz block during the Arnoldi iteration. Scaling resolves these problems. Both,
Bal+Arpack and Cut+Arpack compute eigenvalues with a relative error close to machine
precision. On the other hand, Shira runs to completion, even for the unscaled matrix. The
relative errors of the 20 largest eigenvalues with negative real part computed with Shira,
Bal+Shira and Cut+Shira are displayed in Figure 2. Again, Figure 2 shows that scaling
leads to considerably more accurate eigenvalues.
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Figure 2: Relative errors of eigenvalues computed by Shira with and without scaling for
Example 4.4.

5 Conclusions

We have introduced a new permutation strategy for Hamiltonian matrices based on graph-
theoretic considerations. The corresponding structure-preserving similarity transformation
allows to reduce Hamiltonian matrices to a block-upper triangular form with irreducible
diagonal blocks, thereby improving earlier permutation strategies based on deflating isolated
eigenvalues. For the subsequent step of balancing Hamiltonian matrices using diagonal scaling,
we propose a method that requires only information provided by matrix-vector products.
This method, which is closely related to an approximate balancing algorithm for general
matrices, allows us to (approximately) balance sparse Hamiltonian eigenproblems where the
Hamiltonian matrix is not given explicitly. Numerical examples clearly exhibit the advantages
of scaling. The implementation of this balancing strategy will hopefully help to develop robust
numerical software for solving sparse Hamiltonian eigenproblems.
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Louvain. The hospitality of this institute is gratefully acknowledged. The referee’s comments
which improved the quality of this paper are gratefully acknowledged.

References

[1] J. Abels and P. Benner. CAREX - a collection of benchmark examples for continuous-
time algebraic Riccati equations (version 2.0). SLICOT working note 1999-14, WGS,
1999. Available from http://www.win.tue.nl/niconet/NIC2/reports.html.

13



[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide.
Society for Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999.

[3] P. Benner. Computational methods for linear-quadratic optimization. Supplemento ai
Rendiconti del Circolo Matematico di Palermo, Serie II, No. 58:21–56, 1999.

[4] P. Benner. Symplectic balancing of Hamiltonian matrices. SIAM J. Sci. Comput.,
22(5):1885–1904, 2000.

[5] P. Benner, R. Byers, and E. Barth. Algorithm 800. Fortran 77 subroutines for computing
the eigenvalues of Hamiltonian matrices I: The square-reduced method. ACM Trans.
Math. Software, 26(1):49–77, 2000.

[6] P. Benner and H. Faßbender. An implicitly restarted symplectic Lanczos method for the
Hamiltonian eigenvalue problem. Linear Algebra Appl., 263:75–111, 1997.

[7] P. Benner, V. Mehrmann, and H. Xu. A numerically stable, structure preserving method
for computing the eigenvalues of real Hamiltonian or symplectic pencils. Numerische
Mathematik, 78(3):329–358, 1998.

[8] R. Byers. A Hamiltonian QR algorithm. SIAM J. Sci. Statist. Comput., 7(1):212–229,
1986.

[9] Y. Chahlaoui and P. Van Dooren. A collection of benchmark examples for model reduc-
tion of linear time invariant dynamical systems. SLICOT working note 2002-2, WGS,
2002. Available from http://www.win.tue.nl/niconet/NIC2/reports.html.

[10] T.-Y. Chen and J. W. Demmel. Balancing sparse matrices for computing eigenvalues.
Linear Algebra Appl., 309:261–287, 2000.

[11] I. S. Duff and J. K. Reid. An implementation of Tarjan’s algorithm for the block trian-
gularization of a matrix. ACM Trans. Math. Software, 4:137–147, 1978.

[12] W.R. Ferng, W.-W. Lin, and C.-S. Wang. The shift-inverted J-Lanczos algorithm for the
numerical solutions of large sparse algebraic Riccati equations. Comput. Math. Appl.,
33(10):23–40, 1997.

[13] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, MD, third edition, 1996.

[14] D. E. Knuth. The art of computer programming. Volume 3, Sorting and searching.
Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley
Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1973.

[15] D. Kressner. Block algorithms for orthogonal symplectic factorizations, 2003. Accepted
for publication in BIT.

[16] R.B. Lehoucq, D.C. Sorensen, and C. Yang. ARPACK Users’ Guide. Society for Indus-
trial and Applied Mathematics (SIAM), Philadelphia, PA, 1998.
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