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Chapter 1

Introduction

The purpose of this chapter is firstly to give a brief introduction to the prob-
abilistic method as well as to the Regularity lemma and secondly to give a
summary of the results obtained in this thesis.

1.1 Some background

1.1.1 The probabilistic method

Roughly speaking, the probabilistic method can be described as follows: the
existence of some desired object is demonstrated by considering some suitably
defined probability space. Such an object might be a satisfying assignment for a
Boolean function, a graph with some special properties or a certain substructure
within a given graph. A large number of such examples is described in the
textbook by Alon and Spencer [7] which is devoted to this method.

In many cases, the probabilistic existence argument can also be made con-
structive, which means that the method is strongly linked to the design and
analysis of randomized algorithms (see the textbook by Motwani and Ragha-
van [83]). In fact, the resulting algorithms can sometimes even be derandom-
ized, i.e. they can be turned into purely deterministic algorithms (see [83] again
or [7]). Thus, the probabilistic method is also a useful tool to develop such
algorithms.

Erdős was the first to apply and develop the method in a systematic way.
He inititally applied it in order to obtain a lower bound on the Ramsey number
R(t, t) [31]. Here R(t, t) is the smallest number n so that for every 2-colouring
of the edges of the complete graph on n vertices, one can find a monochromatic
complete graph on t vertices. Erdős considered a random 2-colouring of a
complete graph on n vertices and showed that if n is not too large, then the
expected number of monochromatic complete graphs of order t is smaller than
one. This of course immediately implies the existence of a 2-colouring without
a monochromatic complete graph on t vertices. So far no explicit construction
is known which gives a comparable lower bound on R(t, t).

The above elementary argument can also be rephrased as a (double) count-
ing argument without making any explicit reference to probability. This is
in fact also the case for several other applications of the probabilistic method.
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However, the probabilistic viewpoint has two advantages: firstly (and arguably),
it often provides extra intuition and thus provides the key to solving the prob-
lem in question. Secondly (and more importantly), most applications of the
probabilistic method involve more sophisticated tools (like Chernoff’s bound or
the Lovász local lemma for instance) for which nonprobabilistic formulations
are much harder or even impossible to obtain.

Counting arguments and the probabilistic method are also closely linked to
the study of the typical properties of random structures. One such example
is the celebrated result of Erdős [32] that there exist graphs which have both
high girth and high chromatic number: the probabilistic proof was obtained by
considering random graphs. We will refine this argument slightly in Chapter 8.

1.1.2 The Regularity lemma

The Regularity lemma [97] was developed in the 1970’s by Szemerédi as a tool
in Ramsey theory and combinatorial number theory. He used it to prove the
famous conjecture of Erdős and Turán from 1936 that every dense subset of
the integers must contain arbitrarily long arithmetic progressions. Roughly
speaking, the assertion of the Regularity lemma is that the vertices of any
dense graph can be partitioned into a bounded number of clusters so that
most of the bipartite subgraphs between the clusters look like random graphs.
Thus even more roughly, it states that every dense graph can in some sense
be approximated by random graphs. The exact statement is rather technical,
and we defer it to Chapter 2. As Komlós [48] puts it in his survey: “This
is not a very transparent theorem, but it grows on you with time”. Indeed,
gradually the Regularity lemma was recognized to be an extremely important
tool also beyond Ramsey theory. Its impact on computer science has increased
considerably since Alon et al. [4] discovered an algorithmic version (i.e. an
algorithm which constructs the above partition in polynomial time).

More recently, Komlós, Sárközy and Szemerédi developed another powerful
tool (called the Blow-up lemma [51]), which is very useful in conjunction with
the Regularity lemma. The Blow-up lemma makes it possible to find special
spanning subgraphs in the subgraphs between the clusters of the regularity
partition (and thus with some further work also in the original graph). For
instance the above authors applied it to prove the long-standing conjecture of
Pósa (for large graphs) that every graph on n vertices whose minimum degree
is at least 2n/3 contains the square of a Hamilton cycle [50]. We will also apply
this tool in the final three chapters of this thesis.

The Regularity lemma can often be combined with the probabilistic method.
In fact, with the exception of Chapter 12, this will always be the case when we
apply the Regularity lemma. One such example occurs in Chapter 10, where we
need (and prove) an auxiliary result which states that (roughly speaking) with
very high probability pseudo-randomness of bipartite graphs is inherited by
subgraphs induced by random subsets. We apply this to find large topological
cliques in graphs but hope that it will also be applicable elsewhere. In fact, a
similar statement was proved independently of us by Gerke et al. [34] in the
context of extremal subgraphs of random graphs.
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1.2 Summary of results

A more detailed discussion of the results stated below is deferred to the relevant
chapters. The results in Chapters 8 and 9 are joint work with Hans Jürgen
Prömel and Anusch Taraz [88, 89]. The results in Chapter 12 are joint work with
Daniela Kühn and Anusch Taraz [73]. The results in the remaining chapters
are joint work with Daniela Kühn [63]–[66], [68]–[71].

I. The probabilistic method

Almost all of the proofs of the main results in this part make use of the proba-
bilistic method.

Minors in graphs of large girth

We say that a graph H is a minor of some other graph G if H can be ob-
tained from a subgraph of G by contracting edges. A fundamental result of
Mader [75] on subdivisions implies that minors can be forced by large average
degree: for every natural number r there exists a smallest number f(r) such
that every graph G of average degree larger than f(r) contains the complete
graph Kr of order r as minor. Kostochka [59] and Thomason [99] independently
showed that there exists a constant c such that f(r) ≤ cr

√
log r. Recently,

Thomason [100] was able to determine f(r) asymptotically: he showed that
f(r) = (1 + o(1))cr

√
log r for an explicit constant c. Dense random graphs are

extremal in the sense that they provide the lower bound for this result.
The question of which chromatic number guarantees a Kr minor is still

wide open. In 1943 Hadwiger conjectured that a chromatic number of at least
r suffices. Since Kr has chromatic number r but does not contain a Kr+1 minor,
the conjecture would be best possible. As every graph of chromatic number r
has a subgraph of minimum degree at least r−1, the above results about average
degree imply that if c is a sufficiently large positive constant, then every graph
of chromatic number at least cr

√
log r contains a Kr minor. But it is not known

whether graphs of large chromatic number contain larger complete minors than
those forced by the average degree of their subgraphs. For example, it is still
open whether one can always find a complete minor whose order is linear in the
chromatic number.

Thomassen [102] observed that large complete minors are also forced by
large girth. More precisely, he showed that if the girth of a graph G is large and
its minimum degree is at least 3, then G contains minors whose minimum degree
is much larger than that of G itself and thus G also contains large complete
minors. Here the girth of a graph is the length of its shortest cycle. So if a graph
G has large girth then it looks locally like a tree. Thus Thomassen’s observation
is the surprising fact that if the minimum degree of such a ‘locally sparse’ graph
is at least 3, i.e. if its large girth is not merely obtained by subdividing edges,
then it must contain a large ‘dense’ substructure, namely a large complete
minor. Diestel and Rempel [29] gave a better bound on the girth required to
force a Kr minor in a graph of minimum degree at least 3: they showed that
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there exists a constant c such that a girth of at least 6 log2 r + 3 log2 log2 r + c
will do.

In Chapter 3 we will use probabilistic arguments to give more precise as-
ymptotic bounds on the girth required to force a minor of given minimum
degree:

Theorem A For every odd integer g ≥ 3 there exists a positive constant
c = c(g) such that for all r ≥ 3 every graph G of minimum degree at least r and
girth at least g contains a minor of minimum degree at least c(r − 1)(g+1)/4.

Together with the result of Kostochka and Thomason mentioned earlier this
implies the following.

Corollary B For every odd integer g ≥ 3 there exists a positive constant
c = c(g) such that every graph of minimum degree at least r and girth at least

g contains a complete graph as minor whose order is at least cr
g+1
4 /

√
log r.

As every graph of chromatic number r contains a subgraph of minimum degree
at least r−1, this implies Hadwiger’s conjecture for graphs of girth at least five
and sufficiently large chromatic number. (We will improve on this result in the
following section).

For fixed girth, Theorem A and Corollary B would give the right order of
magnitude (as a function of r) provided that a well known conjecture about
the existence of small graphs of given minimum degree and given girth is true.
Moreover, if g = 4k + 3 for some k ∈ N, then the constant c in Theorem A is in
fact independent of g and thus Theorem A improves the cited bound by Diestel
and Rempel: it implies that there exists a constant c such that every graph of
minimum degree at least 3 and girth at least 4 log2 r + 2 log2 log2 r + c has a Kr

minor. If the above-mentioned conjecture holds, the leading constant 4 would
be correct.

Minors in Ks,s-free graphs

In Chapter 4 we shall see that not only graphs of large girth contain large
minors, but also graphs which are locally sparse in the much weaker sense that
they do not contain a fixed complete bipartite graph Ks,s as a subgraph:

Theorem C For each integer s ≥ 2 every Ks,s-free graph of average degree at
least r contains a complete graph as minor whose order is at least

r
1+ 1

2(s−1)
−o(1)

.

Again, as every graph of chromatic number r contains a subgraph of minimum
degree at least r − 1, this implies Hadwiger’s conjecture for Ks,s-free graphs of
sufficiently large chromatic number. (Note that the condition here is weaker
than that in the previous section.)

Similarly as in the case of large girth, Theorem C would be best possible
up to the error term o(1), provided that a well known conjecture about the
existence of Ks,s-free graphs with many edges is true. Moreover, it is easy to
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see that it does not make sense to forbid a non-bipartite graph instead of a Ks,s

since there are bipartite graphs which have no larger complete minors than
those guaranteed by the result of Kostochka and Thomason cited above.

Large topological cliques in graphs without a 4-cycle

A subdivision TH of a graph H is a graph obtained from H by replacing the
edges of H with internally disjoint paths. We say that a graph G contains H
as a topological minor if G contains a subdivision of H. So H is a minor of
G if H is a topological minor of G, but the converse is not necessarily true.
Similarly as minors, topological minors can be forced by large average degree:
Mader [75] showed that for every r ∈ N there exists a smallest number d(r) such
that every graph G of average degree larger than d(r) contains a subdivision
of Kr. Bollobás and Thomason [20] as well as Komlós and Szemerédi [58]
independently proved that there is a constant c such that d(r) ≤ cr2. As was
first observed by Jung [43], complete bipartite graphs with vertex classes of
equal size show that this gives the correct order of magnitude.

Jung’s observation implies that in general a minimum degree of order r2 is
needed to force a subdivision of Kr+1. However, Mader [79] showed that if we
only consider graphs of large girth as host graphs then a minimum degree of r
already suffices.

Mader’s bound on the girth required is linear in r. In Kühn and Osthus [62]
it is shown that in fact the necessary girth does not depend on r. More precisely,
every graph of minimum degree r and girth at least 186 contains a subdivided
Kr+1 and a girth of at least 15 will do if r ≥ 435. This implies the conjecture of
Hajós that every graph of chromatic number at least r contains a subdivision
of Kr (which is false in general) for graphs of girth at least 186.

Since complete bipartite graphs are triangle-free but they do not contain
subdivisions of large cliques, the constant 15 in the result of [62] cannot be
replaced by anything less than 5. Mader [80] asked whether a girth of at least
5 is already sufficient to force a subdivision of Kr+1. In Chapter 5 we will see
that in graphs G of girth at least 5 one can find a subdivision of a clique whose
order is at least almost linear in the average degree of G:

Theorem D Every graph G of girth at least 5 and average degree at least r
contains a clique of order at least r1−o(1) as subdivision.

Moreover, we will show that complete bipartite graphs are in a sense the only
counterexamples: if we only consider Ks,s-free graphs G as host graphs (for
fixed s), then these graphs contain significantly larger subdivided cliques than
those guaranteed by the average degree of G.

Induced subdivisions in Ks,s-free graphs

In Chapter 6 we show that if we consider Ks,s-free graphs as host graphs, then
we can require our subdivisions to be induced:

Theorem E For all natural numbers s and r there exists a number d = d(s, r)
such that every Ks,s-free graph of average degree at least d contains an induced
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subdivision of Kr.

Of course, an induced subdivision need not exist in general. Indeed, if G is a
complete bipartite graph, then it does not even contain an induced subdivision
of K4. Furthermore, forbidding a non-bipartite graph instead of a Ks,s makes
no sense as then G could be a complete bipartite graph and so the result is best
possible in this sense.

Theorem E was motivated by an analogous conjecture of Scott [95] about
induced subdivisions in Ks-free graphs of large chromatic number.

Forcing unbalanced complete bipartite minors

Recently, Myers and Thomason [87] determined the asymptotics of the average
degree which is necessary to force a given (large) dense graph H as a minor.
They also raised the question of what happens for sparse graphs H. In par-
ticular, Myers [86] posed the conjecture that for every integer s there exists a
positive constant C such that for all integers t every graph of average degree at
least Ct contains the complete bipartite graph Ks,t as a minor. In Chapter 7 we
prove the following strengthened version of this conjecture. (In fact, we prove
an even stronger but slightly more technical result.)

Theorem F For every ε > 0 and every integer s there exists a number t0 =
t0(ε, s) such that for all integers t ≥ t0 every graph of average degree at least
(1 + ε)t contains Ks,t as a minor.

Asymptotically, the bound on the average degree is obviously best possible.

Graphs of high girth and high chromatic number

As mentioned in Section 1.1.1, the existence of graphs which have both high
girth and high chromatic number was first demonstrated by Erdős using the
probabilistic method. In Chapter 8, we observe that a simple refinement of
his argument actually shows that such graphs are quite common – almost all
graphs of high girth and suitable density have high chromatic number:

Theorem G For all ℓ ≥ 3 and k ∈ N, there are constants C1 and C2 such
that almost all graphs with n vertices and m edges whose girth is greater than ℓ
have chromatic number at least k, provided that C1n ≤ m ≤ C2n

ℓ/(ℓ−1) (i.e. the
proportion of such graphs tends to 1 as n tends to ∞).

For ℓ = 3 the bound on the number of edges is close to best possible: In Osthus,
Prömel and Taraz [90] it is proved that almost all triangle-free graphs with n
vertices and m edges are in fact bipartite if m is a little larger or smaller. (The
precise statement of the latter result is given in the introduction to Chapter 8.)
Thus Theorem G leads to a more complete picture of the likely chromatic
number of random triangle-free graphs of given density.

Random planar graphs

In Chapter 9 we investigate the properties of random planar graphs and apply
counting arguments to give bounds on the number of planar graphs. As indi-
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cated in Section 1.1.1, counting arguments, the probabilistic method and the
study of random graphs are all closely related. Thus while Chapter 9 does not
involve the probabilistic method directly, the type of arguments used here is
related to those employed elsewhere. Moreover, triangulations play a prominent
role both here and in the final two chapters of this thesis.

The typical properties of random planar graphs (and the related problem
of estimating the number of planar graphs) were first investigated by Denise,
Vasconcellos and Welsh [27]. In particular, they asked about the likely number
of edges of a random planar graph on n vertices. By Euler’s theorem, this is
of course at most 3n − 6. Gerke and McDiarmid [35] proved that almost all
labelled planar graphs on n vertices have at least 13n/7 edges. We prove the
following upper bound:

Theorem H Almost all labelled planar graphs on n vertices have at most 2.56n
edges (i.e. the proportion of such graphs tends to 1 as n tends to ∞).

We also improve bounds of [27] on the number of planar graphs. Very recently,
some improvements to our above results were obtained by Bonichon, Gavoille
and Hanusse [22].

Our proofs are based on the following result, which states that the number
of triangulations of a planar graph is exponential in the number of edges which
are needed to triangulate it. The bound is best possible up to the value of the
constant ε.

Theorem I Every labelled planar graph G with n vertices and m edges is
contained in at least ε3(3n−m)/2 labelled triangulations on n vertices, where ε is
an absolute constant.

II. The Regularity lemma

The proofs of the main results in this part are all based on the Regularity
lemma.

Extremal connectivity for topological cliques in bipartite graphs

Recall that subdivisions of complete graphs are forced by large average degree.
However, the correct asymptotics for the average degree d(r) which is necessary
to force a subdivided Kr is not yet known. So far, the best known bounds are

(1 + o(1))
9r2

64
≤ d(r) ≤ (1 + o(1))

r2

2
. (1.1)

The upper bound is due to Komlós and Szemerédi [58]. As observed by  Luczak,
the lower bound is obtained by considering a random subgraph of a complete
bipartite graph with edge probability 3/4. With high probability the connec-
tivity of these random graphs is about the same as their average degree. Thus,
a connectivity of (1 + o(1))9r2/64 is necessary to guarantee a subdivided Kr,
even if we only consider bipartite graphs as host graphs. The main result of
Chapter 10 states that for bipartite graphs this gives the correct asymptotics:
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Theorem J Given r ∈ N, let cbip(r) be the smallest integer such that every
cbip(r)-connected bipartite graph contains a subdivided Kr. Then

cbip(r) = (1 + o(1))
9r2

64
.

Moreover, the proof of this result shows that in the non-bipartite case a con-
nectivity of (1 + o(1))r2/4 suffices to force a subdivided Kr. Thus in general
the connectivity which is necessary to guarantee a subdivided Kr lies between
(1 + o(1))9r2/64 and (1 + o(1))r2/4. We also improve the constant 1/2 in the
upper bound in (1.1) slightly to 10/23.

Packings in dense regular graphs

In Chapter 11 we not only seek a single subdivision of a graph H in some graph
G, but we want to cover (almost) all of the vertices of G by disjoint subdivided
copies of a given graph H. Let us call a collection of disjoint subdivisions
of H in G a TH-packing in G. (These subdivisions need not necessarily be
isomorphic.) Clearly, we cannot always find a TH-packing which covers almost
all of the vertices of G, not even if G is dense. Indeed, if G is a large complete
bipartite graph whose vertex classes have very different sizes, then for example
any TK4-packing misses a large number of vertices in the larger vertex class
of G. However, if G is regular and dense, then we can even cover all but a
constant number of vertices of G:

Theorem K For every graph H without isolated vertices which is not a union
of cycles and every positive c there exists a constant C = C(H, c) such that
every cn-regular graph G of order n has a TH-packing which covers all but at
most C of its vertices.

In fact, this result remains true if G is ‘almost-regular’. Moreover, we prove that
for the cases H = K4 and H = K5 one can even cover all vertices of G if the
order of G is sufficiently large. For the case when H is a cycle, Alon [3] proved
that every r-regular graph G contains a TH-packing which covers all but an ε-
fraction of the vertices of G, provided that r is sufficiently large compared with
ε and |H|. All these results were motivated (and give support to) a conjecture
of Verstraëte [106] (see also Alon [3]). We also obtain related results about
packings of subgraphs.

Large planar subgraphs in dense graphs

In Chapters 12 and 13 we prove sufficient and essentially necessary conditions
in terms of the minimum degree for a graph to contain planar subgraphs with
many edges. More precisely, we study the following extremal question: Given a
function m = m(n), how large does the minimum degree of a graph G of order
n have to be in order to guarantee a planar subgraph with at least m(n) edges?

Since the facial cycles of any planar subgraph of a bipartite graph G have
length at least 4, Euler’s formula implies that no planar subgraph of G has
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more than 2n − 4 edges. Thus, as long as the minimum degree is at most n/2,
we cannot guarantee a planar subgraph with more than 2n− 4 edges. Our first
result in Chapter 12 shows that a significantly smaller minimum degree already
forces a planar subgraph with ‘roughly’ 2n edges.

Theorem L For every 0 < ε < 1 there exists a constant c = c(ε) such that
every graph G of order n and minimum degree at least c

√
n contains a planar

subgraph with at least (2 − ε)n edges.

It turns out that the condition on the minimum degree is best possible up to
the value of c. Moreover, as long as the minimum degree is o(n), one cannot
hope for a planar subgraph with 2n − C edges, where C does not depend on
n. However, if the minimum degree is linear in n, then a planar subgraph with
2n − C edges can be guaranteed:

Theorem M For every γ > 0 there is a constant C = C(γ) such that every
graph G of order n and minimum degree at least γn contains a planar subgraph
with at least 2n−C edges and such that every graph G of order n and minimum
degree at least (1/2+γ)n contains a planar subgraph with at least 3n−C edges.

This is best possible in the sense that in both cases the constant C has to
depend on γ. Moreover, also in the second part of the statement the additional
term γn in the bound on the minimum degree cannot be replaced by a sublinear
one.

Spanning triangulations in graphs

In Chapter 13 we answer the question of which minimum degree is needed to
force a triangulation of the plane as a spanning subgraph, i.e. a planar subgraph
with 3n − 6 edges:

Theorem N There exists an integer n0 such that every graph G of order
n ≥ n0 and minimum degree at least 2n/3 contains some triangulation of the
plane as a spanning subgraph.

This is best possible: for all integers n there are graphs of order n and minimum
degree ⌈2n/3⌉ − 1 without a spanning triangulation.

All proofs in the final three chapters of this thesis are algorithmic, i.e. the
structures guaranteed by the respective results can be found in polynomial
time. This implies for instance that the Maximum Planar Subgraph Problem is
solvable in polynomial time for graphs of minimum degree at least 2n/3 (while
it is NP-hard in general).
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Chapter 2

Basic definitions and tools

In this chapter, we collect some basic and well-known definitions and tools
which are needed in several places of this thesis. More specialized notions are
introduced in the relevant chapters.

We often omit floors and ceilings if this does not affect the argument. We
usually write ‘disjoint’ instead of ‘vertex-disjoint’. We write e(G) for the number
of edges of a graph G, |G| for its order, δ(G) for its minimum degree, ∆(G) for
its maximum degree, d(G) := 2e(G)/|G| for its average degree and χ(G) for its
chromatic number. We denote the degree of a vertex x ∈ G by dG(x) or, if this
is unambiguous, by d(x) and the set of its neighbours by NG(x) or N(x). Given
a set A of vertices of G, we write NG(A) for the set of all those neighbours of
vertices in A which lie outside A. Given disjoint A,B ⊆ V (G), an A–B edge
is an edge of G with one endvertex in A and the other in B, the number of
these edges is denoted by eG(A,B) or e(A,B) if this is unambiguous. We write
(A,B)G for the bipartite subgraph of G whose vertex classes are A and B and
whose edges are all A–B edges in G. More generally, we often write (A,B) for
a bipartite graph with vertex classes A and B. Given graphs G and H we say
that G is H-free if G does not contain H as a subgraph.

A subdivision TH of a graph H is a graph obtained from H by replacing
the edges of H with internally disjoint paths. The branch vertices of TH are all
those vertices that correspond to vertices of H. We say that H is a topological
minor of a graph G if G contains a subdivision of H as a subgraph.

A graph H is a minor of G if H can be obtained from a subgraph of G by
contracting edges. Thus, H is a minor of G if for every vertex h ∈ H there is a
connected subgraph Gh of G such that all the Gh are disjoint and G contains a
Gh–Gh′ edge whenever hh′ is an edge in H. We also say that H is the minor of
G obtained by contracting the Gh. (The vertex set of) Gh is called the branch
set corresponding to h.

We shall frequently use the following easy facts.

Proposition 2.1 Every graph G with at least one edge contains a subgraph of
average degree at least d(G) and minimum degree greater than d(G)/2.

Proposition 2.2 The vertex set of every graph G can be partitioned into dis-
joint sets A, B such that the minimum degree of (A,B)G is at least δ(G)/2.
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In the remainder of this chapter we collect some of the information we need
about Szemerédi’s Regularity lemma [97] (see [56] for a survey). Let us start
with some more notation. The density of a bipartite graph G = (A,B) is
defined to be

d(A,B) :=
e(A,B)

|A||B| .

Given ε > 0, we say that G is ε-regular if for all sets X ⊆ A and Y ⊆ B with
|X| ≥ ε|A| and |Y | ≥ ε|B| we have |d(A,B) − d(X,Y )| < ε. We will often use
the following simple fact.

Proposition 2.3 Given an ε-regular bipartite graph (A,B) of density at least
d and a set X ⊆ A with |X| ≥ ε|A|, there are less than ε|B| vertices in B which
have at most (d − ε)|X| neighbours in X.

Given d ∈ [0, 1], we say that G = (A,B) is (ε, d)-super-regular if all sets
X ⊆ A and Y ⊆ B with |X| ≥ ε|A| and |Y | ≥ ε|B| satisfy d(X,Y ) > d and,
furthermore, if dG(a) > d|B| for all a ∈ A and dG(b) > d|A| for all b ∈ B.

Proposition 2.4 Every ε-regular graph G = (A,B) of density at least d can
be made into an (ε/(1− ε), d− 2ε)-super-regular graph by deleting ε|A| vertices
of A and ε|B| vertices of B.

Proof. By Proposition 2.3, there are at most ε|A| vertices in A whose degree
is at most (d − ε)|B|; and similarly there are at most ε|B| vertices in B whose
degree is at most (d − ε)|A|. It can be easily checked that the graph obtained
from G by deleting these vertices of small degree (as well as possibly some other
vertices to make up the required number) is (ε/(1 − ε), d − 2ε)-super-regular.

�

We will use the following degree form of Szemerédi’s Regularity lemma which
can be easily derived from the classical version. Proofs of the latter are for
example included in [14] and [28].

Lemma 2.5 (Regularity lemma) For all ε > 0 and all integers k0 there is
an N = N(ε, k0) such that for every number d ∈ [0, 1] and for every graph G
there exist a partition of V (G) into V0, V1, . . . , Vk and a spanning subgraph G′

of G such that the following holds:

• k0 ≤ k ≤ N ,

• |V0| ≤ ε|G|,

• |V1| = · · · = |Vk| =: L,

• dG′(x) > dG(x) − (d + ε)|G| for all vertices x ∈ G,

• for all i ≥ 1 the graph G′[Vi] is empty,

• for all 1 ≤ i < j ≤ k the graph (Vi, Vj)G′ is ε-regular and has density
either 0 or > d.
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The sets Vi (i ≥ 1) are called clusters, V0 is called the exceptional set. Given
clusters and G′ as in Lemma 2.5, the reduced graph R is the graph whose vertices
are V1, . . . , Vk and in which Vi is joined to Vj whenever (Vi, Vj)G′ is ε-regular
and has density > d. Thus ViVj is an edge of R if and only if G′ has an edge
between Vi and Vj .

The proof of the next proposition is similar to that of Proposition 2.4.

Proposition 2.6 Let H be a subgraph of the reduced graph R with ∆(H) ≤ ∆.
Then each vertex Vi of H contains a subset V ′

i of size (1 − ε∆)L such that for
every edge ViVj of H the graph (V ′

i , V ′
j )G′ is (ε/(1 − ε∆), d − (1 + ∆)ε)-super-

regular.
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Chapter 3

Minors in graphs of large girth

3.1 Introduction

For every r > 0 define p = p(r) to be the largest integer such that all graphs
G of average degree at least r contain the complete graph Kp on p vertices as
a minor. Kostochka [59] and Thomason [99] independently proved that there
exists a positive constant c such that

p(r) ≥ c
r√

log r
, (3.1)

which improved a bound of Mader. Random graphs show that (3.1) gives the
correct order of magnitude. Recently, Thomason [100] showed that p(r) =
(1 + o(1))γr/

√
log r for an explicit constant γ.

On the other hand, Thomassen [102] observed that if the girth of a graph
G is large, then G contains (complete) minors whose minimum degree is much
larger than that of G itself. In this chapter we use probabilistic arguments to
give more precise asymptotic bounds: for example, we show that every graph G
of girth at least five and minimum degree r contains a minor of minimum degree
c1r

3/2 and that if the girth of G is at least seven then G contains a minor of
minimum degree at least c2r

2. In both cases the bound on the minimum degree
is best possible up to the value of the constant. More generally, the main results
of this chapter are as follows:

Theorem 3.1 Let k ≥ 1 and r ≥ 3 be integers and put g := 4k + 3. Then
every graph G of minimum degree r and girth at least g contains a minor of
minimum degree at least (r − 1)k+1/48 = (r − 1)(g+1)/4/48.

Theorem 3.2 Let k ≥ 1 and r ≥ max{5k, 2 · 106} be integers and put g :=
4k + 1. Then every graph G of minimum degree at least 4r and girth at least g
contains a minor of minimum degree at least rk+1/2/288 = r(g+1)/4/288.

In addition to the two cases mentioned above, this is also best possible up
to the value of the constant for graphs G of girth 11. In fact, we will see in
Section 3.4 that the above results would give the correct order of magnitude (as
a function of r) for arbitrary girth g if there exist graphs of minimum degree r
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and odd girth g whose order is at most c(r − 1)(g−1)/2. The minimum order of
such graphs is known to lie between (r − 1)(g−1)/2 and 4(r − 1)g−2, and it has
been conjectured (see e.g. Bollobás [12, p. 164]) that the lower bound gives the
proper order of magnitude.

An application of (3.1) to the minors obtained in Theorems 3.1 and 3.2
immediately yields the following.

Corollary 3.3 For all odd integers g ≥ 3 there exists c = c(g) > 0 such that
every graph of minimum degree r and girth at least g contains a Kt minor for
some

t ≥ cr
g+1
4√

log r
.

�

If the conjecture mentioned above holds, then Corollary 3.3 would be best
possible up to the value of the constant c (see Proposition 4.14).

As every graph of chromatic number at least r contains a subgraph of mini-
mum degree at least r−1 and every such graph contains a bipartite subgraph of
minimum degree at least (r−1)/2, Corollary 3.3 in turn implies that Hadwiger’s
conjecture (that every graph of chromatic number r contains Kr as minor) is
true for C4-free graphs of sufficiently large chromatic number:

Corollary 3.4 There exists an integer r0 such that every C4-free graph of chro-
matic number r ≥ r0 contains a Kr minor. �

In fact, in Chapter 4 we show that similar results (with weaker bounds)
even hold for Ks,s-free graphs whose minimum degree (respectively chromatic
number) is sufficiently large compared with s. In Section 3.2 we also give a
simple argument which implies that Hadwiger’s conjecture holds for all graphs
of girth at least 19 (Corollary 3.9).

At the other extreme, given an integer t, Theorem 3.1 with r = 3 shows that
every graph G of minimum degree at least three contains a minor of minimum
degree at least t if its girth is sufficiently large. This fact was first observed by
Thomassen [102], who obtained a bound on the girth linear in t. Diestel and
Rempel [29] reduced it to 6 log2 t + 4. Theorem 3.1 applied with r = 3 and
k = ⌈log2 t + 5⌉ shows that the constant 6 can be reduced to 4:

Corollary 3.5 Let t ≥ 3 be an integer. Then every graph of minimum degree
at least 3 and girth at least 4 log2 t+ 27 contains a minor of minimum degree at
least t. Hence there exists a constant c such that every graph of minimum degree
at least 3 and girth at least 4 log2 t+2 log2 log2 t+c contains a Kt minor. �

(The second part of Corollary 3.5 immediately follows from the first by an
application of (3.1).) As already observed in [29], the existence of 3-regular
graphs of girth at least g and order at most c2g/2 (which is a special case of the
conjecture mentioned earlier) would show that Corollary 3.5 is asymptotically
best possible in the sense that the constant 4 in the leading terms cannot be
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reduced any further (see Section 3.4). The minimal order of such 3-regular
graphs is known to lie between c12g/2 and c223g/4.

Mader [81] proved that for every ε > 0 and every graph H with ∆(H) ≥ 3
there exists an integer g such that every graph G of average degree at least
∆(H) − 1 + ε and girth at least g contains H as a topological minor. (His
bound on g is at least linear in |H| and also depends on ε.) This implies that
for every ε > 0 and every integer t there exists an integer g such that every
graph of average degree at least 2 + ε and girth at least g contains a minor
of minimum degree t. Indeed, first apply the special (and much easier) case
∆(H) = 3 of Mader’s result to obtain a 3-regular graph of large girth as a
minor and then the observation of Thomassen mentioned before Corollary 3.5
to this minor. In [67] we strengthen Mader’s result for the case when H is
a large clique: for all ε > 0 every graph of average degree at least t − 2 + ε
and girth at least 1000 contains a topological Kt minor if t is sufficiently large
compared with ε. Also, based on techniques of Mader [79], in [62] we proved
that for large t every graph of minimum degree at least t− 1 and girth at least
15 contains a topological Kt minor. This implies the conjecture of Hajós for
all graphs of girth at least 15 and sufficiently large chromatic number. See also
Chapter 5 for related results.

This chapter is organized as follows. In Section 3.2 we introduce necessary
definitions and collect some tools which we will need later on. We will also
apply an idea of Mader to prove Corollary 3.9. In Section 3.3 we then prove
Theorems 3.1 and 3.2. In the final section we show that Theorem 3.1 and 3.2
are best possible up to the value of the constant provided that the conjecture
mentioned above is true (which is known to be the case for girth 5, 7 and 11).

3.2 Notation, tools and preliminary observations

The length of a cycle C or a path P is the number of its edges. The girth of a
graph G is the length of its shortest cycle and denoted by g(G). The distance
between two vertices x, y of a graph G is the length of the shortest path joining
x to y and denoted by dG(x, y). Given ℓ ∈ N, the ℓ-ball Bℓ

G(x) in G around a
vertex x is the subgraph of G induced by all its vertices of distance at most ℓ
from x. If P = x1 . . . xℓ is a path and 1 ≤ i ≤ j ≤ ℓ, we write xiPxj for its
subpath xi . . . xj .

In the proof of Theorem 3.2 we will need the following Chernoff type bound
(see [7, Thm. A.13]).

Lemma 3.6 Let X1, . . . ,Xn be independent 0-1 random variables with P(Xi =
1) = p for all i ≤ n, and let X :=

∑n
i=1 Xi. Then for all 0 < ε < 1 we have

P(X ≤ (1 − ε)EX) ≤ e−ε2
EX/2.

Let us now present a simple proposition which shows that if G is a graph of
large girth, then G contains minors whose minimum degree is much larger than
that of G itself. Its proof is the same as the beginning of Mader’s proof of his
main result of [79]. We include it here as it implies a counterpart (Corollary 3.9)
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to Corollary 3.4 for graphs of small chromatic number. Moreover, it should help
to illustrate the basic ideas underlying the proofs of Theorems 3.1 and 3.2, which
use a probabilistic version of Mader’s argument.

Proposition 3.7 Let k ≥ 1 and r ≥ 3 be integers. Then every graph of girth
at least 8k + 3 and minimum degree r contains a minor of minimum degree at
least r(r − 1)k.

Proof. Let X be a maximal set of vertices of G that have pairwise distance at
least 2k + 1 from each other. Thus for distinct x, y ∈ X the balls Bk

G(x) and
Bk

G(y) are disjoint. Extend the Bk
G(x) (x ∈ X) to disjoint connected subgraphs

of G by first adding each vertex of distance k + 1 from X to one of the Bk
G(x)

to which it is adjacent. Then add each vertex of distance k + 2 from X to
one of the subgraphs constructed in the previous step to which it is adjacent.
Continue in this fashion until each vertex of G lies in one of the constructed
subgraphs and denote the subgraph obtained from Bk

G(x) in this way by Tx.
The choice of X implies that each vertex of G has distance at most 2k from
X. So each vertex of Tx has distance at most 2k from x in Tx. Therefore, as
g(G) ≥ 4k + 2, each Tx is an induced subtree of G. In particular Bk

G(x) is a
tree in which every vertex that is not a leaf has degree at least r and in which
every leaf has distance k from x. So Bk

G(x) (and thus also Tx) has at least
r(r − 1)k−1 leaves. Hence Tx sends at least r(r − 1)k edges to vertices outside
Tx. As g(G) ≥ 8k + 3, at most one edge of G joins Tx to a given other tree Ty

(y ∈ X \ {x}). Thus the graph obtained from G by contracting the trees Tx

(x ∈ X) has minimum degree at least r(r − 1)k, as required. �

An application of the bound (3.1) of Kostochka and Thomason to the minor
obtained in Proposition 3.7 for k = 1 shows that for sufficiently large r every
graph G of minimum degree r and girth at least 11 contains a Kr+1 minor. For
small r, we will apply the following result of Mader (see [76] or [12, Ch. VII.1]).

Theorem 3.8 For all integers t ≥ 4 every graph of average degree > 16(t −
2) log2(t − 2) contains a Kt minor. Moreover, every graph of average degree
> 10 contains a K7 minor.

As above, combining this with Proposition 3.7 leads to the observation that
Hadwiger’s conjecture is true for all graphs of girth at least 19:

Corollary 3.9 Every graph of girth at least 19 and minimum degree r contains
a Kr+1 minor. In particular, every graph of girth at least 19 and chromatic
number r contains a Kr minor. �

3.3 Proof of Theorems 3.1 and 3.2

In the proof of Proposition 3.7 we covered the entire vertex set of our graph
G with suitable disjoint rooted trees Tx and considered the minor M obtained
by contracting these trees. Amongst other properties, these trees had radius
between k and 2k. If we could choose them all of radius at most k while still
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maintaining sufficiently many edges between the trees, this would reduce the
bound on the girth from 8k + 3 to 4k + 3. We will achieve this in the proof
of Theorem 3.1 by choosing the roots of the trees at random, albeit at the
expense that there will be a small number of vertices which do not lie in any
of the trees. The case when k = 1 (i.e. when the trees are stars) of the first
part of the proof is similar to an argument of Alon which shows the existence
of small dominating sets (i.e. sets of vertices to which every vertex has distance
at most one) in graphs of large minimum degree (see [7, Thm. 2.2]).

Proof of Theorem 3.1. We may assume that (r − 1)k ≥ 48. Consider a
random subset X of V (G) which is obtained by including each vertex in X with
probability p := 4/(r − 1)k independently of all other vertices. The branch sets
of our minor will be trees of radius at most k whose roots are the elements of
X. As g(G) ≥ 2k + 2 and δ(G) = r, for each vertex x ∈ G the graph Bk

G(x) is
a tree with at least (r− 1)k leaves. Call an edge e = xy of G bad if d(x,X) > k
or d(y,X) > k. Then

P(xy is bad) ≤ P(Bk
G(x) ∩ X = ∅) + P(Bk

G(y) ∩ X = ∅)

= (1 − p)|B
k
G(x)| + (1 − p)|B

k
G(y)| ≤ 2(1 − p)(r−1)k

≤ 2e−p(r−1)k
= 2/e4,

and so
E(number of bad edges) ≤ 2e(G)/e4.

Markov’s inequality now implies

P(> e(G)/9 edges are bad) ≤ 18/e4 ≤ 1/3.

Moreover, the expected size of X is p|G|, and so again, by Markov’s inequality,

P(|X| > 2p|G|) ≤ 1/2.

Thus with probability at least 1 − 1/2 − 1/3 > 0 there is an outcome X with
|X| ≤ 2p|G| and so that at most e(G)/9 edges of G are bad.

Extend the vertices in X to disjoint connected subgraphs Gx (x ∈ X) of G
with x ∈ Gx by first adding each vertex of distance one from X to a vertex in X
to which it is adjacent, then adding each vertex of distance two from X to one
of the subgraphs constructed in the previous step to which it is now adjacent
etc. Continue in this fashion until each vertex of G of distance at most k from
X is contained in one of the graphs Gx thus obtained. Then each vertex of
Gx has distance at most k from x. As g(G) ≥ 2k + 2, every Gx is an induced
subtree of G. So each edge of G that is not bad and does not lie in

⋃
x∈X E(Gx)

joins distinct Gx. Moreover, since g(G) ≥ 4k + 3, there is at most one edge of
G joining a given pair of graphs Gx. Thus for the minor M of G whose branch
sets are the Gx we have

d(M) ≥ 2(e(G) − |⋃x∈X E(Gx)| − e(G)/9)

|X| ≥ 16e(G) − 18|G|
9 · 2p|G|

≥ 4r − 9

9p
≥ 4(r − 1)

9p
· 3

8
≥ (r − 1)k+1

24
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(The fourth inequality holds since r ≥ 3.) By Proposition 2.1 the graph M
contains a subgraph of minimum degree at least (r − 1)k+1/48, as desired.

�

A result of Györi [37] states that every C6-free bipartite graph can be made
into a graph of girth at least 7 by deleting at most half of its edges. This implies
that the assertion of the g = 7 case of Theorem 3.1 remains true for C6-free
graphs (with a modified constant).

To prove Theorem 3.2, we will again cover a large part of our graph G with
disjoint trees of radius k whose roots are chosen at random (similarly as in the
proof of Theorem 3.1). However, this time the girth is not large enough to
ensure that between every pair of these trees there is at most one edge. To
deal with such multiple edges we choose the trees more carefully and prove
that firstly there are still many (good) edges joining leaves of distinct trees and
secondly that only a small fraction of these edges is redundant in the sense that
there are many additional (good) edges joining the same pair of trees.

Proof of Theorem 3.2. First apply Proposition 2.2 to obtain a bipartite
subgraph G1 = (A,B)G of G of minimum degree at least 2r. We may assume
that |A| ≥ |B|. Delete edges if necessary to obtain a bipartite subgraph G2 of G1

in which the degree of every vertex in A is precisely 2r. Thus d(G2) ≥ 2r. Now
apply Proposition 2.1 to obtain a subgraph H = (C,D)G2 of G2 of minimum
degree at least r + 1 and average degree at least 2r and where every vertex in
C has degree at most 2r.

We now assign orientations to the edges of H as follows. For every vertex
x ∈ H choose any r + 1 of its neighbours in H and orient the edges between x
and these neighbours from x towards these. We thus obtain a graph ~H in which
every edge has either none, one or two orientations and in which the outdegree
of every vertex is precisely r + 1. We say that a path x0 . . . xℓ in ~H is directed
from x0 to xℓ if each edge xixi+1 is oriented from xi towards xi+1. So xixi+1

may additionally be oriented from xi+1 to xi. Given two vertices x and y of ~H
we write ~d(x, y) for the length of the shortest directed path from x to y (and
set ~d(x, y) := ∞ if such a path does not exist). Given ℓ ∈ N, we write ~Sℓ(x) for
the set of all those vertices y ∈ ~H with ~d(x, y) = ℓ. We define ~Bℓ(x) to be the
subgraph of ~H which consists of all directed paths of length at most ℓ starting
at x. Note that if ℓ < 2k, then, as g(H) ≥ 4k, the graph ~Bℓ(x) is an induced
subtree of ~H with root x in which every edge is oriented away from the root
(and possibly also towards it). As the outdegree of every vertex of ~H is r + 1,
every vertex of ~Bℓ(x) which is not a leaf has either r + 1 or r + 2 neighbours in
~Bℓ(x) and every leaf has distance precisely ℓ from x. In particular,

rℓ ≤ |~Sℓ(x)| ≤ (r + 1)ℓ.

Consider a random subset X of V (H) which is obtained by including each
vertex of H in X with probability

p :=
1

4(r + 1)k−1/2
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independently of all other vertices. For some suitable outcome X, the branch
sets of the desired minor in G will be subtrees of H of radius k and with roots
in X. Call a vertex v ∈ H good if it satisfies the following three conditions.

(i) |~Sk(v) ∩ X| ≥ √
r/6.

(ii) ~Bk−1(v) ∩ X = ∅.

(iii) Each component of ~Bk(v) − v contains at most one vertex of ~Sk(v) ∩ X.

We will now show that the probability that a given vertex v is good is quite
large. First note that, as r ≥ 5k,

E(|~Sk(v) ∩ X|) = p|~Sk(v)| ≥ prk =

√
r

4
·
(

r

r + 1

)k−1/2

≥
√

r

4

(
1 − 1

r

)k

≥
√

r

4

(
1 − k

r

)
≥

√
r

5
.

Since r ≥ 2 · 106, Lemma 3.6 with ε := 1/6 implies that

P(|~Sk(v) ∩ X| ≤ √
r/6) ≤ 1/25. (3.2)

Secondly,

E(| ~Bk−1(v) ∩ X|) = p| ~Bk−1(v)| ≤ 2p|~Sk−1(v)| ≤ 1

2
√

r + 1
,

and hence, as r ≥ 625, Markov’s inequality implies

P(| ~Bk−1(v) ∩ X| ≥ 1) ≤ 1/50. (3.3)

Finally, given a component L of ~Bk(v) − v, let S(v, L) := L ∩ ~Sk(v). Writing∑
x,y for the sum over all unordered pairs x 6= y of vertices in S(v, L), we have

P(|S(v, L) ∩ X| ≥ 2) ≤
∑

x,y

P(x, y ∈ X) ≤
(|S(v, L)|

2

)
p2

≤ ((r + 1)k−1p)2

2
=

1

32(r + 1)
.

As the outdegree of v is r + 1 and so ~Bk(v)− v has precisely r + 1 components,
it follows that

E(number of components L of ~Bk(v) − v for which |S(v, L) ∩ X| ≥ 2) ≤ 1/32.

Hence Markov’s inequality implies that

P(there is a component L of ~Bk(v) − v for which |S(v, L) ∩ X| ≥ 2) ≤ 1/32.
(3.4)

From (3.2), (3.3) and (3.4) together it now follows that

P(v is not good) ≤ 1/10.
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Call an edge e of H good if both of its endvertices are good. Thus

P(e is not good) ≤ 1/5,

and therefore

E(number of edges of H which are not good) ≤ e(H)/5.

Hence Markov’s inequality shows that

P(≥ e(H)/2 edges of H are not good) ≤ 2/5. (3.5)

Moreover, E(|X|) = p|H|, and so Markov’s inequality implies that

P(|X| ≥ 2p|H|) ≤ 1/2. (3.6)

Now (3.5) and (3.6) show that with probability at least 1− 2/5− 1/2 > 0 there
is an outcome X with |X| ≤ 2p|H| and such that at least half of the edges
of H are good. Let U be the set of all good vertices of H. We say that a
vertex x ∈ X belongs to a vertex u ∈ U if ~d(u, x) = k. So condition (i) in the
definition of a good vertex implies that at least

√
r/6 vertices in X belong to u.

As g(H) > 2k, there exists precisely one directed path Pux of length k from u
to a vertex x belonging to u. Given x ∈ X, let Ux denote the set of all the good
vertices to which x belongs, and let Hx be the union of all paths Pux over all
u ∈ Ux. If Ux = ∅, we put Hx := x. As g(H) ≥ 2k + 2, each Hx is an induced
subtree of H and Ux is the set of its leaves.

Let us now prove the following claim.

If x, y ∈ X are distinct, x belongs to u ∈ U , y belongs to u′ ∈ U and

u 6= u′ then Pux and Pu′y are disjoint.
(∗)

Suppose not and let z be the first vertex on Pux that is contained in Pu′y. Note
that |uPuxz| 6= |u′Pu′yz| would imply the existence of either a directed u′–x
path or a directed u–y path of length < k. Hence |uPuxz| = |u′Pu′yz| (and
thus in particular z 6= u), as both u and u′ are good vertices (cf. condition (ii)).
So if L is the component of ~Bk(u) − u containing z, then both x and y lie in
L ∩ ~Sk(u) ∩ X, contradicting condition (iii) for u.

For every u ∈ U choose a vertex xu ∈ X which belongs to u uniformly at
random independently of the other elements of U . For every x ∈ X we then
define Tx to be the subtree of Hx consisting of the paths Pux for all those u ∈ Ux

with xu = x. If there are no such paths we set Tx := x. So every choice of the xu

(u ∈ U) yields a family Tx (x ∈ X) of trees. Note that (∗) implies that Tx and
Ty are disjoint whenever x 6= y. We will show that with non-zero probability
the xu will have the property that the minor M of H ⊆ G whose branch sets
are the Tx (x ∈ X) thus defined has large average degree. To do this, we will
show that with non-zero probability there are only a few pairs Tx, Ty such that
H contains many good Tx–Ty edges. Then a large fraction of the good edges of
H will join different pairs Tx, Ty and thus will correspond injectively to edges
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Hx

Ux Tx ∩ Ux

x ∈ C ∩ X

Ty ∩ Uy

y ∈ D ∩ X

Uy

Ty

Tx

Figure 3.1: Illustrating a cycle of length 14 in the final part of the proof of
Theorem 3.2 for k = 3 and g = 13.

of M . As X is relatively small, this will imply that M has large average degree.

Suppose that x, y ∈ X are given, and let us first estimate the expected
number of good edges of H joining Tx to Ty. Recall that by definition, every
good Tx–Ty edge joins Tx∩Ux to Ty∩Uy. As g(G) ≥ 4k+1, for every component
L of Hx−x there is at most one edge in H joining L to Hy. Similarly, for every
component L of Hy − y there is at most one edge in H joining L to Hx. So in
particular the Ux–Uy edges in H are independent and their number is at most
min{dHx(x), dHy (y)} ≤ min{dH(x), dH (y)}. But as g(H) ≥ 2k, every vertex in
Ux has distance precisely k from x in H = (C,D)G2 . Thus either Ux ⊆ C or
Ux ⊆ D, and the same is true for Uy. So if H contains a Ux–Uy edge, then one
of Ux, Uy must be contained in C while the other one is contained in D. Hence
one of x, y lies in C. As every vertex in C has degree at most 2r in H, it follows
that H contains at most 2r edges joining Ux to Uy.

Consider a Ux–Uy edge u1u2 with u1 ∈ Ux and u2 ∈ Uy. Then u1 /∈ Uy and
u2 /∈ Ux, since g(H) ≥ 2k + 2. So the probability that u1u2 is a Tx–Ty edge
equals the probability that xu1 = x and xu2 = y which in turn is the inverse of
the product of the number of vertices in X belonging to u1 with the number
of vertices in X belonging to u2; so by (i) this probability is at most (6/

√
r)2.

Hence

E(number of good Tx–Ty edges in H) ≤ eH(Ux, Uy) ·
(

6√
r

)2

≤ 2r · 36

r
= 72.

So Markov’s inequality implies that

P(H contains at least 144 good Tx–Ty edges) ≤ 1/2. (3.7)

Given a good edge u1u2, call it overloaded if there are at least 144 good edges
of H which are distinct from u1u2 and join Txu1

to Txu2
. For i = 1, 2 let Xi be

the set of all vertices in X belonging to ui. (So X1 ∩ X2 = ∅.) For all x ∈ X1,
y ∈ X2 let Axy be the event that there are at least 144 good Tx–Ty edges which
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are distinct from u1u2. As the Ux–Uy edges of H are independent, and thus the
event that xu1 = x and xu2 = y is independent from Axy, we have

P(u1u2 is overloaded) ≤
∑

x∈X1, y∈X2

P(xu1 = x, xu2 = y and Axy is true)

(3.7)

≤
∑

x∈X1, y∈X2

1

|X1|
· 1

|X2|
· 1

2
=

1

2
.

Thus

E(number of overloaded edges) =
∑

u1u2∈E(H[U ])

P(u1u2 is overloaded)

≤ eH(U,U)/2.

But this means that for all u ∈ U the vertices xu can be chosen in such a way
that for the trees Tx (x ∈ X) thus defined at most half of the good edges of H
are overloaded. Let F be the subgraph of H which consists of all those good
edges that are not overloaded. Thus

e(F ) ≥ eH(U,U)/2 ≥ e(H)/4 ≥ r|H|/4.

Consider the minor M of H whose branch sets are the Tx and let e = u1u2 be
an edge of F . Recall that as g(H) ≥ 2k + 2, the endpoints of e must lie in
distinct Tx, i.e. xu1 6= xu2 . As e is not overloaded, there are less than 144 other
edges of F joining Txu1

to Txu2
. Thus to each edge of M there correspond at

most 144 edges of F , i.e. e(M) ≥ e(F )/144. Hence

d(M) ≥ 2e(F )

144|X| ≥
r|H|

144 · 2 · 2p|H| ≥
rk+1/2

144
.

Proposition 2.1 implies that M contains a subgraph of minimum degree at least
rk+1/2/288, as desired. �

We remark that the constants in Theorems 3.1 and 3.2 could be improved
a little by more careful calculations. Furthermore, the proof of the case k = 1
(i.e. g = 5) of Theorem 3.2 can easily be modified to give the following.

Theorem 3.10 There exists a constant c > 0 such that for all integers t ≥ 2
every K2,t-free graph G of minimum degree d contains a minor of minimum
degree at least cd3/2/t.

Proof. By choosing c sufficiently small, we may assume that r := ⌊d/4⌋ ≥
2 · 106. It then suffices to make the following minor changes in the proof of the
case k = 1 of Theorem 3.2. Define H, p, X, U , Hx and Tx as before. For every
vertex x ∈ X there are now less than t edges (instead of at most one) joining
a given leaf of the star Hx to leaves of a given other star Hy (y ∈ X). So H
contains at most 2rt edges joining Ux to Uy. Similarly as before, this shows that
with probability at most 1/2 the graph H contains at least 144t good Tx–Ty

edges. This time we call a good edge u1u2 overloaded if there are at least 144t
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good edges of H which are disjoint from u1u2 and join Txu1
to Txu2

. Again, it
follows that for all u ∈ U the vertices xu can be chosen so that at most half
of the good edges are overloaded. But for each good edge u1u2 which is not
overloaded there are at most 144t + 2t other good edges joining Txu1

to Txu2

(as there are at most t edges joining u1 to leaves of Txu2
and vice versa). Thus

the minor M of H whose branch sets are the Tx has average degree at least
r3/2/146t. By Proposition 2.1, M contains a subgraph of minimum degree at
least r3/2/292t, as desired. �

More generally, in Chapter 4 we prove that for all t ≥ s ≥ 2 every Ks,t-
free graph of minimum degree at least r contains a graph of minimum degree

r
1+ 1

2(s−1)
−o(1)

as minor. This implies that for sufficiently large r every 2r-
connected Ks,t-free graph is r-linked (see Chapter 4).

3.4 Upper bounds

The following simple proposition (which generalizes [29, Prop. 2.2]) shows that
the existence of small graphs of large girth can be used to prove upper bounds
on the minimum degree of minors in graphs of large girth.

Proposition 3.11 Let c, ℓ > 0 and let d, r be integers such that r ≥ 2. Suppose
that G is a graph of maximum degree at most cr and order at most c(r − 1)ℓ

which contains a minor of minimum degree d. Then d < 2c(r − 1)(ℓ+1)/2.

Proof. Suppose that H is a minor of G of minimum degree d. Let W ⊆ V (G)
be a branch set corresponding to a vertex of H. As each vertex of W sends at
most cr edges to other branch sets, |W | ≥ d/cr. Hence

c(r − 1)ℓ ≥ |G| ≥ d|H|
cr

>
d2

cr
≥ d2

2c(r − 1)
.

This shows that d < 2c(r − 1)(ℓ+1)/2, as required. �

We will now use Proposition 3.11 to observe that the truth of the following
well-known conjecture (see e.g. Bollobás [12, p. 164]) would show that for fixed
girth Theorems 3.1 and 3.2 are best possible up to the value of the constant
and also that the constant 4 in Corollary 3.5 cannot be replaced by a smaller
one.

Conjecture 3.12 There exists a constant c such that for all integers r, g ≥ 3
there is a graph of minimum degree at least r and girth at least g whose order

is at most c(r − 1)⌊
g−1
2

⌋.

An observation of Tutte (see [12, Ch. III, Thm. 1.2]) shows that this would
be close to best possible: Consider any vertex x in a graph G of minimum
degree at least r and girth at least g. Then the graph obtained from the ⌊g−1

2 ⌋-
ball around x by deleting any edges between vertices of distance ⌊g−1

2 ⌋ from x

is a tree. Since δ(G) ≥ r, this tree (and so also G) has at least (r − 1)⌊
g−1
2

⌋
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vertices. This argument also shows that any graph G demonstrating the truth
of Conjecture 3.12 must have maximum degree at most cr. (Indeed, take for x
a vertex of maximum degree in G.) Thus by Proposition 3.11 with ℓ := ⌊g−1

2 ⌋,
such a graph G has no minor of minimum degree at least 2c(r − 1)

1
2
⌊ g+1

2
⌋. In

other words, the truth of Conjecture 3.12 would imply that Theorem 3.1 is best
possible up to the value of the constant, and so is Theorem 3.2 if the girth g is
fixed. It would also imply that Theorems 3.1 and 3.2 give the correct order of
magnitude even for graphs of fixed even girth. Furthermore, as we will see in
Chapter 4 (Proposition 4.14), if Conjecture 3.12 holds then Corollary 3.3 would
also be best possible up to the value of the constant c (for fixed g).

There are several constructions which show that for infinitely many values
of r there are graphs of girth at least 5 and minimum degree r whose order
is at most 3(r − 1)2 (see e.g. Brown [23, Thm. 3.4(b)] or the proof of [15,
Thm. 1.3.3]). For g = 7, 11 Benson [10] showed that for infinitely many integers
r there are graphs of minimum degree r and girth at least g whose order is at

most 3(r − 1)
g−1
2 . Together with the above this implies the following

Proposition 3.13 For g = 5, 7 and 11 there are infinitely many integers r for
which there exists a graph of minimum degree r and girth at least g that does

not contain a minor of minimum degree at least 6(r − 1)
g+1
4 . �

The best known general upper bound for the minimal order of graph of
minimum degree at least r and girth at least g was proved by Sauer. It implies
that for r ≥ 3 and odd g ≥ 3 the minimal order of such graphs is at most
4(r − 1)g−2 (see [12, Ch. III, Thm. 1.4]).

Turning to the case r = 3, Weiss [107] proved that a construction of Biggs
and Hoare [11] yields infinitely many integers g for which there are 3-regular
graphs of girth g and order at most c23g/4. Together with Proposition 3.11
this implies that for infinitely many integers t there are 3-regular graphs of
girth at least 8

3 log t − c′ that have no minor of minimum degree t (as was
already observed by Diestel and Rempel [29]). In particular, the constant 4 in
Corollary 3.5 cannot be replaced by a number smaller than 8/3. Again, the
constant 4 in Corollary 3.5 would be best possible if Conjecture 3.12 holds for
r = 3.
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Chapter 4

Minors in Ks,s-free graphs

4.1 Introduction

In Chapter 3 we have seen that if the girth of a graph G is sufficiently large
then G has a Kp minor where p is asymptotically much larger than the average
degree of G. Here we prove that the same is true if G is locally sparse in the
much weaker sense that it does not contain a fixed complete bipartite graph
Ks,s as a subgraph:

Theorem 4.1 For every integer s ≥ 2 there exists an rs such that every Ks,s-
free graph of average degree at least r ≥ rs contains a Kp minor for all

p ≤ r
1+ 1

2(s−1)

(log r)3
.

As every graph of chromatic number k contains a subgraph of minimum
degree at least k − 1, this implies Hadwiger’s conjecture for Ks,s-free graphs of
sufficiently large chromatic number:

Corollary 4.2 For every integer s ≥ 2 there exists an integer ks such that
every Ks,s-free graph of chromatic number k ≥ ks contains a Kk minor. �

In Section 4.3 we will see that there exists an absolute constant α so that we
can take ks := sαs in Corollary 4.2.

A probabilistic argument (Proposition 4.13) shows that the bound on p in
Theorem 4.1 is best possible up to the logarithmic term, provided that there
exist Ks,s-free graphs G with at least cs|G|2−1/s edges. These are known to
exist for s = 2, 3 and have been conjectured to exist also in general (see e.g. [12,
p. 362] or [25, p.36]). More precisely, the above conjecture would imply that
the exponent of the logarithmic term has to be at least 1/2. We believe that
this is the correct order of magnitude.

We now turn to an application of Theorem 4.1 to highly connected graphs.
Improving an earlier bound of Bollobás and Thomason [19], Thomas and Wol-
lan [98] proved that every 16k-connected graph is k-linked. As is well known
and easy to see, the graph obtained from K3k−1 by deleting k independent edges
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shows that the function 16k cannot be replaced by anything smaller than 3k−2.
On the other hand, a result in [19] states that if a graph G is 2k-connected and
contains a minor H with 2δ(H) ≥ |H| + 4k − 2 then G is k-linked. Together
with Theorem 4.1 this immediately implies the following.

Corollary 4.3 For every integer s ≥ 2 there exists an integer ks such that for
all k ≥ ks every 2k-connected Ks,s-free graph is k-linked. �

Mader [79, Cor. 1] showed that for k ≥ 2 one cannot replace 2k by 2k − 1.
Note that Theorem 4.1 is far from being true if we forbid a non-bipartite

graph H instead of a Ks,s. Indeed, recall that there are graphs of average degree
r containing no complete graph of order at least c′r/

√
log r as minor. These

graphs can be made bipartite (and thus H-free) by deleting at most half of
their edges. In particular, the resulting graphs G contain no complete graph as
minor whose order exceeds the average degree of G. However, replacing average
degree with chromatic number might help:

Problem 4.4 Given an integer s ≥ 3, does there exist a function ωs(k) tending
to infinity such that every Ks-free graph of chromatic number k contains a Kp

minor for all p ≤ k · ωs(k)?

In other words, the question is whether for Ks-free graphs of sufficiently large
chromatic number Hadwiger’s conjecture is true with room to spare. For a
survey on Hadwiger’s conjecture and related questions see e.g. [40].

This chapter is organized as follows. In Section 4.2 we introduce some
notation and state several results which we will need later on. Theorem 4.1 is
then proved in Section 4.3. The methods are related to those in Chapter 3.
The final section is concerned with upper bounds for the size of the complete
minor in Theorem 4.1.

4.2 Notation and tools

All logarithms in this chapter are base e, where e denotes the Euler number.
We will use the following Chernoff bound (see e.g. [39, Cor. 2.3]).

Lemma 4.5 Let X1, . . . ,Xn be independent 0-1 random variables with P(Xi =
1) = p for all i ≤ n, and let X :=

∑n
i=1 Xi. Then

P(X ≤ EX/2 or X ≥ 2EX) ≤ 2e−EX/12.

A proof of the next lemma can be found in [14, Ch. IV, Lemma 9].

Lemma 4.6 Let (A,B) be a bipartite graph that does not contain a Ks,t with
t vertices in A and s vertices in B. Suppose that on average each vertex in A
has d neighbours in B. Then

|A|
(

d

s

)
≤ t

(|B|
s

)
.
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Lemma 4.6 can be used to prove the following upper bound on the number
of edges of a Ks,t-free graph (see e.g. [12, Ch. VI, Thm. 2.3]).

Theorem 4.7 Let t ≥ s ≥ 2 be integers. Then every Ks,t-free graph G has at
most t|G|2−1/s edges and thus satisfies

|G| ≥
(

δ(G)

2t

)1+ 1
s−1

. (4.1)

Finally, we will need the following consequence of Corollary 6.16.

Lemma 4.8 Let ℓ, t be integers with ℓ ≥ 8t. Let G = (A,B) be a Kt,t-free
bipartite graph such that |A| ≥ ℓ12t|B| and dG(a) = ℓ for every vertex a ∈ A.
Then G contains a subdivision of some graph of average degree at least ℓ9/214.

4.3 Dense Minors in Ks,t-free graphs

Instead of proving Theorem 4.1, we will prove the following slightly more general
result on the existence of dense minors in Ks,t-free graphs.

Theorem 4.9 For all integers t ≥ s ≥ 2 and all r ≥ (100t)16s every Ks,t-free
graph G of average degree r contains a minor of average degree at least

d :=
r
1+ 1

2(s−1)

109t4(log r)2+
1

s+1

. (4.2)

Note that asymptotically the restriction on the range of r is not too severe: if
r ≤ ts, then (4.2) is already smaller than the trivial lower bound of r on the
average degree of the densest minor of G.

Proof of Theorem 4.1. Theorem 4.1 immediately follows by an application
of (3.1) to the minor obtained from the s = t case of Theorem 4.9. �

Furthermore, Theorem 4.9 shows that there exists an absolute constant α so
that we can take ks := sαs in Corollary 4.2. (Indeed, given a Ks,s-free graph
G of chromatic number r + 1, apply Theorem 4.9 to a subgraph H of G of
minimum degree at least r. If r ≥ sαs where α is sufficiently large compared
with the constant c appearing in (3.1), then this shows that H contains a Kr+1

minor, since then the value d in (4.2) satisfies cd/
√

log d ≥ r + 1.)
Our aim in the proof of Theorem 4.9 is to find disjoint stars in G such that

a large fraction of the edges of G joins two distinct stars. If the number of these
stars is not too large and if only a few edges join the same pair of stars, then the
minor of G obtained by contracting the stars (and deleting all other vertices)
has large average degree, as desired. We will find such stars by first choosing
the set X of their centres at random and then assigning vertices v ∈ G with
distance one to X to one of the centres adjacent to v in a suitable way. For this
to work we need that G is ‘almost regular’. The following lemma allows us to
assume this at the expense of only a small loss of the average degree.
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Lemma 4.10 For all integers t ≥ 2 and all r ≥ 109t4 every Kt,t-free graph
G of average degree at least r either contains a subdivision of some graph of
average degree at least r3 or a bipartite subgraph H such that δ(H) ≥ r

400t log r
and ∆(H) ≤ r.

Proof. Apply Propositions 2.1 and 2.2 to obtain a bipartite subgraph G′ of
G of minimum degree at least d := ⌈r/4⌉. Let A be the larger vertex class
of G′ and delete edges if necessary to obtain a (bipartite) subgraph G′′ with
dG′′(a) = d for all a ∈ A. Let B be the set of all vertices in G′′ − A that are
not isolated and put G∗ := (A,B)G′′ . So dG∗(a) = d for all vertices a ∈ A and
thus d(G∗) ≥ d (since |A| ≥ |B|). Put N := ⌈1 + (6t + 1) log d⌉ and note that

d

N
≥ d

8t log d
≥ 105t2. (4.3)

Partition B into N disjoint sets B1, . . . , BN such that

ei−1 ≤ dG∗(x) < ei ∀x ∈ Bi, i = 1, . . . ,N − 1

eN−1 ≤ dG∗(x) ∀x ∈ BN .

Then there exists an index i such that eG∗(A,Bi) ≥ e(G∗)/N . First assume
that i ≤ log d. Then Proposition 2.1 implies that (A,Bi)G∗ contains a subgraph
H with δ(H) ≥ d((A,Bi)G∗)/2 ≥ d/2N . As ∆(H) ≤ ∆((A,Bi)G∗) ≤ d, H is
as required in the lemma.

Next assume that i = N . Let A∗ be the set of all those vertices in A which
send at least ⌊

√
d/(2N)1/9⌋ =: ℓ edges in G∗ to BN . Then

d|A∗| + ℓ|A| ≥ eG∗(A,BN ) ≥ e(G∗)

N
=

d|A|
N

,

and therefore

|A∗| ≥
(

d

N
− ℓ

) |A|
d

≥ |A|
2N

. (4.4)

Moreover, d|A| = e(G∗) ≥ eN−1|BN | ≥ d6t+1|BN |. Together with (4.4) this
implies that

|A∗| ≥ d6t|BN |
2N

≥ ℓ12t|BN |.

Let H∗ be the graph obtained from (A∗, BN )G∗ by deleting edges if necessary
such that dH∗(a) = ℓ for all a ∈ A∗. Since ℓ ≥ 8t ≥ 2 by (4.3), Lemma 4.8
implies that H∗ (and hence G) contains a subdivision of some graph of average
degree at least

ℓ9

214
≥ r3 · d3/2

43 · 215+9N

(4.3)

≥ r3.

So we may assume that log d < i < N . Set k := ⌊d/2N⌋ and let Ap be a
random subset of A which is obtained by including every vertex into Ap with
probability p := 2k/ei−1 independently of all other vertices. Then for every
vertex b ∈ Bi we have

2k ≤ dG∗(b)p = E(|NG∗(b) ∩ Ap|) ≤ 2ek ≤ d/2. (4.5)
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Let us call a vertex b ∈ Bi bad if |NG∗(b) ∩ Ap| ≤ k or |NG∗(b) ∩ Ap| ≥ d. So
(4.3), (4.5) and Lemma 4.5 together imply that the probability that a given
vertex b ∈ Bi is bad is at most 2e−k/6 ≤ 1/24. So the expected number of bad
vertices in Bi is at most |Bi|/24. Hence Markov’s inequality implies that

P(≥ |Bi|/6 vertices of |Bi| are bad) ≤ 1/4. (4.6)

Moreover

2k|A| ≤ d|A|
N

≤ eG∗(A,Bi) ≤ ei|Bi|,

and so |A| ≤ ei|Bi|/2k. Hence

E(|Ap|) = p|A| ≤ pei|Bi|
2k

= e|Bi|.

Thus Markov’s inequality shows that

P(|Ap| ≥ 4|Bi|) ≤ e/4.

Together with (4.6) this implies that with probability at least 1−1/4− e/4 > 0
there exists an outcome Ap such that |Ap| ≤ 4|Bi| and at most |Bi|/6 vertices
of Bi are bad. Let H ′ be the subgraph of G∗ induced by Ap and those vertices
in Bi that are not bad. Then ∆(H ′) ≤ d and e(H ′) ≥ 5k|Bi|/6. Moreover,
|H ′| ≤ |Ap| + |Bi| ≤ 5|Bi|, and so the average degree of H ′ is at least k/3. By
Proposition 2.1, H ′ has a subgraph H with

δ(H) ≥ k

6

(4.3)

≥ d

100t log d
≥ r

400t log r
.

So H is as required in the lemma. �

Proof of Theorem 4.9. Apply Lemma 4.10 to G to obtain (without loss of
generality) a bipartite subgraph H with ∆(H) ≤ r and

δ := δ(H) ≥ r

400t log r
. (4.7)

Define ε by

rε =
r

1
2(s−1)

32t(r/δ)
1

s+1

. (4.8)

Put ℓ := r1−ε and let X be a random subset of V (H) which is obtained by
including each vertex into X with probability p := 2ℓ/δ independently of all
other vertices. The branch sets of our minor of large average degree will consist
of stars whose centres are precisely the vertices in X. Since r ≥ (100t)16(s−1) ,
for every vertex v ∈ H we have

P(v ∈ X) = p =
2r

rεδ
≤ 2 · 400t log r

rε

≤ 2 · 32t · (400t)2

r
1

4(s−1)

· (log r)2

r
1

4(s−1)

≤ 1/20. (4.9)

Call a vertex v ∈ H good if it satisfies the following two conditions.
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(i) v /∈ X.

(ii) |NH(v) ∩ X| ≥ ℓ.

We will now show that with large probability a given vertex v ∈ H is good.
First note that

E(|NH(v) ∩ X|) = dH(v) · p ≥ 2ℓ.

As ℓ ≥ √
r, Lemma 4.5 implies that

P(|NH(v) ∩ X| < ℓ) ≤ 2e−
√

r/6 ≤ 1/20.

Together with (4.9) this implies that the probability that a given vertex v ∈ H
is not good is at most 1/10. Call an edge uv ∈ H good if both u and v are
good. So the probability that a given edge uv ∈ H is not good is at most 1/5
and therefore

E(number of edges which are not good) ≤ e(H)/5.

So Markov’s inequality implies that

P(≥ e(H)/2 edges are not good) ≤ 2/5.

Using Markov’s inequality once more, we see that

P(|X| ≥ 2p|H|) ≤ 1/2.

Thus with probability at least 1 − 2/5 − 1/2 > 0 there is an outcome X with
|X| ≤ 2p|H| and for which at least half of the edges of H are good. Let U be
the set of good vertices of H. So eH(U,U) is precisely the number of good edges
of H. For every x ∈ X put Ux := U ∩ NH(x). Note that, since H is bipartite,
H[Ux] consists of isolated vertices. Given a vertex u ∈ U , let Xu := X∩NH(u).
So condition (ii) implies that |Xu| ≥ ℓ.

For every vertex u ∈ U choose a vertex xu ∈ Xu uniformly at random,
independently of all other vertices in U . For all x ∈ X, let Sx be the set of
all those u ∈ Ux with xu = x. Note that the Sx are disjoint and their union
is U . Moreover, every good edge of H joins vertices in distinct Sx. We will
now show that with positive probability the minor M of H whose branch sets
are the Sx ∪ {x} (x ∈ X) has large average degree. For this, we will show
that with positive probability a large fraction of good edges joins different pairs
Sx, Sy and thus corresponds to different edges of M . As |X| (i.e. the number
of vertices of M) is relatively small, this will imply that M has large average
degree. Thus, given a good edge uv ∈ H, we say that

• uv is of type I if there exists a good edge ab 6= uv joining Sxu to Sxv such
that ab and uv are disjoint,

• uv is of type II if there exists a good edge ab 6= uv joining Sxu to Sxv

such that a is an endvertex of uv and |NH(a) ∩ Uxw | ≤ ℓ/30, where w is
the endvertex of uv distinct from a (Fig. 4.1),
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xu = xb

b

u = w

Sxu

Uxu

v = a

Sxv

b

u = a

Sxu

v = w

Sxv

Uxv

xv = xb

Xu Xv

Figure 4.1: The two possibilities for an edge uv to be of type II

• uv is of type III if there exists a good edge ab 6= uv joining Sxu to Sxv

such that a is an endvertex of uv and |NH(a) ∩ Uxw | > ℓ/30, where w is
the endvertex of uv distinct from a.

Note that for all distinct x, y ∈ X the graph H[Ux ∪Uy] does not contain a
Ks−1,t (since this would form a Ks,t together with either x or y). So Theorem 4.7
implies that

eH(Ux, Uy) ≤ 4tr2− 1
s−1 . (4.10)

Recall that the Sx–Sy edges are precisely those Ux–Uy edges uv (with u ∈ Ux and
v ∈ Uy) for which u has chosen x and v has chosen y, i.e. for which x = xu and
y = xv. Since the probability that x = xu and y = xv is |Xu|−1|Xv |−1 ≤ ℓ−2, it
follows that

P(there is a good Sx–Sy edge) ≤ eH(Ux, Uy) ·
(

1

ℓ

)2

(4.10)

≤ 4tr2ε− 1
s−1

(4.8)

≤ 1

60
. (4.11)

So given a good edge uv we have

P(uv is of type I) =
∑

x∈Xu, y∈Xv

P(uv is of type I and x = xu and y = xv)

=
∑

x∈Xu, y∈Xv

P(there is a good Sx–Sy edge disjoint from uv) · 1

|Xu|
· 1

|Xv|
(4.11)

≤ 1

60
.

Moreover, given xu and xv, in the definition of a type II edge uv there are at
most two possibilities for a and at most ℓ/30 candidates for b and P(xb = xw) ≤
1/ℓ. Thus

P(uv is of type II) =
∑

x∈Xu, y∈Xv

P(uv is of type II and x = xu and y = xv)

≤
∑

x∈Xu, y∈Xv

2 · ℓ

30
· 1

ℓ
· 1

|Xu|
· 1

|Xv |
=

4

60
.
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Hence

E(number of good edges which are type I or II) ≤ eH(U,U)/12,

and so Markov’s inequality implies that

P(≥ eH(U,U)/4 good edges are of type I or II) ≤ 1/3. (4.12)

It remains to show that also with only small probability a large fraction of the
good edges is of type III. This trivially holds for s = 2. Indeed, as ℓ/30 ≥ t,
the vertices a and xw in the definition of a type III edge form a K2,t together
with any t vertices in NH(a)∩Uxw . Thus there are no good edges of type III in
this case. So suppose that s ≥ 3. Given a vertex y ∈ X, let Vy be the set of all
those vertices in U which have at least ℓ/30 neighbours in Uy. So Vy ⊆ U \Uy.
As H is Ks,t-free, Lemma 4.6 implies that

|Vy|
(

ℓ/30

s

)
≤ t

(|Uy|
s

)
.

Thus

|Vy| ≤
(

32

ℓ

)s

t · |Uy|s ≤ (32rε)st. (4.13)

Given distinct good edges uv and ub and vertices x, y ∈ X, we say that the
ordered quadruple uv, ub, x, y forms a configuration of type III if u ∈ Ux, v, b ∈
Uy and if u has at least ℓ/30 neighbours in Uy. So each configuration of type
III can be obtained by first selecting a vertex v ∈ U , then selecting a vertex
y ∈ Xv, then selecting a neighbour u of v which lies in Vy (i.e. which lies in
U and sends at least ℓ/30 edges to Uy), then we select a vertex x ∈ Xu and
finally we select a neighbour b of u in Uy \ v. We say that a configuration
of type III survives if u has chosen x and both v and b have chosen y, i.e. if
x = xu and y = xv = xb. Thus the probability that it survives is precisely
|Xu|−1|Xv |−1|Xb|−1 ≤ |Xu|−1|Xv |−1/ℓ. Hence

E(number of good edges which are of type III)

≤ E(number of surviving configurations of type III)

≤
∑

v∈U

∑

y∈Xv

∑

u∈NH(v)∩Vy

∑

x∈Xu

∑

b∈NH(u)∩Uy\v

1

|Xu||Xv |ℓ
(4.13)

≤ |H|(32rε)str

r1−ε

(4.8)
= |H|32st

(
r

1
2(s−1)

32t

)s+1

· δ

r

(s≥3)

≤ δ|H|
32

≤ e(H)

16
≤ eH(U,U)

8
.

Hence Markov’s inequality implies that also for s ≥ 3

P(≥ eH(U,U)/4 good edges are of type III) ≤ 1/2.

40



Together with (4.12) this shows that for every u ∈ U there exists a choice of xu

such that at most eH(U,U)/2 good edges are of type I, II or III. Let F be the
set of all good edges which are not of type I, II or III.

Consider the minor M of H whose branch sets are the sets Sx ∪ {x} (for
all x ∈ X). As H is bipartite, every edge in F joins distinct branch sets and,
by definition of F , no two edges in F join the same pair of branch sets. Thus
e(M) ≥ |F | and so

d(M) ≥ 2|F |
|X| ≥ eH(U,U)

|X| ≥ e(H)

2 · 2p|H| ≥
δ

8p
=

δ2

16r1−ε

(4.8)
=

r
1+ 1

2(s−1)

16 · 32t
·
(

δ

r

)2+ 1
s+1

(4.14)

(4.7)

≥ r
1+ 1

2(s−1)

16 · 32t · (400t log r)2+
1

s+1

≥ r
1+ 1

2(s−1)

109t4(log r)2+
1

s+1

,

as required. �

Note that for regular graphs G the logarithmic term in (4.2) is not necessary.
Indeed, we only have to replace the graph H in the proof of Theorem 4.9 with
a bipartite subgraph obtained from G by an application of Proposition 2.2, and
then (4.14) shows that this subgraph contains a minor of the required average
degree. Moreover, for non-regular graphs the exponent 2+ 1

s+1 of the logarithmic

term can be reduced to 1 + 1
2(s−1) . However, we do not give the details as we

conjecture that (as in the case s = 2, see Theorem 3.2) the logarithmic term
in (4.2) can be removed altogether. This would then match the upper bound
implied by Proposition 4.12.

4.4 Upper bounds

In this section we observe that the truth of the following well-known conjecture
about the existence of dense Ks,t-free graphs would imply that for fixed s and t
Theorems 4.1 and 4.9 are best possible up to the logarithmic term (and that
this term cannot be omitted completely in Theorem 4.1).

Conjecture 4.11 For all integers t ≥ s ≥ 2 there exists a positive constant
c = c(s, t) such that for all integers n there is a Ks,t-free graph G of order n
with at least cn2−1/s edges.

(See e.g. [12, p. 362] or [25, p. 36] for the case s = t which of course would
already imply the general case.) In other words, the conjecture states that
the upper bound on the number of edges of a Ks,t-free graph in Theorem 4.7
gives the correct order of magnitude. Conjecture 4.11 is known to be true
for all t ≥ s with s = 2, 3 (see [12, Ch. VI]). Furthermore, Alon, Rónyai
and Szabó [6] proved the conjecture for all t ≥ s ≥ 2 with t > (s − 1)! by
modifying a construction of [47]. The following proposition immediately implies
that Theorems 4.1 and 4.9 are best possible up to the logarithmic term, provided
that Conjecture 4.11 holds.

41



Proposition 4.12 For every c > 0 and every s ≥ 2 there exists a constant
C = C(c, s) such that whenever G is a graph with e(G) ≥ c|G|2−1/s then every
minor H of G satisfies

d(H) ≤ C · d(G)
1+ 1

2(s−1) .

Proof. Put n := |G|, r := d(G) and d := d(H). For every vertex h ∈ H let
Vh ⊆ V (G) be the branch set corresponding to h. Then

nr = 2e(G) ≥
∑

h∈H

∑

v∈Vh

dG(v) ≥
∑

h∈H

dH(h) = 2e(H) ≥ d2,

and so d ≤ √
nr. But r ≥ 2cn1−1/s, i.e. n ≤ (r/2c)

s
s−1 . Therefore

d ≤ r
1
2
(1+ s

s−1
)

(2c)
s

2(s−1)

,

as required. �

In general, for s ≥ 4 the best known lower bound on the maximum number
of edges of a Ks,s-free graph G is c|G|2−2/(s+1) (see e.g. [12, Ch. VI, Thm. 2.10]).

Together with Proposition 4.12, this still yields an upper bound of c′r1+ 1
s−1 for

the order of the complete minor in Theorem 4.1 and the average degree of the
minor in Theorem 4.9.

Finally, the next proposition shows that if we ask for a complete graph
instead of just a graph of large average degree as minor, then we lose an extra√

log r factor. In particular, if Conjecture 4.11 holds, then the logarithmic term
in Theorem 4.1 cannot be omitted completely. The proof of Proposition 4.13 is
an extension of the well-known probabilistic argument which shows that (3.1)
gives the correct order of magnitude for the function p(r) (see Bollobás, Catlin
and Erdős [17]).

Proposition 4.13 Suppose that Conjecture 4.11 holds. Then for all integers
t ≥ s ≥ 2 there exists a constant C ′ = C ′(s, t) such that for every integer r0

there is a Ks,t-free graph G′ of average degree r ≥ r0 which does not contain a

complete graph of order at least C ′r1+ 1
2(s−1) /

√
log r as minor.

Proof. Let c = c(s, t) be the constant in Conjecture 4.11 and let G be a Ks,t-
free graph whose order n is sufficiently large compared with c and r0 and such
that cn2−1/s ≤ e(G) ≤ 2cn2−1/s. Throughout the proof we will also assume
that n is sufficiently large for our estimates to hold. Set ℓ := d(G),

k :=

√
32c(ℓ/2c)

2s−1
s−1

log ℓ

and put h := ⌈k⌉ + 1. Consider a random spanning subgraph Gp which is
obtained from G by including every edge of G into Gp with probability p :=
1 − 1/e independently of all other edges of G. Then E(e(Gp)) = p · e(G) and

42



thus Lemma 4.5 implies that with probability at least 1/2 we have e(Gp) ≥
p · e(G)/2 > e(G)/4, i.e. d(Gp) > ℓ/4 ≥ r0. Hence it suffices to show that
with probability at most 1/4 the graph Gp contains a Kh minor. (Indeed,
if C ′ is sufficiently large, then this would show that with probability at least
1/2 − 1/4 > 0 the graph Gp is as required in Proposition 4.13.) Consider any
family V = {V1, . . . , Vh} of disjoint subsets of V (G) and let W be the set of
all such families. Call V admissible if, for all i < j, the graph Gp contains at
least one edge between Vi and Vj. Thus if V consists of the branch sets of a Kh

minor, then V is admissible. Therefore, it suffices to show that with probability
at least 3/4 no V ∈ W is admissible. For this, we first estimate the probability
that a given family V is admissible. For all 1 ≤ i < j ≤ h call the pair Vi, Vj

thin if the bipartite subgraph (Vi, Vj)G of G between Vi and Vj contains at most
(log ℓ)/4 edges. We claim that at least half of the pairs Vi, Vj are thin. Indeed,
suppose not. Then

e(G) ≥ 1

2

(
h

2

)
· log ℓ

4

>
k2

4
· log ℓ

4
= 2c

(
ℓ

2c

) 2s−1
s−1

≥ 2c
(
n

s−1
s

) 2s−1
s−1

= 2cn2− 1
s , (4.15)

a contradiction. Thus

P(V is admissible) ≤ P(eGp(Vi, Vj) ≥ 1 for all thin pairs Vi, Vj)

=
∏

Vi,Vj thin

(
1 − (1 − p)eG(Vi,Vj)

)
≤

∏

Vi,Vj thin

(1 − ℓ−1/4)

≤ (1 − ℓ−1/4)
1
2(h

2) ≤ exp(−ℓ−1/4 · k2/4)

(4.15)

≤ exp

(
−ℓ−1/4 · cn2−1/s · 8

log ℓ

)
≤ exp

( −8c

log n
· n 7

4
− 1

s

)

≤ e−2n log n.

As |W| ≤ nn, this implies that

P(some V ∈ W is admissible) ≤ nn · e−2n log n = e−n log n ≤ 1

4
,

as required. �

If we replace the graph G in the proof of Proposition 4.13 by a graph as in
Conjecture 3.12, then we obtain the following.

Proposition 4.14 Suppose that Conjecture 3.12 holds. Then for all odd inte-
gers g there exists a constant C ′ = C ′(g) such that for every integer r0 there
is a graph G′ of minimum degree r ≥ r0 and girth at least g which does not
contain a complete graph of order at least C ′r(g+1)/4/

√
log r as minor. �

Thus, the truth of Conjecture 3.12 would imply that, for fixed odd g, Corol-
lary 3.3 is best possible up to the value of the constant c.
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Chapter 5

Large topological cliques in

graphs without a 4-cycle

5.1 Introduction

Bollobás and Thomason [20] as well as Komlós and Szemerédi [58] indepen-
dently proved the following result, which improved an earlier bound of Mader.

Theorem 5.1 [20, 58] There exists a positive constant c such that every graph
of average degree r contains a subdivision of a complete graph of order at
least c

√
r.

It is easy to see (and was first observed by Jung [43]) that the complete
bipartite graph Kr,r contains no subdivision of a complete graph Kℓ with ℓ ≥√

8r. So in general Theorem 5.1 is best possible up to the value of the constant c.
However, it turns out that dense bipartite graphs are the only counterexamples
in the sense that we can improve Theorem 5.1 if we forbid a fixed complete
bipartite subgraph Ks,t:

Theorem 5.2 For all integers t ≥ s ≥ 2 there exists an r0 = r0(s, t) such that
every Ks,t-free graph G of average degree r ≥ r0 contains a subdivision of a
complete graph of order at least

r
1
2
+ 1

2(s−1)

(log r)12
. (5.1)

By Jung’s observation, clearly we cannot hope for a similar result if we forbid
a non-bipartite graph H instead of a Ks,t since then complete bipartite graphs
would be H-free.

In the C4-free case s = t = 2 the bound (5.1) is ‘almost linear’ and thus
best possible up to the logarithmic term. For arbitrary t ≥ s ≥ 2 a classi-
cal conjecture on the existence of dense Ks,t-free graphs (see e.g. [12, p. 362]
or [25, p. 36]) would also imply that the bound (5.1) is best possible up to the
logarithmic term. We will give the details in Section 5.4.

Up to the logarithmic term, the special case s = t = 2 of Theorem 5.2 gives
an affirmative answer to a question of Mader [80], who asked whether every
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graph G of girth at least 5 (and hence also every C4-free graph) contains a
subdivision of a complete graph whose order is at least linear in the average
degree of G. As remarked in Section 3.1, this is true if the girth is at least 15.

We remark that the C4-free case of Theorem 5.2 implies that also for all ℓ ≥ 2
every C2ℓ-free graph G contains a subdivision of a complete graph whose order
is ‘almost linear’ in the average degree of G. Indeed, this follows immediately
from a result of [72] that every C2ℓ-free graph can be made C4-free by deleting
a constant fraction of its edges (the case ℓ = 3 of the latter result is due to
Györi [37]).

The proof of Theorem 5.2 uses results of Komlós and Szemerédi [57, 58].
In fact, Theorems 2.1 and 2.2 of [58] together with Theorem 4.7 below already

imply the weaker bound r
1
2
+ 1

6(s−1)
−o(1)

instead of (5.1) in Theorem 5.2.
This chapter is organized as follows. In Section 5.2 we state several results

which we will need later on. We prove Theorem 5.2 in Section 5.3. In the final
section we derive the upper bounds mentioned above.

5.2 Notation and tools

All logarithms in this chapter are base e, where e denotes the Euler number.
We will now collect some results which we need in our proof of Theorem 5.2.
Lemma 4.10 allows us to assume that in the proof of Theorem 5.2 our given
graph G is ‘almost regular’ in the sense that its maximum degree is not much
larger than its minimum degree.

Throughout this chapter, we fix a constant κ such that

1 < κ < 6/5 and κ2 + 3κ + 3 < 8. (5.2)

Given positive constants d and ε0, let

ε(x) :=

{
0 if x < d/4

ε0/(log(8x/d))κ if x ≥ d/4.
(5.3)

Note that ε(x)x is monotone increasing for all x ≥ d/2. We call a graph
H a (κ, d, ε0)-expander for sets of size at least x0 if every X ⊆ V (H) with
x0 ≤ |X| ≤ |H|/2 satisfies |NH(X)| ≥ ε(|X|)|X|, where ε is the function
defined in (5.3). H is a (κ, d, ε0)-expander if we can take x0 = 0.

The following result of Komlós and Szemerédi [57, Thm. 2.2] shows that
every graph G contains an expander whose average degree is not much smaller
than that of G.

Theorem 5.3 Let d, ε0 > 0 and suppose that the function ε defined in (5.3)
satisfies

∑∞
x=1 ε(x)/x ≤ 1/6 (which holds if ε0 is sufficiently small compared

with κ). Then every graph G has a subgraph H with d(H) ≥ d(G)/2 and
δ(H) ≥ d(H)/2 which is a (κ, d, ε0)-expander for sets of size at least 3d/4.

Corollary 5.4 There is a positive ε0 = ε0(κ) < 1 such that every graph G has
a subgraph H with d(H) ≥ d(G)/2 and δ(H) ≥ d(H)/2 which is a (κ, d(H), ε0)-
expander.
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Proof. Let G′ be a subgraph of G which maximizes d(G′). Put d′ := d(G′)/6.
If ε0 is sufficiently small, we may apply Theorem 5.3 to G′ to obtain a graph
H which is a (κ, d′, 8ε0)-expander for sets of size at least 3d′/4. Using that
d(H) ≤ 6d′, it is easy to check that for x ≥ d(H)/4 we have

8ε0

(log(8x/d′))κ
≥ ε0

(log(8x/d(H)))κ
.

Since d(H)/4 ≥ 3d′/4 this shows that H is a (κ, d(H), ε0)-expander. �

The following simple consequence of expansion is implicit in [57]. It shows
that expanders have ‘robustly small diameter’. A proof is included in [58,
Lemma 2.1].

Lemma 5.5 Let d > 0, 1 > ε0 > 0 and let G be a (κ, d, ε0)-expander. Let ε be
as defined in (5.3) and suppose that X,Y,Z ⊆ V (G) such that |X|, |Y | ≥ x ≥ d,
|Z| ≤ ε(x)x/4 and (X ∪ Y ) ∩ Z = ∅. Then the distance between X and Y in
G − Z is at most

2 log(|G|/x)

log(1 + ε(|G|)/2)
≤ 8(log(8|G|/d))1+κ

ε0
.

In the proof of Theorem 5.2 we will first replace our given graph G with
an ‘almost regular’ subgraph obtained by Lemma 4.10. Then we apply Corol-
lary 5.4 to this subgraph to obtain an expander H which is still ‘almost regular’.
The following result of Komlós and Szemerédi [57, Thm. 3.1] implies that we are
already done if the order of H is sufficiently large compared with the average
degree of H.

Theorem 5.6 Let ε0 > 0 and let α > κ2 + 3κ + 3 > 7. Then there exists a
positive constant c such that every graph G which is a (κ, d(G), ε0)-expander sat-
isfying d(G)/2 ≤ δ(G) ≤ ∆(G) ≤ 72(d(G))2 and log |G| ≥ (log d(G))α contains
a subdivision of a complete graph of order at least cd(G).

In the remainder of this section we collect some other results which we will
use in our proof of Theorem 5.2. Wwill use the following variant of Lemma 4.5
(see e.g. [39, Cor. 2.3 and 2.4]).

Lemma 5.7 Let X1, . . . ,Xn be independent 0-1 random variables with P(Xi =
1) = p and let X :=

∑n
i=1 Xi. Then

P(X ≤ EX/2) ≤ 2e−EX/12, (5.4)

P(X ≥ x) ≤ e−x for all x ≥ 7E(X). (5.5)

The next result is an easy consequence of Hall’s matching theorem (see
e.g. [14, Ch. III, Thm. 7] or [28, Thm. 2.1.2]).

Corollary 5.8 Let G = (A,B) be a bipartite graph such that dG(a) ≥ dA for
all a ∈ A and dG(B) ≤ dB for all b ∈ B. Then G contains |A| disjoint stars
with centres in A and such that each of them has ⌊dA/dB⌋ leaves.
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Proof. Form a new bipartite graph G′ = (A′, B) by replacing every vertex
a ∈ A with τ := ⌊dA/dB⌋ new vertices and joining each such vertex to all the
neighbours of a. For every A∗ ⊆ A′ we have

|A∗|dA ≤ eG′(A∗,NG′(A∗)) ≤ |NG′(A∗)|τdB

and thus |NG′(A∗)| ≥ |A∗|. So by Hall’s theorem there exists a matching of A′

in G′. But this corresponds to the required disjoint stars in G. �

5.3 Proof of Theorem 5.2

As indicated in Section 5.2, in the proof of Theorem 5.2 we may assume the we
are given a graph H which is an ‘almost regular’ expander such that log |H| ≤
(log d(H))α. But then by Lemma 5.5, the distance in H between any two
sufficiently large sets is small in terms of d(H) and this remains true if we
delete a few vertices of H. Roughly, we shall use this property as follows. Let
ℓ be the value of (5.1) in Theorem 5.2. So we are seeking a subdivision TKℓ of
Kℓ in H. Lemma 5.9 below implies that we can find ℓ disjoint stars in H such
that the neighbourhood in H of each star is large even if we delete a small but
arbitrary subset of the leaves. The centres of these stars will form the branch
vertices of our TKℓ. To find the subdivided edges, we will apply Lemma 5.5
to obtain for every pair of stars a short path joining the neighbourhoods of the
stars. All these paths will be disjoint, will avoid the stars themselves and they
can be extended to subdivided edges of the TKℓ.

Given a star S, we denote by L(S) the set of its leaves.

Lemma 5.9 For all integers t ≥ s ≥ 2 there exists an r0 = r0(s, t) such that
for each r ≥ r0 every Ks,t-free graph G with δ(G) ≥ r/1600t log r and ∆(G) ≤ r
contains at least

k :=

⌊
r

1
2
+ 1

2(s−1)

t(1600 log r)2

⌋
(5.6)

disjoint stars where each such star S satisfies the following two conditions.

(i) |L(S)| = k.

(ii) For every v ∈ L(S) there is a set Nv of k neighbours of v outside V (S)
such that Nv ∩ Nw = ∅ for distinct v,w ∈ L(S).

As described in Section 5.4, it is believed that for t ≥ s ≥ 2 there are Ks,t-
free graphs of average degree r and order at most csr

1+1/(s−1). Note that for
such graphs G the union of the stars in Lemma 5.9 (and thus the subdivision of
the complete graph which we will construct in our proof of Theorem 5.2) would
cover a significant portion of V (G).

Proof of Lemma 5.9. Throughout the proof of the lemma we will assume
that r is sufficiently large compared with s and t. Put n := |G|, δ := δ(G) and

f := 2(log r)r
1
2
− 1

2(s−1) . Consider a random subset Xp of V (G) which is obtained
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by including each vertex of G with probability p := f/e2r in Xp, independently
of all other vertices of G. Call a vertex v ∈ G good if it has at most f neighbours
in Xp. Then Stirling’s inequality (see e.g. [14, p. 216]) implies that

P(v is not good) ≤
(

dG(v)

f

)
pf ≤

(
er

f
· p
)f

= e−f ≤ r−2. (5.7)

Let np denote the number of vertices in G which are not good or have a neigh-
bour that is not good. Then (5.7) implies that E(np) ≤ (r + 1)n/r2. So writing
mp := |Xp| − np, we have

E(mp) ≥ pn − (r + 1)n

r2
≥ pn

2

(4.1)

≥ f

2e2r
·
(

δ

2t

)1+ 1
s−1

≥ r
1
2
+ 1

2(s−1)

(2e1600t2)2 log r
≥ 2k.

Hence there is an outcome Xp which contains least 2k vertices that are good
and have only good neighbours in G. Let X denote the set of all these vertices.

We remark that for the case t = s = 2 the lemma now follows easily. Indeed,
since every vertex x ∈ X is good, it has at least δ− f ≥ δ/2 neighbours outside
X and, since each such neighbour is good, it sends at most f edges to X. As

δ

2f
≥ 100k (5.8)

we can apply Corollary 5.8 to (X,NG(X))G to obtain |X| disjoint stars whose
centres are the vertices in X and where each such star has k leaves. Then these
stars S are as required in the lemma. (Given v ∈ L(S), we can take for Nv

any set of k neighbours of v outside S. As t = s = 2 these sets are disjoint for
distinct v ∈ L(S).) The argument easily extends to the case t ≥ s = 2 but not
to the general case. However, we will show that a random assignment of leaves
(these will be the vertices in NG(X)) to star centres (which will be the vertices
in X) works for all t ≥ s ≥ 2.

Given a vertex v ∈ NG(X), with probability |NG(v) ∩ X|/f choose one of
the vertices x ∈ NG(v) ∩ X. Here each of these vertices is equally likely to
be chosen and so the corresponding probability is 1/f . Choose no vertex at all
with the remaining probability 1−|NG(v)∩X|/f . (Recall that |NG(v)∩X| ≤ f
since NG(X) ∋ v consists of good vertices. So the probability is well defined.)
Do this independently for all vertices v ∈ NG(X). Let Sx denote the star in G
whose centre is x and whose leaves are the vertices in NG(X) that have chosen
x. Thus the Sx are disjoint for distinct x. We will now show that with positive
probability at least half of the stars Sx (x ∈ X) contain a substar which satisfies
(i) and (ii). So call Sx useful if there is a set Lx ⊆ L(Sx) satisfying the following
two conditions.

(a) |Lx| = k.

(b) For every v ∈ Lx there is a set Nv of k neighbours of v outside Lx ∪ {x}
such that Nv ∩ Nw = ∅ for distinct v,w ∈ Lx.

Call Sx useless if it is not useful. Fix a set Ax of ⌊δ/2⌋ neighbours of x in G
that lie outside X. For each v ∈ Ax fix a set Vv of ⌈δ/2⌉ neighbours of v in
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G outside Ax ∪ {x}. Let Gx denote the bipartite subgraph of G whose vertex
classes are Ax and Bx :=

⋃
v∈Ax

Vv and in which each vertex v ∈ Ax is joined
to precisely the vertices in Vv. So e(Gx) = ⌈δ/2⌉|Ax|. Denote by B1

x the set of
all vertices in Bx whose degree in Gx is at most f2 and let B2

x := Bx \ B1
x.

We now claim that eGx(Ax, B2
x) ≤ e(Gx)/2. Suppose not. Then on average

each vertex in Ax has at least δ/4 neighbours in B2
x. Since (Ax, B2

x)Gx does not
contain a Ks−1,t with t vertices in Ax and s − 1 vertices in B2

x (such a Ks−1,t

would yield a Ks,t in G together with x), Lemma 4.6 implies that

|Ax|
(

δ/4

s − 1

)
≤ t

( |B2
x|

s − 1

)
.

As |Ax| ≥ ⌊δ/2⌋ ≥ δ/4 it follows that

|B2
x| ≥

δ|Ax|
1

s−1

8t
≥ δ1+ 1

s−1

32t
. (5.9)

On the other hand, we have f2|B2
x| ≤ eGx(Ax, B2

x) ≤ δ2, and thus

|B2
x| ≤

δ2

f2
≤ δ1+ 1

s−1

(2 log r)2
,

contradicting (5.9). So eGx(Ax, B1
x) ≥ e(Gx)/2. Let A′

x be the set of all those
vertices in Ax which have at least δ/8 neighbours in Gx that lie inside B1

x. Then

|A′
x|δ + |Ax|δ/8 ≥ eGx(Ax, B1

x) ≥ e(Gx)/2 ≥ |Ax|δ/4

and thus |A′
x| ≥ |Ax|/8. We claim that Sx is useful if |A′

x ∩ L(Sx)| ≥ k and
if in Gx each vertex in B1

x has at most 7f neighbours lying inside L(Sx). To
see this, apply Corollary 5.8 with A := A′

x ∩ L(Sx), B := B1
x, dA := δ/8 and

dB := 7f to the graph (A,B)Gx to obtain |A′
x ∩ L(Sx)| ≥ k disjoint stars with

centres in A′
x∩L(Sx) and such that each star has at least ⌊δ/56f⌋ leaves. Since

⌊δ/56f⌋ ≥ k by (5.8), we can take for the set Lx in the definition of a useful
star Sx any set of k centres of these stars. Hence Sx is useful.

So it remains to estimate the probability that |A′
x ∩ L(Sx)| ≤ k or that B1

x

contains a vertex with more than 7f neighbours in L(Sx). As each vertex in
Ax ⊇ A′

x chooses x with probability 1/f , we have

E(|A′
x ∩ L(Sx)|) = |A′

x|/f ≥ |Ax|/8f ≥ δ/32f
(5.8)

≥ 2k.

Together with inequality (5.4) of Lemma 5.7 this implies

P(|A′
x ∩ L(Sx)| ≤ k) ≤ 2e−2k/12 ≤ 1/4. (5.10)

Furthermore, the definition of B1
x implies that for every vertex b ∈ B1

x

E(|NGx(b) ∩ L(Sx)|) ≤ f,

and thus from (5.5) it follows that

P(|NGx(b) ∩ L(Sx)| ≥ 7f) ≤ e−7f .
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Hence

P(∃ b ∈ B1
x with |NGx(b) ∩ L(Sx)| ≥ 7f) ≤ e−7f |B1

x| ≤ e−7f δ2 ≤ 1/4.

Together with (5.10) this implies that with probability at most 1/2 the star
Sx is useless. Hence the expected number of useless stars Sx is at most |X|/2,
and therefore for some outcome at least |X|/2 ≥ k of the stars Sx (x ∈ X) are
useful. For each such Sx let S′

x ⊆ Sx be the star whose centre is x and whose
leaves are the vertices in a set Lx satisfying (a) and (b). Then the S′

x are stars
as required in the lemma. �

Proof of Theorem 5.2. Throughout the proof we assume that r is sufficiently
large compared with s and t. Let k be as defined in (5.6) and put

ℓ :=

⌊
k

(log r)4+5κ

⌋
(5.2)

≥ r
1
2
+ 1

2(s−1)

(log r)12
.

We will show that G contains a subdivision of Kℓ. First we apply Lemma 4.10 to
G. Since by Theorem 5.1 every graph of average degree r3 contains a subdivision
of a complete graph of order r ≥ ℓ, we may assume that the lemma returns
a subgraph G′ with δ(G′) ≥ r

400t log r and ∆(G′) ≤ r. Apply Corollary 5.4 to

G′ to obtain a positive constant ε0 = ε0(κ) < 1 and a subgraph H which is a
(κ, d(H), ε0)-expander and satisfies d := d(H) ≥ d(G′)/2 and δ(H) ≥ d(H)/2.
Since 72d2 ≥ r ≥ ∆(H), Theorem 5.6 with α := 8 shows that H contains a
subdivision of a complete graph of order at least cd ≥ ℓ, provided that log |H| ≥
(log d)8. Thus, setting n := |H|, we may assume that

log n < (log d)8 ≤ (log r)8. (5.11)

Apply Lemma 5.9 to H to obtain k disjoint stars as described there. Pick ℓ of
these stars, S1, . . . , Sℓ say. For all leaves v of Si fix a set N i

v satisfying condition
(ii) of Lemma 5.9 and let Ai :=

⋃
v∈L(Si)

N i
v. So |Ai| = k2. The branch vertices

of our subdivision of Kℓ in G will be the centres of the Si and each edge ij of Kℓ

will correspond to a path joining a leaf of Si to a leaf of Sj . We will find disjoint
such paths as follows. For each edge ij ∈ Kℓ in turn we use Lemma 5.5 to find
a short Ai–Aj path in the graph obtained from H by deleting S1, . . . , Sℓ as well
as all previously constructed paths. We have to take care that for every vertex
i ∈ Kℓ the paths that correspond to the edges of Kℓ which are incident with i
start in distinct sets N i

v ⊆ Ai and thus can be joined by independent edges to
distinct leaves of Si. Thus when defining the Ai–Aj path corresponding to the
edge ij ∈ Kℓ, we will also delete all those sets N i

v from H which contain the
starting point of a previously constructed Ai–Aj′ path; and similarly for j.

More formally, we proceed as follows. Fix an enumeration i1j1, . . . , i(ℓ
2)

j(ℓ
2)

of the edges of Kℓ. We will show that for all b ≤
(ℓ
2

)
there is a path Pb whose

length is at most 2 + 8(log n)1+κ/ε0 =: diam, which joins a leaf of Sib to a leaf

of Sjb
, has no inner vertices in

⋃ℓ
i=1 Si and such that the Pb are disjoint for

distinct b ≤
(ℓ
2

)
. Suppose inductively that for some a ≥ 1 we have already

defined Pb for all b < a.
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To find Pa, let Nia be the union of all those N ia
v for which the leaf v of Sia is

an endpoint of a path Pb constructed previously. (In other words, these paths
Pb are precisely the previously constructed paths that correspond to an edge of
Kℓ incident with ia, i.e. for which ia ∈ {ib, jb}.) Define Nja similarly. Let Z be
the set consisting of the vertices in Nia ∪Nja together with all vertices lying in
some Si (i ≤ ℓ) and all vertices on the paths Pb already constructed. So

|Z| ≤ 2ℓk + ℓ(k + 1) + (diam + 1) ·
(

ℓ

2

)
≤ 4ℓk +

5ℓ2(log n)1+κ

ε0

(5.11)

≤ 4ℓk +
5ℓ2(log r)8+8κ

ε0
≤ 6k2

ε0(log r)2κ
. (5.12)

Let A′
ia

:= Aia \ Z and define A′
ja

similarly. Then

|A′
ia | ≥ |Aia | − |Z|

(5.12)

≥ k2 − 6k2

ε0(log r)2κ
≥ k2

2
. (5.13)

Let ε be as defined in (5.3). Using that ε(x)x is monotone increasing for all
x ≥ d/2 and thus for x ≥ k2/2, it is easy to check that (5.12) and (5.13) imply
|Z| ≤ |A′

ia
|ε(|A′

ia
|)/4. Similarly it follows that |Z| ≤ |A′

ja
|ε(|A′

ja
|)/4. Thus we

may apply Lemma 5.5 to obtain an A′
ia

–A′
ja

path P in H −Z of length at most

8(log(8n/d))1+κ

ε0
≤ diam − 2.

The definition of A′
ia

implies that the endpoint of P in A′
ia

can be joined by
an edge to some leaf of Sia which is not already an endpoint of a path Pb

constructed previously. The same is true for ja. Altogether this shows that the
Sia–Sja path Pa obtained from P in this way has the required properties. �

5.4 Upper bounds

The following proposition shows that the existence of sufficiently dense Ks,t-free
graphs would imply that the bound (5.1) in Theorem 5.2 is best possible up to
the logarithmic factor.

Proposition 5.10 For every c > 0 and all t ≥ s ≥ 2 there is a constant
C = C(c, s, t) such that no Ks,t-free graph G with e(G) ≥ c|G|2−1/s contains a

subdivision of a complete graph of order at least Cd(G)
1
2
+ 1

2(s−1) .

Proof. We will show that C := (16t)s/c
1
2
+ 1

2(s−1) works. Let n := |G| and
r := d(G). Clearly, we may assume that G contains a subdivision TKℓ of Kℓ

for some ℓ ≥ (16t)s. Recall that by Theorem 4.7, every subgraph H of G has at
most t|H|2−1/s edges. In particular, the subgraph of G induced by the branch
vertices of TKℓ contains at most tℓ2−1/s ≤ ℓ2/16 ≤ e(Kℓ)/4 edges. So at least
3/4 of the edges of Kℓ correspond to paths in TKℓ of length at least two. Thus
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n ≥ 3e(Kℓ)/4 ≥ ℓ2/4. On the other hand, our assumption on G implies that
n ≤ (r/c)1+1/(s−1). Hence

ℓ ≤ 2
(r

c

) 1
2
+ 1

2(s−1)
,

as required. �

It is widely believed that Ks,t-free graphs as in the statement of Proposi-
tion 5.10 do exist (Conjecture 4.11).

For s ≥ 4 the best known lower bound on the maximum number of edges of
a Ks,s-free graph G is c|G|2−2/(s+1) (see e.g. [12, Ch. VI, Thm. 2.10]). Using this

bound, the proof of Proposition 5.10 still yields an upper bound of C ′r
1
2
+ 1

s−1

for the order of the complete topological minor in Theorem 5.2.
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Chapter 6

Induced subdivisions in

Ks,s-free graphs of large

average degree

6.1 Introduction

In Chapter 5 we showed that Ks,s-free graphs contain significantly larger cliques
as subdivisions than those guaranteed by their average degree. Here we show
that if we consider Ks,s-free graphs as host graphs, then we can require our
subdivisions to be induced:

Theorem 6.1 For every graph H and every s ∈ N there exists d = d(H, s)
such that every graph G of average degree at least d contains either a Ks,s as a
subgraph or an induced subdivision of H.

Of course, Theorem 6.1 becomes false if we replace the Ks,s by some non-
bipartite graph G∗ since then complete bipartite graphs would be G∗-free but
they do not contain an induced subdivision of a path of length three. Moreover,
one cannot replace ‘subdivision’ by ‘subgraph’, as for example there exist graphs
which have both arbitrarily large average degree and arbitrarily large girth. On
the other hand, Kierstead and Penrice [45] proved that if H is a tree then one can
indeed find it as an induced subgraph in any Ks,s-free graph of sufficiently large
average degree. They used this result to prove a special case of the conjecture
of Gyárfás [36] and Sumner [96] that given a tree T and s ∈ N, every Ks-free
graph of sufficiently large chromatic number contains an induced copy of T .
Scott [95] proved that this conjecture becomes true if we only require an induced
subdivision of T . In [95] he also proposed a conjecture which is analogous to
Theorem 6.1—replacing ‘average degree’ by ‘chromatic number’ and Ks,s by
Ks. In fact, Theorem 6.1 was motivated by this conjecture.

We now briefly outline the organization of this chapter and the strategy
of our proof of Theorem 6.1. Consider a Ks,s-free graph G of large average
degree. In Section 6.2 we prepare the ground for the proof by collecting some
tools which we will need later on. In particular, it turns out that in order to
find an induced subdivision of H in G, it suffices to prove the following
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Theorem 6.2 For all k, s ∈ N there exists d = d(s, k) such that every Ks,s-free
graph G of average degree at least d contains an induced subdivision of some
graph H∗ where the average degree of H∗ is at least k and every edge of H∗ is
subdivided exactly once.

We will call such a subdivision an induced 1-subdivision of H∗. Note that both
the set B of branch vertices and the set S of subdividing vertices have to be
independent in G. The first step towards finding such a 1-subdivision of H∗ is to
find a large independent set I in G (Section 6.3). Ideally, we would like to find
another independent set B∗ such that the bipartite subgraph between I and B∗

has large average degree. In this case, one can find B in the smaller of B∗ and
I and S in the larger of the two. Unfortunately, we cannot guarantee that such
a set B∗ always exists. However, in Section 6.4 we will show that one can come
fairly close: we will find sets I∗ ⊆ I and B∗ such that the bipartite subgraph
between I∗ and B∗ has large average degree and G[B∗] has small chromatic
number. In Section 6.5, which constitutes the core of our proof, we then show
how to find our induced 1-subdivision of H∗ within G[I∗ ∪ B∗]. In Section 6.6
we then put everything together to complete the proof of Theorem 6.2 (and
thus of Theorem 1). In the final section we mention some open problems.

Theorem 6.2 also implies induced analogues of a result of Thomassen on sub-
divisions and of a result of Häggkvist and Scott on cycles in graphs: Thomassen
[103] proved that for every k, ℓ ∈ N there exists f = f(k, ℓ) such that every
graph of minimum degree at least f contains a subdivision of some graph H
with minimum degree at least k in which every edge is subdivided exactly ℓ
times. Combined with Theorem 6.2 this gives the following analogue for odd
integers ℓ:

Corollary 6.3 For all k, s ∈ N and every odd integer ℓ there exists g =
g(k, ℓ, s) such that every Ks,s-free graph of minimum degree at least g con-
tains an induced subdivision of some graph H with minimum degree at least k
in which every edge is subdivided exactly ℓ times.

Häggkvist and Scott [38] proved that every graph of minimum degree at least
300k2 contains k cycles of consecutive even lengths. (Verstraëte [105] improved
the bound on the minimum degree to a linear one.) Applying this result to the
graph H∗ provided by Theorem 6.2 we obtain k induced cycles in G which are
twice as long. In particular, we have

Corollary 6.4 For all k, s ∈ N there exists g = g(k, s) such that every Ks,s-
free graph of minimum degree at least g contains k induced cycles whose lengths
form an arithmetic progression.

6.2 Notation and tools

In this chapter, all logarithms are base two. A 1-subdivision of a graph H is
the graph obtained from H by replacing the edges of H with internally disjoint
paths of length two. If we say that a bipartite graph (A′, B′) is a subgraph of
(A,B) then we tacitly assume that A′ ⊆ A and B′ ⊆ B. We shall frequently
consider the following class of graphs.
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Definition. Given non-negative numbers d, i and k ≤ d/4, we say that a
bipartite graph (A,B) is a (d, i, k)-graph if |A| ≥ d12i|B| and d/4−k ≤ d(a) ≤ 4d
for all vertices a ∈ A. (Note that the order of A and B matters here.)

We now list some results which we need later on in the proof of Theorem 6.1.
Since every graph of sufficiently large average degree contains a subdivision of
Kr (see Chapter 5), Theorem 6.1 is a consequence of Theorem 6.2. Indeed,
if the average degree of the graph H∗ provided by Theorem 6.2 is sufficiently
large, then H∗ contains a subdivision of H; and it is easily checked that the
corresponding subdivision of H in G is induced.

We shall frequently use the following simple observation. A proof is for
example included in [28, Cor. 5.2.3].

Proposition 6.5 Every graph G contains an induced subgraph of minimum
degree at least χ(G) − 1.

Clearly, it suffices to prove Theorem 6.2 for graphs G which do not have
subgraphs of average degree > d(G). So the Propositions 2.1 and 6.5 enable us
to assume that δ(G) ≥ d(G)/2 and χ(G) ≤ d(G) + 1.

The next lemma is a special case of Chernoff’s inequality (see e.g. [7,
Thm. A.1.12 and A.1.13]).

Lemma 6.6 Let X1, . . . ,Xn be independent 0-1 random variables with P(Xi =
1) = p for all i ≤ n, and let X :=

∑n
i=1 Xi. Then P(X ≥ 2EX) ≤ (4/e)−EX

and P(X ≤ EX/2) ≤ e−EX/8.

One case which arises in our proof of Theorem 6.2 is that we first find an
induced bipartite subgraph (A,B) of large average degree in G and then find an
induced subdivision of H in (A,B). To carry out this second step, it will turn
out to be useful if the vertices in A have almost the same degree and |B| is much
smaller than |A|. The following lemma shows that by replacing (A,B) with an
induced subgraph we can always satisfy these two additional conditions. The
lemma is a slight extension of [93, Lemma 2.4]. Although the proof is almost
the same, we include it here for completeness.

Lemma 6.7 Let r ≥ 26, s ≥ 1 and d ≥ 8r12s+1. Then every bipartite graph of
average degree d contains an induced copy of an (r, s, 0)-graph.

Proof. Clearly, we may assume that our given bipartite graph has no subgraph
of average degree > d. So by Proposition 2.1 this graph contains an induced
subgraph G = (A,B) such that δ(G) ≥ d/2, d(G) = d and |A| ≥ |B|. Thus at
least half of the vertices of A have degree at most 2d in G. So, writing A′ for
the set of all vertices in A of degree at most 2d, we have |A′| ≥ |A|/2 ≥ |B|/2.

Let us now consider a random subset Bp of B which is obtained by including
each vertex of B independently with probability p := r/d. For every a ∈ A′ let
Xa := |NG(a)∩Bp|. Then r/2 ≤ EXa ≤ 2r. Given Bp, let us call a ∈ A′ useful
if r/4 ≤ Xa ≤ 4r. Lemma 6.6 implies that

P(a is not useful) ≤ P(Xa ≥ 2EXa)+P(Xa ≤ EXa/2) ≤ (4/e)−r/2+e−r/16 ≤ 1

4
.
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Hence the expected number of vertices in A′ which are not useful is at most
|A′|/4. So Markov’s inequality (which states that P(X ≥ c EX) ≤ 1/c for every
c ≥ 1) implies that

P(at least half of the vertices in A′ are not useful) ≤ 1

2
.

Moreover, using Lemma 6.6 again,

P(|Bp| ≥ 2p|B|) = P(|Bp| ≥ 2E|Bp|) ≤ (4/e)−p|B| ≤ 1

4
.

So the probability that both |Bp| ≤ 2p|B| and that at least half of the vertices
in A′ are useful is at least 1/2 − 1/4 > 0. Hence there exists a choice B∗ for
Bp which has these two properties. Let A∗ be the set of useful vertices in A′.
Then r/4 ≤ d(A∗,B∗)G

(a) ≤ 4r for every vertex a ∈ A∗ and

|A∗| ≥ |A′|
2

≥ |B|
4

≥ |B∗|
8p

=
d|B∗|

8r
≥ r12s|B∗|.

Thus (A∗, B∗)G is an induced (r, s, 0)-subgraph of G. �

6.3 Independent sets

Clearly, every graph G of maximum degree ∆ has an independent set of size
at least |G|/χ(G) ≥ |G|/(∆ + 1). Lemma 6.8 shows that we obtain a small
but significant improvement if G is Ks,s-free. The proof is based on Alon’s
elegant proof of the result that any triangle-free graph H of maximum degree
∆ contains an independent set of size c|H| log ∆/∆ (see e.g. [7], the result itself
is due to Ajtai, Komlós and Szemerédi [2]).

Alternatively, we could have applied another result from [2]: for all ε there
exists a constant c0 so that every graph with maximum degree at most ∆
which contains at most |G|∆2−ε triangles has an independent set of size at
least c0|G| log ∆/∆. But Theorem 4.7 implies that in a Ks,s-free graph G
the neighbourhood of any vertex x can span at most sd(x)2−1/s ≤ s∆2−1/s

edges and thus G contains at most s|G|∆2−1/s triangles. Although the proof
of Lemma 6.8 given below yields a weaker bound, it is simpler and has the
advantage of being self-contained.

Lemma 6.8 For every s ∈ N there exists c′ = c′(s) such that for each ∆ ≥ 9
every Ks,s-free graph G of maximum degree at most ∆ has an independent set
of size at least

f := c′|G| (log ∆)1/s

∆ log log ∆
.

Proof. Let n := |G|. Let I be an independent set chosen uniformly at random
from all independent sets of G. For every vertex x ∈ G define

Zx :=

{
∆ if x ∈ I;

|N(x) ∩ I| otherwise.
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Then ∑

x∈G

Zx =
∑

x∈I

Zx +
∑

x/∈I

Zx ≤ ∆|I| + e(I, V (G) \ I) ≤ 2∆|I|.

So it suffices to show that E(
∑

x∈G Zx) ≥ 2∆f . Given any vertex x ∈ G, let
Ix := I \ (N(x)∪{x}). Rather than directly showing that E(

∑
x∈G Zx) is large,

we will show that E(Zx|Ix) is large for every vertex x and every Ix.
Let Nx be the set of all neighbours of x which are not adjacent to a vertex in

Ix. We will now show that if Nx is large then the average size of an independent
subset of Nx is large as well. So suppose first that |Nx| ≥ 2. Since G[Nx] is
Ks,s-free, it follows from Theorem 4.7 that every subgraph H of G[Nx] has
average degree at most 2s|H|1−1/s ≤ 2s|Nx|1−1/s. Thus by Proposition 6.5
we have that χ(G[Nx]) ≤ 2s|Nx|1−1/s + 1 ≤ 4s|Nx|1−1/s. So G[Nx] has an
independent set of size at least |Nx|1/s/(4s) =: α. Hence G[Nx] contains at
least 2α/2 independent sets of size at least α/2. Put β := α/(4 log |Nx|). Then
the number of independent subsets of Nx of size at most β is at most

(|Nx|
0

)
+ · · · +

(|Nx|
⌊β⌋

)
≤ |Nx|2β = 22β log |Nx| = 2α/2.

If |Nx| ≥ (8s)s then 2α/2 ≥ 2α/2 and α/2 ≥ 2β; and so in this case the average
size ℓx of an independent subset of Nx is at least β.

Now note that, writing kx for the number of independent sets in Nx, for
every |Nx| ≥ 0 we have

E(Zx|Ix) ≥ ∆ + kxℓx

1 + kx
≥ ∆

2kx
+

ℓx

2
.

Thus, if |Nx| ≥ (log ∆)/2 and if c′ is sufficiently small compared with s, then

E(Zx|Ix) ≥ ℓx

2
≥ β

2
≥ |Nx|1/s

32s log |Nx|
≥ 2c′(log ∆)1/s

log log ∆
,

while if 0 ≤ |Nx| ≤ (log ∆)/2 then

E(Zx|Ix) ≥ ∆

2 · 2|Nx| ≥
∆

2 · 2(log ∆)/2
=

√
∆

2
≥ 2c′(log ∆)1/s

log log ∆
.

Hence we have E(Zx) ≥ 2∆f/n and so E(
∑

x∈G Zx) =
∑

x∈G E(Zx) ≥ 2∆f,
which completes the proof. �

Corollary 6.9 For every s ∈ N there exists d0 = d0(s) such that every Ks,s-
free graph G of average degree d ≥ d0 contains an independent set of size at
least |G|(log d)1/(s+1)/d.

Proof. Let G′ be the subgraph of G induced by the vertices of degree at most
2d. Clearly, |G′| ≥ |G|/2. If d is sufficiently large, then by Lemma 6.8, G′ (and
thus G) has an independent set of size at least |G|(log d)1/(s+1)/d. �
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6.4 Finding a ‘nearly’ induced bipartite subgraph of

large average degree

As remarked in the introduction, we would like to find an induced bipartite
subgraph of large average degree in our original graph G. The aim of this
section is to prove that if G does not contain such a subgraph, we can still
come close to it: by Corollary 6.9 we may assume that G contains a large
independent set I. We will use this to find a subgraph (A,B) of large average
degree so that A ⊆ I (so A is independent) and B has small chromatic number
and is much smaller than A. The following lemma shows how to construct one
colour class of B.

Lemma 6.10 Let I be an independent set in a graph G such that d(x) ≥ d/2
for every x ∈ I and |I| = 2c|G|/d for some c ≥ 2. Suppose that χ(G) ≤ 3d.
Then G has one of the following properties.

(i) G contains an induced bipartite subgraph whose average degree is at least
(log c)/24.

(ii) There are a set I ′ ⊆ I and an independent set J in G − I such that in
G every vertex of I ′ has exactly one neighbour in J , |J | ≤ |I| log c/c and
|I ′| ≥ |I|/4(log c)2.

Proof. Put n := |G|, I := V (G) \ I and let Y be the set of all vertices in I
which have at least c/2 neighbours in I. Then e(I, I \ Y ) ≤ c|I \ Y |/2 ≤ cn/2.
On the other hand the degree of every vertex in I is at least d/2, and so we
have that e(I, I) ≥ cn. Thus e(I, Y ) ≥ cn/2. As χ(G) ≤ 3d, there exists an
independent set A ⊆ Y such that

e(I,A) ≥ e(I, Y )

3d
≥ cn

6d
=

|I|
12

. (6.1)

Note also that
c

2
· |A| ≤ e(I,A). (6.2)

We may assume that the average degree of (I,A)G is at most (log c)/2 (otherwise
(I,A)G would be as desired in (i)). Since every vertex in A has at least c/2 ≥
(log c)/2 neighbours in I, this implies that |I| ≥ |A|. Therefore

c

2
· |A| ≤ e(I,A) =

1

2
· d((I,A)G)(|I| + |A|) ≤ log c

2
· |I|,

and hence

|A| ≤ |I| log c

c
. (6.3)

Using a probabilistic argument, we will show that there exist sets J ⊆ A and
I ′ ⊆ I as desired in (ii). To make this work, we first need to replace I with the
set I1 ⊆ I of all vertices which have at least one and at most log c neighbours in
A. So let us first estimate the size of I1. Denote by I2 the set of all vertices in
I which have no neighbours in A and put I3 := I \ (I1 ∪ I2). We will show that
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we may assume that both e(I1, A) ≥ e(I,A)/2 and |I1| ≥ |I|/ log c. Suppose to
the contrary that e(I1, A) ≤ e(I,A)/2. Then e(I3, A) ≥ e(I,A)/2 and so (6.2)
implies that e(I3, A) ≥ c|A|/4. Thus on average, a vertex in A has at least
c/4 neighbours in I3. As every vertex in I3 has at least log c neighbours in
A, it follows that (I3, A)G is as desired in (i). Hence we may assume that
e(I1, A) ≥ e(I,A)/2. Next suppose that |I1| ≤ |I|/ log c. Then

e(I1, A) ≥ e(I,A)/2
(6.1)

≥ |I|/24 ≥ |I1|(log c)/24

and

e(I1, A) ≥ e(I,A)/2
(6.2)

≥ c|A|/4.

Thus (I1, A)G is as desired in (i). Therefore we may also assume that |I1| ≥
|I|/ log c.

Let us now consider a random subset Ap of A which is obtained by including
each a ∈ A independently with probability p := 1/(2 log c). Call a vertex x ∈ I1

useful if it has exactly one neighbour in Ap. Using the definition of I1 it follows
that for every x ∈ I1

P(x is useful) = |N(x) ∩ A| · p · (1 − p)|N(x)∩A|−1 ≥ 1 · p · (1 − p)⌊log c⌋

≥ p(1 − p⌊log c⌋) ≥ p/2.

(The second inequality can be easily proved by induction.) Hence the expected
number of useful vertices in I1 is at least p|I1|/2. So there exists a choice J for
Ap such that at least p|I1|/2 vertices in I1 are useful. Let I ′ be the set of these
useful vertices. Then

|I ′| ≥ p|I1|
2

=
|I1|

4 log c
≥ |I|

4(log c)2

and

|J | ≤ |A|
(6.3)

≤ |I| log c

c
.

So I ′ and J are as desired in (ii). �

By repeated applications of Lemma 6.10 we obtain the following result.

Lemma 6.11 Let c ≥ 2512, d > 2c and let G be a graph of minimum degree at
least d/2. Suppose that χ(G) ≤ d + 1 and that G has an independent set I of
size 2c|G|/d. Put r := ⌊log log c⌋. Then G has one of the following properties.

(i) G contains an induced bipartite subgraph whose average degree is at least
(log c)/48.

(ii) There are a set I∗ ⊆ I and disjoint independent subsets J1, . . . , Jr of
G− I∗ such that every vertex of I∗ has exactly one neighbour in each Jk,
|I∗| ≥ |I|/4r(log c)2r and |Jk| ≤ 4|I| log c/c for every k ≤ r.
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Proof. The proof follows from r applications of Lemma 6.10. Indeed, let
I0 := I and suppose inductively that for some 0 ≤ ℓ < r we already have
obtained a set Iℓ ⊆ I and disjoint independent sets J1, . . . , Jℓ in G−Iℓ such that
every vertex of Iℓ has exactly one neighbour in each Jk, |Iℓ| = ⌈|I|/4ℓ(log c)2ℓ⌉
and |Jk| ≤ 4|I| log c/c for every 1 ≤ k ≤ ℓ. Put n := |G|, G′ := G−(J1∪· · ·∪Jℓ),
n′ := |G′| and d′ := d/2. Thus dG′(x) ≥ d/2 − ℓ ≥ d/4 = d′/2 for every x ∈ Iℓ.
Moreover, since |Jk| ≤ 4n log c/c, we have that n′ ≥ n/2. Let c′ be defined by
|Iℓ| = 2c′n′/d′. Using |Iℓ| ≤ |I| it follows that c′ ≤ c. On the other hand

|I|
4ℓ(log c)2ℓ

≤ |Iℓ| =
2c′n′

d′
≤ 4c′n

d
,

and so
c′ ≥ c

2 · 4ℓ(log c)2ℓ
=

c

2(2 log c)2ℓ
.

In particular, c′ ≥ 2. Since also χ(Gℓ) ≤ d+1 ≤ 3d′, we may apply Lemma 6.10
to the graph G′ and the independent set Iℓ. As

log c′

24
≥ log c − 1 − log((2 log c)2ℓ)

24
≥ log c − 1 − 2r log(2 log c)

24
≥ log c

48

we may assume that we have Iℓ+1 ⊆ Iℓ and Jℓ+1 satisfying condition (ii) of
Lemma 6.10. Hence

|Iℓ+1| ≥
|Iℓ|

4(log c′)2
≥ |Iℓ|

4(log c)2
≥ |I|

4ℓ+1(log c)2(ℓ+1)
,

and

|Jℓ+1| ≤
|Iℓ| log c′

c′
≤ 2 · 4ℓ · |Iℓ|(log c)2ℓ+1

c
≤ 4|I| log c

c
.

Note that we may assume that |Iℓ+1| = ⌈|I|/4ℓ+1(log c)2(ℓ+1)⌉ by making Iℓ+1

smaller if necessary. This completes the induction step. �

Corollary 6.12 For every s ∈ N there exists c(s) such that the following holds.
Let c ≥ c(s), d > 2c and let G be a graph of minimum degree at least d/2.
Suppose that G has an independent set I of size 2c|G|/d and that χ(G) ≤ d+1.
Put r := ⌊log log c⌋. Then G has one of the following properties.

(i) G contains an induced bipartite subgraph whose average degree is at least
(log c)/48.

(ii) There are disjoint vertex sets A,B ⊆ V (G) such that A is independent,
χ(G[B]) ≤ r and (A,B)G is an (r, s, 0)-graph.

Proof. Applying Lemma 6.11 we may assume that G contains independent
sets I∗ and J1, . . . Jr satisfying condition (ii) of Lemma 6.11. Let A := I∗ and
B := J1∪· · ·∪Jr. Clearly, every vertex of A has degree r in the bipartite graph
(A,B)G and χ(G[B]) ≤ r. Thus it remains to show that |A| ≥ r12s|B|. But

|A|
|B| ≥

c

4r+1r(log c)2r+1
≥ r12s,

if c is sufficiently large. �
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6.5 Finding an induced 1-subdivision of a graph of

large average degree

In the previous section we showed that we may assume that our original graph
G contains a bipartite subgraph (A,B) of large average degree such that A
is independent in G and G[B] has small chromatic number (or is possibly in-
dependent as well). In this section we will show that this (A,B) contains a
1-subdivision of some graph H∗ where H∗ has large average degree and this
1-subdivision is induced in G.

To accomplish this, we first find a 1-subdivision of some graph H ′ of large
average degree in (A,B) (Corollary 6.14). The branch vertices of this 1-
subdivision are vertices in B, its subdivided edges are paths of length two
in (A,B) and so the midpoints of the subdivided edges are vertices in A. In
Lemma 6.15 we then show how to find a subgraph H ′′ of H ′ for which every
midpoint of a subdivided edge is joined in G only to the two endpoints of this
edge and to no other branch vertex. As A is independent, it follows that every
edge of G which prevents the 1-subdivision of H ′′ from being induced must join
two branch vertices, i.e. two vertices in B. So if B is also independent then this
1-subdivision is induced in G, as desired. The case when B is not independent
is more difficult and dealt with in Lemma 6.17.

Let us now introduce some notation. A path P of length two in a bipartite
graph (A,B) is called a hat of G if it begins and ends in B. A set H of hats of
(A,B) is uncrowded if any two hats in H join distinct pairs of vertices and have
distinct midpoints. (So the sets of subdivided edges of the 1-subdivisions of
the graphs H ′ and H ′′ described above are both uncrowded; and conversely, an
uncrowded set of hats can serve as the set of subdivided edges of a 1-subdivision
whose set of branch vertices is B.)

Lemma 6.13 Let r, i ≥ 1 and 0 ≤ k ≤ r/8. Let G = (A,B) be an (r, i, k)-
graph. Then either G has an uncrowded set of at least r11|B|/28 hats or there
are a vertex b′ ∈ B and an induced copy (A′, B′) of an (r, i − 1, k + 1)-graph in
G − b′ such that ∅ 6= A′ ⊆ NG(b′).

Proof. Let us first suppose that every vertex b ∈ B satisfies

|N2(b)| ≥ d(b)/r12(i−1),

where N2(b) is the set of all vertices with distance two from b. In other words,
for each b ∈ B there is a set Hb of at least d(b)/r12(i−1) hats in G which have
b as one endvertex, but whose other endvertices are distinct. Note that every
pair of vertices in B belongs to at most two hats in

⋃
b∈B Hb. Hence there are

at least e(G)/2r12(i−1) hats with distinct pairs of endpoints. Since the degree
of every vertex a ∈ A is at most 4r, at most (4r)2 of these hats have a as their
midpoint. Thus G has a uncrowded set of at least

e(G)

2 · 16r12(i−1)+2
≥ (r/4 − k)|A|

25r12(i−1)+2
≥ (r/4 − k)r12i|B|

25r12(i−1)+2
≥ r11|B|

28

hats, as required.
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So we may assume that there is a vertex b′ ∈ B with

|N2(b′)| < d(b′)/r12(i−1).

Let A′ := N(b′) and B′ := N2(b′). Then (A′, B′)G has the required properties.
�

The proof of the preceding lemma shows that in the case where we failed
to find a large set of uncrowded hats (i.e. a 1-subdivision of some graph of
large average degree), there must be a vertex b′ so that the set of vertices with
distance two from b′ is much smaller that the neighbourhood of b′. However, if
this happens we can reapply the lemma to the bipartite graph induced by these
sets. In case of renewed failure, we can iterate the process—but if we encounter
i successive failures, then this means that G contains contains a Ki,i:

Corollary 6.14 Let s ∈ N and let r ≥ 8s. Let G = (A,B) be a Ks,s-free
(r, s, 0)-graph. Then there exists 0 ≤ i ≤ s such that G contains an induced
copy (A′, B′) of an (r, s − i, i) graph which has an uncrowded set of at least
r11|B′|/28 hats.

Proof. Applying Lemma 6.13 repeatedly, assume that there are sequences
(A,B) = (A0, B0) ⊇ (A1, B1) ⊇ · · · ⊇ (As, Bs) of induced subgraphs of G and
b1, b2, . . . , bs of distinct vertices in B such that, for each 0 < i ≤ s, (Ai, Bi) is
an (r, s − i, i)-graph and ∅ 6= Ai ⊆ NG(bi). Note that every vertex in As has
degree at least r/4 − s ≥ r/8 and so

s ≤ r

8
≤ |Bs| = r12(s−s)|Bs| ≤ |As|.

Thus together with any s vertices from As the vertices b1, . . . , bs induce a Ks,s

in G, a contradiction. �

We say that an uncrowded set H of hats of a bipartite graph (A,B) is
induced if

⋃H is an induced subgraph of (A,B), i.e. if every midpoint of a hat
in H has degree two in (A,B).

Lemma 6.15 Let r ≥ 1 and let G = (A,B) be a bipartite graph with d(a) ≤ 4r
for every vertex a ∈ A. Suppose that G has an uncrowded set H of at least
r11|B|/28 hats. Then there is an induced subgraph G′ = (A′, B′) of G which has
an induced uncrowded set H′ of at least r9|B′|/215 hats.

Proof. We may assume that A consists only of midpoints of hats in H. Since
H is uncrowded, every vertex a ∈ A is the midpoint of exactly one hat in H,
and we say that a owns the endvertices of these hat. So every vertex in A owns
exactly two vertices in B and

|A| = |H| ≥ r11|B|
28

.

Let us consider a random subset Bp of B which is obtained by including each
vertex of B independently with probability p := 1/(8r). Given Bp, let us call
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a vertex a ∈ A useful if N(a) ∩ Bp consists precisely of the two vertices owned
by a. Thus

P(a is useful) = p2(1 − p)d(a)−2 ≥ p2(1 − p)⌊4r⌋ ≥ p2(1 − ⌊4r⌋p) ≥ p2/2,

and so the expected number of useful vertices is at least p2|A|/2. Hence there
exists a choice B′ for Bp such that at least p2|A|/2 vertices in A are useful. Let
A′ denote the set of these vertices, and let H′ be the set consisting of all hats
in H whose midpoints lie in A′. Then

|H| = |A′| ≥ |A|
27r2

≥ r9|B|
215

≥ r9|B′|
215

,

and so (A′, B′)G and H′ have the required properties. �

Corollary 6.16 Let s ∈ N and r ≥ 8s. Let G = (A,B) be an (r, s, 0) graph.
Then either G contains a Ks,s or an induced 1-subdivision of some graph H
with d(H) ≥ r9/214.

Proof. We may apply Corollary 6.14 and Lemma 6.15 to obtain an induced
bipartite graph G′ = (A′, B′) ⊆ G and a set H′ of hats as in Lemma 6.15. Let
H be the graph whose vertex set is B′ and in which b, b′ ∈ B′ are joined by an
edge if there is a hat in H′ whose endvertices are b and b′. So every edge of H
corresponds to a hat in H′. As H′ is induced, the 1-subdivision of H is induced
in G′ (and thus in G). Moreover e(H) = |H′| ≥ r9|B′|/215, as desired. �

Lemma 6.17 Let r ≥ 225. Let A,B be a vertex partition of a graph G such that
A is independent, χ(G[B]) ≤ r and d(G′) ≤ r3 for every G′ ⊆ G[B]. Suppose
that (A,B)G has an induced uncrowded set H of at least r9|B|/215 hats. Then
G contains an induced 1-subdivision of some graph H with d(H) ≥ r.

Proof. Let H0 be the graph whose vertex set is B and in which b, b′ ∈ B are
joined by an edge if they are the endpoints of a hat in H. Hence G contains a
1-subdivision of H0. Note that e(H0) = |H| and so d(H0) ≥ r9/214. Let H1 be
a subgraph of H0 with

δ(H1) ≥ r9

215
, (6.4)

and put B1 := V (H1) (where B1 is thought of as a subset of B). Let G∗ be
the 1-subdivision of H1 contained in G. Note that every edge which prevents
G∗ from being induced must join two branch vertices of G∗, i.e. vertices in
B1. Using a probabilistic argument, we will show that H1 contains a subgraph
H2 of average degree at least r whose 1-subdivision in G is induced. In other
words, we are given two graphs H1 and F := G[B1] on the same vertex set such
that H1 has large average degree while every subgraph of F has small average
degree. The desired subgraph H2 of H1 must avoid all edges of F .

Let B′
1 denote the set of all vertices b ∈ B1 with dF (b) ≤ 2r3. Then

2r3|B1 \ B′
1| ≤ 2e(F ) = d(F )|F | ≤ r3|B1|
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and thus

|B′
1| ≥

|B1|
2

. (6.5)

Consider a random subset Bp of B1 which is obtained by including each vertex
of B1 independently with probability p = 1/(4r3). Given Bp, call a vertex
b ∈ B′

1 useful if

(a) b ∈ Bp,

(b) NF (b) ∩ Bp = ∅,

(c) |(NH1(b) \ NF (b)) ∩ Bp| ≥ pr9/217.

Thus every useful vertex is isolated in G[Bp] and in the graph H1 it has many
neighbours which are contained in Bp. The aim now is to show that with non-
zero probability the set I0 of useful vertices is large. As the chromatic number
of G[Bp] is small compared to |NH1(b) ∩ Bp| for any useful vertex b, there will
be an independent set in Bp \ I0 which together with I0 induces a subgraph H2

of H1 with large average degree. Observe that the 1-subdivision of H2 in G will
be induced.

To prove that with non-zero probability B′
1 contains many useful vertices,

first note that for every b ∈ B′
1 the random variable X := |(NH1(b)\NF (b))∩Bp|

is binomially distributed with

EX = p|NH1(b) \ NF (b)| ≥ p|δ(H1) − dF (b)|
(6.4)

≥ pr9

216
≥ 8.

So Lemma 6.6 implies that

P(X ≤ pr9

217
) ≤ P(X ≤ EX

2
) ≤ e−EX/8 ≤ 1

2
.

Moreover, note that the events (a), (b) and (c) are mutually independent. Thus
for every vertex b ∈ B′

1 we have that

P(b is useful) ≥ p · (1 − p)dF (b) · 1

2
≥ p · (1 − p)⌊2r3⌋ · 1

2
≥ p(1 − ⌊2r3⌋p)

2
≥ p

4
.

Hence by (6.5) the expected number of useful vertices is at least p|B′
1|/4 ≥

p|B1|/8. So there exists a choice B2 for Bp such that at least p|B1|/8 vertices
in B′

1 are useful. Let I0 denote the set of these vertices. Every useful vertex is
contained in B2 and has at least pr9/217 neighbours in H1 which are contained
in B2. Thus there are at least

1

2
· pr9

217
· p|B1|

8
=

r3|B1|
225

edges of H1 which emanate from vertices contained in I0. Since χ(G[B]) ≤ r,
we may partition G[B2 \ I0] into r independent sets, I1, . . . , Ir say. Then there
exists 0 ≤ i ≤ r such that at least a 1/(r + 1)th of the edges of H1 emanating
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A

B B1 B′
1 B2 IiI0

Figure 6.1: Finding an independent set of vertices in F which induces many
hats

from I0 ends in Ii (see Fig. 6.1). But then the subgraph H2 of H1 induced by
I0 ∪ Ii has at least

1

r + 1
· r3|B1|

225
≥ r|B1|

2

edges and so it has average degree at least r. Moreover, since in F both I0

and Ii are independent and no vertex in B2 ⊇ Ii is joined to a vertex in I0, it
follows that I0 ∪ Ii is independent in G. As mentioned above, this implies that
the 1-subdivision of H2 is induced in G. �

By successively applying Corollary 6.14 and Lemmas 6.15 and 6.17 we obtain
the following result.

Corollary 6.18 Let s ∈ N and r ≥ max{8s, 225}. Let G be a Ks,s-free graph
and let A,B ⊆ V (G) be disjoint sets of vertices such that A is independent,
χ(G[B]) ≤ r, d(G′) ≤ r3 for every G′ ⊆ G[B] and so that (A,B)G is an
(r, s, 0) graph. Then G contains an induced 1-subdivision of some graph H with
d(H) ≥ r. �

6.6 Proof of Theorem 6.2

We can now put everything together.

Proof of Theorem 6.2. Suppose that G is a Ks,s-free graph with d(G) =
d ≥ d0 where d0 is sufficiently large compared to k and s. Put n := |G|.
Clearly, we may assume that G has no subgraph of average degree > d. So
Propositions 2.1 and 6.5 enable us to assume that δ(G) ≥ d/2 and χ(G) ≤ d+1.
Also Lemma 6.7 and Corollary 6.16 imply that Theorem 6.2 holds if G contains
an induced bipartite subgraph of large average degree—we will make use of this
fact twice in what follows.

Turning to the proof itself, we first apply Corollary 6.9 to G, which gives us
an independent set I of size 2cn/d where c ≥ (log d)1/(s+1)/2. We then apply
Corollary 6.12 to obtain (without loss of generality) disjoint sets A,B ⊆ V (G) as
in condition (ii) of the corollary. In other words, A is independent, χ(G[B]) ≤ r
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and (A,B)G is an (r, s, 0)-graph, where r = ⌊log log c⌋. Now if G[B] has an
(induced) subgraph G′ whose average degree is at least r3 then, as χ(G′) ≤ r,
there must be two disjoint independent sets B1, B2 of G′ such that

e((B1, B2)G′) ≥ e(G′)(r
2

) ≥ d(G′)|G′|
r2

≥ r|G′| ≥ r(|B1| + |B2|).

Hence (B1, B2)G is an induced bipartite subgraph of average degree at least 2r.
So we may assume that d(G′) ≤ r3 for every G′ ⊆ G[B]. But then Corollary 6.18
implies that G contains an induced 1-subdivision of some graph H∗ which has
average degree at least k, as desired. �

6.7 Open problems

An obvious question is that of the growth of d(s, k) in Theorem 6.2. The bounds
which follow from our proof are quite large: k is about the 3-fold logarithm of
d even for the case s = 2. Also, we are not aware of any nontrivial lower bound
on d.

Our proof of Theorem 6.2 becomes easier if G contains an induced bipartite
subgraph of large average degree. This raises the question whether there exists
d(s, k) such that every Ks,s-free graph of average degree at least d(s, k) contains
an induced bipartite subgraph with average degree at least k. The following
result implies that much more is true for regular graphs: using a theorem of
Johansson [41], Alon, Krivelevich and Sudakov [5, Corollary 2.4] proved that
every Ks,s-free graph G with maximum degree ∆ has chromatic number at
most c∆/ log ∆ for some constant c depending on s (and thus if G is regular,
the largest colour class together with another one induce a bipartite graph of
average degree at least (log ∆)/c). Of course the result of Alon, Krivelevich
and Sudakov does not hold if we replace maximum degree by average degree:
just consider a Ks,s-free graph G whose chromatic number is large and add
sufficiently many isolated vertices to G.
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Chapter 7

Forcing unbalanced complete

bipartite minors

7.1 Introduction

Let f(s) be the smallest number such that every graph of average degree greater
than f(s) contains the complete graph Ks as minor. Here we briefly review the
facts which we know about f(s). The existence of f(s) was first proved by
Mader [75]. Kostochka [59] and Thomason [99] independently showed that
the order of magnitude of f(s) is s

√
log s. Later, Thomason [100] was able to

prove that f(s) = (α+o(1))s
√

log s, where α = 0.638 . . . is an explicit constant.
Here the lower bound on f(s) is provided by random graphs. In fact, Myers [85]
proved that all extremal graphs are essentially disjoint unions of pseudo-random
graphs.

Recently, Myers and Thomason [87] extended the results of [100] from com-
plete minors to H minors for arbitrary dense (and large) graphs H. The ex-
tremal function has the same form as f(s), except that α ≤ 0.638 . . . is now an
explicit parameter depending on H and s is replaced by the order of H. They
raised the question of what happens for sparse graphs H. One partial result
in this direction was obtained by Myers [86]: he showed that every graph of
average degree at least t + 1 contains a K2,t minor. This is best possible as
he observed that for all positive ε there are infinitely many graphs of average
degree at least t + 1 − ε which do not contain a K2,t minor. (These examples
also show that random graphs are not extremal in this case.) More generally,
Myers [86] conjectured that for fixed s the extremal function for a Ks,t minor
is linear in t:

Conjecture 7.1 (Myers) Given s ∈ N, there exists a positive constant C
such that for all t ∈ N every graph of average degree at least Ct contains a Ks,t

minor.

In this chapter we prove the following strengthened version of this conjec-
ture. (It implies that asymptotically the influence of the number of edges on
the extremal function is negligible.)
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Theorem 7.2 For every 0 < ε < 10−16 there exists a number t0 = t0(ε) such
that for all integers t ≥ t0 and s ≤ ε6t/ log t every graph of average degree at
least (1 + ε)t contains a Ks,t minor.

Theorem 7.2 is essentially best possible in two ways. Firstly, the complete graph
Ks+t−1 shows that up to the error term εt the bound on the average degree
cannot be reduced. Secondly, as we will see in Proposition 7.9 (applied with
α := 1/3), the result breaks down if we try to set s ≥ 18t/ log t. Moreover,
Proposition 7.9 also implies that if t/ log t = o(s) then even a linear average
degree (as in Conjecture 7.1) no longer suffices to force a Ks,t minor.

The case where s = ct for some constant 0 < c ≤ 1 is covered by the
results of Myers and Thomason [87]. The extremal function in this case is

(α2
√

c
1+c + o(1))r

√
log r where α = 0.638 . . . again and r = s + t.

For fixed s, we obtain the following strengthening of Theorem 7.2:

Theorem 7.3 For every ε > 0 and every integer s there exists a number t0 =
t0(ε, s) such that for all integers t ≥ t0 every graph of average degree at least
(1 + ε)t contains Ks + Kt as a minor.

This chapter is organized as follows. We first prove Theorem 7.2 for graphs
whose connectivity is linear in their order (Lemma 7.8). We then use ideas of
Thomason [100] to extend the result to arbitrary graphs. The proof of The-
orem 7.3 is almost the same as that of Theorem 7.2 and so we only sketch
it.

7.2 Notation and tools

If P = x1 . . . xℓ is a path and 1 ≤ i ≤ j ≤ ℓ, we write xiPxj for its subpath
xi . . . xj .

We will use the following result of Mader [77].

Theorem 7.4 Every graph G contains a ⌈d(G)/4⌉-connected subgraph.

Given k ∈ N, we say that a graph G is k-linked if |G| ≥ 2k and for every
2k distinct vertices x1, . . . , xk and y1, . . . , yk of G there exist disjoint paths
P1, . . . , Pk such that Pi joins xi to yi. Jung as well as Larman and Mani indepen-
dently proved that every sufficiently highly connected graph is k-linked. Later,
Bollobás and Thomason [19] showed that a connectivity linear in k suffices.
Simplifying the argument in [19], Thomas and Wollan [98] recently obtained an
even better bound:

Theorem 7.5 Every 16k-connected graph is k-linked.

Similarly as in [100], given positive numbers d and k, we shall consider the
class Gd,k of graphs defined by

Gd,k := {G : |G| ≥ d, e(G) > d|G| − kd}.
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We say that a graph G is minor-minimal in Gd,k if G belongs to Gd,k but
no proper minor of G does. The following lemma states some properties of
the minor-minimal elements of Gd,k. The proof is simple, its counterpart for
digraphs can be found in [100, Section 2]. (The first property follows by counting
the number of edges of the complete graph on ⌊(2 − ε)d⌋ vertices.)

Lemma 7.6 Given 0 < ε < 1/2, d ≥ 2/ε and 1/d ≤ k ≤ εd/2, every minor-
minimal graph in Gd,k satisfies the following properties:

(i) |G| ≥ (2 − ε)d,

(ii) e(G) ≤ d|G| − kd + 1,

(iii) every edge of G lies in more than d − 1 triangles,

(iv) G is ⌈k⌉-connected.

We will also use the following easy fact, see [100, Lemma 4.2] for a proof.

Lemma 7.7 Suppose that x and y are distinct vertices of a k-connected graph
G. Then G contains at least k2/4|G| internally disjoint x-y paths of length at
most 2|G|/k.

7.3 Proof of theorems

The strategy of the proof of Theorem 7.2 is as follows. It is easily seen that
to prove Theorem 7.2 for all graphs of average degree at least (1 + ε)t =: d, it
suffices to consider only those graphs G which are minor-minimal in the class
Gd/2,k for some suitable k. In particular, together with Lemma 7.6 this implies
that we only have to deal with k-connected graphs. If d (and so also k) is linear
in the order of G, then a simple probabilistic argument gives us the desired Ks,t

minor (Lemma 7.8). In the other case we use that by Lemma 7.6 each vertex of
G together with its neighbourhood induces a dense subgraph of G. We apply
this to find 10 disjoint K10s,⌈d/9⌉ minors which we combine to a Ks,t minor.

Lemma 7.8 For all 0 < ε, c < 1 there exists a number k0 = k0(ε, c) such
that for each integer k ≥ k0 every k-connected graph G whose order n satisfies
k ≥ cn contains a Ks,t minor where t := ⌈(1 − ε)n⌉ and s := ⌈c4εn/(32 log n)⌉.
Moreover, the branch sets corresponding to the vertices in the vertex class of
the Ks,t of size t can be chosen to be singletons whereas all the other branch
sets can be chosen to have size at most 8 log n/c2.

Proof. Throughout the proof we assume that k (and thus also n) is sufficiently
large compared with both ε and c for our estimates to hold. Put a := ⌊4 log s/c⌋.
Successively choose as vertices of G uniformly at random without repetitions.
Let C1 be the set of the first a of these vertices, let C2 be the set of the next
a vertices and so on up to Cs. Let C be the union of all the Ci. Given i ≤ s,
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we call a vertex x ∈ G − C good for i if x has at least one neighbour in Ci.
Moreover, we say that x is good if it is good for every i ≤ s. Thus

P(x is not good for i) ≤
(

1 − dG(x) − as

n

)a

≤ e−a(k−as)/n ≤ e−ac/2

and so x is not good with probability at most se−ac/2 < ε/2. Therefore the
expected number of good vertices outside C is at least (1− ε/2)|G−C|. Hence
there exists an outcome C1, . . . , Cs for which at least (1 − ε/2)|G − C| vertices
in G − C are good.

We now extend all these Ci to disjoint connected subgraphs of G as follows.
Let us start with C1. Fix a vertex x1 ∈ C1. For each x ∈ C1 \ {x1} in turn
we apply Lemma 7.7 to find an x-x1 path of length at most 2n/k ≤ 2/c which
is internally disjoint from all the paths chosen previously and which avoids
C2 ∪ · · · ∪ Cs. Since Lemma 7.7 guarantees at least k2/4n ≥ as · 2/c short
paths between a given pair of vertices, we are able to extend each Ci in turn
to a connected subgraph in this fashion. Denote the graphs thus obtained from
C1, . . . , Cs by G1, . . . , Gs. Thus all the Gi are disjoint.

Note that at most 2as/c good vertices lie in some Gi. Thus at least (1 −
ε/2)|G−C|−2as/c ≥ (1−ε)n good vertices avoid all the Gi. Hence G contains a
Ks,t minor as required. (The good vertices avoiding all the Gi correspond to the
vertices of the Ks,t in the vertex class of size t. The branch sets corresponding
to the vertices of the Ks,t in the vertex class of size s are the vertex sets of
G1, . . . , Gs.) �

Proof of Theorem 7.2. Let d := (1 + ε)t and s := ⌊ε6d/ log d⌋. Throughout
the proof we assume that t (and thus also d) is sufficiently large compared
with ε for our estimates to hold. We have to show that every graph of average
degree at least d contains a Ks,t minor. Put k := ⌈εd/4⌉. Since Gd/2,k contains
all graphs of average degree at least d, it suffices to show that every graph G
which is minor-minimal in Gd/2,k contains a Ks,t minor. Let n := |G|. As is
easily seen, (i) and (iv) of Lemma 7.6 together with Lemma 7.8 imply that we
may assume that d ≤ n/600. (Lemma 7.8 is applied with c := ε/2400 and with
ε replaced by ε/3.) Let X be the set of all those vertices of G whose degree is
at most 2d. Since by Lemma 7.6 (ii) the average degree of G is at most d, it
follows that |X| ≥ n/2. Let us first prove the following claim.

Either G contains a Ks,t minor or G contains 10 disjoint ⌈3d/25⌉-
connected subgraphs G1, . . . , G10 such that 3d/25 ≤ |Gi| ≤ 3d for

each i ≤ 10.

Choose a vertex x1 ∈ X and let G′
1 denote the subgraph of G induced by x1 and

its neighbourhood. Then |G′
1| = dG(x1) + 1 ≤ 2d + 1. Since by Lemma 7.6 (iii)

each edge between x1 and NG(x1) lies in at least d/2 − 1 triangles, it follows
that the minimum degree of G′

1 is at least d/2 − 1. Thus Theorem 7.4 implies
that G′

1 contains a ⌈3d/25⌉-connected subgraph. Take G1 to be this subgraph.
Put X1 := X \ V (G1) and let X ′

1 be the set of all those vertices in X1 which
have at least d/500 neighbours in G1.
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Suppose first that |X ′
1| ≥ |X|/10. In this case we will find a Ks,t minor in G.

Since the argument is similar to the proof of Lemma 7.8, we only sketch it. Set
a := ⌊104 log s⌋. This time, we choose the a-element sets C1, . . . , Cs randomly
inside V (G1). Since every vertex in X ′

1 has at least d/500 neighbours in G1,
the probability that the neighbourhood of a given vertex x ∈ X ′

1 avoids some
Ci is at most se−a/(3·103) < ε. So the expected number of such bad vertices
in X ′

1 is at most ε|X ′
1|. Thus for some choice of C1, . . . , Cs there are at least

(1 − ε)|X ′
1| ≥ (1 − ε)n/20 ≥ t vertices in X ′

1 which have a neighbour in each
Ci. Since the connectivity of G1 is linear in its order, we may again apply
Lemma 7.7 to make the Ci into disjoint connected subgraphs of G1 by adding
suitable short paths from G1. This shows that G contains a Ks,t minor.

Thus we may assume that at least |X1|−|X|/10 ≥ 9|X|/10−3d > 0 vertices
in X1 have at most d/500 neighbours in G1. Choose such a vertex x2. Let G′

2

be the subgraph of G induced by x2 and all its neighbours outside G1. Since
by Lemma 7.6 (iii) every edge of G lies in at least d/2 − 1 triangles, it follows
that the minimum degree of G′

2 is at least d/2−1−d/500 > 12d/25. Again, we
take G2 to be a ⌈3d/25⌉-connected subgraph of G′

2 obtained by Theorem 7.4.
We now put X2 := X1 \(X ′

1∪V (G2)) and define X ′
2 to be the set of all those

vertices in X2 which have at least d/500 neighbours in G2. If |X ′
2| ≥ |X|/10,

then as before, we can find a Ks,t minor in G. If |X ′
2| ≤ |X|/10 we define G3

in a similar way as G2. Continuing in this fashion proves the claim. (Note that
when choosing x10 we still have |X9| − |X|/10 ≥ |X|/10 − 9 · 3d > 0 vertices at
our disposal since n ≥ 600d.)

Apply Lemma 7.8 with c := 1/25 to each Gi to find a K10s,⌈d/9⌉ minor. Let
Ci

1, . . . , C
i
s,D

i
1, . . . ,D

i
9s denote the branch sets corresponding to the vertices of

the K10s,⌈d/9⌉ in the vertex class of size 10s. By Lemma 7.8 we may assume that
all the Ci

j and all the Di
j have size at most 8 · 252 log |Gi| ≤ 105 log d and that

all the branch sets corresponding to the remaining vertices of the K10s,⌈d/9⌉ are
singletons. Let T i ⊆ V (Gi) denote the union of all these singletons. Let C be
the union of all the Ci

j , let D be the union of all the Di
j and let T be the union

of all the T i.
We will now use these 10 K10s,⌈d/9⌉ minors to form a Ks,t minor in G. Recall

that by Lemma 7.6 (iv) the graph G is ⌈εd/4⌉-connected and so by Theorem 7.5
it is ⌊εd/64⌋-linked. Thus there exists a set P of 9s disjoint paths in G such
that for all i ≤ 9 and all j ≤ s the set Ci

j is joined to Ci+1
j by one of these paths

and such that no path from P contains an inner vertex in C ∪D. (To see this,
use that εd/64 ≥ 100s · 105 log d ≥ |C ∪ D|.)

The paths in P can meet T in many vertices. But we can reroute them such
that every new path contains at most two vertices from each T i. For every path
P ∈ P in turn we will do this as follows. If P meets T 1 in more than 2 vertices,
let t and t′ denote the first and the last vertex from T 1 on P . Choose some set
D1

j and replace the subpath tP t′ by some path between t and t′ whose interior

lies entirely in G[D1
j ]. (This is possible since G[D1

j ] is connected and since both

t and t′ have a neighbour in D1
j .) Proceed similarly if the path thus obtained

still meets some other T i. Then continue with the next path from P. (The sets
Di

j used for the rerouting are chosen to be distinct for different paths.) Note
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that the paths thus obtained are still disjoint since D was avoided by all the
paths in P.

We now have found our Ks,t minor. Each vertex lying in the vertex class of
size s of the Ks,t corresponds to a set consisting of C1

j ∪ · · · ∪C10
j together with

the (rerouted) paths joining these sets. For the remaining vertices of the Ks,t we
can take all the vertices in T which are avoided by the (rerouted) paths. There
are at least t such vertices since these paths contain at most 20 · 9s vertices
from T and |T | − 180s ≥ 10d/9 − 180s ≥ t. �

Proof of Theorem 7.3 (Sketch). Without loss of generality we may
assume that ε < 10−16. The proof of Theorem 7.3 is almost the same as that
of Theorem 7.2. The only difference is that now we also apply Lemma 7.7 to
find

(s
2

)
short paths connecting all the pairs of the Ci. This can be done at the

point where we extend the Ci’s to connected subgraphs. �

The following proposition shows that the bound on s in Theorem 7.2 is
essentially best possible. Its proof is an adaption of a well-known argument of
Bollobás, Catlin and Erdős [17].

Proposition 7.9 There exists an integer n0 such that for each integer n ≥ n0

and each number α > 0 there is a graph G of order n and with average degree
at least n/2 which does not have a Ks,t minor with s := ⌈2n/α log n⌉ and
t := ⌈αn⌉.
Proof. Let p := 1−1/e. Throughout the proof we assume that n is sufficiently
large for our estimates to hold. Consider a random graph Gp of order n which
is obtained by including each edge with probability p independently from all
other edges. We will show that with positive probability Gp is as required in the
proposition. Clearly, with probability > 3/4 the average degree of Gp is at least
n/2. Hence it suffices to show that with probability at most 1/2 the graph Gp

will have the property that its vertex set V (Gp) can be partitioned into disjoint
sets S1, . . . , Ss and T1, . . . , Tt such that Gp contains an edge between every pair
Si, Tj (1 ≤ i ≤ s, 1 ≤ j ≤ t). Call such a partition of V (Gp) admissible. Thus we
have to show that the probability that Gp has an admissible partition is ≤ 1/2.
Let us first estimate the probability that a given partition P is admissible:

P(P is admissible) =
∏

i,j

(
1 − (1 − p)|Si||Tj |

)
≤ exp


−

∑

i,j

(1 − p)|Si||Tj|




≤ exp


−st

∏

i,j

(1 − p)|Si||Tj |(st)−1


 ≤ exp

(
−st(1 − p)n2(st)−1

)

≤ exp

(
− 2n2

log n
· n− 1

2

)
≤ exp(−n

4
3 ).

(The first expression in the second line follows since the arithmetric mean is at
least as large as the geometric mean.) Since the number of possible partitions is
at most nn, it follows that the probability that Gp has an admissible partition

is at most nn · e−n4/3
< 1/2, as required. �
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Chapter 8

Almost all graphs with high

girth and suitable density

have high chromatic number

8.1 Introduction and Results

In 1959, Erdős [32] proved that there are graphs of arbitrarily large girth and
arbitrarily large chromatic number. (Here the girth of a graph G is the length
of its shortest cycle and is denoted by girth(G).) His proof is one of the first and
most well-known examples of the probabilistic method: he showed that with
high probability one can alter a random graph (with suitable edge probability)
so that it has no short cycles and no large independent sets. Here we give a
proof (also using the probabilistic method) which gives more information about
the typical asymptotic structure of graphs of high girth and given density.

Let Fn,m(C≤ℓ) denote the set of all graphs with n vertices and m edges
which contain no cycle whose length is at most ℓ, (writing Fn,m(K3) instead of
Fn,m(C≤3)). We say that almost all graphs in Fn,m(C≤ℓ) have some property
if the proportion of graphs in Fn,m(C≤ℓ) with this property tends to one as n
tends to infinity.

Theorem 8.1 For all ℓ ≥ 3 and k ∈ N, there are constants C1 and C2 so that
almost all graphs in Fn,m(C≤ℓ) have chromatic number at least k, provided that
C1n ≤ m ≤ C2n

ℓ/(ℓ−1).

Let Gn,m denote a graph chosen uniformly at random from the set of graphs
with n vertices and m edges. We say that Gn,m has some property Q almost
surely if the probability that it has Q tends to one as n tends to infinity. The
restriction that m ≥ C1n in Theorem 8.1 is clearly necessary, since for m = o(n),
Gn,m almost surely contains no cycles at all. For the case ℓ = 3, it turns out
that the restriction that m ≤ C2n

3/2 is also close to best possible. Indeed,
building on earlier results, in [90] we showed the following. Set

t3 = t3(n) =

√
3

4
n3/2

√
log n
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and fix any ε > 0. Then if m ≥ (1 + ε)t3, almost all graphs in Fn,m(K3) are
bipartite. This threshold is sharp in the sense that if n/2 ≤ m ≤ (1−ε)t3, then
almost no graph in Fn,m(K3) is bipartite.

Instead of Theorem 8.1, we actually prove the following stronger result,
which gives a lower bound on the chromatic number of almost all graphs in
Fn,m(C≤ℓ) in terms of n and m.

Theorem 8.2 For all ℓ > 3 there exist constants d1, d2 and d3 with the fol-
lowing properties. Let

m0 = d1n
(ℓ+2)/(ℓ+1)(log n)2/(ℓ+1).

If 2n ≤ m ≤ m0, then almost all graphs in Fn,m(C≤ℓ) have chromatic number
at least

m

2n log(2m/n)
. (8.1)

If m0 ≤ m ≤ d2n
ℓ/(ℓ−1), then almost all graphs in Fn,m(C≤ℓ) have chromatic

number at least

d3

√
nℓ/mℓ−1. (8.2)

We have made no attempt to find the best constants that can be obtained from
our proof of Theorem 8.2. Note that for m ≤ m0, the bound is of the same
order of magnitude as that which is known for Gn,p, where p = m/

(n
2

)
and Gn,p

is a random graph with n vertices with edge probability p. In fact  Luczak (see
e.g. [39]) proved that if pn → ∞ and p → 0, then the chromatic number of Gn,p

is almost surely

(1 + o(1))
pn

2 log(pn)
.

It seems likely that the chromatic number of almost all graphs in Fn,m(C≤ℓ)
is Θ( m

n log(m/n)) whenever n ≪ m ≪ nℓ/(ℓ−1). However, this seems to be sig-
nificantly more difficult to prove than Theorem 8.2 even for the triangle-free
case.

Related to this is the question of how high the chromatic number of a
graph can be if it has n vertices and girth greater than ℓ. Let f(n, ℓ) be the
maximum chromatic number of such a graph. The proof of Erdős [32] shows
that for fixed ℓ, f(n, ℓ) ≥ n1/ℓ+o(1). For the triangle-free case ℓ = 3 this was
improved by Kim [46], who solved a longstanding open question by showing that
f(n, 3) ≥ 1

9n1/2/
√

log n, which (by a result of Ajtai, Komlós, and Szemerédi [1])
is best possible up to the value of the constant factor. It is well known (see
e.g. Krivelevich [60, Lemma 6.1] or [91]) that f(n, ℓ) ≥ n1/(ℓ−1)+o(1), which
is the best known lower bound for ℓ > 3. As pointed out to us by one of
the journal referees, an upper bound on f(n, ℓ), where ℓ > 3 is even, may
be obtained as follows. For even ℓ, Bondy and Simonovits [21] showed that
a Cℓ-free graph has O(n1+2/ℓ) edges. Thus it has an independent set of size
Ω(n1−2/ℓ). Removing this set and applying induction, it is easily seen that such
a graph has chromatic number O(n2/ℓ) and thus f(n, ℓ) = O(n2/ℓ) for even ℓ.
This can be improved by a logarithmic factor using the results on independent
sets in [1] (see also [13, Lemma XII.15]). The bounds obtained from Theorem 8.2
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are much smaller than the lower bounds mentioned above: they achieve their
maximum when m = m0 = n(ℓ+2)/(ℓ+1)+o(1), where they imply that almost all
graphs in Fn,m(C≤ℓ) have chromatic number at least n1/(ℓ+1)+o(1).

In the remainder of this chapter, we prove Theorem 8.2. Although the
proof is not quite as simple as that of the original existence result of Erdős, it
turns out to be fairly straightforward. Indeed, for a graph G let α(G) denote
the size of a largest independent set of vertices. Since for a graph G on n
vertices, we have χ(G) ≥ n/α(G), it suffices to show that almost all graphs
in Fn,m(C≤ℓ) have no large independent set (where m satisfies the conditions
of the theorem). This is done by demonstrating that for suitable choices of
parameters, the probability that there is a “large” independent set in Gn,m is
much smaller than the probability that Gn,m has girth greater than ℓ.

8.2 Proof of Theorem 8.2

Throughout this section, we set p = m/
(
n
2

)
. Using the fact that χ(G) ≥ n/α(G)

for any graph G on n vertices, Theorem 8.2 follows immediately from the fol-
lowing lemma. Throughout, we assume that n is large enough for our estimates
to hold and we denote by Gn,m a graph chosen uniformly at random from the
set of graphs with n vertices and m edges.

Lemma 8.3 For all ℓ > 3 there exist constants c1, c2 and c3 with the following
properties. Let

p0 = c1n
−ℓ/(ℓ+1)(log n)2/(ℓ+1).

If 4/n ≤ p ≤ p0, then

P[ α(Gn,m) ≥ 4

p
log(np) | girth(Gn,m) > ℓ ] = o(1). (8.3)

If p0 ≤ p ≤ c2n
−(ℓ−2)/(ℓ−1), then

P[ α(Gn,m) ≥ c3

√
pℓ−1nℓ | girth(Gn,m) > ℓ ] = o(1). (8.4)

To prove Lemma 8.3, we shall need Lemma 8.4 (see also Prömel and Steger [92]
and Theorem 3.11 in [39] for similar results), whose proof relies on the FKG-
inequality (see e.g. [39]). For i ≥ 3, let Xi denote the number of i-cycles in
Gn,m. Note that

E[Xi] = (1 + o(1))
(n)ip

i

2i
= Θ(mi/ni).

Lemma 8.4 For any ℓ ≥ 3, there are constants c, c′ > 0 so that if 2n ≤ m ≤
c′nℓ/(ℓ−1),

P[ girth(Gn,m) > ℓ ] ≥ e−cE[Xℓ].

Proof. We will make use of the inequality

1 − x ≥ e−x−x2 ≥ e−2x, (8.5)
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valid for x ≤ 1/2 (see e.g. page 5 of [13]). Since for i ≥ 3, the number of i-cycles

in the complete graph on n vertices is (n)i

2i , the FKG-inequality implies that

P[ girth(Gn,2p) > ℓ ] ≥
ℓ∏

i=3

(1 − (2p)i)
(n)i
2i

(8.5)

≥
ℓ∏

i=3

e−2(2p)i (n)i
2i

≥
ℓ∏

i=3

e−3·2i
E[Xi] ≥ e−3ℓ 2ℓ

E[Xℓ], (8.6)

where the last line follows since m ≥ 2n implies that E[Xi] ≤ E[Xℓ] for 3 ≤ i ≤ ℓ.
But since the property of containing no cycle of length at most ℓ is monotone

decreasing, we have (denoting by e(G) the number of edges of a graph G and
letting N =

(
n
2

)
)

P[ girth(Gn,2p) > ℓ ] ≤ P[ girth(Gn,m) > ℓ ] + P[|e(Gn,2p) − 2pN | ≥ pN ]

≤ P[ girth(Gn,m) > ℓ ] + e−pN/12, (8.7)

where the last line follows from standard tail estimates for the binomial distri-
bution (see e.g. Theorem 7(i) in [13]). Thus (8.6) and (8.7) imply that

P[ girth(Gn,m) > ℓ ] ≥ e−3ℓ 2ℓ
E[Xℓ] − e−m/12.

The result now follows immediately by observing that for c′ sufficiently small,
m ≤ c′nℓ/(ℓ−1) implies that m is significantly larger than E[Xℓ]. �

We shall also need Pittel’s inequality (see page 35 in [13]), which states that
if Q is any property and 0 < p = m/

(n
2

)
< 1, then

P[ Gn,m has Q ] ≤ 3
√

m P[ Gn,p has Q ]. (8.8)

Proof of Lemma 8.3. First note that for any r = r(n) with r → ∞,

P[α(Gn,p) ≥ r] ≤
(

n

r

)
(1 − p)(

r
2) ≤ (en/r)re−pr(r−1)/2 = e−(1+o(1))φ,

where for convenience we write

φ = r(pr/2 − log(n/r)).

Then by Lemma 8.4 and (8.8), there is a constant c > ℓ so that

P[ α(Gn,m) ≥ r | girth(Gn,m) > ℓ ] ≤ P[ α(Gn,m) ≥ r ]

P[ girth(Gn,m) > ℓ ]

≤ 3
√

m P[ α(Gn,p) ≥ r ] ecE[Xℓ]

≤ 3
√

m e−(1+o(1))(φ−cE[Xℓ ]).

Thus to prove (8.3), it suffices to prove that if r = 4
p log(np) and 4/n ≤ p ≤ p0

(where c1 in the definition of p0 will be determined below), then φ ≥ 4 log n and
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φ/E[Xℓ] ≥ 2c. Note that our choice of r implies that log(1/p) = (1+o(1)) log r.
This in turn implies that pr/4 = (1 + o(1)) log(n/r) and thus that

φ = (1 + o(1))pr2/4 = (1 + o(1))
4

p
(log(np))2 ≥ 4 log n,

with room to spare. Also

φ

E[Xℓ]
= (1 + o(1))

p

4

(
4

p
log(np)

)2 2ℓ

nℓpℓ
= (1 + o(1))

8ℓ(log(np))2

nℓpℓ+1
≥ 2c,

as required. The final inequality holds if we choose c1 (in the definition of p0)
sufficiently small compared to c.

Inequality (8.4), where p0 ≤ p ≤ c2n
−(ℓ−2)/(ℓ−1), is dealt with in a similar

way. Indeed, setting r = c3

√
pℓ−1nℓ, where c3 is chosen to be sufficiently large

compared to c1, gives

pr/4 ≥ c3

4

√
pℓ+1
0 nℓ ≥ log(n/r).

This in turn implies

φ ≥ pr2/4 = (pn)ℓ+o(1) ≥ 4 log n.

Also, we have

φ

E[Xℓ]
= (1 + o(1))

p

4
c2
3p

ℓ−1nℓ 2ℓ

nℓpℓ
= (1 + o(1))

c2
3ℓ

2
≥ 2c,

as required, provided we choose c3 sufficiently large compared to c. �
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Chapter 9

On random planar graphs, the

number of planar graphs and

their triangulations

9.1 Introduction

Compared to the wealth of knowledge one has about random graphs in general,
rather little is known about the likely properties of a random planar graph on n
vertices – not even the expected number of edges. Here we consider the uniform
model: let Pn be the set of labelled planar graphs with vertex set {1, . . . , n}.
A random planar graph Pn is chosen uniformly from Pn. This should not
be confused with a random planar map, since a planar map is defined as a
connected graph which is embedded in the plane, whereas a planar graph may
have several embeddings. Moreover, we consider only simple graphs whereas
maps may usually have multiple edges.

Random planar graphs were first investigated by Denise, Vasconcellos and
Welsh [27]. They showed that n! 6n+o(n) ≤ |Pn| ≤ n! (75.8)n+o(n), that the
limiting probability that Pn is connected is greater than zero and that the ex-
pected number of edges of Pn is at least 3n/2. They also introduced a Markov
chain whose stationary distribution is the uniform measure on Pn. This Markov
chain was investigated in much more detail by Gerke and McDiarmid [35], who
showed that almost surely Pn has at least 13n/7 edges. Complementing the re-
sult of [27] on the connectivity of Pn, McDiarmid, Steger, and Welsh [82] proved
(amongst other results) that the limiting probability that Pn is connected is less
than one. Using generating function techniques, Bender, Gao and Wormald [9]
proved that the number of 2-connected graphs in Pn is in fact asymptotically
Cn!αnn−7/2, where C is some positive constant and α ∼ 26.1876, which gives
the best known lower bound on |Pn|.

Concerning upper bounds on |Pn|, in the final section we will prove upper
bounds for the number of graphs in Pn with a given number of edges (Theo-
rem 9.12), which will immediately imply the following result.

Theorem 9.1
|Pn| ≤ n! (37.3)n+o(n).

81



Theorem 9.12 will turn out to be an immediate consequence of a result of
Tutte [104] on the number of planar triangulations and the following result,
which states that the number of triangulations of every planar graph is expo-
nential in the number of edges which are needed in order to triangulate the
graph. We will prove this result in Section 9.3, where we will also see (Propo-
sition 9.11) that the bound given in Theorem 9.2 is essentially best possible for
m ≥ 2n.

Theorem 9.2 Every labelled planar graph G with n vertices and m edges is
contained in at least ε3(3n−m)/2 labelled triangulations on n vertices, where ε is
an absolute constant.

Combining our upper bounds with the result in [9] mentioned earlier, we will
deduce the following result in the final section. Given a class A of graphs and
a property Q, we say that almost all graphs in A have Q if the proportion of
graphs in A on n vertices which have Q tends to one as n → ∞.

Theorem 9.3 Almost all graphs in Pn have less than 2.56n edges.

Very recently, Theorems 9.1 and 9.3 were improved by Bonichon, Gavoille
and Hanusse [22]: they proved (also by using triangulations) that almost all
lalled planar graphs on n vertices have at most 2.54n edges and that |Pn| ≤
n! (32.2)n+o(n).

9.2 Definitions and basic facts

For convenience, for n ∈ N we let [n] := {1, . . . , n}. A plane graph is a planar
graph together with an embedding into the plane. A planar graph G is called
rigid if any two embeddings of G are equivalent. By the theorem of Whitney,
every 3-connected planar graph is rigid (see e.g. [28]). Given a face f , we
denote its boundary by b(f). Moreover, if f is not the outer face, we say that
the bounding cycle of f is the shortest cycle containing f in its interior and
denote it by bc(f). Note that bc(f) ⊂ b(f) and that we have equality if G is
2-connected. We say that a vertex x lies in f if x ∈ b(f).

Given a face f , we treat the boundary of f as an ordered sequence of not nec-
essarily distinct vertices v1, . . . , vk. If i < j and vi 6= vj are not adjacent, then
the two sequences vi+1, . . . , vj−1 and vj+1, . . . , vk, v1, . . . , vi−1 are non-empty
and we call them the left and the right vi-vj-side of f , respectively.

For a set of labelled graphs A, denote by Au the set of distinct unlabelled
graphs contained in A, each representing an isomorphism class of A. Denote
by An the set of those graphs in A with vertex set [n] and by An,m the set of
those graphs in An with exactly m edges.

Denote by P the set of all labelled planar graphs. We shall need a few
classes of special planar graphs. Define

T := {G ∈ P : |E(G)| = 3|V (G)| − 6} .

Thus T is the set of all maximal planar graphs. It is well known that in every
embedding of a graph G ∈ T all faces are bounded by triangles. Tutte [104]
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proved that

|T u
n | = (1 + o(1))Cγnn−5/2, where γ =

256

27
= 9.48.. (9.1)

and where C is some positive constant. It is well known (see e.g. [74] for a
proof) that the number of triangulations of the interior of an ℓ-cycle is given
by Cat(ℓ), the ℓ-th Catalan number:

Cat(ℓ) =
1

ℓ − 1

(
2ℓ − 4

ℓ − 2

)
= 4ℓ+o(ℓ). (9.2)

9.3 Triangulating a planar graph

The aim of this section is to prove Theorem 9.2. The basic idea is as follows.
Consider a plane graph G ∈ Pn,m. We would like to generate as many tri-
angulations containing G as possible, and the easiest way would be to simply
triangulate each (non-triangular) face independently. This may of course not
always be possible, because two non-adjacent vertices which are connected in
order to triangulate one face can then not be connected in any of the neigh-
bouring faces.

It turns out (see Proposition 9.5) that this approach does work for 3-
connected planar graphs. However, in general, in order to generate many trian-
gulations, we have to make use of the different embeddings that a planar graph
may have. For instance, the graph in Figure 9.3 has only one triangulation
when viewed as a plane graph but superexponentially many when viewed as a
labelled planar graph.

x

y

Figure 9.1: A plane graph with only one triangulation

Before dealing with this, let us first consider the 3-connected case. We say
that a planar graph has the 1-face property if it has an embedding so that the
intersection of the boundaries of two faces consists of either an edge, a vertex
or is empty. Equivalently, if x and y lie on the boundary of some face f and
are not adjacent, then they do not both also lie on the boundary of some other
face f ′.

Proposition 9.4 A 3-connected plane graph G has the 1-face property.

This seems to be a folklore result (see e.g. [84]). As the proof is short, we include
it here for completeness. We mention (but will not make use of this) that the
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converse is also true: a 2-connected graph which has the 1-face property must
be 3-connected.

Proof of Proposition 9.4. Suppose that G does not have the 1-face property.
Then there exist vertices x and y which are contained in the boundaries of two
faces f1 and f2 and where the edge xy (which may or may not be present in
G) does not lie on the boundary of both faces. But this implies that there are
two faces of G− xy into which we can insert the edge xy and thus that G + xy
does not have a unique embedding. By Whitney’s theorem, G + xy cannot be
3-connected (and hence neither is G). �

The above proposition implies that it is easy to prove Theorem 9.2 for 3-
connected graphs.

Proposition 9.5 Let G be a 3-connected plane graph in Pn,m. Then the num-
ber of triangulations on n vertices which contain G is at least 23n−m−6.

Proof. Using Proposition 9.4, it is easy to see that the number of triangulations
of G is equal to the product (over all faces) of the number of triangulations of
each face. To calculate the product, first note that the boundary of each face
of G is a cycle, and so the number of triangulations of such a face f is given by
the Catalan number Cat(ℓ), where ℓ is the length of the bounding cycle of f .
Using (9.2), it is easy to show by induction that Cat(ℓ) ≥ 2ℓ−3 for any ℓ ≥ 3.
Now denote by ℓj the length of the boundary of the j-th face. Since every edge
lies on the boundary of two faces, this gives us

∑

j

ℓj = 2m, (9.3)

where the sum is over all faces of G. Moreover, from Euler’s formula we know
that there are 2−n+m faces. Combining all this, the number of triangulations
on n vertices of G is

∏

j

Cat(ℓj) ≥
∏

j

2ℓj−3 = 2
P

j(ℓj−3) = 22m−3(2−n+m) = 23n−m−6.

�

So we have proven that every 3-connected graph G ∈ Pn,m is contained
in at least 23n−6−m triangulations. In other words, the deletion of an edge
doubles the number of triangulations if the resulting graph is 3-connected. The
above proof shows that this is tight if and only if all faces are triangles or
quadrilaterals.

Before we move closer towards the proof of Theorem 9.2, we make some
preliminary steps (Propositions 9.6 and 9.7). We say that two planar graphs
G0, G1 ∈ Pn are incomparable if there is no planar graph H ∈ Pn containing
both G0 and G1 as a subgraph. Obviously it is true that

G0 ⊆ H0, G1 ⊆ H1, G0 and G1 are incomparable (9.4)

⇒ H0 and H1 are incomparable.
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(Here the Hi are allowed to have more vertices than the Gi). For a planar
graph G denote by Add(G) the set of all edges e ∈ E(G) so that G + e is still
planar. In contrast, for a plane graph G denote by Ins(G) the set of those
edges e ∈ Add(G), so that e can be inserted into the current embedding of G.
Suppose that G and H are planar graphs. Then

G ⊆ H =⇒ E(G) ∩ E(H) ⊆ Add(G). (9.5)

Observe that for a rigid plane graph G we have that Add(G) = Ins(G). More-
over note that rigidity is not necessarily preserved when adding vertices and/or
edges to a graph. On the other hand, every subdivision of a rigid graph is rigid,
as this means nothing else than replacing edges by paths. In particular, every
subdivision of a 3-connected graph is rigid.

The following actually rather obvious proposition will turn out to be useful.
Suppose we have two plane graphs and the first one has an edge which the
second one does not have and cannot have – given its present embedding. If
the second one is rigid, then this means that it will never be able to get it, and
therefore there is no third planar graph containing both of the two graphs.

Proposition 9.6 Let G0 and G1 be two plane graphs with vertex set [n] where
G1 is a subdivision of a 3-connected graph. If there exists an edge e0 ∈ E(G0)∩
E(G1) such that e0 6∈ Ins(G1), then G0 and G1 are incomparable.

Proof. Suppose to the contrary that there is a planar graph H ∈ Pn containing
G0 and G1 as subgraphs. Then e0 ∈ E(H), and applying (9.5) to G1 and H
shows that e0 ∈ Add(G1). On the other hand, G1 is rigid because it is a
subdivision of a 3-connected graph. Therefore Add(G1) = Ins(G1). Hence
e0 ∈ Ins(G1), contradicting the assumption. �

Stepping back from planarity for a moment, consider a graph G containing
a triangle T . Suppose that {x, y} is a cut-set. Then there exists exactly one
component H of G− x− y which contains all vertices in T \ {x, y} and we call
H the T -component of G − x − y.

Proposition 9.7 Let G be a graph which is 2-connected but not 3-connected
and let T be a triangle in G. Let {x, y} be a cut-set of G which minimizes the
cardinality of the T -component H of G − x − y, and let H+ be the subgraph of
G induced by V (H)∪{x, y}, where we only include the edge xy if xy ∈ T . Then
H+ is 2-connected.

Proof. Suppose to the contrary that there exists a vertex z in H+ such that
H+ − z has two components H1 and H2. We can assume without loss of
generality that x ∈ H1 and y ∈ H2, because if one of the Hi contains neither
x nor y, then G − z would not be connected. As there are no edges between
H1 and H2, this implies that xy 6∈ H+, and hence by definition of H+, xy 6∈ T .
But then T must lie either in H1 + z or in H2 + z. Suppose (again without loss
of generality) that T ⊆ H1 + z. But then H1 − x is a component of G − x − z
which contains T \ {x, z}, and so it is a T -component which is smaller than
H. �
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Returning to planar graphs, consider a plane 2-connected graph G whose
outer face f is bounded by a triangle T . In this case we will refer to the T -
component as the external component. Two paths are called internally disjoint
if their intersection contains at most their endvertices. For two vertices u,w, a
path denoted by P (u,w) is a path connecting u and w.

Now reconsider our position with respect to proving Theorem 9.2. Recall
that if G is not 3-connected, then we cannot apply Proposition 9.5. Instead,
we consider a cut-set {x, y} of G and consider the components H0, . . . ,Hk of
G−x−y. In Lemma 9.8, which constitutes the core of the proof of Theorem 9.2,
we fix the embedding of H0 + x + y, and then embed all other components in
several ways into that face of H0 + x + y which contains x and y . For every
such embedding, we fix the positions of the Hi by inserting additional edges,
so that the resulting graph is rigid as far as the relative positions of the Hi are
concerned. Finally we make sure that the graphs obtained in this way are not
only distinct but also incomparable – in other words, no matter how we later
add more edges, the resulting graphs will continue to be distinct, so that in the
end we really have the required number of distinct triangulations.

Lemma 9.8 Let G ∈ Pn,m be a 2-connected plane graph whose outer face f is a
triangle. Let {x, y} be a cut-set which minimizes the cardinality of the external
component H0. Suppose that G − x − y has k + 1 ≥ 2 components. Set t := k
if xy ∈ G and t := k + 1 if xy 6∈ G.

Then there is a family of pairwise incomparable plane graphs G1, . . . , Gs

whose outer face is still f , such that for all 1 ≤ i ≤ s, the embeddings of the Gi

and G are the same when restricted to V (H0),

Gi ∈ Pn,m+t, G ⊂ Gi, Gi − x − y is connected

and s ≥ 3t/2. In the exceptional case where xy ∈ f , we only require that
s ≥ 3(t−1)/2.

Proof. Denote by H0, . . . ,Hk the plane subgraphs of G which are induced by
the connected components of G − x − y, where H0 is the external component.
Denote by H+

i the plane subgraph of G induced by V (Hi) ∪ {x, y}, where we
include the edge xy if and only if i = 0 and xy ∈ f . (By Proposition 9.7, this
will imply that H+

0 is 2-connected.) For each i ≥ 1, it is clear that x and y
lie in the outer face of H+

i . As xy 6∈ H+
i for i ≥ 1, following the notation in

the beginning of Section 9.2, we choose a shortest path Pi in Hi connecting the
left and the right x-y-side of the outer face of H+

i , and let ℓi be the first and
ri be the last vertex of Pi. If ℓi 6= ri then in H+

i there exist pairwise internally
disjoint paths

P (ℓi, x), P (ri, x), P (ℓi, y), P (ri, y).

If |Pi| = 1 and ℓi = ri, then the respective paths above coincide.
Case 1: xy 6∈ G. Consider H+

0 . It is clear that there exists a face f ′ of H+
0

such that x and y now lie on b(f ′). By Proposition 9.7, H+
0 is 2-connected, so

both x and y must lie in bc(f ′) = b(f ′). As xy is not contained in G and thus
neither in H+

0 , this immediately implies that b(f ′) has at least four vertices, and
in particular f ′ 6= f . Moreover, let P0 be a shortest path in H0 connecting the
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x x

y y

xyxy

P0

r0 r0ℓ0 ℓ0

ℓσ(1)ℓσ(1) rσ(1)rσ(1)

rσ(2)rσ(2)

Gσ,h for σ(h) = 3 Aσ,h is 3-connected

Figure 9.2: Illustrating the proof of Lemma 9.8. The thick edges are the edges
which are added to G to form Gσ,h.

x

y

Hσ(1)

H+
σ(1)

ℓσ(1)ℓσ(1) rσ(1)rσ(1)

Figure 9.3: The graphs Hσ(1) and H+
σ(1) corresponding to the example in the

previous figure.

left and right x-y-side of b(f ′). P0 exists because H0 is connected. Denote by
ℓ0 6= r0 the two endvertices of P0. Observe that b(f ′)∩P0 = {ℓ0, r0}. Similarly
to the paths in H+

i , we divide b(f ′) into four paths

P (ℓ0, x), P (r0, x), P (ℓ0, y), P (r0, y)

which are all pairwise internally disjoint.
Now choose a permutation σ on [k] and an integer h from {0, . . . , k + 1}.

Given σ and h, construct the graph Gσ,h as follows. For convenience, set σ(0) :=
0 and σ(k + 1) := 0. Successively, for every i ∈ [k], embed H+

σ(i) into f ′ in such

a way that the edge rσ(i−1)ℓσ(i) can be added (and add it). Having done this
for all i, add the edge rσ(k)ℓ0. Finally, if h > 0, remove the edge rσ(h−1)ℓσ(h)

and insert the edge xy instead. Note that Gσ,h has m+ t edges, where t = k +1
as required. Moreover, we have constructed

s := k!(k + 2) ≥ 3
k+1
2 = 3

t
2

graphs Gσ,h. It is clear from the construction that each Gσ,h is a plane graph
whose outer face is identical to the outer face f of G and whose embedding
when restricted to V (H0) is the same as that of G. Obviously, each Gσ,h also
contains G. As all components Hi of G−x−y are now connected by new edges,
we also know that Gσ,h − x − y is connected.
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It remains to prove that the Gσ,h are pairwise incomparable. To this end,
we define two auxiliary graphs which are obtained from Gσ,h as follows. We
first define Bσ,h ⊆ Gσ,h. For h = 0,

Bσ,0 :=

k+1⋃

i=1

(
rσ(i−1)ℓσ(i) ∪ Pσ(i) ∪ P (ℓσ(i), x) ∪ P (rσ(i), x) ∪ P (ℓσ(i), y) ∪ P (rσ(i), y)

)

and for h > 0, we obtain Bσ,h from Bσ,0 by removing the edge rσ(h−1)ℓσ(h) and
inserting the edge xy instead.

Observe that the vertices in Bσ,h which have degree at least 3 are exactly
x, y, ℓ0, r0, . . . , ℓk, rk. Now obtain Aσ,h by successively contracting all paths
between these vertices into edges. Alternatively, Aσ,h can also be obtained
from a complete bipartite graph with classes {x, y} and {ℓ0, r0, . . . , ℓk, rk} by
adding either a Hamilton cycle to the second class (if h = 0) or Hamilton paths
to both classes (if h > 0). It is straightforward to check that Aσ,h is 3-connected,
and hence Bσ,h is a subdivision of a 3-connected graph.

We now show that the Bσ,h are pairwise incomparable. By the construction
of Bσ,h (in particular, since Bσ,h is rigid), it is clear that there is no edge
riℓj ∈ Ins(Bσ,h) with i 6= j. Thus, when considering B = Bσ,h and B′ = Bσ′,h′ ,
it suffices to find an edge riℓj ∈ E(B) ∩ E(B′) with i 6= j in order to apply
Proposition 9.6.

If σ 6= σ′, then k ≥ 2 and, recalling that σ(0) = σ′(0) = 0 and σ(k + 1) =
σ′(k + 1) = 0, let i ≥ 1 be the smallest integer so that σ(i) 6= σ′(i) and let
j ≤ k be the largest integer so that σ(j) 6= σ′(j). Note that i < j. Then
rσ(i−1)ℓσ(i), rσ(j)ℓσ(j+1) ∈ E(B)∩E(B′), unless they are removed from B before
adding xy. But as at most one of them will be removed, we are done. If σ = σ′,
then rσ(h′−1)ℓσ(h′) ∈ E(B) ∩ E(B′). Thus the Bσ,h are pairwise incomparable,
and hence by (9.4), so are the Gσ,h. This completes the proof of the lemma for
Case 1.

Case 2a: xy ∈ G, xy 6∈ f . By definition, xy 6∈ H+
0 , so the only difference

to Case 1 is that we need the edge xy to be present in all our graphs Gσ,h; in
other words, we require that 1 ≤ h ≤ k + 1, so that the total number of graphs
is s := k!(k+1) when adding t := k edges to G (one edge less as before, because
xy already exists in G). Checking that

s = (k + 1)! ≥ 3
k
2 = 3

t
2

completes this case.

Case 2b: xy ∈ G, xy ∈ f . As xy ∈ H+
0 and H+

0 is 2-connected, there
are two faces in H+

0 whose boundaries contain xy. Note that one of them is
f , and denote the other one by f ′. Furthermore the face f ′ into which we will
be embedding the other Hi is bounded by a cycle b(f ′) containing x and y.
However, as xy ⊂ b(f ′), we now cannot assume the existence of two vertices r0

and ℓ0 on b(f ′) to which we can connect the Hi as before. So we still proceed
as in Case 1, except that we fix h := k + 1 and do not include ℓ0 and P0 in
Bσ,k+1. (Nevertheless, it is easy to check that the resulting graphs Aσ,k+1 are
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still 3-connected.) Hence the total number of graphs is s := k! when adding
t := k edges to G. By the statement of the lemma, this time we only need to
check that

s = k! ≥ 3
k−1

2 = 3
t−1
2 .

As our construction is a special case of the general construction for Case 1, it is
clear that the graphs constructed in this way fulfil all the requirements of the
lemma. �

Observe that we can apply Lemma 9.8 iteratively, so that starting from a
2-connected graph G, we produce 3-connected graphs Gi satisfying the above
requirements (once there are no more vertex pairs x and y to which we can
apply the lemma, this means we have arrived at a graph which is 3-connected).
We then apply Proposition 9.5 to the 3-connected graphs. So the only remain-
ing problem is that we need to get started if G is not 2-connected. Roughly
speaking, we solve this problem by simply embedding loose blocks into faces of
3-connected components and fixing them there.

Recall that a block of a graph G is a maximal 2-connected component. The
following definitions will be convenient. Given a rooted tree, we say that the
children of a vertex v are those vertices which are adjacent to v and whose
distance to the root is greater than that of v. Given a plane graph G, a trian-
gulation tree of G is a rooted tree whose vertices correspond to plane graphs
(with vertex set [n]) containing G; whose root corresponds to G; whose leaves
correspond to 3-connected graphs which are pairwise incomparable; for any
vertex v of the tree, the graphs corresponding to the children of v all have the
same number of edges and, finally, if a child has t more edges than its parent v,
then v has at least 3t/2 children unless it is an exceptional vertex, in which case
it still has at least 3(t−2)/2 children. Observe that in our definition we require
the leaves of the tree to be pairwise incomparable, however this is guaranteed
via (9.4) if the children of each vertex are pairwise incomparable. Our aim will
be to construct a triangulation tree of G with few exceptional vertices on any
path from the root to a leaf.

Lemma 9.9 Consider a plane graph G ∈ Pn,m consisting of a 3-connected
plane graph G′ (whose outer face is a triangle) and a block H which has exactly
one vertex x in common with G′. Then there is a triangulation tree of G with
no exceptional vertices, unless x is contained in the boundary of the outer face
of G and has degree at most six in G′, in which case the root of the tree may be
exceptional.

Proof. Suppose first that x lies on the boundary of the outer face and has
degree at most six. Let z be a vertex in H which is adjacent to x. Let y be a
vertex on the boundary of the outer face which is adjacent to x and let v be
a vertex which is not in the outer face but lies on the same face f as x and y
in G′ (such a v exists since x has degree at least three in G′). Let G′

1 be the
graph obtained from G by inserting the edges zy and zv (thus H is embedded
into f). Now apply Lemma 9.8 to G′

1. If the resulting graphs G1, . . . , Gs are
not 3-connected, then we repeatedly apply Lemma 9.8 to those graphs and
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Figure 9.4: Illustrating the proof of Lemma 9.9 where the block H is a triangle.
The thick edges are those which were added to G.

their children until we arrive at graphs which are 3-connected. We claim that
these graphs then form the leaves of a triangulation tree of G′

1 containing no
exceptional vertices. In other words, we can never encounter the exceptional
case Lemma 9.8 where the two cut-vertices lie in the outer face. This follows
since G′ is 3-connected and V (H)\{x} is connected to two distinct vertices of
G′ in G′

1. Thus we cannot separate the graph into several components by a
cut consisting of exactly two vertices on the outer face. Since the vertices on
the outer face are always the same, this proves the claim. We then obtain a
triangulation tree of G by adding one more vertex (corresponding to G) and
letting its only child be the vertex corresponding to G′

1. Since G′
1 had two more

edges than G, the root of this tree is an exceptional vertex.
Now suppose that the degree of x in G′ is more than six. Let v1, . . . , vp,

where p ≥ 7, be the neighbours of x in G′, ordered clockwise when viewed from
x. Then x has at least four neighbours y′1, . . . , y

′
4 (also ordered clockwise when

viewed from x) which are not contained in the outer face. Let f1 be the face
of G′ which contains x, y′1 and the neighbour vi of x which lies to the left of y′1
when viewed from x. Then we may have vi = y′4 but we claim that f1 cannot
also contain y′2 or y′3. (Indeed, if f1 contains y′2 for instance, then one can easily
verify that the removal of x and y′2 separates y′1 from vi, contradicting the fact
that G′ is 3-connected.) Now let f2 be the face of G′ which contains x, y′3 and
the neighbour vj of x which lies to the left of y′3 when viewed from x. Then as
above, we may have vj = y′2 but y′1 is not contained in f ′

2. Similarly, it is easily
checked that there is no face f which contains x, y′1 and y′3. Now let y1 := y′1
and y2 := y′3. Let z be a vertex in H which is adjacent to x. For i = 1, 2, let
Gi be the graph obtained from G′ by inserting H and the edges xz and zyi into
fi. Obviously, Gi contains G.

Hence an application of Lemma 9.8 to Gi gives us graphs G′
i1, . . . , G

′
is′ and

which contain G and which are incomparable. By repeatedly applying the
Lemma 9.8 to the graphs G′

ij obtained and their children, we will eventu-
ally obtain graphs Gi1, . . . , Gis which have the additional property of being
3-connected and which form the leaves of a triangulation tree of Gi. As in the
previous case, there are no exceptional vertices. (Consider two vertices w1 and
w2 on the outer face of Gi and let W := {w1, w2}. Since fi was not the outer
face, we have V (H)∩W ⊆ {x}. Since H is 2-connected, it follows that H −W
is connected. Also, since the yi are not contained in the outer face, we have
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yi /∈ W and thus Gi−W contains the edge zyi. Finally, since G′ is 3-connected,
G′ − W is connected. Putting these three observations together, we see that
Gi − W is connected.)

We will now prove that for any j, G1j is incomparable with G2 (and thus
with G2j′ , for any j′). For this, by applying Proposition 9.6 with e0 = zy2, it
suffices to show that zy2 ∈ E(G2)∩E(G1j) and zy2 /∈ Ins(G1j). To see this, first
note that as G′ is 3-connected and contains the outer face, in any of the above
applications of Lemma 9.8, G′ will be contained in the external component and
thus the embeddings of G1j when restricted to G′ will be the same as that of
G2 when restricted to G′. Now consider the embedding of G1j when restricted
to G′ + z. G′ + z contains both zy1 and zx, so z must be embedded into a face
of G′ containing both x and y1. Since G′ contains no face which contains x and
both of the yi, this means that zy2 /∈ E(G1j) and zy2 /∈ Ins(G1j) and thus the
conditions of the proposition are satisfied.

Since xz ∈ G, the Gi have only one more edge than G and we thus obtain
a triangulation tree of G (with no exceptional vertices) as follows. We form
a single tree from the triangulation trees of the Gi by adding a root vertex
corresponding to G and letting its two children correspond to the Gi. �

We can now prove Theorem 9.2 for connected graphs.

Theorem 9.10 Every connected planar graph G ∈ Pn,m is contained in at least
δ3(3n−m)/2 labelled triangulations, where δ is an absolute constant.

Proof. By inserting at most two edges into G, we can obtain a graph G′

that has a block B which contains a triangle and which contains at least four
vertices. Our aim is to construct a triangulation tree whose root corresponds to
G′ and whose vertices correspond to graphs obtained from repeated applications
of Lemmas 9.8 and 9.9 (and so contain G′).

Fix an embedding of B so that the outer face is a triangle. If B is not 3-
connected, we apply Lemma 9.8 to obtain a set of children of B. We then apply
Lemma 9.8 to those children which are not 3-connected and continue in this way
until we have obtained a triangulation tree of B whose root corresponds to B,
where the remaining vertices correspond to descendants of B and whose leaves
are B1, . . . , Bs, say. Note that we do not assume that the graphs corresponding
to the leaves all have the same number of edges. Also on any path from the
vertex to the root of this tree, the number of exceptional vertices is at most
three – they can only appear if we apply the lemma to a pair of vertices on the
outer face and the vertices on the outer face are always the same.

If B = G′ (i.e. G′ was 2-connected), then we have a triangulation tree of G′.
Now suppose that G′ was not 2-connected and let H be a block of G′ which
has a vertex x in common with B (there will be exactly one such vertex in H).
Now apply Lemma 9.9 to the graphs Bi + H to obtain triangulation trees of
Bi + H. We merge these into a single triangulation tree of B ∪ H as follows:
we start with the triangulation tree of B except that a vertex of the tree which
corresponded to a graph F in the triangulation tree of B now corresponds to
F +H. We then identify the roots of the triangulation trees of Bi +H with the
leaves Bi of the tree of B. If B + H = G′, then again we have a triangulation
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tree of G′. If this is not the case, we take a new block H ′ and apply Lemma 9.9,
until we have dealt with all the blocks of G′ and thus obtained a triangulation
tree of G′.

It is now easy to verify by backward induction on the distance from the root
in the triangulation tree that each graph corresponding to a vertex of the tree
is contained in the required number of triangulations. By Proposition 9.5, this
is certainly true (with δ = 2−6) for the leaves of the tree because they are 3-
connected. For the induction step, consider a vertex F ∈ Pn,m and suppose that
its children all have m+t edges and are all contained in at least q triangulations.
Then Lemmas 9.8 and 9.9 imply that the number of triangulations of F is at
least q 3t/2 (which is exactly what we are aiming for), unless we encountered the
exceptional case of either of the lemmas, in which case we find at least q 3(t−2)/2

triangulations. But it is easily seen that on any path from a leaf to the root
of the tree we can encounter the exceptional case of Lemma 9.8 at most three
times when we build a triangulation tree of B. When we apply Lemma 9.9 to
incorporate the other blocks, we can encounter the exceptional case (where x
lies on the outer face and has degree at most six) at most 12 times altogether
(since an application of the lemma increases the degree of the vertex x in the
statement of the lemma by at least one and there are three vertices on the outer
face, which are always the same ones). Since G′ had at most two more edges
than G, this proves the theorem (rather crudely) with δ = 3−(2/2+3+12) 2−6.

�

Finally, we are in a position to deal with the case where G is not necessarily
connected.

Proof of Theorem 9.2. If G has a component K containing all but at most
two vertices of G, then we are immediately done by applying Theorem 9.10 to
C. So suppose that this is not the case. By inserting at most six edges into G,
we can obtain a graph G′ which contains two triangles ta and tb which are both
contained in distinct components. Let va be a vertex on ta and vb one on tb.
Denote by K1, . . . ,Kk the components of G′ not containing ta or tb. We now
construct 2k connected plane graphs Gs which all contain G′ as a subgraph.
Consider some s with 0 ≤ s < 2k and consider the binary expansion of s. If the
ℓth entry is equal to 0, we place the Kℓ into ta and add an edge joining Kℓ to
va. If the ℓth entry is equal to 1, we do the same with tb instead. Carrying this
out for all ℓ with 1 ≤ ℓ ≤ k, this gives us a plane graph Gs.

Thus for each 0 ≤ i < 2k, the graph Gi has two components Ai and Bi with
ni,a and ni,b vertices and mi,a and mi,b edges respectively (where ni,a +ni,b = n
and mi,a + mi,b ≤ m + 6 + k) and an embedding so that the outer face is
bounded by ta and tb. Now we apply Theorem 9.10 to all the Ai and Bi.
Clearly, we can turn any triangulation Ti,a of Ai and Ti,b of Bi into one of Gi by
considering an embedding of Ti,a and Ti,b where ta and tb are on the outer face
and triangulating the outer face of the resulting plane graph in an arbitrary
way (we call such triangulation of Gi a canonical triangulation of Gi). Since in
the last step we only added edges which have one endpoint in ta and the other
in tb, the number of canonical triangulations of Gi is at least the product of the
number of triangulations of Ai and Bi.
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Finally, we claim that for any 0 ≤ i 6= j < 2k, any canonical triangulation T
of Gi is incomparable with Gj . Indeed, since i 6= j, there must be an ℓ so that
Kℓ was inserted into tb (by adding an edge eb between vb and Kℓ) in Gj but
not in Gi. The claim now follows by applying Proposition 9.6 to eb, Gj and T .
Theorem 9.10 now shows that the number of triangulations of G′ is at least

2k−1∑

i=0

δ2 3(3ni,a−mi,a+3ni,b−mi,b)/2 ≥ 2k δ2 3(3n−m−6−k)/2 =
δ2

33
3(3n−m)/2

(
2√
3

)k

as required. �

We conclude this section by showing that Theorem 9.2 is essentially best
possible for m ≥ 2n.

Proposition 9.11 For any c with 2 ≤ c ≤ 3 and for all n ∈ N, there is a graph
G in Pn′,m, where n′ = n + o(n) and m = cn + o(n), so that the number of
triangulations on n′ vertices which contain G is 3(3n′−m+o(n))/2.

Proof. We construct G as follows. We begin with a square grid on n/2 + o(n)
vertices together with an arbitrary triangulation of the outer face of the grid
(the number of edges needed to triangulate the outer face is o(n)) to obtain a
plane graph D. Since we are considering labelled plane graphs, we can speak of
the “top row” of the grid, etc. in what follows. We now “augment” each square
inside the grid by adding a single new vertex into each face of the square grid
and connecting it to both the bottom left and the top right vertex of the face (in
other words, an augmented square is a four-cycle where two opposite vertices
are connected by an additional path of length two). The resulting graph has
n + o(n) vertices, 2n + o(n) edges and n/2 + o(n) augmented squares.

We obtain a graph G with m = cn+o(n) edges by selecting (c−2+o(1))n/2
squares of the original grid and connecting the corresponding new vertices inside
these squares to the remaining two vertices on the outside of this square. We
call an augmented square not triangulated in this way open.

It remains to verify the claim about the number of triangulations of G.
Since D is 3-connected, Proposition 9.4 implies that D has the 1-face property
(which can of course also be easily verified directly). Hence, as already noted
at the beginning of the proof of Proposition 9.5, the number of triangulations
of D is the product of the number of triangulations of the squares in D. It is
easily seen that this in turn implies that the number of triangulations of G is
the product of the number of triangulations of the open augmented squares.
But, clearly, the number of triangulations of each open augmented square is
exactly three and there are

n

2
− m − 2n

2
+ o(n) =

3n − m

2
+ o(n)

open squares. �
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9.4 Upper bounds

In this section, we apply Theorem 9.2 to deduce upper bounds on the number
of planar graphs (implying Theorem 9.1) and on their likely number of edges
(Theorem 9.3). For 0 < x < 1 let

H(x) := −x log x − (1 − x) log(1 − x) (9.6)

be the entropy function, where log denotes the logarithm to base 2 and let
H(0) := H(1) := 0 for convenience. It has the property that

(
n
xn

)
= 2H(x)n+o(n)

for 0 ≤ x ≤ 1.
For G ∈ Pn define

β(G) := |{H ∈ Tn : G ⊆ H}|.

For 0 ≤ c ≤ 3 we let
β(c, n) := min

G∈Pn,cn

β(G).

By the result (9.1) of Tutte, the number |Tn| of labelled triangulations on n
vertices is at most n! γn+o(n). This implies that

|Pn,cn| ≤ |Tn|
(
3n−6

cn

)

β(c, n)
≤ n! γn+o(n) 23H(c/3)n+o(n)

β(c, n)
. (9.7)

Theorem 9.2 implies that β(c, n) ≥ 3(3−c)n/2+o(n) and thus has the following
immediate consequence, which is a generalization of Theorem 9.1.

Theorem 9.12 For 0 ≤ c ≤ 3,

|Pn,cn| ≤ n! γn+o(n) 23H(c/3)n 3−(3−c)n/2.

In particular, |Pn| ≤ n! (37.3)n+o(n) (the maximum is attained at c ∼ 1.902).
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Figure 9.5: The upper bound on |Pn,cn|1/n/n! in Theorem 9.12 versus c, where
0 ≤ c ≤ 3.

Now we turn to the proof of Theorem 9.3, which stated that almost all graphs
in Pn have at most 2.56n edges. Let P2 denote the set of 2-connected planar
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graphs. In the proof, we will employ the bound |Pn| ≥ |P2
n| = n! αn+o(n), where

α ∼ 26.1876, due to Bender, Gao and Wormald [9].

Proof of Theorem 9.3. Numerical calculation gives that γ 23H(c/3) 3−(3−c)/2 <
26.18 − 0.1 for c = 2.56. Note that this inequality also holds for c ≥ 2.56 as
23H(c/3) 3c/2 is decreasing in this range. Thus if we apply Theorem 9.12 with
c ≥ 2.56, we have

⋃

2.56n≤m≤3n−6

|Pn,m| ≤ n! 0.44n (26.18 − 0.1)n+o(n) = o(|Pn|),

which implies the result. �

Our upper bound in Theorem 9.12 applies only to labelled graphs. How-
ever, since any unlabelled graph on n vertices corresponds to at most n! la-
belled graphs the above result of [9] immediately implies that |Pu

n | ≥ |P2,u
n | ≥

(26.18)n+o(n). Similarly to the proof of Theorem 9.3, one can compare this with
the upper bound

|Pu
n,cn| ≤ γn+o(n)

(
3n − 6

cn

)
(9.8)

(which follows from (9.1) again) to observe the following result.

Theorem 9.13 Almost all graphs in Pu
n have at most 2.69n edges.
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Part II

The Regularity Lemma
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Chapter 10

The extremal connectivity for

topological cliques in bipartite

graphs

10.1 Introduction

Given a natural number s, let d(s) be the smallest number such that every
graph of average degree > d(s) contains a subdivision of the complete graph
Ks of order s. The best asymptotic bounds for d(s) known so far are

(1 + o(1))
9s2

64
≤ d(s) ≤ (1 + o(1))

s2

2
. (10.1)

The upper bound is due to Komlós and Szemerédi [58]. As observed by  Luczak,
the lower bound is obtained by considering a random subgraph of a complete
bipartite graph with edge probability 3/4 (see Proposition 10.12). It is widely
believed that the lower bound gives the correct constant, i.e. that random graphs
provide the extremal graphs. If true, this would mean that the situation is
similar as for ordinary minors. Indeed, Thomason [100] was recently able to
prove that random graphs are extremal for minors and Myers [85] showed that
all extremal graphs are essentially disjoint unions of pseudo-random graphs.

In this chapter we show that the lower bound in (10.1) is correct if we
restrict our attention to bipartite graphs whose connectivity is close to their
average degree:

Theorem 10.1 Given s ∈ N, let cbip(s) denote the smallest number such that
every cbip(s)-connected bipartite graph contains a subdivision of Ks. Then

cbip(s) = (1 + o(1))
9s2

64
.

In Theorem 10.1 the condition of being bipartite can be weakened to being
H-free for some arbitrary but fixed 3-chromatic graph H (Theorem 10.15). For
arbitrary graphs, the best current upper bound on the extremal connectivity is
the same as in (10.1). The proof of Theorem 10.1 yields the following improve-
ment.
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Theorem 10.2 Given s ∈ N, let c(s) denote the smallest number such that
every c(s)-connected graph contains a subdivision of Ks. Then

(1 + o(1))
9s2

64
≤ c(s) ≤ (1 + o(1))

s2

4
.

The lower bounds in Theorems 10.1 and 10.2 are provided by the random bipar-
tite graphs mentioned above (since their connectivity is close to their average
degree). Thus at least in the case of highly connected bipartite graphs they are
indeed extremal.

By using methods as in the proof of Theorem 10.1, we also obtain a small
improvement for the constant in the upper bound in (10.1).

Theorem 10.3 Given s ∈ N, let d(s) denote the smallest number such that
every graph of average degree > d(s) contains a subdivision of Ks. Then

(1 + o(1))
9s2

64
≤ d(s) ≤ (1 + o(1))

10s2

23
.

The example of  Luczak mentioned above only gives us extremal graphs for
Theorem 10.1 whose connectivity is about 3n/8, i.e. whose connectivity is rather
large compared to the order n of the graph. However, in Proposition 10.14
we show that there are also extremal graphs whose order is arbitrarily large
compared to their connectivity. In contrast to this, the situation for ordinary
minors seems to be quite different. In general a connectivity of order s

√
log s is

needed to force a Ks minor, but the connectivity of the known extremal graphs
is linear in their order. In fact, Thomason [101] even conjectured that there
exists a constant c such that for all integers s there is an integer n0 = n0(s) such
that every graph of order at least n0 and connectivity at least cs contains the
complete graph Ks as minor. Thus the conjecture says that a linear connectivity
suffices to force a Ks minor if we only consider sufficiently large graphs.

This chapter is organized as follows. In Section 10.2 we introduce the nec-
essary notation and tools which we need in the proof of the upper bound of
Theorem 10.1. In Section 10.3 we provide the (sparse) extremal examples for
the lower bound. The proof of the upper bound of Theorems 10.1, 10.2 and 10.3
is contained in Section 10.4. It builds on results and methods of Komlós and
Szemerédi [58]. Finally, in the last section we then briefly discuss the difficulties
which arise if one tries to extend Theorem 10.1 to arbitrary graphs.

10.2 Notation and tools

Given constants 0 < α, β < 1, we write α ≪ β if α is sufficiently small compared
with β, i.e. there will always exist a positive α0 = α0(β) such that the assertion
in question holds for all α ≤ α0 and α ≪ β means that α ≤ α0.

Our proof of Theorem 10.1 uses Szemerédi’s Regularity lemma (Lemma 2.5).
In Propositions 10.4 and 10.5 as well as in Lemmas 10.6 and 10.7 R will denote
the reduced graph obtained by applying the Regularity lemma (Lemma 2.5)
with parameters ε, d and k0 := 1/ε to the given graph G. G′ and L will be as
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defined in this lemma. Given an edge ViVj ∈ R, for convenience we will refer
to the density of (Vi, Vj)G′ as the density of the edge ViVj.

Proposition 10.4 Suppose that ε, c and d are positive numbers such that 2ε ≤
d < c/2 and suppose that G is a graph of minimum degree at least c|G|. Let µ
be the maximum density of an edge in the reduced graph R. Then the minimum
degree of R is at least (c − 2d)|R|/µ.

Proof. Set n := |G|. Consider a cluster V and let U ⊆ V (G) be the union of all
those clusters which are neighbours of V in R. Then there exists a vertex v ∈ V
which has at most µ|U | neighbours in U (in the graph G′). Indeed, suppose
not. Then there exists a cluster W ∈ NR(V ) such that eG′(V,W ) > µ|V ||W |.
This contradicts the fact that, by definition of µ, the density of (V,W )G′ is at
most µ. But for every vertex v ∈ V with at most µ|U | neighbours in U , we
have

µ · dR(V )L = µ|U | ≥ dG′(v) − |V0| > dG(v) − (d + 2ε)n.

Therefore

dR(V ) >
(c − d − 2ε)n

µL
≥ (c − 2d)|R|

µ
,

as required. �

Proposition 10.5 Let V be a vertex of the reduced graph R and let A be a
set of neighbours of V in R. Then, given ℓ ∈ N, there are at most ℓεL vertices
v ∈ V which have at most (d−ε)L neighbours in at least |A|/ℓ clusters belonging
to A (in the graph G′).

Proof. We say that a vertex z ∈ V is bad for a cluster W ∈ A if |NG′(z)∩W | ≤
(d− ε)L. Let Z be the set of all those vertices z ∈ V which are bad for at least
|A|/ℓ clusters W ∈ A. By summing the number of vertices z ∈ Z which are
bad for W over the clusters W ∈ A, it is easy to see that for some cluster
W ∈ A there are at least |Z|/ℓ vertices in Z which are bad for W . Together
with Proposition 2.3 this implies that |Z|/ℓ < εL. �

The following lemma is a special case of the well-known ‘Embedding lemma’
(see e.g. [14, Chapter IV, Thm. 31], [28, Lemma 7.3.2] or [56, Thm. 2.1] for a
proof).

Lemma 10.6 For every 0 < d ≤ 1 and every 3-chromatic graph H there exists
a positive constant ε0 = ε0(d,H) such that for each 0 < ε ≤ ε0 there is an
integer n0 = n0(ε, d,H) for which the following holds. Let G be a graph of
order at least n0 and suppose that R contains a triangle. Then G contains a
copy of H.

The next simple observation will only be used in the proof of Theorem 10.3.

Lemma 10.7 Given positive constants ε and d with 5ε ≤ d < 1, suppose that
P is a path in R with endvertices U and W . Then G′ contains at least (1−2ε)L
disjoint paths such that each of them starts in some vertex belonging to U , ends
in some vertex belonging to W and contains only vertices belonging to clusters
in V (P ) (precisely one vertex in each of these clusters).
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Proof. Suppose that P = V1 . . . Vr. First apply Proposition 2.4 to P to
obtain a (1 − 2ε)L-element subset V ′

i of each cluster Vi ∈ V (P ) such that
(V ′

i , V ′
i+1)G′ is (2ε, d − 3ε)-super-regular for all 1 ≤ i < r. It is easily checked

that the super-regularity of (V ′
i , V ′

i+1)G′ implies that this graph satisfies Hall’s
matching condition and thus contains a perfect matching. The union of all
these matchings forms a set of paths as required. �

Given bipartite graph (U,W ), a set S ⊆ U and numbers ℓ ≤ |S| and 1/ℓ ≤
β ≤ 1, we say that S is (ℓ, β)-dense for W if for each ℓ-element subset S′ of S
there are at most β|W | vertices in W which have less than β|S′| neighbours in
S′. If U = S, this notion can be viewed as a weakening of ε-regularity. Indeed,
if (U,W ) is ε-regular of density at least β + ε, β ≥ ε and ℓ ≥ ε|U |, then by
Proposition 2.3 the set U is (ℓ, β)-dense for W . The following even weaker
notion will also be convenient. S is called (ℓ, β)-attached to W if for each ℓ-
element subset S′ of S all but at most β|W | vertices in W have a neighbour in
S′.

Roughly speaking, the next lemma implies that with high probability the
ε-regularity of a bipartite graph (U,W ) is not lost completely when passing over
to a subgraph (S,W ) where S is a random subset of U . The point here is that
|S| need not be linear in |U |. A similar statement was proved independently of
us by Gerke et al. [34] in the context of extremal subgraphs of random graphs.

Lemma 10.8 Given constants 0 < α, β, ε, d < 1 with ε ≪ α ≤ 1/2, ε ≤ β and
β ≪ d, there exists a natural number s0 = s0(ε, β, α, d) such that the following
is true for all s ≥ s0. Set ℓ := αs and suppose that G = (U,W ) is an ε-regular
bipartite graph of density at least d such that |U |, |W | ≥ s. Let S be a subset
of U which is obtained by successively selecting s vertices in U uniformly at
random without repetitions. Then with probability at least 1 − e−s the set S is
(ℓ, β)-dense for W .

Proof. Consider a subset S′ of U which is obtained by successively selecting
ℓ vertices in U uniformly at random without repetitions. We call S′ a failure
if there are at least β|W | vertices in W which have less than β|S′| neighbours
in S′. We will first show that the probability that S′ is a failure is very small.
This will be done by grouping the vertices in S′ into successive ‘epochs’ and by
analyzing one such ‘epoch’ at a time. Set r := d/(8β); r will be the number of
such ‘epochs’ and so each ‘epoch’ will contain ℓ/r = 8βℓ/d vertices. We call the
subset of S′ which consists of the first ℓ/r vertices chosen for S′ the first epoch
of S′ and denote it by S′

1. Similarly, given 2 ≤ i ≤ r, we define the ith epoch
S′

i of S′. Given 1 ≤ i ≤ r, let Wi be the set of all those vertices w ∈ W which
have at least βℓ neighbours in S′

i. For all i ≤ r + 1 set W ′
i := W \ ⋃j<i Wj .

Thus W ′
i contains all those vertices for which, after i − 1 epochs, we cannot

guarantee that they have enough neighbours in S′. We say that the ith epoch
S′

i is successful if either |W ′
i | < β|W | or if at least half of the vertices in S′

i have
at least d|W ′

i |/2 neighbours in W ′
i .

The aim now is to show that if the ith epoch is successful and W ′
i is still

large, then a significant proportion of the vertices in W ′
i will belong to Wi.

Since the probability that an epoch is successful will turn out to be quite large,
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this will then imply that with large probability the set W ′
r+1 is small and thus

with large probability S′ is not a failure. Set µi := |W ′
i ∩Wi|/|W ′

i | and suppose
that the ith epoch S′

i is successful but |W ′
i | ≥ β|W |. By counting the edges

between W ′
i and S′

i and recalling that |S′
i| = 8βℓ/d, we get

µi|W ′
i | ·

8βℓ

d
+ |W ′

i | · βℓ ≥ eG(W ′
i , S

′
i) ≥

4βℓ

d
· d|W ′

i |
2

.

Hence
µi ≥ d/8.

We now bound the probability that an epoch is not successful. Since (U,W )
is ε-regular and has density at least d, Proposition 2.3 implies that if |W ′

i | ≥
β|W | ≥ ε|W | then at most ε|U | vertices in U have less than d|W ′

i |/2 neighbours
in W ′

i . So in this case, for every s ∈ S′
i, the probability that s has less than

d|W ′
i |/2 neighbours in W ′

i is at most ε|U |/(|U | − ℓ) ≤ 2ε. Thus for any event
Ai−1 depending only on the outcome of the first i − 1 epochs, we have

P(S′
i is not successful | Ai−1) ≤ 2|S

′
i|(2ε)|S

′
i|/2 = (8ε)4βℓ/d.

Hence

P(at least r/2 epochs are not successful) ≤ 2r(8ε)2βℓr/d ≤ (16ε)ℓ/4.

Let N denote the number of successful epochs. Then |W ′
N+1| ≤ max{β|W |, (1−

d/8)N |W |}. But if N ≥ r/2 we have

(1 − d/8)N |W | ≤ (1 − d/8)d/(16β)|W | ≤ e−d2/(128β)|W | ≤ β|W |.

This shows that with probability at most (16ε)ℓ/4, a random ℓ-set S′ is a failure.
Now suppose that S is a random set as given by the lemma. Then, since

every ℓ-element subset S′ of S is again a random set whose distribution is
uniform amongst all ℓ-element subsets of U ,

P(S is not (ℓ, β)-dense for W ) ≤
∑

S′∈S(ℓ)

P(S′ is a failure)

≤
(

s

ℓ

)
(16ε)ℓ/4

≤
(es

ℓ

)ℓ
(16ε)ℓ/4

= eℓ log(e/α)e−(ℓ/4) log(1/(16ε))

≤ e−(ℓ/5) log(1/ε) ≤ e−s,

as required. (The third inequality is a weak form of Stirling’s formula, see
e.g. [16, p. 4].) �
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The following special case of Lemma 10.8 was already proved by Komlós
and Szemerédi [58]. A result which is slightly stronger than Corollary 10.9 was
also proved earlier by Duke and Rödl [30].

Corollary 10.9 Under the conditions of Lemma 10.8, the set S is (ℓ, β)-attached
to W with probability at least 1 − e−s.

Given a positive number ε and sets A,Q ⊆ T , we say that A is split ε-fairly
by Q if ∣∣∣∣

|A ∩ Q|
|Q| − |A|

|T |

∣∣∣∣ ≤ ε.

Thus, if ε is small and A is split ε-fairly by Q, then the proportion of all
those elements of T which lie in A is almost equal to the proportion of all those
elements of Q which lie in A. We will use the following version of the well-known
fact that if Q is random then it tends to split large sets ε-fairly.

Proposition 10.10 For each 0 < ε < 1 there exists an integer q0 = q0(ε) such
that the following holds. Given t ≥ q ≥ q0 and a set T of size t, let Q be a
subset of T which is obtained by successively selecting q elements uniformly at
random without repetitions. Let A be a family of at most q10 subsets of T such
that |A| ≥ εt for each A ∈ A. Then with probability at least 1/2 every set in A
is split ε-fairly by Q.

To prove Proposition 10.10 we will use the following large deviation bound
for the hypergeometric distribution (see e.g. [39, Thm. 2.10 and Cor. 2.3]).

Lemma 10.11 Given q ∈ N and sets A ⊆ T with |T | ≥ q, let Q be a subset
of T which is obtained by successively selecting q elements of T uniformly at
random without repetitions. Let X := |A ∩ Q|. Then for all 0 < ε < 1 we have

P(|X − EX| ≥ εEX) ≤ 2e−
ε2

3
EX .

Proof of Proposition 10.10. Given A ∈ A, Lemma 10.11 implies that

P(A is not split ε-fairly by Q) ≤ P(| |A ∩ Q| − q|A|/t | ≥ εq|A|/t)

≤ 2e−
ε2

3
q|A|

t ≤ 2e
−ε3q

3 .

Hence, if q0 is sufficiently large compared with ε, the probability that there is
an A ∈ A which is not split ε-fairly is at most 2q10e−ε3q/3 < 1/2, as required.

�

10.3 Proof of Theorem 10.1 – extremal graphs

As mentioned in [58], the following example of  Luczak shows that the function
cbip(s) defined in Theorem 10.1 is at least (1 + o(1))9s2/64 (and thus also the
functions c(s) and d(s) defined in Section 10.1).
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Proposition 10.12 For every positive λ and each integer κ0 there exists a
bipartite graph G such that G is κ-connected for some κ ≥ κ0 and does not
contain a subdivision of a clique of order at least (1 + λ)8

√
κ/3.

We include the proof of Proposition 10.12 here firstly for completeness and
secondly because we will build on the argument in the proof of Proposition 10.14
below. In both proofs, the next simple and well-known fact (see e.g. [16, Ch. II,
Thm. 2.1]) will be rather useful.

Theorem 10.13 Let n ∈ N and let 0 < ε, p < 1 be fixed. Let Bnp be a bipartite
random graph whose vertex classes A and B both have size n and where the
edges between these classes are included with probability p independently of each
other. Then, with probability tending to 1 as n → ∞,

(1 − ε)p|U ||W | ≤ eBnp(U,W ) ≤ (1 + ε)p|U ||W |

for all sets U ⊆ A and W ⊆ B with |U |, |W | ≥ (log n)2.

Proof of Proposition 10.12. Throughout the proof we assume that λ
is sufficiently small and n is sufficiently large for our estimates to hold. Let
κ := (1 − λ/2)3n/4 and s := (1 + λ)8

√
κ/3. Put p := 3/4 and let Bnp be

a bipartite random graph as in Theorem 10.13. Using the lower bound in
Theorem 10.13, one can easily show that Bnp is κ-connected with probability
tending to 1 as n → ∞. We will show that, with probability tending to 1, there
will not be any sets U ⊆ A and W ⊆ B such that U ∪ W can serve as the set
of branch vertices of a subdivided Ks in Bnp. Without loss of generality we
assume that |U | ≥ |W |. Clearly, if |W | ≤ (log n)2, then Bnp cannot contain
a subdivided edge for all the pairs of vertices in U since each such edge must

have an inner vertex in B and |B| <
(
s−(log n)2

2

)
. But Theorem 10.13 implies

that with probability tending to 1 we have

eBnp(U,W ) ≤ (1 + λ/30)p|U ||W | (10.2)

for all U,W with |U |, |W | ≥ (log n)2. However, if U ∪ W is the set of branch
vertices of a TKs, then B contains an inner vertex of each subdivided edge
joining a pair of vertices in U as well as an inner vertex of each subdivided edge
which joins some a ∈ U to some b ∈ W with ab /∈ Bnp. Thus, if (10.2) holds,
then the number of all these subdivided edges is

(|U |
2

)
+ |U ||W | − eBnp(U,W ) > n.

This shows that with probability tending to 1 the graph Bnp does not contain
a subdivided Ks. Thus, with probability tending to 1, we can take Bnp for the
graph G in Proposition 10.12. �
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If we take a sequence of disjoint copies of the graph given by Proposi-
tion 10.12 and attach successive copies by inserting κ independent edges, then
the next proposition shows that we obtain arbitrarily large κ-connected bipar-
tite graphs which do not contain a subdivision of a large clique (and the density
of these graphs is arbitrarily small).

Proposition 10.14 For every positive λ and every integer κ0 there exists an
integer κ ≥ κ0 and arbitrarily large bipartite graphs G which are κ-connected
and do not contain a subdivision of a clique of order at least (1 + λ)8

√
κ/3.

Proof. Throughout the proof we assume that λ is sufficiently small and n is
sufficiently large for our estimates to hold. Let G = (A,B) be the bipartite
(random) graph given by the proof of Proposition 10.12. Thus |A| = |B| = n,
G is κ-connected where κ := (1 − λ/2)3n/4 and all sets U ⊆ A and W ⊆ B
with |U |, |W | ≥ (log n)2 satisfy

e(U,W ) ≤ (1 + λ/30)3|U ||W |/4. (10.3)

Moreover, G does not contain a subdivision of Ks where s := (1 + λ)8
√

κ/3.
Given an integer k, let G∗ denote the graph obtained from k disjoint copies G1 =
(A1, B1), . . . , Gk = (Ak, Bk) of G by inserting κ independent edges between Bi

and Ai+1 (for all 1 ≤ i < k). Thus G∗ is κ-connected and bipartite. We will
show that G∗ does not contain a subdivided Ks. So suppose not and choose a
TKs in G∗. For each i ≤ k let Xi be the set of all branch vertices of TKs in
G1 ∪ · · · ∪Gi and let Yi be the set of all branch vertices in Gi ∪ · · · ∪Gk. Since
each subdivided edge joining a branch vertex in Xi to a branch vertex in Yi+1

must contain one of the κ edges between Bi and Ai+1, we have κ ≥ |Xi||Yi+1| =
|Xi|(s − |Xi|). This implies that for each i either |Xi| ≤ 0.17s or |Xi| ≥ 0.83s.
Let i be the first index for which the latter holds. Thus x := |Xi−1| ≤ 0.17s and
y := |Yi+1| ≤ 0.17s. Let SA be the set of all branch vertices in Ai and let SB

be the set of all branch vertices in Bi. Put X := Xi−1, Y := Yi+1, sA := |SA|
and sB := |SB |.

Let us now estimate the number of all those vertices in Ai which are con-
tained in the TKs. Firstly, since all the Bi−1–Ai edges are independent, Ai

contains at least x(s − x) vertices on subdivided edges joining a branch ver-
tex in X to a branch vertex in SA ∪ SB ∪ Y . Secondly, at most sB/2 subdi-
vided edges joining two branch vertices in SB begin and end with an SB–Ai+1

edge. But all the
(sB

2

)
− sB/2 remaining such subdivided edges have an inner

vertex in Ai. (Note that this also shows that sA ≥ (log n)2 since otherwise(sB
2

)
− sB/2 > n. Similarly, we have that sB ≥ (log n)2.) Thirdly, at most

sB subdivided edges joining some branch vertex a ∈ SA to some branch ver-
tex b ∈ SB with ab /∈ Gi end with an SB–Ai+1 edge. Again all the at least
sAsB − eGi(SA, SB) − sB remaining such subdivided edges must have an inner
vertex in Ai. Since sA, sB ≥ (log n)2, together with (10.3) this implies that

n = |Ai| ≥ x(s − x) +

(
sB

2

)
− sB

2
+

(
1

4
− λ

40

)
sAsB − sB. (10.4)

106



Similarly, we arrive at an analogous inequality where A and B are interchanged
and x is replaced by y. Adding (10.4) and this second inequality gives

x(s−x)+y(s−y)+

(
sA

2

)
+

(
sB

2

)
+

sAsB

2
− 3

2
(sA +sB)− λsAsB

20
≤ 2n. (10.5)

But
(sA

2

)
+
(sB

2

)
+sAsB/2 is minimized if sA = sB, i.e. if sA = sB = (s−x−y)/2.

Thus (10.5) implies that

x(s − x) + y(s − y) + 2

( s−x−y
2

2

)
+

1

2

(
s − x − y

2

)2

− λs2

16
≤ 2n.

This shows that

2xs + 2ys − 5(x2 + y2) + 6xy + λs2 ≤ 0. (10.6)

However, recall that x, y ≤ 0.17s. It is easy to check that (10.6) has no solution
for such numbers x and y. �

10.4 Proof of Theorem 10.1 – upper bound

Clearly, it suffices to prove the following stronger statement. It implies that in
Theorem 10.1 the condition of being bipartite can be weakened to being H-free
where H is any fixed 3-chromatic graph.

Theorem 10.15 For every 0 < λ < 1 and every 3-chromatic graph H there ex-
ists κ0 = κ0(λ,H) such that for every natural number κ ≥ κ0 each κ-connected
graph G0 contains a subdivision of a clique of order at least 8

√
(1 − λ)κ/3.

For the proof of Theorem 10.15 we need the following consequence of The-
orem 2.1 and Corollary 2.1 in Komlós and Szemerédi [58].

Theorem 10.16 For all ε∗ > 0 there are positive constants c0 = c0(ε∗) and
d0 = d0(ε∗) such that every graph G∗ of average degree at least d∗ ≥ d0 either
contains a subdivided clique of order at least 8

√
d∗/3 or a subgraph G whose

average degree d satisfies both d ≥ c0|G| and d ≥ d∗/(1 + ε∗).

Very roughly, the strategy of the proof of Theorem 10.1 is as follows. By
Theorem 10.16, we may assume that our given graph G0 contains a dense
subgraph G. We then apply the Regularity lemma to G to obtain a reduced
graph R. If R contains a vertex X of rather large degree (Case 1), we choose
the set of our branch vertices randomly inside X. In this case—similarly as
in the proof of Komlós and Szemerédi [58]—most of the branch vertices can
be joined by a path of length two whose midpoint lies in some cluster which
is adjacent to X in R. The main difference is that here we need the more
powerful Lemma 10.8 instead of Corollary 10.9 (which was sufficient in [58]).
The left-over pairs of branch vertices are then joined by suitable paths of length
four using special sets of vertices which we set aside earlier for this purpose.
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If we cannot guarantee a vertex of large degree in R (Case 2) we proceed as
follows. Let XY be an edge in R of maximum density. Proposition 10.4 implies
that in Case 2 this density must be large. The branch vertices are now chosen
within both X and Y . This has the advantage that many pairs of branch
vertices can be connected directly by edges between them. The subdivided
edges connecting two branch vertices in X (respectively two branch vertices
in Y ) are selected similarly as in Case 1. The main difficulty of the proof is
that now we have to use the connectivity of G0 in order to find subdivided
edges joining every branch vertex x ∈ X to all those branch vertices y ∈ Y for
which xy /∈ G0.

Proof of Theorem 10.15. Choose

ε∗ ≪ λ. (10.7)

Let c0(ε∗) be as defined in Theorem 10.16 and choose constants

0 < ε ≪ β ≪ α ≪ ξ ≪ τ ≪ d ≪ min{c0(ε∗), ε∗}. (10.8)

We will prove Theorem 10.15 for every κ0 which is sufficiently large compared
to each of d0(ε∗), N(ε), q0(ε), q0((80N(ε))−1), n0(ε, d,H), s0(2ε, β, α, d/2) and
s0(2ε, β2, α, d/2), where d0 is as defined in Theorem 10.16, N(ε) := N(ε, 1/ε)
is as defined in the Regularity lemma (Lemma 2.5), q0 is as defined in Proposi-
tion 10.10, n0 is as defined in Lemma 10.6 and s0 is as defined in Lemma 10.8.
Clearly, we may assume that the graph G0 given in Theorem 10.15 does not
contain a subgraph of connectivity greater than κ. By Theorem 10.16, we may
assume that for some c ≥ c0(ε∗) the graph G0 contains a subgraph G of average
degree

cn ≥ κ/(1 + ε∗), (10.9)

where n := |G|. Then
4κ ≥ cn (10.10)

since otherwise, by Theorem 7.4, G would contain a subgraph whose connec-
tivity is greater than κ. Set

s := 8
√

(1 − λ)κ/3.

Apply the Regularity lemma (Lemma 2.5) with parameters ε, d and k0 :=
1/ε to G to obtain a spanning subgraph G′ of G and a reduced graph R. Let
N(ε) := N(ε, 1/ε). Throughout the proof, unless stated otherwise, we say that
two vertices x, y ∈ V (G) = V (G′) are neighbours if they are neighbours in G′.
Let L denote the size of the clusters given by the Regularity lemma and set
k := |R|. Let µ denote the maximum density of an edge in R. Thus µ ≥ d and
Proposition 10.4 shows that

δ(R) ≥ (c − 2d)k/µ =: δ. (10.11)

We will first deal with the case when µ ≤ 9/32.

Case 1. µ ≤ 9/32.
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Let X ∈ V (R) be any cluster. Choose disjoint sets N1
X and N2

X of neighbours

of X in R such that |N1
X | = τk and |N2

X | = δ − 10τk. Next choose a set Ñ1
X

consisting of τk vertices of R such that R contains a perfect matching between
N1

X and Ñ1
X and such that Ñ1

X is disjoint from each of {X}, N1
X and N2

X . We

will fix such a perfect matching between N1
X and Ñ1

X . By Proposition 10.5, all
but at most 3εL vertices in X have at least dL/2 neighbours in at least 2/3 of the
clusters in N1

X . Let X ′ ⊆ X be the set of these vertices. Thus |X ′| ≥ (1−3ε)L.
Together with Lemma 10.8 and Corollary 10.9 this implies that X ′ contains
an s-element subset S which is (αs, β)-dense for each cluster W ∈ N2

X and
which in addition is (αs, β2)-attached to each cluster W ∈ N2

X . (Indeed, since
for each W ∈ N2

X the graph (X ′,W )G′ is 2ε-regular of density at least d/2,
Lemma 10.8 and Corollary 10.9 together imply that the probability that an
s-element subset S of X ′ chosen uniformly at random without repetitions fails
to satisfy the above conditions is at most 2|N2

X |e−s < 1.) S will be the set of
branch vertices of our subdivided clique. Let Z be the set of all those vertices
of G that lie in some cluster belonging to N2

X .
To find the subdivided edges of our clique, for every pair of vertices x, y ∈ S

in turn, we select a vertex z ∈ Z which is adjacent to both x and y and was not
already chosen to connect a previous pair (provided that such a vertex exists).
We call a vertex x ∈ S bad if, after we have considered all pairs of vertices in
S in this way, there are still at least αs vertices in S which are not yet joined
to x. The following claim implies that we were able to join most of the pairs of
branch vertices in the above way.

Claim A. At most αs vertices in S are bad.

Suppose not and let S′ be an αs-element subset of S consisting of bad vertices.
Let Z ′ ⊆ Z be the set of all those vertices in Z which have not been selected
to join some pair of vertices in S. Then, since µ ≤ 9/32,

|Z ′| > |Z| −
(

s

2

)
≥ |N2

X |L − s2

2

≥ (c − 2d)kL

µ
− 10τkL − 32(1 − λ)κ

9
(10.9)

≥ 32(c − 2d)(1 − ε)n

9
− 10τn − 32(1 − λ)(1 + ε∗)cn

9
(10.7),(10.8)

≥ 2βn ≥ 2β|Z|.

But since S was (αs, β)-dense for each cluster belonging to N2
X , it follows that

at least half of the vertices in Z ′ have at least βS′ neighbours in the bad set S′.
Thus there is a vertex x ∈ S′ with at least β|Z ′|/2 > β2|Z| neighbours in Z ′.
Hence there exists a cluster W ∈ N2

X such that x has more than β2L neighbours
in W ∩ Z ′. Since S was (αs, β2)-attached to W , there must be an edge joining
some neighbour z of x in W ∩ Z ′ to one of the at least αs vertices in S which
are not yet joined to x, y say. But this means that when we considered the
pair x, y we could have selected z in order to join them, a contradiction. This
proves the claim.
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Now we have to show that we can find a subdivided edge for each of the at
most 2αs2 left-over pairs of vertices in S. We will join up each such left-over
pair greedily by a path of length 4. This 4-path will have its midpoint in some
cluster V ∈ Ñ1

X and its other two inner vertices in the unique cluster in N1
X

that is matched to V . (Recall that we have fixed a perfect matching between
N1

X and Ñ1
X .) We have to show that for all the left-over pairs in turn we can

find (greedily) internally disjoint such paths. Suppose that we are about to join
the left-over pair x, y ∈ S. Recall that, since S ⊆ X ′, both x and y have at
least dL/2 neighbours in at least 2/3 of the clusters in N1

X . Thus they have at
least 1/3 of these clusters in common. However, we may have used up some of
the neighbours of x and y before to join up previous left-over pairs. But since
the number of paths constructed previously is at most 2αs2, we have used at
most 6αs2 ≤ 48αn vertices for this. Thus at most

48αn · 4

dL

(10.8)
<

τk

3
=

|N1
X |
3

clusters in N1
X contain at least dL/4 vertices which we have already used before.

This shows that there is a cluster U ∈ N1
X in which both x and y still have

at least dL/4 unused neighbours. Let V ∈ Ñ1
X be the cluster that is matched

to U . Since by construction the number of used vertices in U is exactly twice
the number of used vertices in V , there must be at least dL/4 vertices in V
which we have not used already. Together with the ε-regularity of (U, V )G′ this
implies that V contains a vertex z which is joined to both some neighbour z1 of
x in U and some neighbour z2 of y in U such that z1 6= z2 and such that none
of z1, z2, z3 has been used to join previous left-over pairs. Thus xz1zz2y is a
4-path as required.

Case 2. µ > 9/32.

The proof of this case is an extension of that of Case 1. Let XY be an edge in
R of density µ. Since µ is large, the lower bound (10.11) on δ(R) is now weaker
and so we cannot choose all the branch vertices in a single cluster, X say, as we
did in Case 1. Indeed, the number of vertices lying in a neighbouring cluster of
X could be smaller than

(s
2

)
. So if we put all the branch vertices into X, there

may not be enough room for all the subdivided edges of our topological clique.
Therefore we split our branch vertices into two sets SX ⊆ X and SY ⊆ Y such
that the density of the bipartite subgraph between SX and SY is about µ. Since
µ is quite large, this has the advantage that we can join many pairs of branch
vertices directly by these SX–SY edges and so we need less vertices in the other
neighbouring clusters of X (respectively of Y ) for the remaining subdivided
edges. However, we now face the additional difficulty that we also have to join
each vertex in SX to all those vertices in SY for which there is no SX–SY edge.
This is the point where we use the connectivity of the graph G0 ⊇ G we started
with. (Note that in Case 1 we did not make any use of it.)

Select τk-element sets N1
X and Ñ1

X and a (δ−10τk)-element set N2
X similarly

as in Case 1. But now we additionally require that Y does not belong to
any of these sets. Next choose analogous sets N1

Y , Ñ1
Y and N2

Y . Since G0 ⊇
G is H-free, Lemma 10.6 implies that the neighbourhoods of both X and Y
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are disjoint. Thus, we can choose all the sets N1
X , Ñ1

X ,N2
X ,N1

Y , Ñ1
Y ,N2

Y to be
pairwise disjoint. (This is the only time we need the fact that G0 is H-free.)
The sets N1

X and Ñ1
X have the same purpose as in Case 1, namely to connect

those left-over pairs x, x′ ∈ SX of branch vertices by paths of length 4 which
we were not able to link by paths of length 2. Each other path linking a pair
of branch vertices will be routed through N2

X and/or N2
Y (see Fig. 10.1).

AX

CX

BX

DX

N2
X(G)

AY

CY

BY

N2
Y (G)

P ∈ P eN1
Y (G)

N1
Y (G)

eN1
X(G)

N1
X(G)

P ∈ P
⋄

X Y

Figure 10.1: Five possible ways of connecting two branch vertices. The sets
N1

X(G) etc. denote the subsets of V (G) which correspond to the sets N1
X etc.

Let 1/2 ≤ γ ≤ 9/10 be any number which satisfies the following two in-
equalities:

(1 − µ + 106ε)γs(1 − γ)s ≤ (1 − 2ε∗)κ, (10.12)
(

γs

2

)
+ (1 − µ + 106ε)γs(1 − γ)s + 10αs2 ≤ |N2

X |L − τn. (10.13)

We defer the technical proof of the existence of such a γ until the end of this
section (Proposition 10.17). Inequality (10.12) will imply that the connectivity
of G0 is large enough to guarantee at least as many paths between the neigh-
bourhood of SX (inside clusters belonging to N2

X) and the neighbourhood of
SY as we will need to join all those pairs x ∈ SX , y ∈ SY of branch vertices for
which xy /∈ G0. Inequality (10.13) will show that the neighbourhood of SX is
large enough to accommodate both an endvertex of each such path as well as a
midpoint of each subdivided edge joining two branch vertices in SX . (Similarly
as in Case 1, we will join almost all pairs of branch vertices in SX by paths of
length 2.)

Set
sX := γs and sY := (1 − γ)s.

We will now choose the set SX ∪ SY =: S of branch vertices for our subdivided
clique where SX ⊆ X, SY ⊆ Y , |SX | = sX and |SY | = sY . Note that, by
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Propositions 2.3 and 10.5, all but at most (105 + 4)εL vertices x ∈ X satisfy
the following three properties:

(i) The proportion of clusters U ∈ N2
X for which x has at most d|U |/2 neigh-

bours in U is at most 10−5.

(ii) The proportion of the clusters U ∈ N1
X for which x has at most d|U |/2

neighbours in U is at most 1/3.

(iii) The neighbourhood of x in Y has size at least (µ − ε)L.

Let X ′ be the set of all those at least (1−(105+4)ε)L vertices in X. Define Y ′ ⊆
Y similarly. Just as in Case 1, one can apply Lemma 10.8 and Corollary 10.9
to obtain an sX-element set SX ⊆ X ′ which is (αsX , β)-dense for each cluster
U ∈ N2

X and which in addition is (αsX , β2)-attached to each cluster U ∈ N2
X .

Similarly, using Lemma 10.8, Corollary 10.9 and Proposition 10.10, it is easy to
see that there exists an sY -element subset SY ⊆ Y ′ which is (αsY , β)-dense for
each cluster V ∈ N2

Y , which in addition is (αsY , β2)-attached to each cluster
V ∈ N2

Y and for which the bipartite graph (SX , SY )G′ has density at least
µ − 106ε. Indeed, to ensure that the latter property is also satisfied, let A :=
{NG′(x) ∩ Y ′ |x ∈ SX}. Since (iii) implies that |A| ≥ (µ − ε)L − |Y \ Y ′| ≥
(µ−(105+5)ε)|Y ′| for all A ∈ A, Proposition 10.10 (with T := Y ′ and Q := SY )
tells us that the probability that there exists a vertex x ∈ SX which has less
than (µ − 106ε)sY neighbours in SY is at most 1/2. This completes the choice
of the branch vertices.

As indicated earlier, we will use the connectivity of G0 to find a set P of
almost κ disjoint paths whose first vertex lies in a cluster belonging to N2

X and
whose last vertex lies in a cluster belonging to N2

Y . Most of those pairs x, y
of branch vertices for which x ∈ SX , y ∈ SY and xy /∈ G0 will be joined by a
path of the form xPy where P ∈ P. However, for some such pairs x, y this will
not be possible. Each of those left-over pairs x, y will be joined by an extended
path of the form xu1 . . . u4Pv4 . . . v1y where P ∈ P. All these extension vertices
u1, . . . , u4 and v1, . . . , v4 will lie in a relatively small set I ′ which we set aside
(before determining P) for this purpose and which will be avoided by the paths
in P. I ′ will be the union of six disjoint sets AX , BX , CX , AY , BY and CY .
All vertices of the form u1 will lie in CX , all vertices of the form u2 and u4 will
lie in AX and all vertices of the form u3 will lie in BX . The vertices of the form
vi will satisfy analogous properties for the sets AY , BY and CY (see Fig. 10.1).

Let us first choose the set AX . For each cluster U ∈ N2
X we select a neigh-

bour W (U) in R such that all these W (U) are distinct for different clusters U
and such that none of them lies in

N1
X ∪ Ñ1

X ∪ N1
Y ∪ Ñ1

Y ∪ {X,Y } =: J. (10.14)

Let U ′ be the set of all those vertices in U which have at least dL/2 neighbours
in W (U). Thus, by Proposition 2.3, |U ′| ≥ (1 − ε)L. Apply Proposition 10.10
(with T := W (U), q := τL and A := {NG′(x) ∩ W (U) |x ∈ U ′}) to obtain a
τL-element subset AX(U) of W (U) such that every vertex in U ′ has at least
d|AX(U)|/4 neighbours in AX(U). Let AX :=

⋃
U∈N2

X
AX(U). For all U ∈ N2

X

112



choose any τL-element subset BX(U) of U ′. Let BX :=
⋃

U∈N2
X

BX(U). Thus

AX and BX are disjoint. (This follows from the fact that G0 is H-free and
thus R is triangle-free, but here this fact is not necessary since we could simply
choose each BX(U) in U ′ \ AX .) Similarly, for each cluster V ∈ N2

Y we choose
a neighbour W (V ) and define V ′ as well as τL-element sets AY (V ) ⊆ W (V )
and BY (V ) ⊆ V ′ such that all the sets AY (V ) and BY (V ) are disjoint from
AX ∪ BX . Set AY :=

⋃
V ∈N2

Y
AY (V ), BY :=

⋃
V ∈N2

Y
BY (V ) and let

I := AX ∪ BX ∪ AY ∪ BY .

Note that I meets each cluster in at most 4τL vertices. For every cluster
U ∈ N2

X , choose a ξL-element set CX(U) ⊆ U ′ \ I ⊆ U which contains at
least d|CX(U)|/4 neighbours of each vertex x ∈ SX that has at least dL/2
neighbours in U . (Indeed, to see that such a set CX(U) exists, observe that
each vertex x with at least dL/2 neighbours in U has at least dL/3 neighbours
in U ′ \ I and apply Proposition 10.10 with T := U ′ \ I, q = ξL and A :=
{NG′(x) ∩ (U ′ \ I) |x ∈ SX}.) Thus condition (i) and the fact that SX ⊆ X ′

imply the following.

(iv) For each vertex x ∈ SX there are at least (1−10−5)|N2
X | clusters U ∈ N2

X

such that x has at least d|CX(U)|/4 neighbours in the set CX(U).

Set CX :=
⋃

U∈N2
X

CX(U). For all V ∈ N2
Y define CY (V ) ⊆ V ′ \ I similarly and

set CY :=
⋃

V ∈N2
Y

CY (V ). Put

I ′ := I ∪ CX ∪ CY

and
κ′ := (1 − ε∗)κ.

Note that κ′ ≤ κ − 20τn by (10.8) and (10.10). Moreover,

κ′ ≤ (1 − ε∗)κ

µ

(10.9)

≤ (1 − (ε∗)2)cn

µ
≤ ckL + εn − (ε∗)2cn

µ
(10.8)

≤ (c − 2d − 30τ)kL

µ

(10.11)

≤ (δ − 10τk)L − 20τkL

= |N2
X |L − 20τkL. (10.15)

Let J(G) be the set of all those vertices in G which lie in a cluster belonging
to J (which was defined in (10.14)). Since

∣∣∣∣∣∣
J(G) ∪ I ′ ∪ (

⋃

U∈N2
X

U \ U ′) ∪ (
⋃

V ∈N2
X

V \ V ′)

∣∣∣∣∣∣
≤ 20τkL

and G0 is κ-connected, Menger’s theorem implies that we can choose a set P
of κ′ disjoint paths in the graph G0 \ (J(G) ∪ I ′) such that each of these paths
joins a vertex in

⋃
U∈N2

X
U ′ to a vertex in

⋃
V ∈N2

Y
V ′ but has no other vertex in

a cluster belonging to N2
X ∪ N2

Y .
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Next we will choose a small set P⋄ ⊆ P which will be set aside to connect
pairs x ∈ SX , y ∈ SY of branch vertices (with xy /∈ G0) for which we fail to
find a path xPy with P ∈ P. Each such pair x, y will be connected by a path
of the form xu1 . . . u4Pv4 . . . v1y with P ∈ P⋄. For all pairs of clusters U ∈ N2

X ,
V ∈ N2

Y , the paths in P⋄ will have the property that a significant proportion of
paths in P joins U to V whenever a significant proportion of paths in P⋄ joins
U to V (see (10.17)). Roughly speaking, this property will enable us to deduce
that every reasonably large set Px ⊆ P⋄ of paths will have the property that
the endvertices of these paths are distributed over a large number of clusters
in N2

Y . This in turn will enable us to find the path v1 . . . v4 joining y to some
P ∈ Px. (The paths Px will be defined in such a way that we can join their
endvertices in the clusters belonging to N2

X to x via a suitable path u1 . . . u4.)
For each cluster U ∈ N2

X , let P(U) denote the set of all the paths in P that
start in U (and thus in U ′ \ I ′). Put

η :=
1

80N(ε)
.

Let P ′(U) denote the set of all those paths in P(U) which end in a cluster
V ∈ N2

Y that meets (and thus contains the endvertices of) at least ηL paths in
P(U). Note that

|P(U) \ P ′(U)| ≤ ηL|N2
Y | ≤ ηLk ≤ L/80. (10.16)

Thus Proposition 10.10 implies that for all U ∈ N2
X with |P(U)| ≥ L/40 we can

choose a set P⋄(U) consisting of ξ|P ′(U)| paths in P ′(U) such that each cluster
V ∈ N2

Y satisfies

no. of paths in P ′(U) ending in V

|P ′(U)| ≥ no. of paths in P⋄(U) ending in V

2ξ|P ′(U)| .

(10.17)

(To see this, apply Proposition 10.10 with parameters ε := η, T := P ′(U), q :=
ξ|P ′(U)| and let the set A consist of all the sets {P ∈ P ′(U) |P ends in V } for
all those V ∈ N2

Y which meet more than ηL paths in P(U).) If |P(U)| < L/40,
set P⋄(U) := ∅. Let DX(U) ⊆ U be the subset of all endvertices of paths in
P⋄(U). Set DX :=

⋃
U∈N2

X
DX(U), P⋄ :=

⋃
U∈N2

X
P⋄(U) and P∗ := P \ P⋄.

Thus

|P∗| ≥ κ′ − ξn
(10.8),(10.10)

≥ (1 − 2ε∗)κ + τn. (10.18)

Since µ > 9/32 we have

|P| = (1 − ε∗)κ
(10.10)

≥ ckL

5

(10.11)

≥ δL

20
≥ |N2

X |L
20

.

So on average at least 1/20 of the vertices in a cluster U ∈ N2
X are endvertices

of paths in P. Hence the proportion of clusters U ∈ N2
X which satisfy |P(U)| ≥

L/40 is at least 1/40, i.e. for at least |N2
X |/40 clusters U ∈ N2

X the set P⋄(U)
is non-empty and thus has size ξ|P ′(U)|. Together with (iv) this implies the
following.
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(v) For each vertex x ∈ SX there is a set Ux of at least |N2
X |/50 clusters

U ∈ N2
X such that for each U ∈ Ux the vertex x has at least d|CX(U)|/4

neighbours in the set CX(U) and |DX(U)| = |P⋄(U)| = ξ|P ′(U)| ≥ ξL/80.

(The last inequality follows from (10.16).)
We will now choose the subdivided edges for all pairs x, y of branch vertices

of the form x ∈ SX , y ∈ SY . Clearly, we only have to consider pairs for which
xy /∈ G0. For each such pair x, y in turn we first try to select a path P ∈ P∗

whose first vertex is adjacent to x, whose last vertex is adjacent to y and such
that P was not selected for a previous pair of branch vertices (if such a path
P exists). We call a vertex x ∈ SX useless if after we have considered all such
pairs of branch vertices there are still at least αsY vertices in SY which are not
yet joined to x (neither by an edge xy ∈ G0 nor by a path of the form xPy
where P ∈ P∗). The following claim implies that we were able to join most of
these pairs of branch vertices in this way.

Claim B. At most αsX vertices in SX are useless.

Suppose not and let S′
X be an αsX-element subset of SX consisting of useless

vertices. Let P ′ be the set of all those paths in P∗ which we have not used to
connect pairs x, y of branch vertices. Let Z ′ be the set of all those endvertices of
paths in P ′ that lie in some cluster belonging to N2

X . Recall that d(SX , SY )G′ ≥
µ − 106ε. Together with inequalities (10.8), (10.12) and (10.18) this implies
that |Z ′| = |P ′| ≥ τn > 2βn. But since SX was (αsX , β)-dense for each cluster
belonging to N2

X , it follows that more than half of the vertices in Z ′ have at
least β|S′

X | neighbours in S′
X . Thus there is a vertex x ∈ S′

X with more than
β|Z ′|/2 > β2n neighbours in Z ′. Let P ′′ be the set of all those paths in P ′

that start in a neighbour of x in Z ′. Thus |P ′′| > β2n. Hence there must be a
cluster V ∈ N2

Y which contains endvertices of more than β2L paths in P ′′. But
since SY was (αsY , β2)-attached to each cluster belonging to N2

Y and thus also
to V , there must be a path P ∈ P ′′ whose endvertex in V is adjacent to one
of the at least αsY vertices in SY that are not yet joined to x. Let y ∈ SY be
such a vertex. Then when considering the pair x, y we could have chosen P in
order to connect it, a contradiction. This proves the claim.

Thus we are left with at most 2αsXsY ≤ αs2 pairs x ∈ SX , y ∈ SY of branch
vertices for which we have not yet found a subdivided edge. As indicated before,
for each such left-over pair x, y in turn, we will now select a subdivided edge
Pxy which is of the form xu1 . . . u4Pv4 . . . v1y where P is some path in P⋄. If
U denotes the cluster in N2

X which contains an endvertex of P , then u1 will be
a neighbour of x in CX(U), both u2 and u4 will lie in AX(U) and u3 will lie in
BX(U). The path v1 . . . v4 will satisfy analogous properties.

We have to prove that for each left-over pair x, y in turn we can find such a
path Pxy so that all these paths are internally disjoint. So suppose that we are
about to consider the left-over pair x, y. Note that

∑

U∈Ux

|CX(U)| = ξ|Ux|L
(v)

≥ ξ|N2
X |L

50

(10.8)
> 2 · 104αs2,

where Ux was defined in (v). Thus, for at least half of the clusters U ∈ Ux at
most |CX(U)|/104 of the vertices in CX(U) have been used to join up previous
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(left-over) pairs. (Recall that each CX(U) is disjoint from all the paths in
P ⊇ P⋄.) Let U ′

x denote the set of all these clusters. So |U ′
x| ≥ |N2

X |/100.
Consider the set Px of all those paths in P⋄ which we have not used for previous
left-over pairs and whose first point lies in some set DX(U) with U ∈ U ′

x, i.e. Px

is obtained from
⋃

U∈U ′
x
P⋄(U) by deleting all the paths which we used before.

Note that for each U ∈ U ′
x the number of vertices in DX(U) which we used to

join previous left-over pairs is precisely the number of vertices in CX(U) which
we used to join previous left-over pairs. Thus for each U ∈ U ′

x this number is
at most |CX(U)|/104. Hence

|Px| ≥
∑

U∈U ′
x

(|P⋄(U)| − |CX(U)|/104)
(v)

≥ |U ′
x|
(

ξL

80
− ξL

104

)
≥ |N2

X |ξL
104

. (10.19)

We will now show that there exists a cluster V ∈ N2
Y which contains an endver-

tex of some path in Px and for which the set CY (V ) ⊆ V contains a neighbour
of y which is still unused. This neighbour will play the role of v1. Let Vx

denote the subset of all those clusters in N2
Y that contain an endvertex of

some path in Px. Then (10.17) and (10.19) together imply that our original
set of paths P contains at least |Px|/2ξ ≥ |N2

X |L/(2 · 104) paths which end
in a cluster belonging to Vx (and start in a cluster belonging to U ′

x). Thus
|Vx| ≥ |N2

X |/(2 · 104) = |N2
Y |/(2 · 104). But now the analogue of condition (iv)

for vertices in SY shows that at least |N2
Y |(1/(2 · 104) − 1/105) ≥ |N2

Y |/105

clusters V ∈ N2
Y contain an endvertex of some path in Px and are such that y

has at least d|CY (V )|/4 = ξdL/4 neighbours in CY (V ). But since

|N2
Y |

105
· ξdL

4

(10.8),(10.11)

≥ ξcdkL

106µ
≥ ξdcn

107

(10.8)
> αs2,

there must be one such cluster V for which at least one of the neighbours of y
in CY (V ) has not been used to connect previous left-over pairs. Let v1 be such
an unused neighbour, let P be any path in Px that ends in V and let v5 ∈ V
denote the endvertex of P . It remains to connect v1 to v5 via AY (V ) and
BY (V ). Note that at most 2|CY (V )| = 2ξL ≤ τdL/8 = d|AY (V )|/8 vertices
in AY (V ) have been used for previous left-over pairs. Thus, since v1, v5 ∈ V ′

and hence they have at least d|AY (V )|/4 neighbours in AY (V ), both v1 and v5

have at least d|AY (V )|/8 > εL unused neighbours in AY (V ). Since also a large
proportion of the vertices in BY (V ) is still unused, we can use the fact that the
graph (V,W (V ))G′ ⊇ (BY (V ), AY (V ))G′ is ε-regular of density at least d to
find a neighbour v2 of v1 in AY (V ), a neighbour v4 of v5 in AY (V ) and a vertex
v3 ∈ BY (V ) adjacent to both v2 and v4 such that all these 3 vertices are still
unused. Thus we have found a path yv1 . . . v5 connecting y to the endvertex
of P in V . Similarly we can find a path xu1 . . . u5 connecting x to the other
endvertex u5 of P . This shows that we may join all the left-over pairs x, y of
branch vertices by a path of the form u1 . . . u4Pv4 . . . v1.

Having joined all the pairs x, y of branch vertices with x ∈ SX and y ∈ SY we
now have to join the all the branch vertices in SX to each other and also all the
branch vertices in SY . We can do this in a similar way as in Case 1. Indeed,
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inequality (10.13) shows that the clusters in N2
X contain at least

(sX
2

)
+ τn

vertices which we have not used before to connect a pair x, y of branch vertices
with x ∈ SX and y ∈ SY . Thus exactly as in Case 1 one can show that all but
at most 2αs2

X pairs x1, x2 ∈ SX can be joined by a path of length two whose
midpoint lies in a cluster in N2

X . Again, to join the remaining pairs we use

the clusters in N1
X and in Ñ1

X . The pairs y1, y2 ∈ SY are then dealt with in a
similar way. �

Proposition 10.17 For all 9/32 ≤ µ ≤ 1, there exists γ with 1/2 ≤ γ ≤ 9/10
which satisfies inequalities (10.12) and (10.13).

As one might expect, the only case for which (10.12) and (10.13) are sharp
(if we ignore the error terms) is when the maximum density µ of the edges in the
reduced graph is 3/4. This would be the case for the random graph considered
in the proof of Proposition 10.12.

Proof of Proposition 10.17. Note that (10.15) implies that

|N2
X |L − τn ≥ κ

µ
(1 − ε∗). (10.20)

We will now distinguish two cases.

Case 1. µ ≥ 7/16.

In this case we simply set γ := 1/2. Then (10.12) holds since

(1 − µ + 106ε)γs(1 − γ)s ≤
(

9

16
+ 106ε

)
(1 − λ)

16κ

9

≤ κ +
106 · 16εκ

9
− λκ

(10.7),(10.8)

≤ (1 − 2ε∗)κ.

Let us now show that (10.13) holds as well. If we multiply the left hand side of
(10.13) with µ we obtain

s(s − 2)µ

8
+µ(1−µ+106ε)

s2

4
+10µαs2 ≤ 8

9
(1−λ)κ(µ(3+2 ·106ε+80α)−2µ2).

Together with (10.20) this implies that in order to show that (10.13) holds,
it suffices to check that µa − 2µ2 ≤ b where a := 3 + 2 · 106ε + 80α and
b := 9(1−ε∗)

8(1−λ) . But µa − 2µ2 is maximized if µ = a/4 and thus µa − 2µ2 ≤ b

always holds since (10.7) and (10.8) imply that a2/8 < b.

Case 2. 9/32 < µ < 7/16.

In this case we put

γ :=
3√
32

√
1

µ
− 1.

Since 9/32 < µ < 7/16 it follows that 6/10 < γ < 9/10. We will first prove
that γ satisfies the following ‘pure versions’ of inequalities (10.12) and (10.13):

(1 − µ)(γ − γ2)
64κ

9
≤ κ, (10.21)
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32γ2κ

9
+ κ ≤ κ

µ
. (10.22)

Note that (10.22) is equivalent to

µ ≤ 1
32
9 γ2 + 1

. (10.23)

But our definition of γ implies that (10.23) holds with equality. Therefore, to
show that γ also satisfies (10.21), we may substitute (10.23) as an equality in
(10.21) and thus it suffices to check that

32
9 γ2

32
9 γ2 + 1

(γ − γ2)
64

9
≤ 1,

i.e.

f(γ) := γ4 − γ3 +
9

64
γ2 +

34

211
≥ 0.

To check this, we consider the roots of the derivative of f(γ). But the only root
of f ′(γ) = 4γ3 − 3γ2 + 9γ/32 between 1/2 and 1 is 3/8 +

√
9/128 =: γ0. Since

f(γ0) > 0, f(1/2) > 0 and f(1) > 0, this shows that our γ satisfies (10.21).
It remains to show that γ also satisfies (10.12) and (10.13). But if we add

2ε∗κ to the left hand side of (10.12) we obtain

(1 − µ + 106ε)(γ − γ2)(1 − λ)
64κ

9
+ 2ε∗κ

≤ (1 − µ)(γ − γ2)
64κ

9
− λ(1 − µ)(γ − γ2)

64κ

9
+ 106ε(γ − γ2)

64κ

9
+ 2ε∗κ.

Since γ satisfies (10.21), the first summand is at most κ. Moreover, 1−µ ≥ 9/16
and γ − γ2 ≥ 0.9 − 0.92. Together with (10.7) and (10.8) this shows that the
remaining sum is less than 0. Thus (10.12) holds. This implies that the left
hand side of (10.13) is at most

(1 − λ)
32γ2κ

9
+ κ − 2ε∗κ +

640ακ

9

(10.8),(10.22)

≤ κ

µ

(
1 − 32λγ2µ

9

)

(10.7)

≤ κ

µ
(1 − ε∗)

(10.20)

≤ |N2
X |L − τn,

as desired. �

As the proof of Theorem 10.2 is similar to that of Theorem 10.15, we only
sketch the argument.

Proof of Theorem 10.2 (Sketch). By Proposition 10.12, it suffices to prove
the upper bound. Thus, given 0 < λ < 1, we have to show that there exists
κ0 = κ0(λ) such that for every natural number κ ≥ κ0 each κ-connected graph
G0 contains a subdivision of a clique of order at least 2

√
(1 − λ)κ =: s. We

start exactly as in the proof of Theorem 10.15. Since we are now only seeking
a subdivision of a smaller clique, the calculation in Claim A shows that we can
proceed as in Case 1 as long as µ ≤ 1/2. Thus we may assume that µ > 1/2.
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If the common neighbourhood of X and Y in R has size at most τk, we can
discard it and proceed precisely as in the proof of Theorem 10.15 (Case 2).
Otherwise we choose a τk-element set N1

XY of common neighbours of X and Y

and a τk-element set Ñ1
XY such that these sets are disjoint from each other and

from N1
X , Ñ1

X , N2
X , N1

Y , Ñ1
Y , N2

Y and such that R contains a perfect matching

between N1
XY and Ñ1

XY . We set γ := 1/2 and choose the set SX ∪SY of branch
vertices as in Case 2 of the proof of Theorem 10.15. (Note that when µ ≥ 1/2
the proof of Proposition 10.17 immediately shows that γ = 1/2 also works in
the proof of Theorem 10.15.) The argument implies that we may additionally
assume that each branch vertex has at least d|U |/2 neighbours in at least 2/3
of the clusters U ∈ N1

XY . Moreover, we may clearly assume that T := N2
X ∩N2

Y

is non-empty.
Next suppose that |T |L ≤ (1 − µ + 106ε)s2/4. Thus the number of vertices

lying in a cluster belonging to T is not larger than the required number of
subdivided edges joining branch vertices in SX to branch vertices in SY . We
now join almost |T |L pairs x ∈ SX , y ∈ SY of branch vertices (with xy /∈ G0)
by a path of length two whose midpoint lies in a cluster belonging to T . (The
existence of these paths follows similarly as in the proof of Claim A.) The set P
of paths will now have size only (1 − ε∗)κ− |T |L and the paths in P will avoid
all vertices lying in clusters belonging to T . As before (see Claim B), we can
join most of the remaining pairs x ∈ SX , y ∈ SY of branch vertices by a path
of the form xPy with P ∈ P. As in the final part of the proof of Case 1, the
sets N1

XY and Ñ1
XY can then be used to join the small proportion of left-over

pairs x ∈ SX , y ∈ SY by paths of length four. Since in total we have not used
more vertices in N2

X to join up the pairs x ∈ SX , y ∈ SY than in the proof of
Case 2 in Theorem 10.15, all the pairs x, x′ ∈ SX can be joined as before (and
the same is true for the pairs y, y′ ∈ SY ).

Finally, suppose that |T |L > (1 − µ + 106ε)s2/4. In this case we again
distribute the branch vertices evenly and proceed similarly as in the previous
case except that this time we can find almost all of the subdivided edges joining
pairs x ∈ SX , y ∈ SY (with xy /∈ G0) as paths of length two whose midpoint
lies in a cluster belonging to T . Thus we do not have to use the connectivity
of G0 at all. Moreover, this time the number of all those vertices in clusters
belonging to N2

X which we have not used up so far is at least

|N2
X |L − (1 − µ + 106ε)

s2

4

(10.15)

≥ (1 − ε∗)
κ

µ
+ 2τn − (1 − µ + 106ε)

s2

4

≥ s2

4

(
1

µ
− 1 + µ

)
+ 2τn ≥ 2

(
s/2

2

)
+ 2τn.

Thus there is still enough room to join up the pairs of the form x, x′ ∈ SX and
y, y′ ∈ SY as in the previous case. �

Roughly speaking, our aim in the proof of Theorem 10.3 is to find an edge
XY in the reduced graph R whose density is large and which has the property
that R contains many disjoint paths joining the neighbourhood of X to the
neighbourhood of Y . Once we have found such an edge, we can proceed as in
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the proof of Theorem 10.2 since by Lemma 10.7 these paths correspond to many
disjoint paths in the graph G0 we started with. (Thus as before, the branch
vertices are distributed within X and Y .) The following result of Mader [78]
(see also [12]) implies that to find such an edge, it suffices to find a subgraph of
R which has high minimum degree and in which every edge has large density.

Theorem 10.18 In every graph G there exists an edge xy such that G contains
δ(G) internally disjoint paths between x and y.

Proof of Theorem 10.3 (Sketch). Let ̺ := 1.15 and σ := 9/10. Again,
by Proposition 10.12, it suffices to show that for each 0 < λ < 1 there exists
d∗ = d∗(λ) such that for every d0 ≥ d∗ each graph G0 of average degree d0

contains a subdivision of a clique of order at least
√

2̺(1 − λ)d0 =: s. We start
by choosing constants as in (10.7) and (10.8) in the proof of Theorem 10.15.
Similarly as there, we may assume that G0 contains a subgraph G whose average
degree is cn for some constant c ≥ c0(ε∗) and such that d0/(1 + ε∗) ≤ cn ≤ d0.
(As before, n denotes the order of G.) By replacing G with a subgraph if
necessary, we may assume that G contains no subgraph whose average degree
is larger than cn and thus δ(G) ≥ cn/2. Next we apply the Regularity lemma
to G. Proposition 10.4 implies that we obtain a reduced graph R which satisfies

δ(R) ≥
( c

2
− 2d

)
k.

Put c′ := c− 2d. Since we are now looking for a subdivision of a smaller clique,
the calculation in Claim A in the proof of Theorem 10.15 shows that we can
proceed as in Case 1 as long as ∆(R) ≥ ̺c′k. (Indeed, take for X any vertex
of maximum degree in R.) Thus we may assume that ∆(R) ≤ ̺c′k.

Given a subgraph R′ of R and a vertex X ∈ V (R′), we call

wR′(X) :=
∑

Y ∈NR′(X)

eG′(X,Y )

L2

the weight of X in R′. Note that dR′(X) ≥ wR′(X). Moreover,

∑

X∈V (R)

wR(X)L2 = 2e(G′ − V0) ≥ (c − (d + ε))n2 − εn2 ≥ c′(kL)2.

Thus ∑
X∈V (R) wR(X)

k
≥ c′k, (10.24)

i.e. the average weight of the vertices in R is at least c′k. Let A be the set of
all those vertices in R whose weight is less than σc′k. Put B := V (R) \ A and
b := |B|. Let wB be such that the average weight (in R) of the vertices in B is
wBc′k. Then (10.24) implies that (k − b)σc′k + bwBc′k ≥ c′k2 and hence

wB ≥ k

b
(1 − σ) + σ. (10.25)
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Let R1 be the graph obtained from R by deleting all those edges which have
both endvertices in A. Call an edge of R1 light if its density is at most 1/2.
For each b ∈ B, let νb be defined in such a way that νbc

′k is the number of light
edges of R1 incident to b. Since ∆(R) ≤ ̺c′k, we have

∑

b∈B

(νbc
′k/2 + (̺ − νb)c

′k) ≥
∑

b∈B

wR1(b) =
∑

b∈B

wR(b) = wBc′kb.

Thus, setting
ν := 2(̺ − wB),

it follows that

no. of light edges in R1 ≤
∑

b∈B

νbc
′k ≤ νc′kb. (10.26)

Let R2 be the graph obtained from R1 by deleting all light edges. Then

d(R2)
(10.26)

≥ d(R1) − 2νc′b ≥ b · wBc′k
k

− 2νc′b = bc′(5wB − 4̺)

(10.25)

≥ c′k

(
5(1 − σ) +

b

k
[5σ − 4̺]

)

≥ c′k(5 − 4̺) = 2c′k/5 =: 2δ.

(To see the last line, note that the square bracket is negative.) Finally, let R3

be a subgraph of R2 with minimum degree at least δ and set κR := δ−1. Apply
Theorem 10.18 to find an edge XY ∈ R3 such that R3 contains a set PR of
κR disjoint paths between NR(X) \ {Y } and NR(Y ) \ {X} which have no inner
vertices in NR(X) ∪ NR(Y ). We choose PR in such a way that as many paths
as possible are trivial. Since all edges in E(R3) ∋ XY have at least one of
their endvertices in B, we may assume that X ∈ B. Moreover, since no edge of
R2 ⊇ R3 is light, the density of XY is at least 1/2.

Similarly as in the proof of Theorem 10.15 (Case 2), choose disjoint τk-
element sets N1

X , Ñ1
X , N1

Y and Ñ1
Y . If |NR(X) ∩ NR(Y )| ≥ κR, we also choose

τk-element sets N1
XY and Ñ1

XY which are disjoint from each other and from the
above four sets and such that R contains a perfect matching between N1

XY and

Ñ1
XY . Next choose a set N2

X of neighbours of X in R−Y which is disjoint from
the above sets and has size (σc′ − 10τ)k. (This is possible since X ∈ B and so
dR(X) ≥ wR(X) ≥ σc′k.) Also, choose a set N2

Y of ( c
2 − 3d)k neighbours of Y

which is disjoint from all the above sets except possibly from N2
X . Moreover,

we choose N2
X and N2

Y so that PR contains at least κR − 6τk paths which join

N2
X to N2

Y and avoid each of N1
X , Ñ1

X , N1
Y , Ñ1

Y , N1
XY and Ñ1

XY . Let P ′
R ⊆ PR

denote the set of all these paths.
We now proceed as in the proof of Theorem 10.2 except for two changes.

Firstly, the set P of paths is now obtained by an application of Lemma 10.7
to all the paths in P ′

R. Thus |P| ≥ (κR − 7τk)L. Secondly, we have to check
that we can distribute the branch vertices of our subdivided Ks among X and
Y such that N2

X , N2
Y and P are large enough to accommodate (almost) all the

subdivided edges. For the latter, we distinguish two cases according to the size
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of T := N2
X ∩N2

Y . Again, γ will denote the proportion of branch vertices which
we choose in X.

Case 1. |T | ≤ κR

In this case, we join all pairs x, y of branch vertices with x ∈ X, y ∈ Y and
xy /∈ G0 by paths of the form xPy with P ∈ P. (Note that if N2

X ∩ N2
Y 6= ∅,

some or even all of these paths may be trivial.) This can be done as in the
proof of Theorem 10.15 (Case 2) if the number of all these pairs x, y is a bit
smaller than |P|, i.e. if

γ(1 − γ)s2(1/2 + 106ε) ≤ (κR − 20τk)L. (10.27)

Almost all of the pairs x, x′ of branch vertices with x, x′ ∈ X will be joined by
a path of length two whose midpoint lies in a cluster belonging to N2

X \N2
Y and

was not used before to join some branch vertex in X to some branch vertex in
Y . For this, we need that the number of all those unused vertices is a bit larger
than the number of all the pairs x, x′, i.e. that

(
γs

2

)
+ κRL ≤ (σc′ − 20τ)kL. (10.28)

The next inequality ensures that almost all pairs of branch vertices in Y can
be joined in a similar way.

(
(1 − γ)s

2

)
+ κRL ≤

( c

2
− 5d

)
kL (10.29)

As before, the left-over pairs x, x′ ∈ X and y, y′ ∈ Y can be joined by using the
sets N1

X , Ñ1
X and N1

Y , Ñ1
Y respectively. It is easy to check that (10.27), (10.28)

and (10.29) hold if we set γ := 0.78.

Case 2. |T | > κR.

In this case, we join almost all of the pairs x, y of branch vertices with x ∈ X,
y ∈ Y and xy /∈ G0 by paths of length two whose midpoints lie in clusters
belonging to T . (The left-over such pairs are then joined by paths of length
four using the sets N1

XY and Ñ1
XY as in the proof of Theorem 10.2.) Thus, we

need that the number of all these pairs x, y is at most (|T | − τk)L. Defining t
by |T | = tc′k, this means that

γ(1 − γ)s2(1/2 + 106ε) ≤ (tc′ − τ)kL. (10.30)

Moreover, we will join almost all of the pairs x, x′ of branch vertices with
x, x′ ∈ X by paths of length two whose midpoints lie in a cluster belonging to
N2

X \ N2
Y . This will be possible if

(
γs

2

)
≤ (σc′ − tc′ − 20τ)kL. (10.31)

Finally, we join almost all of the pairs y, y′ of branch vertices with y, y′ ∈ Y by
paths of length two whose midpoints lie in a cluster belonging to N2

Y but have
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not been used before to join some branch vertex in X to some branch vertex in
Y . Thus we need that

(
(1 − γ)s

2

)
+ γ(1 − γ)s2(1/2 + 106ε) ≤

( c

2
− 5d

)
kL. (10.32)

As before, all the left-over pairs x, x′ ∈ X and y, y′ ∈ Y of branch vertices will
be joined by using the sets N1

X , Ñ1
X and N1

Y , Ñ1
Y . It can be easily checked that

inequalities (10.30), (10.31) and (10.32) hold if we put γ :=
√

(σ − t)/̺. �

10.5 Concluding remarks

In this section, we briefly discuss the difficulties which arise if one tries to
extend Theorem 10.15 to arbitrary graphs by removing the condition of H-
freeness. The proof of Theorem 10.15 still works if the intersection of the
neighbourhoods NR(X) and NR(Y ) of X and Y in R is non-empty but not too
large (here XY is an edge in R of maximum density). Indeed, as in the proof
of Theorem 10.2 we can use this intersection to join a corresponding number of
pairs x ∈ X, y ∈ Y of branch vertices (with xy /∈ G0) by paths of length two
whose midpoint belongs to a cluster in NR(X) ∩ NR(Y ). The connectivity of
G0 is then only used to join the remaining such pairs.

However, the argument breaks down if NR(X) ∪ NR(Y ) is too small, i.e. if
the number of vertices belonging to a cluster in NR(X)∪NR(Y ) is smaller than
the required number of subdivided edges. In this case one is forced to distribute
the branch vertices over more than two clusters. In fact, the following example
shows that up to 9 clusters may be necessary in some cases. Suppose that G has
a reduced graph R which consists of a large complete graph and whose edges
all have density about 9/16. This will be the case (with high probability) if
each subgraph of G corresponding to an edge of R is a bipartite random graph
with edge probability 9/16 and G is empty otherwise. The connectivity of this

graph is about 9n/16 where n := |G|. Set s := 8
3

√
9n
16 . Then, if we distribute

the branch vertices of a potential subdivision of Ks over t clusters, the number
of subdivided edges one needs to find is at least about

t

(
s/t

2

)
+

7

16

(s

t

)2
(

t

2

)

which is significantly larger than n unless t ≥ 9. In this example, it is of course
nevertheless easy to find a subdivision of Ks in G since the intersections of the
the neighbourhoods of the clusters in R are identical (and so one can proceed as
in the final case of the proof of Theorem 10.2). However, the example indicates
that for arbitrary graphs a strategy similar to ours seems to lead to an enormous
number of cases which need to be considered, as the case distinctions would not
only depend on the sizes of the pairwise intersections but more generally on
the sizes of the common neighbourhoods of each subset of the set of all those
clusters which contain the branch vertices.
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Chapter 11

Packings in dense regular

graphs

11.1 Introduction, results and open problems

Given two graphs H and G, an H-packing in G is a collection of vertex-disjoint
copies of H in G. It is perfect if all of the vertices of G are covered. Improving
earlier bounds of Alon and Yuster [8], Komlós, Sárközy and Szemerédi [55]
proved that given a graph H of chromatic number χ, there exists a constant
c such that every sufficiently large graph G whose order n is divisible by |H|
and whose minimum degree is at least (1 − 1/χ)n + c has a perfect H-packing.
This bound is best possible up to the value of c. However, Komlós [49] (see
Theorem 12.10) showed that if we only want an H-packing covering almost
all of the vertices of G, then in many cases a significantly smaller minimum
degree suffices: given α > 0 and a graph H of chromatic number χ, every
sufficiently large graph G of minimum degree at least (1 − 1/χ′)n has an H-
packing covering all but at most αn vertices. Here χ′ is the critical chromatic
number of H, which is defined as (χ − 1)|H|/(|H| − σ), where σ denotes the
minimum size of the smallest colour class in an optimal colouring of H. It is
easy to see that χ − 1 < χ′ ≤ χ and that χ′ is closer to χ − 1 if there is an
optimal colouring where one of the colours is used comparatively rarely. Again,
the bound on the minimum degree is best possible (but Komlós conjectured
that the error term αn can be reduced to a constant depending only on H).

Here we show that if we restrict our attention to packings of bipartite graphs
H in (almost) regular graphs G then any linear bound on the minimum degree
suffices. Given a ≥ b, we say that a graph G is (a ± b)-regular if its minimum
degree is at least a − b and its maximum degree is at most a + b.

Theorem 11.1 Given a bipartite graph H and constants 0 < c,α ≤ 1, there
exist positive numbers γ = γ(c, α) and n0 = n0(H, c, α) such that every (cn ±
γn)-regular graph G of order n ≥ n0 has an H-packing which covers all but at
most αn vertices of G.

The complete bipartite graph G = Ka,2a (and H := C4 say) shows that
the restriction to almost regular graphs G is necessary. Also the restriction to
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bipartite graphs H is obviously necessary if c ≤ 1/2. Our next result shows
that if H has unequal vertex classes, then we can obtain an H-packing covering
all but a constant number of vertices.

Theorem 11.2 Given a bipartite graph H whose vertex classes have different
size and a constant 0 < c ≤ 1, there exist γ = γ(H, c) > 0 and C = C(H, c)
such that every (cn ± γn)-regular graph G has an H-packing which covers all
but at most C vertices of G.

As the complete bipartite graph G = Kk,ℓ (with k − ℓ = γn say) shows, we
cannot hope for such a result if H has equal vertex classes. However, it could
help to restrict one’s attention to regular graphs G:

Question A Is it true that for every c > 0 and every bipartite graph H there
is a constant C = C(c,H) such that every cn-regular graph G has an H-packing
which covers all but at most C vertices of G?

It is easy to see that in both Question A and Theorem 11.2 (even if we only
consider regular graphs there too) the bound on the number of uncovered ver-
tices must depend on H and c (consider the disjoint union Gr of r complete
graphs whose order is k|H| − 1 for some positive integer k). Thus in contrast
to the result of Komlós, Sárközy and Szemerédi mentioned above one cannot
hope for a perfect packing when |H| divides n. Moreover, the graphs Gr (with
r → ∞) show that in both Theorem 11.2 and Question A the requirement that
the vertex degrees are linear is necessary. On the other hand, it may be true
that the bound on the minimum degree in Theorem 11.1 can be improved. Since
our proof of this theorem relies on Szemerédi’s Regularity lemma, it seems that
this would require a rather different approach from ours though. Note that if
H contains a cycle, the bound on the minimum degree of G must of course
depend on n. However, in the special case when H is a tree, it can be chosen to
be independent of n: Kelmans, Mubayi and Sudakov [44] proved that for every
α > 0 and every tree T there exists a constant d0 = d0(α, T ) such that for all
d ≥ d0 every d-regular graph G has a T -packing which covers all but at most
αn vertices of G. Triangle packings in sparse pseudo-random regular graphs
were investigated by Krivelevich, Sudakov and Szabó [61].

Theorem 11.2 is related to a problem of Verstraëte [3, Conj. 3.4] (see
also [106]) on packings of subdivisions in regular graphs. Given graphs H
and G, a TH-packing in G is a collection of vertex-disjoint subdivisions of H
in G (which are not required to be isomorphic).

Conjecture B (Verstraëte) For every graph H and every positive ε, there
exists an integer r0 = r0(H, ε) such that for all r ≥ r0 every r-regular graph G
contains a TH-packing which covers all but at most ε|G| vertices of G.

By the result in [44] Conjecture B holds for trees. Alon [3] proved it for cy-
cles. Our results provide further support for this conjecture. In particular,
Theorem 11.2 implies the following.

Corollary 11.3 Given a graph H without isolated vertices which is not a union
of cycles and a constant 0 < c ≤ 1, there exist γ = γ(H, c) > 0 and C = C(H, c)
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such that every (cn ± γn)-regular graph G has a TH-packing which covers all
but at most C vertices of G.

Proof. Let H ′ be the graph obtained from H by subdividing each edge of
H exactly once. Thus H ′ is a bipartite graph whose vertex classes have sizes
e(H) and |H|. Hence the corollary immediately follows from Theorem 11.2 if
e(H) 6= |H|. So we may assume that e(H) = |H|. Since H is not a union of
cycles, this implies that H (and thus also H ′) must contain at least one vertex
of degree 1. But the graph H ′′ obtained from H ′ by deleting a vertex of degree 1
is still a subdivision of H. Since the vertex classes of H ′′ have different size, we
are done by Theorem 11.2 again. �

Complete bipartite graphs Kk,ℓ with k − ℓ = γn show that Corollary 11.3 is
not true if H is a union of cycles. If H = K4 or H = K5, then we can even
guarantee a perfect packing:

Theorem 11.4 For all 0 < c ≤ 1 there exist positive numbers γ = γ(c) and
n0 = n0(c) such that every (cn ± γn)-regular graph G of order n ≥ n0 has a
perfect TKr-packing for r = 4 and r = 5.

It turns out that for r ≥ 6 the vertex degrees in Corollary 11.3 have to be
linear and that Theorem 11.4 does not extend to r ≥ 6 (Proposition 11.10).
However, as in Question A, it may help to consider only regular graphs G:

Question C Given r ≥ 6 and 0 < c ≤ 1, does every cn-regular graph of
sufficiently large order n have a perfect TKr-packing?

As for Theorem 11.1, it is possible that in both Theorem 11.4 and Question C
the condition on the minimum degree can be relaxed. On the other hand, at
the end of Section 11.5 we give an example which shows that for all r ≥ 3 we
need a minimum degree of at least

√
n/2, even if G is regular.

A result of Jørgensen and Pyber [42] implies that Conjecture B holds if we
do not require the subdivisions of H to be disjoint: Let t(H) be so that every
graph of average degree at least t(H) contains a subdivision of H. Jørgensen
and Pyber proved that the edges of every graph G can be covered by at most
104 t(H)|G| subdivisions of H and edges. Hence if the average degree of G is
large compared with t(H), then almost all of its edges must lie in a subdivision
of H (and thus, if G is regular, also almost all of its vertices). In the case when
H = Kr, Lemma 2.3 of [42] implies that if G is 2-connected and has average
degree at least t(Kr+1), then even all edges (and thus also all vertices) of G lie
in a subdivided Kr. Using this, it is not hard to show that for all ε > 0 there
exists an r0 = r0(ε) such that for all r ≥ r0 every graph G of minimum degree
at least (1 + ε)t(Kr+1) has at most ε|G| vertices and at most εe(G) edges that
do not lie in a subdivision of Kr. (Indeed, consider the block tree T of G. All
vertices and edges which lie in blocks of average degree ≥ t(Kr+1) are contained
in a subdivided Kr. For example, this is true for all blocks corresponding to
leaves of T . But each block B with average degree < t(Kr+1) < δ(G) contains
many vertices b which have at least one neighbour in another block. Since for
different such b these neighbours must belong to distinct blocks, this implies

127



that each such block B has many neighbours in T . The latter can be used to
show that the blocks of average degree < t(Kr+1) contain only a small fraction
of the vertices and edges of G.) In other words, to cover almost all of the
vertices of G with (not necessarily disjoint) subdivisions of Kr we only need a
minimum degree which is slightly larger than the average degree required for
the mere existence of a subdivided Kr+1.

This chapter is organized as follows. In the next section we introduce some
notation and the tools (bipartite Regularity lemma and Blow-up lemma) which
we will need later on. In Section 11.3 we prove Theorem 11.1. In Section 11.4
we extend the argument to obtain Theorem 11.2. In the final section we then
derive Theorem 11.4 from Theorem 11.1. Since our proofs of Theorems 11.1–
11.4 can be derandomized by standard techniques (see e.g. [7]) and since both
the Regularity lemma and the Blow-up lemma have algorithmic proofs (see [4]
and [52]), it is easy to verify that the packings guaranteed by Theorems 11.1–
11.4 can be found in polynomial time.

11.2 Notation and tools

We will use the following well-known bound on the number of edges in a bi-
partite Ks,t-free graph (it is a consequence of Lemma 4.6, see e.g. [12, Ch. VI,
Thm. 2.2] for a proof).

Theorem 11.5 For all s ≤ t there exists a constant cs,t such that every bipar-
tite graph G = (A,B) with at least cs,t|G|2−1/s edges contains a copy of Ks,t

with s vertices in A and t vertices in B.

Our proof of Theorem 11.1 is based on the Regularity lemma and that of
Theorem 11.2 also employs the Blow-up lemma. We will use the following form
of the Regularity lemma for bipartite graphs. The fact that the regularity par-
tition can be required to refine the given bipartition (A,B) follows immediately
from the proof of the Regularity lemma.

Lemma 11.6 (Regularity lemma) For every ε > 0 there exists an N =
N(ε) such that for every number d ∈ [0, 1] and for every bipartite graph G =
(A,B) with |A| = |B| there exist partitions of A into A0, A1, . . . , Ak and of
B into B0, B1, . . . , Bk and there is a spanning subgraph G′ of G such that the
following holds:

• k ≤ N ,

• |A0 ∪ B0| ≤ ε|G|,

• |A1| = · · · = |Ak| = |B1| = · · · = |Bk| =: L,

• dG′(x) > dG(x) − (d + ε)|G| for all vertices x ∈ G,

• for all 1 ≤ i, j ≤ k the graph (Ai, Bj)G′ is ε-regular and has density either
0 or > d.
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The sets Ai and Bi (i ≥ 0) are called clusters. A0 ∪ B0 is called the excep-
tional set. Given clusters and G′ as in Lemma 11.6, the reduced graph R is the
bipartite graph whose vertices are A1, . . . , Ak and B1, . . . , Bk (so we omit A0

and B0 here) and in which Ai is joined to Bj whenever (Ai, Bj)G′ is ε-regular
and has density > d. Thus AiBj is an edge of R if and only if G′ has an edge
between Ai and Bj .

In the proof of Theorem 11.2 we will use the following special case of the
Blow-up lemma of Komlós, Sárközy and Szemerédi [51]. See [48] for a survey
about this lemma.

Lemma 11.7 (Blow-up lemma) For all d > 0 and all integers ∆ there exists
a positive number ε0 = ε0(d, ∆) such that for all ε ≤ ε0, all integers a, b and
every subgraph H of Ka,b with ∆(H) ≤ ∆ each (ε, d)-super-regular bipartite
graph G = (A,B) with |A| = a and |B| = b contains H as a subgraph.

11.3 H-packings covering all but a small fraction of

vertices

The strategy of our proof of Theorem 11.1 is as follows. Given G, we will first
find a spanning bipartite subgraph G∗ = (A,B) whose vertex classes have equal
size and which is still ‘almost regular’ (see Proposition 11.8; we may assume
that |G| is even). We then apply the Regularity lemma to G∗. As G∗ is ‘almost
regular’, the reduced graph R has a matching M which misses only a small
fraction of its vertices (Lemma 11.9). But as each edge e ∈ M corresponds to
an ε-regular graph Ge of sufficiently large density, we may successively apply
Theorem 11.5 to pull out disjoint copies of H as long as an ε-fraction of the
vertices remains uncovered in each of the vertex classes of Ge. Thus the copies
of H can be chosen in such a way that we obtain an H-packing which covers a
large fraction of the vertices of each Ge (and hence of G).

Proposition 11.8 Given γ, c > 0 with 2γ < c ≤ 1, there exists n0 = n0(γ, c)
such that every (cn ± γn)-regular graph G of even order n ≥ n0 contains a
spanning bipartite subgraph G∗ = (A,B) such that |A| = |B| and |dG∗(x) −
dG(x)/2| ≤ γn for every vertex x ∈ G.

Proof. Consider a random bipartition of V (G) into sets A and B = V (G) \ A
which is obtained by including every vertex x ∈ G into A with probability 1/2
independently of all other vertices of G. Call a vertex x ∈ G bad if | |NG(x) ∩
A| − dG(x)/2| > γn/2. As E(|NG(x) ∩ A|) = dG(x)/2 and γn/2 ≥ γdG(x)/2,
Lemma 3.6 implies that

P(x is bad) ≤ 2e−β(γ)dG(x)/2 ≤ 2e−β(γ)cn/4.

Hence if n is sufficiently large, then the expected number of bad vertices is at
most 2ne−β(γ)cn/4 < 1/2. Thus Markov’s inequality implies that

P(there is a bad vertex) ≤ 1/2.
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Moreover, applying Lemma 3.6 again, we get

P(| |A| − n/2| > γn/2) ≤ 2e−β(γ)n/2 < 1/4.

Thus with probability at least 1/2 − 1/4 > 0 there is an outcome A,B with
| |A| − n/2 | ≤ γn/2 for which no vertex of G is bad. We may assume that
|A| ≤ |B|. But then in the bipartite graph G∗ obtained from (A,B)G by
moving (|B| − |A|)/2 ≤ γn/2 vertices from B to A, every vertex x ∈ G satisfies

|dG∗(x) − dG(x)/2| ≤ γn

2
+

γn

2
= γn,

as required. �

Lemma 11.9 Given positive numbers c, d, ε and γ with c > γ + d + 2ε and a
(cn ± γn)-regular bipartite graph G = (A,B) with |A| = |B|, let A0, A1, . . . , Ak

and B0, B1, . . . , Bk be the clusters of a partition of V (G) as given in Lemma 11.6.
Let R be the corresponding reduced graph. Then R contains a matching of car-
dinality at least k(1 − 2(γ + d + ε)/c).

Proof. Given I ⊆ {1, . . . , k}, let J be the set of all integers j ≥ 1 such that
in R the vertex Bj lies in the neighbourhood of {Ai | i ∈ I}. We will show
that |J | ≥ |I|(1 − 2(γ + d + ε)/c)). Then by the defect form of Hall’s matching
theorem (see e.g. [28, Cor. 2.1.3]) the bipartite graph R contains a matching of
cardinality at least k − 2k(γ + d + ε)/c, as required.

Let I ′ ⊆ A be the union of all Ai with i ∈ I and define J ′ ⊆ B to be the
union of all Bj with j ∈ J . Let L and G′ be as in Lemma 11.6. Recall that if
x ∈ Ai ⊆ I ′ and if y is a neighbour of x in G′ lying in Bj for some j ≥ 1 then
AiBj is an edge of R and thus j ∈ J and y ∈ J ′. As

δ(G′) ≥ δ(G) − (d + ε)n ≥ (c − γ − d − ε)n,

this shows that

eG′(I ′, J ′) ≥
∑

i∈I

|Ai|[(c − γ − d − ε)n − |B0|] ≥ |I|L(c − γ − d − 2ε)n.

But on the other hand,

eG′(I ′, J ′) ≤ eG′(A, J ′) ≤
∑

j∈J

|Bj |(c + γ)n = |J |L(c + γ)n

and so

|J | ≥ |I| · 1 − γ+d+2ε
c

1 + γ
c

≥ |I| ·
(

1 − γ + d + 2ε

c

)(
1 − γ

c

)

≥ |I| ·
(

1 − 2(γ + d + ε)

c

)
,

as required. �
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Note that in the proof of Lemma 11.9 we cannot apply Hall’s matching
theorem directly to the reduced graph R since R is not necessarily almost
regular.

Proof of Theorem 11.1. Clearly, it suffices to consider the case when
H = Ks,t where s ≤ t. By deleting one vertex of G if necessary, we may assume
that the order n of G is even. We will prove the assertion for γ := αc/50 and
for sufficiently large n0. Apply Proposition 11.8 to G to obtain a spanning
bipartite (cn/2 ± 2γn)-regular subgraph G∗ = (A,B) with |A| = |B|. Set
ε := γ, d := 2ε and apply Lemma 11.6 to G∗ to obtain clusters A0, A1, . . . , Ak

and B0, B1, . . . , Bk. Let L and G′ be as in Lemma 11.6 and let R be the
reduced graph. Then by Lemma 11.9, R has a matching M missing at most
8k(2γ + d + ε)/c = 40εk/c vertices of R. Recall that for every edge e = AiBj

of M , the graph (Ai, Bj)G′ is ε-regular and has density > d = 2ε. So if n (and
thus L) is sufficiently large, then we may successively apply Theorem 11.5 to
pull out disjoint copies of Ks,t from (Ai, Bj)G′ as long as there are at least εL
vertices left in each of its vertex classes. Additionally, we may require that the
vertex class of the Ks,t of size s lies alternately in Ai and in Bj. In this way
we get a Ks,t-packing in (Ai, Bj)G′ that covers all but at most 2εL + t of its
vertices. Proceeding similarly for each edge of M , we have found a Ks,t-packing
of G for which the number of uncovered vertices is at most

|A0 ∪ B0| + L|V (R) \ V (M)| + (2εL + t) · e(M) ≤ εn +
40εkL

c
+ 3εLk

≤ 44εn

c
< αn

(since t ≤ εL if n is sufficiently large), as required. �

11.4 Ks,t-packings covering all but a constant num-

ber of vertices

Before proving Theorem 11.2, let us first sketch the idea. Similarly as in the
proof of Theorem 11.1 we first choose an almost regular bipartite graph G∗ ⊆ G,
apply the Regularity lemma to G∗ and choose a large matching M in the reduced
graph R. Then we make every bipartite graph corresponding to some edge AiBj

of M into an (ε′, d′)-super-regular graph (A′
i, B

′
j)G′ by adding a small fraction of

vertices to the exceptional set A0∪B0 (see Proposition 2.4). We could now apply
the Blow-up lemma to these super-regular graphs to obtain a Ks,t-packing that
misses only a constant number of vertices in each of them. But then we would
still be left with the exceptional vertices. So instead we proceed as follows.
We first assign each exceptional vertex x ∈ A0 ∪B0 to one of the super-regular
graphs in which x has many neighbours in such a way that to each super-regular
graph we assign only a small number of exceptional vertices. If (A′

i, B
′
j)G′ is such

a super-regular graph, then successively for each exceptional vertex x assigned
to it we fix a Ks,t which contains x but has all its other vertices in (A′

i, B
′
j)G′ .

Furthermore, all these Ks,t’s are chosen to be disjoint and so that the sizes of
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the remaining subsets of A′
i and B′

j differ at most by a constant. Having dealt
with the exceptional vertices, our aim now is to apply the Blow-up lemma to
the remainders of the super-regular graphs in order to find disjoint Ks,t’s that
cover all but constantly many vertices. The only problem is that although the
remainders of the super-regular graphs are still large, they may now contain
vertices of small degree and thus need no longer be super-regular. But by being
careful in the choice of the Ks,t’s containing the exceptional vertices, this can
also be fixed. So let us now turn to the details.

Proof of Theorem 11.2. Clearly, it suffices to prove the theorem for the
case when H = Ks,t where s < t. Moreover, by deleting one vertex of G if
necessary, we may assume that |G| =: n is even. Set γ := c3/4000t, d := γ
and ε := min{γ/8, ε0(d/4, t)/4}, where ε0 is as defined in Lemma 11.7. By
making C larger, we may assume that the order n of G is sufficiently large
compared with c, s and t. We will show that G contains a Ks,t-packing which
covers all but at most 2tN(ε) vertices, where N(ε) is as defined in Lemma 11.6.
As indicated before, we start similarly as in the proof of Theorem 11.1. First
we apply Proposition 11.8 to G to obtain a spanning bipartite (cn/2 ± 2γn)-
regular subgraph G∗ = (A,B) with |A| = |B|. Next we apply Lemma 11.6 to
G∗ to obtain clusters A0, A1, . . . , Ak and B0, B1, . . . , Bk. Let L and G′ be as
in Lemma 11.6 and let R be the reduced graph. Then by Lemma 11.9, R has
a matching M covering all but at most 8k(2γ + d + ε)/c ≤ 32γk/c vertices of
R. Let L′ := (1 − ε)L. As for every edge AiBj of R the graph (Ai, Bj)G′ is
ε-regular of density > d, we may apply Proposition 2.4 to find sets A′

i ⊆ Ai

and B′
j ⊆ Bj such that |A′

i| = |B′
j | = L′ and such that the graph (A′

i, B
′
j)G′

is (2ε, d − 2ε)-super-regular. Denote by M ′ the set of all pairs A′
iB

′
j for which

AiBj is an edge of M . Let A′
0 be set of all those vertices in A that do not lie

in some A′
i and define B′

0 similarly. Then

|B′
0| = |A′

0| ≤ |A0| + L · |V (R) \ V (M)|
2

+ εL · |M ′|

≤ εn +
16γkL

c
+ εkL ≤ 18γn

c
.

Given a vertex x ∈ A′
0 ∪ B′

0 and a pair A′
iB

′
j ∈ M ′, we say that A′

iB
′
j is x-

friendly if x has at least cL′/4 neighbours in A′
i ∪ B′

j (in the bipartite graph
G∗). Denoting the number of x-friendly pairs in M ′ by Nx, we have

NxL′ + |M ′| · cL′

4
≥ dG∗(x) − |NG∗(x) ∩ (A′

0 ∪ B′
0)| ≥ cn

2
− 2γn − 18γn

c
>

cn

4
,

and therefore, as |M ′| ≤ n/2L′,

Nx >
cn

4L′ −
c|M ′|

4
≥ cn

8L′ .

But setting α := 300γ/c2, this shows that

|A′
0 ∪ B′

0|
αL′ ≤ 36γn

cαL′ < Nx
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for every x ∈ A′
0∪B′

0. This implies that we can successively assign every vertex
x ∈ A′

0 ∪ B′
0 to an x-friendly pair in M ′ in such a way that to each pair there

will be assigned at most αL′ vertices.
Consider any pair A′

iB
′
j ∈ M ′ and let A′′

i (respectively B′′
j ) denote the set

of all those vertices in A′
0 (respectively B′

0) that are assigned to A′
iB

′
j. So every

vertex x ∈ A′′
i has at least cL′/4 neighbours in B′

j and similarly every vertex in
B′′

j has at least cL′/4 neighbours in A′
i. Let Gij be the bipartite graph obtained

from (A′
i, B

′
j)G′ by adding all vertices in A′′

i ∪ B′′
j and all edges of G∗ between

these vertices and A′
i ∪ B′

j.
We now choose bipartitions SA, TA of A′

i and SB, TB of B′
j such that in

the graph Gij each vertex in A′
i ∪ A′′

i has at least a third of its neighbours
in each of SB and TB, and such that similarly each vertex of B′

j ∪ B′′
j has at

least a third of its neighbours in each of SA and TA. The following simple
probabilistic argument shows the existence of such bipartitions. Consider a
random bipartition SA, TA of A′

i which is obtained by including every vertex
x ∈ A′

i into SA with probability 1/2 independently of all other vertices of
A′

i. Given a vertex y ∈ B′
j ∪ B′′

j , set ny := |NGij (y) ∩ A′
i|. Thus, if y ∈ B′

j ,
then ny > (d − 2ε)L′ since (A′

i, B
′
j)G′ is (2ε, d − 2ε)-super-regular. Also, if

y ∈ B′′
j , then ny ≥ cL′/4 > (d − 2ε)L′. Call y ∈ B′

j ∪ B′′
j bad if either

|NGij (y) ∩ SA| < ny/3 or |NGij (y) ∩ SA| > 2ny/3. Since the expected number
of neighbours of y in SA is ny/2, Lemma 3.6 implies that

P(y is bad) ≤ 2e−β(1/6)ny/2 ≤ 2e−β(1/6)(d−2ε)L′/2 ≤ 2e−β(1/6)γL′/4.

So if n is sufficiently large, then the expected number of bad vertices in B′
j ∪B′′

j

is at most 2L′ · 2e−β(1/6)γL′/4 < 1. Thus there exists an outcome SA, TA for
which no vertex in B′

j ∪ B′′
j is bad, i.e. a bipartition of A′

i having the required
properties. The existence of SB , TB follows similarly.

Recall that every vertex x ∈ A′′
i (respectively x ∈ B′′

j ) has at least nx/3 ≥
cL′/12 neighbours in SB (respectively SA) and

cL′

12
− |A′′

i ∪ B′′
j |t ≥

cL′

12
− αtL′ =

cL′

12
− 300γtL′

c2
≥ cL′

12
− cL′

13
≥ 2εL′.

Moreover, the graph (A′
i, B

′
j)G′ ⊇ (SA, SB)G′ is (2ε, d − 2ε)-super-regular, so

we may apply Theorem 11.5 for each vertex in x ∈ A′′
i ∪ B′′

j in turn to find
a Ks,t in Gij which contains x and has all its other vertices in SA ∪ SB and
such that all these Ks,t’s are disjoint for different vertices x ∈ A′′

i ∪B′′
j . Denote

the sets of those vertices in A′
i and B′

j that do not lie in such a Ks,t by A∗
i

and B∗
j . Note that we may assume that the Ks,t’s were chosen in such a way

that | |A∗
i | − |B∗

j | | ≤ t − s. Since firstly in the graph G′ every vertex in A∗
i

(respectively B∗
j ) has more than (d − 2ε)L′/3 ≥ dL′/4 neighbours in TB ⊆ B∗

j

(respectively in TA ⊆ A∗
i ), since secondly the graph (A′

i, B
′
j)G′ ⊇ (A∗

i , B
∗
j )G′

is (2ε, d − 2ε)-super-regular and since thirdly both A∗
i and B∗

j have size at
least L′ − αtL′ ≥ L′/2, the graph (A∗

i , B
∗
j )G′ is still (4ε, d/4)-super-regular.

So recalling the choice of ε, we may apply Lemma 11.7 to (A∗
i , B

∗
j )G′ to find

disjoint copies of Ks,t that cover all but at most 2(t− 1) vertices of (A∗
i , B

∗
j )G′ .

Together with the Ks,t’s chosen earlier we have found a Ks,t-packing in Gij that
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covers all but at most 2(t− 1) of its vertices. Proceeding similarly for each pair
in M ′, we have found a Ks,t-packing in G for which the number of uncovered
vertices is at most |M ′|2(t − 1) < N(ε)2t. �

11.5 Perfect TK4- and TK5-packings

Proof of Theorem 11.4. We only consider the case when r = 4 in detail,
the proof for r = 5 works similarly. Set s := ⌈4/c⌉ and α := c/16s. We will
prove the theorem for γ := min{c/2, γ(c, α)}, where γ(c, α) is as defined in
Theorem 11.1, and for sufficiently large n0. First we apply Theorem 11.1 to
obtain a Ks,s-packing M which covers all but at most αn vertices of G. Let X
be the set of all remaining vertices.

We now successively assign each vertex x ∈ X to a Ks,s in M such that x
has at least two neighbours in one of the colour classes of the Ks,s and such
that these Ks,s’s are distinct for different vertices in X. This can be done since
for each x ∈ X

dG(x) ≥ cn − γn ≥ cn

2
≥ 4sαn +

n

s
> |NG(x) ∩ X| + 2s|X| +

2n

|Ks,s|
and thus after each step for the vertex x ∈ X to be considered next there must
be a Ks,s in M to which no vertex in X has been assigned yet and such that x
has at least two neigbours in one of its colour classes.

As s ≥ 3, it is easy to see that we can choose a spanning subdivision of
K4 in each Ks,s of M to which we have assigned no vertex of X. Similarly,
for every copy (A,B) of Ks,s in M to which we have assigned a vertex x ∈ X
we can choose a subdivision of K4 which contains x and all vertices in (A,B).
Indeed, we may assume that x has two neighbours in A. These will be two of
the branch vertices (which will be connected by the path of length 2 through
x), we choose any other vertex in A as third branch vertex and any vertex in
B as the fourth one (Fig. 11.1). In the case r = 5 we proceed similarly except
that we now choose an additional branch vertex from B (Fig. 11.1). �

x x

AA

BB

Figure 11.1: A spanning subdivision of K4 (left) and K5 (right). The white
vertices are the branch vertices.

The graph Kn,n+1 immediately shows that we cannot hope for a perfect
TKr-packing if r = 3. The following proposition states that this is also the
case for all r ≥ 6 and thus the graph consisting of a disjoint union of Kn,n+1’s
shows that for r ≥ 6 the vertex degrees in Corollary 11.3 have to be linear.
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Proposition 11.10 For all integers n and r ≥ 6 each TKr-packing in Kn,n+1

misses at least one vertex.

Proof. First consider the case when r is even, say r = 2ℓ. Let A and B be
the vertex classes of Kn,n+1. Consider any subdivision T of Kr in Kn,n+1. Let
k ∈ Z be so that that ℓ + k branch vertices of T lie in A and ℓ − k branch
vertices lie B. Then, no matter how the edges of Kr are subdivided,

|V (T ) ∩ B| − |V (T ) ∩ A| = ℓ − k +

(
ℓ + k

2

)
− (ℓ + k) −

(
ℓ − k

2

)
= (r − 3)k.

But this implies that in every TKr-packing in Kn,n+1 the difference between
the number of covered vertices in A and the number of covered vertices in B
is divisible by r − 3 ≥ 3 and hence cannot be 1. So there exists no perfect
TKr-packing.

In the case when r is odd, r = 2ℓ + 1 say, we let k be such that ℓ + k + 1
branch vertices lie in A to obtain |V (T ) ∩ B| − |V (T ) ∩ A| = (2k + 1)(r − 3)/2
which gives us the same conclusion. �

To conclude this section, we give an example of a regular graph G which
shows that for a perfect TKr-packing (where r ≥ 3) a minimum degree of at
least

√
n/2 is necessary. Let k ≥ 3 be an odd integer and let H be the graph

which is obtained from a Kk,k−1 by including (k − 1)/2 independent edges in
the larger vertex class. So all vertices of H have degree k except for one vertex
of degree k − 1. Let G be the graph which consists of k disjoint copies of H
together with a new vertex x that is joined to the vertices of degree k− 1 in all
copies of H (Fig. 11.2). So x does not lie in a subdivision of Kr, G is k-regular
and |G| = k(2k − 1) + 1.

x

Figure 11.2: A regular graph of minimum degree at least
√

n/2 and no perfect
TKr-packing.
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Chapter 12

Large planar subgraphs in

dense graphs

12.1 Introduction

In this chapter we study the following extremal question: Given a function
m = m(n), how large does the minimum degree of a graph G of order n have
to be in order to guarantee a planar subgraph with at least m(n) edges?

If m ≤ n, the answer is easy. Indeed, suppose that the minimum degree
of G is at least one. Then every component C of G has a spanning tree with
|C| − 1 ≥ |C|/2 edges. So G has a (planar) spanning forest with at least n/2
edges, which is best possible if G consists of independent edges. Similarly, it
is easy to see that if G has minimum degree at least two, then G contains a
planar subgraph with n edges, which is best possible if G is a cycle.

On the other hand, if G is bipartite, then the facial cycles of any planar
subgraph have length at least four and so Euler’s formula implies that no planar
subgraph of G has more than 2n − 4 edges. So as long as the minimum degree
is at most n/2, we cannot hope for a planar subgraph with more than 2n − 4
edges. Our first theorem shows that a much smaller minimum degree already
guarantees a planar subgraph with roughly 2n edges.

Theorem 12.1 For every 0 < ε < 1 there exists n0 = n0(ε) such that every
graph G of order n ≥ n0 and minimum degree δ ≥ 1500

√
n/ε2 contains a planar

subgraph with at least (2 − ε)n edges.

This is essentially best possible in two ways. Firstly, there are graphs with
minimum degree

√
n/2 and girth at least 6 ([23], see also [12]). Hence Euler’s

formula shows that any planar subgraph of such a graph can have at most
3
2(n − 2) edges (as all of its facial cycles have length at least 6). Secondly, for
δ ≤ n/2 consider the graph consisting of n/2δ disjoint copies of the complete
bipartite graph Kδ,δ. It obviously has minimum degree δ, but again by Euler’s
formula it cannot contain a planar subgraph with more than (2 · 2δ − 4)n/2δ =
2n−2n/δ edges. This shows that as long as the minimum degree δ of G is o(n),
we cannot ask for a planar subgraph of G with 2n−C edges, where C does not
depend on n. So if we want at least 2n − C edges in a planar subgraph, then
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a necessary condition is that δ ≥ 2n/C, i.e. δ must be linear in n. Our second
theorem shows that the linearity of δ is also sufficient.

Theorem 12.2 For every γ > 0 there exists C = C(γ) such that every graph
G of order n and minimum degree at least γn contains a planar subgraph with
at least 2n − C edges.

As we have already seen, this is best possible up to the value of the constant
C as long as the minimum degree is at most n/2. If however the minimum degree
is a little larger than this, we can already guarantee a planar subgraph which
is a triangulation apart from a constant number of missing edges:

Theorem 12.3 For every γ > 0 there exists C = C(γ) such that every graph G
of order n and minimum degree at least (1/2 + γ)n contains a planar subgraph
with at least 3n − C edges.

Again, this is best possible in the sense that the constant C has to depend
on γ and the additional term γn in the bound on the minimum degree cannot
be replaced by a sublinear one (see Proposition 12.11).

Finally, we seek a spanning triangulation, i.e. a planar subgraph with 3n−6
edges. As pointed out to us by Bollobás, the following 3-partite graph G shows
that a minimum degree of 2n/3 is necessary for this. G is obtained from two
disjoint cliques C1 and C2 of order n/3 by adding an independent set X of n/3
new vertices and joining each of them to all the vertices in the two cliques. So
G has minimum degree 2n/3 − 1. Observe that any spanning triangulation in
G would have two facial triangles T1 and T2 which share an edge and are such
that Ti contains a vertex of Ci (i = 1, 2). But this is impossible since every
triangle of G containing a vertex of Ci can have at most one vertex outside Ci,
namely in X. However, to guarantee a triangulation, it suffices to increase the
minimum degree by a small amount:

Theorem 12.4 For every γ > 0 there exists an integer n0 = n0(γ) such that
every graph G of order n ≥ n0 and minimum degree at least (2/3+γ)n contains
a triangulation as a spanning subgraph.

In Chapter 13 we show that for sufficiently large graphs a minimum degree
of 2n/3 suffices. However, the proof of this is rather more involved than that
of Theorem 12.4.

We also obtain an analogue of Theorem 12.4 for quadrangulations, i.e. plane
subgraphs with 2n − 4 edges in which every face is bounded by a 4-cycle.

Theorem 12.5 For every γ > 0 there exists an integer n0 = n0(γ) such that
every graph G of order n ≥ n0 and minimum degree at least (1/2+γ)n contains
a quadrangulation as a spanning subgraph.

The disjoint union of two cliques of order n/2 shows that apart from the
error term γn, the minimum degree in Theorem 12.5 cannot be reduced.
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We remark that Theorems 12.4 and 12.5 would immediately follow from the
conjecture of Bollobás and Komlós [48] that for every γ > 0 and all r, ∆ ∈ N

there are α > 0 and n0 ∈ N such that every graph G of order n ≥ n0 and
minimum degree at least (1 − 1

r + γ)n contains a copy of every graph H of
order n whose chromatic number is at most r, whose maximum degree is at
most ∆ and whose band-width is at most αn. (The band-width of a graph H is
the smallest integer k for which there exists an enumeration v1, . . . , v|H| of the
vertices of H such that every edge vivj ∈ H satisfies |i − j| ≤ k.) Indeed, to
derive e.g. Theorem 12.4 from this conjecture it suffices to find for all n ∈ N a
3-partite triangulation of order n which has both bounded maximum degree and
bounded band-width. It is easy to see that such triangulations exist (e.g. modify
the graph H1 in Fig. 12.3 below).

Theorems 12.1–12.5 give a fairly accurate picture of the maximum size of
a planar subgraph when we consider graphs whose minimum degree δ is much
larger than

√
n. However, we are not aware of any nontrivial lower bounds

when δ lies between 2 and
√

n. An easy upper bound is obtained as follows.
For ℓ ≥ 3 let δ2ℓ = δ2ℓ(n) be the largest integer such that there are graphs G
of order n, minimum degree at least δ2ℓ and girth at least 2ℓ. (The order of
magnitude of δ2ℓ is only known for ℓ = 3, 4 and 6, see e.g. [10, 23].) So all facial
cycles in a planar subgraph of such a graph G have length at least 2ℓ and thus
Euler’s formula gives us an upper bound on the size of a planar subgraph of
G. We believe that in general this upper bound is close to the truth (except
maybe when the minimum degree is only a little larger than δ2ℓ+2).

Our proofs immediately show that the planar subgraphs guaranteed by The-
orems 12.1–12.5 can be found in polynomial time. For graphs with high min-
imum degree we therefore obtain improved approximation algorithms for the
maximum planar subgraph problem which in a given graph G asks for a planar
subgraph with the maximum number of edges. Cǎlinescu et al. [24] showed that
this problem is Max SNP-hard: there is a constant ε such that there cannot ex-
ist a polynomial time approximation algorithm with approximation ratio better
than 1 − ε, unless P = NP . The best known approximation algorithm has an
approximation ratio of 4/9 [24]. (Note that a ratio of 1/3 is already achieved
by producing spanning trees for all connected components.)

The problem of finding a large planar subgraph in a random graph was
investigated by Schlatter [94], the case of triangulations was already considered
earlier by Bollobás and Frieze [18].

The chapter is organized as follows. In Section 12.2 we give a brief sketch of
the proofs of Theorems 12.1–12.5. In Section 12.3 we collect some notation and
some information about the Regularity lemma and the Blow-up lemma we need
for the proofs of Theorems 12.2–12.5. The proofs themselves are then given in
the final section.

12.2 Sketch of proofs

The proof of Theorem 12.1 is rather different from those of the other results.
In particular, it relies neither on the Regularity lemma nor on the Blow-up
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lemma. The strategy is to repeatedly find a suitable greedy covering of part
of the vertices of the original graph G with disjoint complete bipartite graphs
K2,s, where s is large. (Note that if s is large then the planar graph H := K2,s

has roughly 2|H| edges.) These partial coverings (which will overlap a little)
are then combined into a single planar graph of the required size.

We now give a sketch of the proofs of Theorems 12.2–12.5. The structure
of these proofs is similar: we first apply the Regularity lemma (Lemma 2.5)
to obtain a partition of the vertices of G into a large but constant number of
clusters. Since G has large minimum degree, this is also true for the ‘reduced
graph’ R (whose vertices are the clusters and whose edges correspond to the
pairs of clusters which are regular and have sufficient density). We will use
this to cover almost all vertices of R by suitable disjoint graphs H of bounded
size. Then we apply the Blow-up lemma (Lemma 12.7) to find spanning planar
graphs P of the required density within the subgraphs H ′ of G corresponding to
these graphs H. However, we also have to ensure that the exceptional vertices of
G (i.e. the small proportion of those vertices of G which do not belong to some
such H ′) can be incorporated into these planar graphs P without reducing their
density. This also follows from the Blow-up lemma provided that we can assign
each exceptional vertex v to some H which contains enough clusters with many
neighbours of v in such a way that to each H we assign only a small number of
exceptional vertices.

In the proof of Theorem 12.2 the graphs H will be stars of bounded size and
the planar graphs P we seek within the graphs H ′ will be quadrangulations.
For Theorem 12.3 we want the planar graphs P to be triangulations, which
means that the graphs H can no longer be bipartite. Thus an obvious choice
for H would be a triangle, but we cannot hope to cover almost all vertices of the
reduced graph R by disjoint triangles since its minimum degree may be only a
little larger than |R|/2. However, a recent result of Komlós (Theorem 12.10)
implies that we can take H to be the complete 3-partite graph Ka,a,1 (where a
is large) as it is in some sense close to being bipartite.

In the proof of Theorem 12.4 the minimum degree of the reduced graph R
exceeds 2|R|/3 and hence the Theorem of Corrádi and Hajnal [26] implies that
R can be covered by disjoint triangles. However, this is not sufficient for our
purposes as this time we seek a single triangulation containing all vertices of G
(instead of a disjoint union of boundedly many triangulations as in the proof
of Theorem 12.3). So we have to ‘glue together’ the different triangulations
corresponding to the triangles covering R. For this we use suitable edges of R
joining these triangles (as well as some additional vertices of G). Thus instead
of merely covering R by disjoint triangles, we will start with the second power
of a Hamilton path of R. The latter is guaranteed by a result of Fan and
Kierstead [33].

The proof of Theorem 12.5 is similar to that of Theorem 12.4 but the gluing
process is somewhat simpler. Instead of the second power, this time it suffices
to work with an ‘ordinary’ Hamilton path.
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12.3 Notation and tools

We often write n for the order of a graph G, if this is not ambiguous. Given
a plane graph G, a facial cycle of G is a cycle in G which is the boundary
of a face. G is a triangulation if all its faces are bounded by triangles and a
quadrangulation if all faces are bounded by 4-cycles. So by Euler’s formula a
triangulation has 3n − 6 edges whereas a quadrangulation has 2n − 4 edges.

The proofs of Theorems 12.2–12.5 are based on the Regularity lemma. We
will often use the following well-known and simple fact about the minimum
degree of the reduced graph. Its proof is the only place in this chapter where
the degree form of the Regularity lemma (Lemma 2.5) is more convenient than
the classical form.

Proposition 12.6 For every γ > 0 there exist ε0 = ε0(γ) and d0 = d0(γ) such
that for all ε ≤ ε0, d ≤ d0 and every c ≥ 0 an application of Lemma 2.5 to
a graph G of minimum degree at least (c + γ)|G| yields a reduced graph R of
minimum degree at least (c + γ/2)|R|.
Proof. Suppose that there is a vertex Vi ∈ R whose degree in R is less than
(c + γ/2)k. Let W denote the union of all those clusters Vj (j 6= i) for which
(Vi, Vj)G′ has density 0. Let u be any vertex in Vi. Then

dG′(u) ≤ |NG′(u) ∩ W | + dR(Vi) · L + |NG′(u) ∩ V0| < 0 + (c + γ/2)kL + εn

≤ (c + γ/2 + ε)n.

But on the other hand, Lemma 2.5 states that dG′(u) > dG(u) − (d + ε)n ≥
(c + γ − d − ε)n, a contradiction, provided that γ ≥ 2d + 4ε. �

We will also use the Blow-up lemma of Komlós, Sárközy and Szemerédi [51].
It implies that dense regular pairs behave like complete bipartite graphs with
respect to containing bounded degree graphs as subgraphs.

Lemma 12.7 (Blow-up lemma) Given a graph R on {1, . . . , r} and numbers
d, c, ∆ > 0, there are positive numbers ε0 = ε0(d, ∆, r, c) and α = α(d, ∆, r, c) ≤
1/2 such that the following holds. Given L ∈ N and ε ≤ ε0, let R(L) be the
graph obtained from R by replacing each vertex i ∈ R with a set Vi of L new
vertices and joining all vertices in Vi to all vertices in Vj whenever ij is an edge
of R. Let G be a spanning subgraph of R(L) such that for every edge ij ∈ R
the graph (Vi, Vj)G is (ε, d)-super-regular. Then G contains a copy of every
subgraph H of R(L) with ∆(H) ≤ ∆. Furthermore, we can additionally require
that for vertices x ∈ H ⊆ R(L) lying in Vi their images in the copy of H in G
are contained in (arbitrary) given sets Cx ⊆ Vi provided that |Cx| ≥ cL for each
such x and provided that in each Vi there are at most αL such vertices x.

We say that the vertices x in Lemma 12.7 are image restricted to Cx.
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12.4 Proofs

12.4.1 Planar subgraphs of size 2n − εn

In our proof of Theorem 12.1 we will use the following well-known upper bound
on the number of edges of K2,s-free graphs (see e.g. [12, Ch. VI, Thm. 2.2 and
2.3]).

Theorem 12.8 Let s ≥ 2 be an integer. Then every graph G with e(G) ≥√
sn3/2 contains a copy of K2,s. Moreover, every bipartite graph G = (A,B)

with e(G) ≥ √
s|A||B|1/2 + |B| contains a copy of K2,s with 2 vertices in A and

s vertices in B.

Proof of Theorem 12.1. Throughout the proof we assume that n is suffi-
ciently large for our estimates to hold. For all k ≥ 1 set sk := 2k2+2/εk. We
first greedily choose as many disjoint copies of K2,s1 in G as possible. Let P1

be the union of all these K2,s1’s, X1 := V (P1) and let Y1 := V (G) \ X1. Thus
G[Y1] is K2,s1-free and so Theorem 12.8 implies that e(G[Y1]) ≤ √

s1|Y1|3/2. Let
Y ′

1 be the set of all those vertices in Y1 which have at most δ/2 neighbours in
X1. Then

δ|Y ′
1 |/2 ≤ 2e(G[Y1]) ≤ 2

√
s1n

3/2,

and thus

|Y ′
1 | ≤

4
√

s1n
3/2

δ
. (12.1)

Let Y ∗
1 := Y1 \Y ′

1 . Next we greedily choose (as often as possible) disjoint copies
of K2,s2 in (X1, Y

∗
1 )G having 2 vertices in X1 and s2 vertices in Y ∗

1 . Let P2 be
the union of all these K2,s2’s, X2 := V (P2) ∩X1 and Y2 := V (P2) ∩ Y ∗

1 . Let Y ′
2

be the set of all those vertices in Y ∗
1 \ Y2 which have at most δ/22 neighbours

in X2. Thus each vertex in Y ′
2 has at least δ/22 neighbours in X1 \ X2 and so

e(X1 \ X2, Y
′
2) ≥ δ|Y ′

2 |/22.

On the other hand, (X1 \ X2, Y
′
2)G does not contain a K2,s2 with 2 vertices in

X1 \ X2 and s2 vertices in Y ′
2 . Thus Theorem 12.8 implies

e(X1 \ X2, Y
′
2) ≤ √

s2 · |X1 \ X2| · |Y ′
2 |1/2 + |Y ′

2 | ≤
√

s2n
3/2 + |Y ′

2 |

and therefore

|Y ′
2 | ≤

√
s2n

3/2

δ/22 − 1
≤ 5

√
s2n

3/2

δ
. (12.2)

Let Y ∗
2 := Y ∗

1 \(Y2∪Y ′
2) and greedily choose (again as often as possible) disjoint

copies of K2,s3 in (X2, Y
∗
2 )G having 2 vertices in X2 and s3 vertices in Y ∗

2 . Let
P3 be the union of all these K2,s3’s, X3 := V (P3)∩X2 and Y3 := V (P3)∩Y ∗

2 . Let
Y ′

3 be the set of all those vertices in Y ∗
2 \Y3 which have at most δ/23 neighbours

in X3. Let Y ∗
3 := Y ∗

2 \ (Y3 ∪ Y ′
3) and continue in this fashion until Pi = ∅ (and

thus Xi = Yi = ∅ and Y ′
i = Y ∗

i−1). Let i be the smallest index such that Pi = ∅.
Thus i ≤ √

log n since s√log n > n.
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Using that |Xk−1 \ Xk| ≤ |Xk−1| ≤ 2n/sk−1 for all 3 ≤ k ≤ i, a calculation
similar to the case k = 2 shows that

|Y ′
k| ≤

5 · 2k−1√skn
3/2

δsk−1
. (12.3)

Moreover, since Y ′
i = Y ∗

i−1,

|X1| +

i−1∑

k=2

|Yk| +

i∑

k=1

|Y ′
k| = n. (12.4)

Set
P := (P1 − X2) ∪ (P2 − X3) ∪ · · · ∪ (Pi−2 − Xi−1) ∪ Pi−1.

Clearly P is a planar subgraph of G. Notice that when removing Xk from Pk−1,
we destroy at most sk−1|Xk| of its edges, but this is negligible compared to
e(Pk) = 2|Yk|, as sk grows rather rapidly with k. Also, recall that |Xk| ≤ 2n/sk

for k ≥ 2. Hence

e(P ) ≥
i−1∑

k=1

e(Pk) −
i−1∑

k=2

sk−1|Xk|

≥ 2s1|X1|
s1 + 2

+
i−1∑

k=2

2|Yk| −
i−1∑

k=2

2sk−1n

sk

(12.4)
= 2(n −

i∑

k=1

|Y ′
k|) −

4|X1|
s1 + 2

−
i−1∑

k=2

εn

22k−2

(12.1,12.2,12.3)

≥ 2n − 32n3/2

δ
√

ε
− 80n3/2

δε
−

i∑

k=3

5 · 2k√skn
3/2

δsk−1
− 4n

s1
− εn

3

≥ 2n − εn

9
−

i∑

k=3

5εk/2−1n3/2

2k2/2−3k+2δ
− εn

2
− εn

3

≥ 2n − 80n3/2

δ
− 17εn

18
≥ (2 − ε)n,

as required. �

We remark that the proof of Theorem 12.1 shows that we can let ε be
any function of n with ε(n) ≤ 1. Note that it does not make sense to take
ε(n) ≤ n−1/4.

12.4.2 Planar subgraphs of size 2n − C

For the proof of Theorem 12.2 we need the following simple proposition.

Proposition 12.9 Given 0 < γ ≤ 1/2 and a graph G of minimum degree at
least γn, there exists a set S of disjoint substars of G such that every vertex of
G lies in some S ∈ S and such that each such S satisfies 1 ≤ ∆(S) ≤ 1/γ.
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Proof. Construct the stars in S greedily as follows. Suppose that we have
already covered a set X ⊆ V (G) with a set S ′ of disjoint substars of G such
that 1 ≤ ∆(S) ≤ 1/γ for every S ∈ S ′. Choose x ∈ V (G) \ X. If x has a
neighbour y outside X, we may add the star consisting of the edge xy to S ′. So
suppose that all neighbours of x lie in X. If x is joined to a leaf y of some star
S ∈ S ′ then, if |S| ≥ 3, we can replace S by S − y and add the new star xy to
S ′ or, if |S| = 2, we can replace S by S ∪ xy. If x is only joined to midpoints
of stars in S ′, then one such star must have at most 1/γ − 1 leaves and so we
can add x to this star. �

Proof of Theorem 12.2. Clearly, we may assume that γ ≤ 1/2. Let ε0(γ)
and d0(γ) =: d be as given in Proposition 12.6. Let ε0(d/2, 8/γ, 1+2/γ, γ/4) =:
ε∗ and α(d/2, 8/γ, 1 + 2/γ, γ/4) =: α be as defined in the Blow-up lemma
(Lemma 12.7). Put

ε := min

{
ε0(γ),

ε∗

2
,
γ3α

72
,
γd

6

}
.

Clearly, it suffices to show that every graph G whose order n is sufficiently large
compared with γ contains a planar subgraph with at least 2n−4N(ε, 2) vertices,
where N(ε, 2) is given by the Regularity lemma (Lemma 2.5). So throughout
the proof we assume that n is sufficiently large.

We first apply the Regularity lemma to G to obtain an exceptional set V0

and clusters V1, . . . , Vk where 2 ≤ k ≤ N(ε, 2). Let L and G′ be as defined in the
Regularity lemma and let R denote the reduced graph. Thus Proposition 12.6
implies that δ(R) ≥ γk/2. So by Proposition 12.9 there exists a set S of disjoint
substars of R such that every vertex of R lies in some star from S and such
that 1 ≤ ∆(S) ≤ 2/γ for each S ∈ S.

Next we apply Proposition 2.6 to obtain sets V ′
i ⊆ Vi of size (1−2ε/γ)L =: L′

such that for all the edges ViVj of R lying in some star from S the graph
(V ′

i , V ′
j )G′ is (2ε, d − (1 + 2/γ)ε)-super-regular. Henceforth we will think of R

and of the stars in S as graphs whose vertices are the new sets V ′
i . Add all

vertices of G which do not lie in some V ′
i to the exceptional set V0. By adding

further vertices to V0 if necessary, we may assume that L′ is even. We still denote
the enlarged exceptional set by V0. Thus |V0| ≤ εn + 2εkL/γ + k ≤ 3εn/γ.

Given a vertex v ∈ V0 and a star S ∈ S, we say that S is v-friendly if there
is a vertex V ′

i ∈ S such that v has at least γL′/4 neighbours in V ′
i . Let Nv

denote the number of v-friendly stars S ∈ S. Then

γn/2 < (γ − 3ε/γ)n ≤ dG(v) − |V0| ≤ Nv · (1 + 2/γ)L′ +
∑

S∈S
|S| · γL′/4,

and therefore, since
∑

S∈S |S| = k,

Nv >
γ

3L′ ·
(

γn

2
− γkL′

4

)
≥ γ2n

12L′ .

So
2|V0|
αL′ ≤ 6εn

γαL′ < Nv
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for every vertex v ∈ V0. But this implies that we can greedily assign each vertex
v ∈ V0 to a v-friendly star S ∈ S in such a way that to every S ∈ S we assign
at most αL′/2 vertices from V0.

Consider a fixed S ∈ S and let X ⊆ V0 be the set of all vertices assigned to
S. Let U1 be the centre of S and let U2, . . . , U|S| be its other vertices. So each
Uℓ is a set of the form V ′

i . Fix any bipartite quadrangulation PS of maximum
degree 4∆(S) ≤ 8/γ whose vertex classes are U1 and U2 ∪ · · · ∪ U|S| such that
for each ℓ ≤ |S| there is a set Cℓ of at least L′/4 ≥ |X| facial 4-cycles of PS with
the property that, firstly, each C ∈ Cℓ has two of its vertices in Uℓ, secondly,
these vertices are distinct for different C ∈ Cℓ and thirdly, each facial 4-cycle of
PS lies in at most one such Cℓ. Recalling that L′ is even, it is not difficult to
see that such quadrangulations exist (see Fig. 12.1).
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Figure 12.1: A quadrangulation PS which corresponds to a star S with three
leaves. The black vertices belong to U1. The shaded faces indicate a possible
choice for C1.

As each edge of S corresponds to a (2ε, d/2)-super-regular subgraph of G′,
the Blow-up lemma (Lemma 12.7) implies that the subgraph of G′ correspond-
ing to S (that is G′[U1 ∪ · · · ∪ U|S|]) contains a spanning copy of PS such that
every vertex v ∈ X is joined to two opposite vertices on some facial 4-cycle of PS

and such that these 4-cycles differ for distinct vertices v ∈ X. Indeed, this can
be achieved as follows. By definition, each v ∈ X has at least γL′/4 neighbours
in some Uℓ (1 ≤ ℓ ≤ |S|). Assign v to a cycle Cv ∈ Cℓ such that these cycles Cv

differ for distinct such v. When applying the Blow-up lemma, for each v ∈ X
the two vertices in V (Cv)∩Uℓ are image restricted to the neighbourhood of v in
Uℓ. (This can be done since the vertices in V (Cv)∩Uℓ are distinct for different
v.)

The graph obtained from PS by inserting all the vertices v ∈ X in their facial
4-cycles Cv is still a quadrangulation. Hence G contains a planar subgraph
which is a disjoint union of |S| quadrangulations and thus has 2n − 4|S| ≥
2n − 4N(ε, 2) edges. �
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12.4.3 Planar subgraphs of size 3n − C

The critical chromatic number χcr(H) of a graph H is defined as (χ(H) −
1)|H|/(|H|−σ), where σ denotes the minimum size of the smallest colour class
in an optimal colouring of H. For the proof of Theorem 12.3 we need the
following result of Komlós [49, Thm. 8].

Theorem 12.10 For every ε > 0 and every graph H there exists an integer
k0 = k0(H, ε) such that all but at most εk vertices of every graph R of order
k ≥ k0 and minimum degree δ(R) ≥ (1− 1/χcr(H))k can be covered by disjoint
copies of H.

Note that Theorem 12.10 immediately implies that for all ε, γ > 0 there
exists an integer n0 = n0(ε, γ) such that every graph R of order n ≥ n0 and
minimum degree at least γn contains a planar graph with at least 2n − εn
edges. Indeed, let H := K2,s in Theorem 12.10, where s is sufficiently large
compared to ε and γ. Then the critical chromatic number of H is close to one
and the disjoint union of all copies of H given by Theorem 12.10 is a planar
subgraph of R of the required size. Similarly, as there exist large triangulations
whose critical chromatic number is close to 2 (e.g. modify the graph in Fig. 12.2
below), Theorem 12.10 implies that Theorem 12.3 is true for large n if we only
ask for a planar subgraph with 3n − εn edges.

Proof of Theorem 12.3. By making γ smaller, we may assume that 1/γ is an
integer divisible by 4. Let ε0(γ) and d0(γ) =: d be as given in Proposition 12.6.
Set a := 2/γ and H := Ka,a,1, the complete 3-partite graph with vertex classes
of size a, a and 1. Let ε0(d/2, 8a, 2a+1, γ/4) =: ε∗ and α(d/2, 8a, 2a+1, γ/4) =:
α be as defined in the Blow-up lemma (Lemma 12.7). Put

ε := min

{
ε0(γ),

ε∗

2
,
γ3α

640
,
γd

12

}

and let k0 := k0(H, ε) be defined as in Theorem 12.10. Clearly, it suffices to
show that every graph G whose order n is sufficiently large compared with γ
contains a planar subgraph with at least 3n−6N(ε, k0) vertices, where N(ε, k0)
is given by the Regularity lemma (Lemma 2.5).

We first apply the Regularity lemma to G to obtain an exceptional set V0 and
clusters V1, . . . , Vk where k0 ≤ k ≤ N(ε, k0). Let L and G′ be as defined in the
Regularity lemma and let R denote the reduced graph. Thus Proposition 12.6
implies that δ(R) ≥ (1/2 + γ/2)k. As χcr(H) = 2(2a + 1)/2a = 2 + 1/a and
therefore δ(R) ≥ (1− 1/χcr(H))k, we can apply Theorem 12.10 to obtain a set
H of disjoint copies of H in R such that all but at most εk vertices of R lie in
the union H ′ of all these copies. As ∆(H ′) = 2a, we may apply Proposition 2.6
to find for every Vi ∈ V (H ′) a set V ′

i ⊆ Vi of size (1− 2aε)L =: L′ such that for
every edge ViVj ∈ H ′ the graph (V ′

i , V ′
j )G′ is (2ε, d − (1 + 2a)ε)-super-regular.

We add all vertices of G which do not lie in some V ′
i to the exceptional set V0

and still denote this enlarged set by V0. Thus

|V0| ≤ εn + εkL + 2aεkL ≤ 4aεn.
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Put R′ := R[V (H ′)]. We will think of R′ and of the graphs in H as graphs
whose vertices are the new sets V ′

i .
Given a vertex v ∈ V0 and S ∈ H, we say that S is v-friendly if there are

vertices V ′
i and V ′

j lying in different classes of the Ka,a ⊆ S such that v has
at least γL′/4 neighbours in both V ′

i and V ′
j . Let Nv denote the number of

v-friendly S ∈ H. Then

(1/2+γ/2)n < (1/2+γ−4aε)n ≤ dG(v)−|V0| ≤ Nv(2a+1)L′+|H|(a+1+γa/4)L′

and therefore

Nv >
(1/2 + γ/2)n

(2a + 1)L′ − k(a + 1 + γa/4)L′

(2a + 1)2L′

≥ n

(2a + 1)L′ ·
(

1

2
+

γ

2
− a(1 + 1/a + γ/4)

2a

)
≥ nγ

5L′ ·
γ

8
=

γ2n

40L′ .

So
2|V0|
αL′ ≤ 8aεn

αL′ < Nv

for every vertex v ∈ V0. But this implies that we can successively assign each
vertex v ∈ V0 to a v-friendly S ∈ H in such a way that to every S ∈ H we
assign at most αL′/2 vertices from V0.

Consider a fixed S ∈ H and the set X ⊆ V0 of all vertices assigned to S. Let
PS be any 3-partite plane graph which satisfies the following three properties.
Firstly, the classes of PS have sizes aL′, aL′ and L′ respectively. Secondly,
∆(PS) ≤ 8a and, thirdly, PS is a triangulation apart from |X| disjoint facial
4-cycles and the vertices of each of these 4-cycles lie in the two larger vertex
classes of PS . Such plane graphs exist, see e.g. Fig. 12.2.
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Figure 12.2: A triangulation apart from the shaded faces (into which the ex-
ceptional vertices will be inserted)

Since each edge of S corresponds to a (2ε, d/2)-super-regular subgraph of
G′, the Blow-up lemma (Lemma 12.7) implies that the subgraph of G′ corre-
sponding to S contains a spanning copy of PS where every vertex v ∈ X is
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joined to all vertices on one of the facial 4-cycles in PS and these 4-cycles differ
for distinct vertices from X. (The latter can be achieved in a similar way as in
the proof of Theorem 12.2.) Thus by inserting the vertices from X into these
facial 4-cycles of PS we obtain a triangulation. Proceeding similarly for every
element of H, we obtain a spanning planar subgraph of G which is the disjoint
union of |H| triangulations and thus has 3n − 6|H| ≥ 3n − 6N(ε, k0) edges.

�

As a special case, the following proposition implies that the constant C in
Theorem 12.3 must depend on γ and that the extra γn in the condition on the
minimum degree cannot be replaced by a sublinear term.

Proposition 12.11 For all positive integers k and n which satisfy n/2 + k =
r(2k + 1) for some integer r ≥ 2 there is a graph G of order n and minimum
degree n/2 + k which does not contain a planar subgraph with more than 3n −
6 − n/12k edges.

Proof. Let G be the graph obtained from a disjoint union of r cliques G1, . . . , Gr

of order 2k + 1 by adding a set Y of n/2 − k new vertices and joining every
vertex in Y to every vertex in V (G1)∪ · · ·∪V (Gr) =: X. So G has order n and
minimum degree n/2+k. Consider a planar subgraph P of G with a maximum
number of edges. Put C := 3n − 6 − e(P ). We will show that C ≥ n/12k.
Let E be a set of C edges such that P + E is a triangulation, T say. Thus
E ∩ E(G) = ∅. Call an edge e ∈ E useful for Gi if either

• e has an endvertex in Gi (and thus both endvertices of e lie in X) or

• e has both endvertices in Y and is an edge of a facial triangle of T which
contains a vertex of Gi.

We claim that for every i there is an edge in E which is useful for Gi. Since
a given edge from E lies in two faces of T and hence is useful for at most two
cliques Gi, this would imply that

C = |E| ≥ r

2
=

n/2 + k

4k + 2
≥ n

8k + 4
≥ n

12k
,

as desired. So fix i ≤ r and let us now show that there is an edge in E which is
useful for Gi. Suppose not. Then every vertex of Gi lies in a facial triangle of
T which is contained in G. So each such triangle contains at least one edge of
Gi. We say that all these facial triangles of T are of type I and all other facial
triangles (i.e. those which do not contain an edge of Gi) are of type II. So no
vertex of X − V (Gi) lies in a facial triangle of type I and thus there are facial
triangles of type II. Since T is a triangulation, there is a path in the dual graph
from a triangle of type I to a triangle of type II. Hence there is a triangle of
type I which shares an edge with some triangle D of type II. But D cannot be
contained in G, and so it contains an edge e from E. It is now easy to check
that e is useful for Gi, a contradiction. �
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12.4.4 Triangulations and Quadrangulations

The square G2 of a graph G is the graph obtained from G by adding an edge
between every two vertices of distance two in G. For the proof of Theorem 12.4
we will use the following result of Fan and Kierstead [33]. (It was extended to
arbitrary powers of Hamilton cycles by Komlós, Sárközy and Szemerédi [54],
see also [53].)

Theorem 12.12 Every graph of minimum degree at least 2|G|/3 contains the
square of a Hamilton path.

Proof of Theorem 12.4. Clearly, we may assume that γ < 1/3. Apply
Proposition 12.6 to obtain ε0(γ) and d0(γ). Put d := min{γ, d0(γ)}. Let
ε0(d/2, 8, 3, (d/2)4) =: ε∗ and α(d/2, 8, 3, (d/2)4) =: α be as given in the Blow-
up lemma (Lemma 12.7). Set

ε := min

{
ε0(γ),

ε∗

3
,

γα

252
,
d3

16

}
.

and k0 := max{2/ε, 20/γ}. Throughout the proof we assume that n is suffi-
ciently large for our estimates to hold.

Apply the Regularity lemma (Lemma 2.5) to G to obtain an exceptional set
V0 and clusters V1, . . . , Vk where k0 ≤ k ≤ N(ε, k0). Let L and G′ be as defined
in the Regularity lemma. By adding at most 2 of the Vi to the exceptional set
V0 if necessary, we may assume that 3 divides k. We still denote the enlarged
exceptional set by V0. Thus |V0| ≤ εn + 2L ≤ εn + 2n/k0 ≤ 2εn. Let R denote
the reduced graph. By Proposition 12.6 we have δ(R) ≥ (2/3 + γ/2)k − 2. So
Theorem 12.12 implies that R contains the square of a Hamilton path P . As
∆(P 2) = 4, we may apply Proposition 2.6 to obtain adjusted clusters V ′

i ⊆ Vi

(i ≥ 1) of size (1 − 4ε)L =: L′ such that every edge of P 2 corresponds to a
(2ε, d − 5ε)-super-regular subgraph of G′. We add all vertices that do not lie
in some V ′

i to the exceptional set V0. Thus |V0| ≤ 2εn + 4εkL ≤ 6εn. Given
a vertex x ∈ R, we will write V ′(x) for the adjusted cluster corresponding to
x. Since |V ′(x)|, |V ′(y)| ≥ L/2 for every edge xy ∈ R, it follows from the ε-
regularity of the original pair that the graph (V ′(x), V ′(y))G′ corresponding to
xy is 2ε-regular and has density > d − ε.

Partition the vertices of P 2 into k′ := k/3 disjoint sets D1, . . . ,Dk′ , each
containing 3 consecutive vertices of P . So the vertices in each Di induce a
triangle of P 2. For all 1 ≤ i < k′ let Ni be the number of vertices of R which
are joined to at least five of the six vertices in Di ∪ Di+1. Then

6δ(R) − 2e(R[Di ∪ Di+1]) ≤ eR(Di ∪ Di+1, V (R) \ (Di ∪ Di+1)) ≤ 6Ni + 4|R|
(12.5)

and thus

Ni ≥ δ(R) − 2|R|/3 − e(R[Di ∪ Di+1])/3 ≥ γk/2 − 2 − 5 > 0.

So for each 1 ≤ i < k′ we can find a vertex ai ∈ R as well as vertices
si, ti ∈ Di and ui+1, wi+1 ∈ Di+1 with siui+1 ∈ P 2 and such that in R each of
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si, ti, ui+1, wi+1 is joined to ai. (Here the vertices ai need not be distinct for
different i.) As each edge of R corresponds to a 2ε-regular subgraph of G′ of
density > d − ε, it easily follows from repeated applications of Proposition 2.3
that there are vertices xi 6= yi in V ′(ai) such that in the graph G′ their com-
mon neighbourhood in each of V ′(si), V

′(ti), V ′(ui+1), V ′(wi+1) has size at least
(d− 3ε)2L′. Moreover, all these vertices xi and yi can be chosen to be distinct.
Roughly speaking, the proof now proceeds as follows. We apply the Blow-up
lemma to obtain for all i an (almost-) triangulation which is a spanning sub-
graph of the subgraph of G′ corresponding to Di. (Each exceptional vertex
will also be added to one of these triangulations.) The vertices xi and yi will
be used to ‘glue together’ all these triangulations into a single triangulation
containing all vertices of G. In this gluing process we will also use two edges
between V ′(si) and V ′(ui+1).

So let Si ⊆ V ′(si) be any set consisting of (d − 3ε)3L′ vertices which lie
in the common neighbourhood of xi and yi but are not of the form xj or yj

(1 ≤ j < k′). Note that this is possible since (d − 3ε)3L′ ≤ (d − 3ε)2L′ − 2k′.
Define Ti, Ui+1 and Wi+1 similarly. Since we still have |Ui+1| ≥ 2εL′, we can
apply Proposition 2.3 again to find a set S′

i ⊆ Si of size (d−3ε)4L′ ≤ |Si|−2εL′

such that in G′ each vertex from S′
i has at least (d − 3ε)|Ui+1| ≥ (d − 3ε)4L′

neighbours in Ui+1.
Remove all xi and yi from the adjusted clusters to which they belong (but do

not add them to V0). Then the sizes of the clusters thus obtained lie between
L′ − 2k′ and L′. Set ℓ := ⌊(L′ − 2k′)/4⌋. By moving a constant number of
vertices into V0 if necessary, we may assume that for all 1 ≤ i ≤ k′ every cluster
belonging to Di has size 4ℓ =: L′′. We still denote by V ′(x) the (re)-adjusted
cluster corresponding to a vertex x ∈ R and by V0 the enlarged exceptional
set. Thus |V0| ≤ 7εn and each pair of clusters in Di still corresponds to a
(3ε, d/2)-super-regular subgraph of G′. Furthermore, we can easily ensure that
each newly adjusted cluster of the form V ′(si), V ′(ti), V ′(ui) or V ′(wi) still
contains S′

i, Ti, Ui or Wi respectively.
Let H1, H2 and H3 be the 3-partite plane graphs of order 3L′′ given in

Fig 12.3. So each Hi has maximum degree 8 and all of its vertex classes have
size L′′ = 4ℓ. Moreover, both H1 and H2 are triangulations apart from two
disjoint facial 4-cycles. In H1 the vertices on these 4-cycles lie in the same two
vertex classes while in H2 one of the 4-cycles has its vertices in the first and
second vertex class and the other one in the second and third vertex class. H3

is a triangulation apart from one facial 4-cycle.
The Blow-up lemma implies that for all 1 ≤ i ≤ k′ the subgraph of G′

corresponding to R[Di] contains a spanning copy of each of H1, H2 and H3.
However, before we apply the Blow-up lemma we also have to take care of the
exceptional vertices. So given a vertex v ∈ V0 and 1 ≤ i ≤ k′, we say that Di

is v-friendly if each of the three newly adjusted clusters in Di contains at least
γL′′ neighbours of v. Let Nv denote the number of v-friendly Di’s. Then

(2/3 + γ/2)n < dG(v) − |V0| ≤ Nv · 3L′′ + k′ · (2 + γ)L′′.
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H3

H1 H2

Figure 12.3: The graphs H1, H2 and H3, the only non-triangular facial cycles
are indicated with thick lines

Thus

Nv >
n

3L′′

(
2

3
+

γ

2
− k(2 + γ)L′′

3n

)
≥ n

3L′′

(γ

2
− γ

3

)
=

γn

18L′′

and hence
2|V0|
αL′′ ≤ 14εn

αL′′ < Nv

for every v ∈ V0. This shows that we can successively assign each exceptional
vertex v ∈ V0 to some v-friendly Di in such a way that to each Di we assign at
most αL′′/2 vertices.

We are now ready to construct our spanning triangulation of G. We first
apply the Blow-up lemma to find a spanning copy P1 of H3 in the subgraph of
G′ corresponding to R[D1] so that the vertices of the unique facial 4-cycle in
P1 lie alternately in S′

1 and T1 and so that every exceptional vertex v assigned
to D1 is joined to all vertices on some facial triangle of P1 where these facial
triangles are disjoint for distinct such vertices v ∈ V0. (This can be done in a
similar way as in the proof of Theorem 12.2 since H3 contains at least αL′′/2
disjoint facial triangles which are also disjoint from the unique facial 4-cycle of
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H3.) Let x1
S, y1

S ∈ S′
1 and x1

T , y1
T ∈ T1 be the vertices of the facial 4-cycle of P1

and call this cycle C1
ST .

For 1 < i < k′, we now say that Di is of type I if the unordered pairs si, ti
and ui, wi coincide and of type II if they differ. The pair si, ti will be used to
‘glue’ the (almost-) triangulation Pi corresponding to Di to that correspond-
ing to Di+1, whereas the pair ui, wi will be used to ‘glue’ Pi to the (almost-)
triangulation corresponding to Di−1. As the next step, we apply the Blow-up
lemma to find a spanning copy P2 of H1 if D2 is of type I, or of H2 if it is of
type II, in the subgraph of G′ corresponding to R[D2] such that the vertices of
one facial 4-cycle lie alternately in S′

2 and T2, the vertices of the other facial
4-cycle lie alternately in U2 and W2 and such that every exceptional vertex v as-
signed to D2 is joined to all vertices on some facial triangle of P2. (Again, these
facial triangles are disjoint for distinct such vertices v.) Let x2

S , y2
S ∈ S′

2 and
x2

T , y2
T ∈ T2 be the vertices of the first facial 4-cycle C2

ST and let x2
U , y2

U ∈ U2

and x2
W , y2

W ∈ W2 be the vertices of the other facial 4-cycle C2
UW . As, by def-

inition of S′
1, each of x1

S, y1
S has at least (d − 3ε)4L′ neighbours in U2, we may

also require that x2
U is joined to x1

S and y2
U is joined to y1

S . (To achieve this, we
restrict the image of x2

U to the neighbourhood of x1
S in U2 and the image of y2

U

to the neighbourhood of y1
S in U2.) Furthermore, by definition of S′

1, T1, U2 and
W2, both x1 and y1 are joined to all vertices of C1

ST and C2
UW . Thus x1 and

y1 may be used to ‘glue’ P1 and P2 together in order to obtain a planar graph
which is a triangulation apart from one facial 4-cycle, namely C2

ST (Fig. 12.4).
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Figure 12.4: Gluing two almost-triangulations P1 and P2

We may continue in this fashion to obtain a spanning triangulation. Indeed,
for Pk′ we again choose a copy of H3 such that the vertices on the unique facial
4-cycle Ck′

UW of Pk′ lie alternately in Uk′ and Wk′ and such that one of the two

vertices from Uk′ on Ck′

UW is joined to xk′−1
S while the other one is joined to

yk′−1
S . Thus if we glue Pk′ into the planar graph constructed in the previous
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step, we obtain a triangulation T . As each exceptional vertex v is joined to
all vertices on some facial triangle of T and all these are distinct, we can add
the exceptional vertices to T to obtain a triangulation containing all vertices of
G. �

Proof of Theorem 12.5 (sketch). The proof proceeds in a similar way as
that of Theorem 12.4 except for a few modifications (and simplifications) which
we describe below. We may now assume that the reduced graph R has even
order and contains a Hamilton path P (instead of the square of a Hamilton
path). We partition P into |P |/2 := k′ independent edges D1, . . . Dk′ . We then
adjust the clusters such that each edge Di corresponds to a (2ε, d − 2ε)-super-
regular subgraph of G′. A calculation similar to (12.5) shows that for every
pair Di,Di+1 there is a vertex ai ∈ R which is joined to both a vertex si ∈ Di

and a vertex ui+1 ∈ Di+1. We choose two vertices xi, yi ∈ V ′(ai) which have
many common neighbours in both V ′(si) and V ′(ui+1). Finally, we apply the
Blow-up lemma to obtain spanning quadrangulations Pi of the subgraphs of G′

corresponding to the Di which are ‘glued together’ into a single quadrangulation
P using the vertices xi and yi (Fig. 12.5). These quadrangulations are chosen
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Figure 12.5: Gluing two quadrangulations P1 and P2

so that every exceptional vertex v is joined to two opposite vertices on some
facial 4-cycle where these 4-cycles are disjoint for distinct exceptional vertices
v. So all the exceptional vertices can be added to P to obtain a spanning
quadrangulation of G. �

As remarked towards the end of Section 12.1, the planar graphs guaranteed
by Theorems 12.2–12.5 can be constructed in polynomial time: both the Regu-
larity lemma and the Blow-up lemma can be implemented in polynomial time
(see [4] and [52]). As the order of the reduced graph is constant, the remaining
steps can also be carried out in polynomial time.
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Chapter 13

Spanning triangulations in

graphs

13.1 Introduction

The aim of this chapter is to prove that the error term γn in Theorem 12.4 can
be omitted:

Theorem 13.1 There exists an integer n0 such that every graph G of order
n ≥ n0 and minimum degree at least 2n/3 contains a triangulation as a spanning
subgraph.

Our proof of Theorem 13.1 can easily be extended to obtain a spanning trian-
gulation of an arbitrary surface (see Section 13.6).

The example before Theorem 12.4 shows that Theorem 13.1 is best possible
for all integers n which are divisible by 3. For convenience of the reader, we
repeat it here. Consider the graph G∗ which is obtained from two disjoint
cliques A and B of order n/3 by adding an independent set C of n/3 new
vertices and joining each of them to all the vertices in the two cliques. So G∗

has minimum degree 2n/3 − 1. Observe that any spanning triangulation in G∗

would have two facial triangles T1 and T2 which share an edge and are such that
T1 contains a vertex of A and T2 contains a vertex of B. But this is impossible
since every triangle of G∗ containing a vertex of A (respectively B) can have at
most one vertex outside A (respectively B), namely in C. In Proposition 13.17
we will extend this example slightly to show that for all n a minimum degree
of ⌈2n/3⌉ − 1 does not ensure a spanning triangulation.

The spanning triangulation guaranteed by Theorem 13.1 can be found in
polynomial time (see Section 13.6). In other words, the maximum planar sub-
graph problem (which in a given graph G asks for a planar subgraph with the
maximum number of edges) can be solved in polynomial time for graphs G of
minimum degree at least 2n/3.

Our proof of Theorem 13.1 relies on Szemerédi’s Regularity lemma, the
Blow-up lemma of Komlós, Sárközy and Szemerédi [51] and several ideas which
were introduced in [50] by the same authors. (In [50] they proved the related
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result that every graph of sufficiently large order n and minimum degree at
least 2n/3 contains the square of a Hamilton cycle.)

This chapter is organized as follows. In the next section we introduce the
necessary definitions and tools, mainly concerning the Blow-up lemma. In Sec-
tion 13.3 we give an overview of the proof. In Section 13.4 we then prove
Theorem 13.1 for the case when G is rather similar to the graph G∗ described
in the introduction. Based on this, the general case is then dealt with in the
Section 13.5. In the final section, we prove Proposition 13.17, describe how
Theorem 13.1 can be extended to obtain triangulations of arbitrary surfaces
and discuss some open questions.

13.2 Notation and tools

Given a vertex x ∈ G, we denote the set of its neighbours in some set A ⊆ V (G)
by NA(x). Given two disjoint subgraphs H and H ′ of G, we write eG(H,H ′)
for eG(V (H), V (H ′)), i.e. for the number of all those edges of G which have one
endvertex in H and the other in H ′. The common neighbourhood of a subgraph
H of G is the set of all those vertices of G which are joined to all vertices of H.
Given a plane graph P , a facial cycle of P is a cycle which is the boundary
∂F of some face F of P . P is a triangulation if all its faces are bounded by
triangles. So by Euler’s formula a triangulation has 3n − 6 edges. A 4-face of
a plane graph is a face bounded by a cycle of length 4.

In our proof, we will build up the spanning triangulation from smaller frag-
ments. For this, we introduce the following notation. Given an integer k ≥ 1,
we call a plane graph P an almost-triangulation (with k attachment faces) if
precisely k faces of P are bounded by cycles of length at least 4 and all other
faces are bounded by triangles. Each face which is not bounded by a triangle
is an attachment face. Given almost-triangulations P and P ′ and attachment
faces F of P and F ′ of P ′ where F ′ is the outer face of P ′, we say that a graph
H is obtained by attaching P and P ′ (via F and F ′) if H is (isomorphic to the
graph) obtained by inserting P ′ into F and adding enough edges between ∂F
and ∂F ′ to triangulate the resulting face whose boundary is ∂F∪∂F ′. Note that
H is a triangulation if both P and P ′ had only one attachment face. (We do not
allow triangular faces as attachment faces as this turns out to be inconvenient.)

One of our main tools will be the following theorem of Corrádi and Haj-
nal [26].

Theorem 13.2 Every graph R whose minimum degree is at least 2|R|/3 con-
tains ⌊|R|/3⌋ disjoint triangles.

Given 0 < ε < 1, a graph G of order n and sets X ⊆ A ⊆ V (G), we say
that a bipartition A1, A2 of A splits X ε-fairly if

| |X ∩ A1| − |X ∩ A2| | ≤ εn.

We say that a bipartition A1, A2 of A is ε-fair if A as well as the sets NA(x)
are split ε-fairly for every vertex x ∈ G.
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Proposition 13.3 For each 0 < ε < 1 there exists an integer n0 = n0(ε) such
that for every graph G of order n ≥ n0, for every set A ⊆ V (G) and for every
family X of at most n2 subsets of A, there exists an ε-fair bipartition of A which
splits each set in X ε-fairly.

Proof. Consider a random bipartition A1, A2 of A which is obtained by in-
cluding each vertex of A into A1 with probability 1/2 independently of all other
vertices in A. Let X ′ be the family which consists of A, all the sets in X as
well as all sets of the form NA(x) (x ∈ G). We say that a set X ∈ X ′ is
bad if it is not split ε-fairly. Let X ∗ ⊆ X ′ be the family of all X ∈ X ′ with
|X| ≥ εn. Thus no X ∈ X ′ \ X ∗ will be bad and for each X ∈ X ∗ we have
n/2 ≥ E(|A1 ∩ X|) = |A ∩ X|/2 ≥ εn/2. Hence Lemma 3.6 implies that for
each X ∈ X ∗

P(X is bad) = P(| |A1 ∩ X| − E(|A1 ∩ X|) | > εn/2) ≤ 2e−β(ε)εn/2.

Therefore, if n is sufficiently large, the expected number of bad sets X ∈ X ′ is
at most |X ′| · e−β(ε)εn/2 < 1. So there is an outcome A1, A2 for which no set
X ∈ X ′ is bad, i.e. a bipartition A1, A2 of A as desired. �

Suppose that R is the reduced graph obtained by an application of the
Regularity lemma (Lemma 2.5) to some graph G. Given a graph H ⊆ R, we
denote by G(H) the subgraph of G which is induced by all those vertices of G
that lie in some cluster Vi ∈ V (H). G′(H) is defined similarly (where G′ is as
defined in Lemma 2.5). Given a set X ⊆ V (R), we denote by G(X) the set of
all those vertices of G which lie in some cluster Vi ∈ X.

We will use the next well-known fact. Its simple proof is similar to that of
Proposition 12.6.

Proposition 13.4 Suppose that c, d and ε are positive numbers such that ε ≤
d/2. Then an application of Lemma 2.5 to a graph G of minimum degree at
least c|G| yields a reduced graph R of minimum degree at least (c − 2d)|R|.

A key ingredient of our proof will be the following special case of the Blow-
up lemma of Komlós, Sárközy and Szemerédi [51]. It implies that dense 3-
partite graphs G behave like complete 3-partite graphs with respect to contain-
ing bounded degree graphs as subgraphs if all the 3 bipartite graphs between
the vertex classes of G are super-regular.

Lemma 13.5 (Blow-up lemma) For all positive d, c and ∆, there are posi-
tive numbers ε0 = ε0(d, ∆, c) and α = α(d, ∆, c) ≤ 1/2 such that the following
holds for all 0 < ε ≤ ε0. Given L ∈ N, let KL,L,L denote the complete 3-partite
graph with vertex classes V1, V2 and V3 of size L. Let G be a spanning subgraph
of KL,L,L such that for all 1 ≤ i < j ≤ 3 the graph (Vi, Vj)G is (ε, d)-super-
regular. Then G contains a copy of every subgraph H of KL,L,L with ∆(H) ≤ ∆.
Furthermore, we can additionally require that for vertices x ∈ H ⊆ KL,L,L lying
in Vi their images in the copy of H in G are contained in (arbitrary) given sets
Cx ⊆ Vi provided that |Cx| ≥ cL for each such x and provided that there are at
most αL such vertices x.
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The vertices x in Lemma 13.5 are said to be image restricted to Cx.
Suppose that G is a graph as described in the Blow-up lemma. Then this

lemma implies that G contains a triangulation as spanning subgraph. Indeed,
all we have to show is that for each L ∈ N there is a 3-partite triangulation of
bounded maximum degree with vertex classes of size L. But such triangulations
can easily be constructed (see e.g. Figure 13.1 for the case when L is divisible
by 4). The following simple corollary shows that much more is true.

Figure 13.1: A 3-partite triangulation of maximum degree 8 with vertex classes
of equal size

Corollary 13.6 Given positive numbers d and c, there is a positive number
ε0 = ε0(d, c) and an integer n0 = n0(d, c) such that for all 0 < ε ≤ ε0 the
following holds. Suppose that G is a 3-partite graph of order n ≥ n0 whose vertex
classes A, B and C have the same size and such that each of the bipartite graphs
(A,B)G, (A,C)G and (B,C)G is (ε, d)-super-regular. Furthermore, suppose
that X is a set of additional vertices (i.e. X ∩ V (G) = ∅) of size at most 100εn
such that each vertex x ∈ X has at least cn neighbours in at least two of the
vertex classes of G. Finally, suppose that A′ ⊆ A, B′ ⊆ B and C ′ ⊆ C are
sets of size at least cn. Then there exists a triangulation whose vertex set is
V (G) ∪ X and which has a facial triangle containing a vertex from each of A′,
B′ and C ′.

Proof. Set ε0 := min{ε0(d, 8, c), α(d, 8, c)/1300}, where ε0(d, 8, c) and α(d, 8, c)
are as defined in the Blow-up lemma. Throughout the proof, we suppose that n
is sufficiently large compared with ε for our estimates to hold. Let XAB be the
set of all those vertices in X which have at least cn neighbours in both A and
B. Let XBC ⊆ X \ XAB be the set of all vertices with at least cn neighbours
in both B and C. Set XAC := X \ (XAB ∪ XBC). Thus each x ∈ XAC has at
least cn neighbours in A and at least cn neighbours in C.

Consider any 3-partite almost-triangulation P whose vertex classes are A,
B and C and which satisfies the following properties:
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• ∆(P ) ≤ 8.

• P has precisely |X| attachment faces, all of which are bounded by 4-
cycles. All these 4-cycles are disjoint. For |XAB | (respectively |XBC |;
|XAC |) attachment faces F of P , the vertices on the boundary ∂F of F
lie alternately in A and B (respectively in B and C; in A and C).

• P has a facial triangle D which is disjoint from all the facial 4-cycles of P .

Such almost-triangulations can easily be constructed, for example modify the
graph in Figure 13.1. Assign each vertex x ∈ XAB to an attachment face Fx of
P such that the vertices of ∂Fx lie alternately in A and B and such that the
Fx are different for distinct x. Proceed similarly for all x ∈ XBC ∪ XAC . The
Blow-up lemma implies that G contains a copy of P such that the copy of D in
G meets each of A′, B′ and C ′ and such that each x ∈ X is joined to all vertices
in the copy of ∂Fx in G. (To achieve the former, when applying the Blow-up
lemma we only have to restrict the image of the unique vertex in V (D) ∩ A to
A′, that of the vertex in V (D) ∩ B to B′ and that of the remaining vertex of
D to C ′. Similarly, for each x ∈ XAB (say) we have to restrict the images of
the vertices on ∂Fx in A and B to NA(x) and NB(x) respectively.) The graph
obtained from the copy of P in G by including each vertex x into Fx and joining
it to all vertices on ∂Fx is a triangulation as required in the corollary. �

13.3 Overview of the proof

13.3.1 Applying the Regularity lemma and covering the re-

duced graph with triangles

Fix positive constants ε and d with ε ≪ d ≪ 1. We first apply the Regularity
lemma (Lemma 2.5) to G to obtain an exceptional set V0 and clusters V1, . . . , Vk

where 1/ε ≤ k ≤ N(ε, 1/ε). Let L and G′ be as defined in the Regularity lemma
and let R denote the reduced graph. Proposition 13.4 shows that δ(R) ≥
(2/3− 2d)k. Now Theorem 13.2 implies that there exists a family T of disjoint
triangles of R such that all but at most 13dk vertices of R lie in some triangle
from T . (To see this, add 6dk new vertices to R and join them to all other
vertices. The graph R′ thus obtained has minimum degree at least 2|R′|/3.
Theorem 13.2 shows that R′ contains ⌊|R′|/3⌋ disjoint triangles. Then all but
at most 12dk + 2 vertices of R are contained in a triangle lying entirely in R.)

Delete all those vertices from R which do not lie in a triangle from T and
still denote this graph by R. Let T1, . . . , Tk′ be the triangles in T . So |R| = 3k′

and
δ(R) ≥ (2/3 − 2d)k − 13dk ≥ (2/3 − 15d)|R|. (13.1)

Clearly, we may assume that V1, . . . , V3k′ are the vertices of R. We add all
vertices of G which do not lie in some Vi with 1 ≤ i ≤ 3k′ to the exceptional
set and still denote this set by V0. Thus |V0| ≤ εn + 13dkL. Next we apply
Proposition 2.4 to the union R∗ ⊆ R of all the triangles in T to obtain for
each cluster Vi a subset of size (1 − 2ε)L =: L′ such that for all the edges
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ViVj ∈ R∗ the bipartite subgraphs of G′ between the corresponding subsets are
(2ε, d − 3ε)-super-regular. For each vertex Vi ∈ R, we add all those vertices
in Vi which do not lie in the selected subset of Vi to V0 and still denote this
selected subset by Vi and the enlarged exceptional set by V0. Thus

|V0| ≤ εn + 13dkL + 2εkL ≤ 14dn. (13.2)

Note that the bipartite subgraph of G′ corresponding to an edge ViVj ∈ R is
still 2ε-regular of density > d − ε.

13.3.2 Gluing together the almost-triangulations correspond-

ing to the triangles Ti

The Blow-up lemma immediately implies that for each triangle Ti ∈ T the
corresponding subgraph G(Ti) of G contains a spanning triangulation Pi. How-
ever, in order to obtain a spanning triangulation in G, we need to ‘glue’ all these
together into a single one. As already indicated in Section 13.2, to make this
‘gluing process’ work, some faces of Pi (the attachment faces) will be 4-faces,
i.e. Pi will only be an almost-triangulation. We will ‘glue’ Pi to Pi+1 by using
a very small almost-triangulation Gi ⊆ G which has two attachment 4-faces F ′

i

and F ′′
i . F ′

i is used to attach Gi to Pi while F ′′
i is used to attach it to Pi+1.

For each 1 ≤ i < k′ we set aside a suitable such graph Gi in advance, i.e. we
remove its vertices from the clusters they belong to before applying the Blow-
up lemma. In order to attach Gi to Pi, we need to make sure that there are
enough edges between the boundary of one of the attachment faces of Pi, Fi

say, and the boundary ∂F ′
i of F ′

i . But if the neighbourhood of ∂F ′
i in G(Ti) is

large in some sense, then when applying the Blow-up lemma Pi can be chosen
so that these ∂Fi–∂F ′

i edges exist. Depending on the (common) neighbourhood
of Ti and Ti+1 in R, there are three ways in which this ‘gluing process’ will be
done (Fig. 13.5). In Figure 13.5(a) and (c) the graph Gi is just a 4-cycle, in
Figure 13.5(b) it is the graph obtained from a K2,4 by adding two independent
edges in the larger vertex class.

13.3.3 Incorporating the exceptional vertices

The preceding argument gives us a triangulation which contains all vertices of
G apart from the exceptional vertices in V0. These will be incorporated as
follows. We assign each exceptional vertex x ∈ V0 to a triangle Ti such that x
has many neighbours in at least two clusters of Ti and such that not too many
exceptional vertices are assigned to the same Ti.

For every i ≤ k′ we now proceed as follows. For the first exceptional vertex
x assigned to Ti, we choose a suitable almost-triangulation Qx ⊆ G(Ti) of
bounded order which has two attachment 4-faces Fx and F ′

x. All the vertices
on the boundary of Fx will be adjacent to x, so Fx can be triangulated by
inserting x. For the next exceptional vertex y assigned to Ti we choose a
suitable almost-triangulation Qy ⊆ G(Ti) − Qx with three attachment 4-faces
Fy, F ′

y and F ′′
y . Again, y will be inserted in Fy and we attach Qy to Qx via F ′′

y

and F ′
x. We continue in this way until we have dealt with all the exceptional
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vertices assigned to Ti. In this way we obtain an almost-triangulation Qi with
one attachment 4-face.

Our aim is to apply the Blow-up lemma to find a spanning almost-triangulation
in the remainder of G(Ti) which has three suitable attachment 4-faces: one to
attach Qi, one to attach the ‘gluing graph’ Gi and one to attach Gi−1. (If
i = 1 or i = k′ this almost-triangulation will have only two attachment 4-faces.
So the graph obtained by carrying out all these attachments will be a span-
ning triangulation in G.) The only difficulty is that for this the remainder of
G(Ti) should remain super-regular. But by choosing the graphs Qx carefully
enough (using a simple probabilistic argument) the super-regularity can also be
maintained.

13.3.4 Extremal case

The strategy described in Section 13.3.2 breaks down if G is very similar to the
graph G∗ given in Section 13.1 which had minimum degree ⌈2n/3⌉ − 1 but no
spanning triangulation. In this case, the vertices of our given graph G can be
partitioned into three sets A, B and C of roughly the same size such that the
density of the bipartite graph (A,B)G between A and B is very small. This
implies that G[A] and G[B] as well as the bipartite graphs (A,C)G and (B,C)G

are nearly complete. (If also the maximum degree of G is not much larger than
2n/3, then the graph G[C] will be nearly empty.) In this extremal case we
will find our spanning triangulation in G directly. The structure of G makes it
rather easy to find a spanning subgraph consisting of two triangulations (one
containing A and part of C and the other B and the remainder of C). The
main difficulty is that we may have rather few edges which can be used to glue
together these two triangulations into a single one.

13.4 The extremal case

Given ε > 0 and a partition A,B,C of the vertex set of a graph G, we say
that a vertex x ∈ A (respectively x ∈ B) is typical if x has at least (1 − ε)|A|
neighbours in A (respectively at least (1 − ε)|B| neighbours in B) and at least
(1− ε)|C| neighbours in C. Similarly, we call a vertex x ∈ C typical if it has at
least (1 − ε)|A| neighbours in A and at least (1 − ε)|B| neighbours in B.

Definition 13.7 Given ε > 0, a partition A,B,C of the vertex set of a graph
G is ε-good if it satisfies the following properties.

(i) Each vertex of C has at least 3|A|/4 neighbours in A and at least 3|B|/4
neighbours in B.

(ii) In each of the classes A, B and C all but at most an ε-fraction of the
vertices are typical.

(iii) No vertex in A∪B has both at least 7|A|/8 neighbours in A and at least
7|B|/8 neighbours in B.
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(iv) For every vertex a ∈ A we have |NB(a)| ≤ |NA(a)| + εn. Similarly, every
vertex b ∈ B satisfies |NA(b)| ≤ |NB(b)| + εn.

(v) (1 − ε)n/3 ≤ |A|, |B|, |C| ≤ (1 + ε)n/3.

Note that if δ(G) ≥ 2n/3 and ε is sufficiently small, then conditions (iv) and (v)
imply that each vertex x ∈ A (respectively x ∈ B) has at least |A|/4 neighbours
in A (respectively at least |B|/4 neighbours in B) and (iii) together with (v)
imply that x has at least |C|/10 neighbours in C.

Throughout the proofs in this section we assume that ε is sufficiently small and
that n is sufficiently large for our estimates to hold.

Lemma 13.8 For each sufficiently small positive ε there exists a positive γ =
γ(ε) and an integer n0 = n0(ε) such that the following holds. Suppose that G is
a graph of order n ≥ n0 and minimum degree at least 2n/3 whose vertex set can
be partitioned into A′, B′ and C ′ such that (1 − γ)n/3 ≤ |A′|, |B′| ≤ n/3 and
such that the density of (A′, B′)G is at most γ. Then G has an ε-good partition.

Proof. Set D := 64/ε2 and γ := 1/D2. We will show that the partition
A′, B′, C ′ can be made into an ε-good partition by moving only a small fraction
of the vertices of G into different partition classes. Let A∗ be the set of all those
vertices in A′ which have at least |B′|/D neighbours in B′ and define B∗ ⊆ B′

similarly. Since |A∗| · |B′|/D ≤ eG(A′, B′) ≤ γ|A′||B′| and the same is true for
B∗, we have

|A∗| ≤ |A′|
D

<
εn

500
and |B∗| ≤ |B′|

D
<

εn

500
. (13.3)

Note that every vertex in A′\A∗ has at least 2n/3−n/3D neighbours in A′∪C ′

and thus at least n/3 − n/3D ≥ (1 − ε/2)|C ′| neighbours in C ′ and at least
n/3− 2γn/3−n/3D ≥ (1− ε/2)|A′| neighbours in A′. Thus in A′ (respectively
in B′) only a small fraction of the vertices might become non-typical if we move
a few of the vertices of G into different partition classes. We will now show that
the same is true for C ′. Let C ′

A be the set of those vertices in C ′ which have at
most (1 − ε/2)|A′| neighbours in A′ and define C ′

B ⊆ C ′ similarly. Then

|C ′
A| · (1 − ε/2)|A′| + |C ′ \ C ′

A| · |A′| ≥ eG(A′, C ′) ≥
(n

3
− n

3D

)
· |A′ \ A∗|

(13.3)

≥ n

3
·
(

1 − 1

D

)2

|A′|

and therefore

|C ′
A| ≤

2

ε

(
|C ′| − n

3
·
(

1 − 2

D

))
≤ 2

ε
· n

3

(
2γ +

2

D

)

≤ 2

ε
· n

3
· 2

D
· 3

2
≤ εn

32
. (13.4)

Similarly, |C ′
B | ≤ εn/32. Let C∗ ⊆ C ′ be the set of all those vertices which

either have less than 6|A′|/7 neighbours in A′ or less than 6|B′|/7 neighbours in
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B′ (or both). (So C∗ contains all vertices in C ′ which, when we move a few of
the vertices of G into different partition classes, might come into conflict with
condition (i) of Definition 13.7. Thus we will move each vertex in C∗ to either
A′ or B′.) Note that C∗ ⊆ C ′

A ∪ C ′
B . Let C∗

A ⊆ C∗ be the set of all vertices
which have more neighbours in A′ than in B′ and set C∗

B := C∗ \ C∗
A.

Let A∗
C ⊆ A′ be the set of all vertices which have at least 6|A′|/7 neighbours

in A′ and at least 6|B′|/7 neighbours in B′. Note that A∗
C ⊆ A∗. Define B∗

C ⊆
B∗ similarly. (So A∗

C ∪B∗
C contains all vertices which might come into conflict

with condition (iii) of Definition 13.7 and thus we will move these vertices to
C ′.) Moreover, note that each vertex in A′ which has more neighbours in B′

than in A′ lies in A∗. Let A∗
B be the set of all those vertices in A∗ \ A∗

C which
have more neighbours in B′ than in A′ and define B∗

A ⊆ B∗ \ B∗
C similarly.

Finally, set A := (A′ \ (A∗
C ∪A∗

B))∪C∗
A ∪B∗

A, B := (B′ \ (B∗
C ∪B∗

A))∪C∗
B ∪A∗

B

and C := (C ′ \ C∗) ∪ A∗
C ∪ B∗

C .
Using that all the vertices which we moved into another partition class lie

in A∗∪B∗∪C∗ and that this set has size at most εn/15, it is not hard to check
that the partition A,B,C is ε-good. For example,

|C ′
A ∪ C ′

B ∪ A∗
C ∪ B∗

C |
(13.3),(13.4)

≤ εn

16
+

εn

250
≤ ε|C|

and it is easy to see that all vertices in C \ (C ′
A ∪C ′

B ∪A∗
C ∪ B∗

C) have at least
(1 − ε)|A| neighbours in A and at least (1 − ε)|B| neighbours in B. So all but
at most an ε-fraction of the vertices in C are typical. �

Lemma 13.9 For each sufficiently small positive ε there exists an integer n0 =
n0(ε) such that the following holds. Suppose that G is a graph of order n ≥ n0

and minimum degree at least 2n/3 which has an ε-good partition A,B,C for
which there are two independent A–B edges a1b1 and a2b2 such that each ai

is typical and such that each bi has at most |A|/3 neighbours in A. Then G
contains a triangulation as spanning subgraph.

Proof. The fact that δ(G) ≥ 2n/3 and condition (v) of Definition 13.7 imply
that each bi has at least 7|C|/12 neighbours in C. Since both a1 and a2 are
typical, this implies that there are two typical vertices c1, c2 ∈ C which are both
joined to each of a1, a2, b1, b2. Since each of a1, a2, c1, c2 is typical, their common
neighbourhood in A has size at least (1 − 4ε)|A| and thus contains two typical
vertices a′ and a′′. Similarly, since each bi has at least 7|B|/12 neighbours in B,
the common neighbourhood of b1, b2, c1, c2 contains two typical vertices b′ and
b′′. Set A′ := A \ {a1, a2, a

′, a′′}, B′ := B \ {b1, b2, b
′, b′′} and C ′ := C \ {c1, c2}.

Apply Proposition 13.3 to obtain an ε-fair partition of A′ into A′
1 and A′

2, an
ε-fair partition of B′ into B′

1 and B′
2 and an ε-fair partition of C ′ into C ′

A and
C ′

B such that firstly, the common neighbourhood of the 4-cycle a1a
′a2a

′′ =: Da

in A′ as well as that in C ′ are split ε-fairly and secondly, such that the common
neighbourhood of b1b

′b2b
′′ =: Db in B′ as well as that in C ′ are split ε-fairly.

By removing a set XA of at most 10εn vertices from A1 ∪ A2 ∪ CA and
a set XB of at most 10εn vertices from B1 ∪ B2 ∪ CB, we may assume that
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|A1| = |A2| = |CA|, |B1| = |B2| = |CB | and that all these six sets consist only
of typical vertices. Using this, it is easy to see that each of the bipartite graphs
(A1, A2)G, (A1, CA)G and (A2, CA)G is (10ε, 1/2)-super-regular. Condition (i)
of Definition 13.7 together with the remark after Definition 13.7 imply that for
each x ∈ XA its neighbourhood NA′(x) in A′ has size at least |A′|/5. Since
NA′(x) was split ε-fairly, it follows that each vertex x ∈ XA has at least |Ai|/10
neighbours in Ai (i = 1, 2). Moreover, also the common neighbourhoods of Da

in A1, A2 and CA have sizes at least |A1|/10, |A2|/10 and |CA|/10 respectively.
Thus if ε ≤ ε0(1/2, 1/30)/10 and n ≥ 4n0(1/2, 1/30), where ε0 and n0 are as
defined in Corollary 13.6, then Corollary 13.6 implies that G[A1∪A2∪CA∪XA]
contains a spanning triangulation PA which has a facial triangle that lies in the
common neighbourhood of Da. Similarly, it follows that G[B1 ∪B2 ∪CB ∪XB ]
contains a spanning triangulation with one facial triangle lying in the common
neighbourhood of Db. PA and PB can be ‘glued’ together into a spanning
triangulation of G by using c1 and c2 and the 4-cycles Da and Db as well as
suitable edges (Fig. 13.2). �
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Figure 13.2: Gluing PA and PB together into a spanning triangulation in the
proof of Lemma 13.9

Lemma 13.10 For each sufficiently small positive ε there exists an integer
n0 = n0(ε) such that the following holds. Suppose that G is a graph of order
n ≥ n0 and minimum degree at least 2n/3 which has an ε-good partition A,B,C
for which there are vertices b1, b2 ∈ B and typical vertices c1, c2 ∈ C such that
each ci is joined to both b1 and b2 and each bi has at least 4ε|A| neighbours in
A. Then G contains a triangulation as spanning subgraph.
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Proof. Since both c1 and c2 are typical, their common neighbourhood in A
has size at least (1 − 2ε)|A|. Thus there are typical vertices a1 and a2 such
that a1 is joined to each of b1, c1, c2 while a2 is joined to each of b2, c1, c2. Now
one can proceed in a similar way as in the proof of Lemma 13.9. First find
two typical vertices a′, a′′ ∈ A and six typical vertices b′1, b

′, b′2, b
′′
1 , b

′′, b′′2 ∈ B
such that a1a

′a2a
′′ =: Da is a 4-cycle lying in the common neighbourhood of

c1 and c2 and such that b1b
′
1b

′b′2b2b
′′
2b

′′b′′1 =: Db is an 8-cycle in the common
neighbourhood of c1 and c2 (since b1 and b2 might have no common neighbours
in B, we cannot take Db to be a 4-cycle anymore). Similarly as in the proof
of Lemma 13.9, choose disjoint triangulations PA and PB such that, firstly,
V (PA) ∪ V (PB) = V (G) \ (V (Da ∪ Db) ∪ {c1, c2}), secondly, one of the facial
triangles of PA lies in the common neighbourhood of Da and thirdly, PB has a
facial triangle which lies in the common neighbourhood of Db − {b1, b2} and
meets both NB(b1) and NB(b2). (Since b1 and b2 might have no common
neighbours in B, this time we cannot guarantee a facial triangle of PB that
lies in the common neighbourhood of the entire cycle Db.) As c1 and c2 are
joined to all vertices on Da and Db, they can be used to ‘glue’ PA and PB

together to obtain a spanning triangulation in G (Fig. 13.3). �
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Figure 13.3: Gluing PA and PB together into a spanning triangulation in the
proof of Lemma 13.10

Corollary 13.11 For each sufficiently small positive ε there exists an integer
n0 = n0(ε) such that the following holds. Suppose that G is a graph of order
n ≥ n0 and minimum degree at least 2n/3 which has an ε-good partition A,B,C
for which there are distinct vertices b1, b2, . . . , b11 ∈ B such that each bi has
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at least 4ε|A| neighbours in A. Then G contains a triangulation as spanning
subgraph.

Proof. As remarked after Definition 13.7, each bi has at least |C|/10 neighbours
in C. Hence an easy calculation shows that the must be two of the bi whose
common neighbourhood in C contains at least two typical vertices. So we may
assume that there are two typical vertices c1, c2 ∈ C which are joined to both
b1 and b2. Now the corollary follows immediately from Lemma 13.10. �

Proposition 13.12 Given 0 < ε ≤ 1, every graph H of average degree at least
2 + ε contains a cycle of length at most 6(log2 |H|)/ε.
Proof. Note that the average degree of H will not decrease below 2 + ε by
deleting a vertex of degree one or by deleting all the vertices on a path of length
at least ⌈2/ε⌉−1 =: ℓ whose vertices all have degree two in H. So by considering
a subgraph of H if necessary, we may assume that the minimum degree of H is
at least 2 and that H does not contain paths of length at least ℓ all of whose
vertices have degree 2 in H.

Since we may assume that H does not contain a cycle of length at most
ℓ + 2, this implies that each vertex x of degree 2 in H lies on a unique path
Px of length at most ℓ + 1 such that all the inner vertices of Px, but not its
endvertices, have degree 2 in H and such that the endvertices of Px are not
joined by an edge. (So Px is induced.) Moreover, since we may assume that H
does not contain a cycle of length at most 2ℓ + 2, two such paths Px and Py

either coincide or meet at most in one of their endpoints. Thus the graph H ′

obtained from H by replacing each such Px by an edge has minimum degree at
least 3 (and no multiple edges).

It is easy to see that H ′ contains a cycle C of length at most 2 log2 |H ′| ≤
2 log2 |H|. As each edge of C either lies in H or corresponds to some Px, C
corresponds to a cycle in H whose length is at most (ℓ + 1)|C|. �

Lemma 13.13 For each sufficiently small positive ε there exists an integer
n0 = n0(ε) such that the following holds. Suppose that G is a graph of order
n ≥ n0 and minimum degree at least 2n/3 which has an ε-good partition A,B,C
for which G[C] contains a cycle D of length at most (log2 n)2. Then G contains
a triangulation as spanning subgraph.

Proof. Recall that by condition (i) in Definition 13.7 the common neighbour-
hood in A of up to 2 vertices on D has size at least |A|/2. Construct a cycle
D1 = a1a2 . . . a|D| of length |D| which consists of typical vertices from A as
follows. Let a1 be a typical vertex in A which is joined to both d1 and d|D|.
For a2 take a typical vertex in A which is joined to each of a1, d1 and d2 and
for a3 take one which is joined to each of a2, d2 and d3. The last vertex a|D| of
D1 will be a typical vertex in A which is joined to a1, a|D|−1, d|D|−1 and d|D|.
So the subgraph of G induced by V (D ∪ D1) contains an almost-triangulation
with precisely two attachment faces, bounded by D and D1. Similarly, as now
all vertices on D1 are typical and so every 10 (say) consecutive vertices on D1
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have a large common neighbourhood in A, there is a cycle D2 of length at most
|D1|/2 consisting of typical vertices in A such that the subgraph of G induced
by V (D1 ∪D2) contains an almost-triangulation with precisely two attachment
faces, bounded by D1 and D2. Continuing in this fashion, we may assume that
for some i ≤ log2((log2 n)2) the cycle Di is a triangle. Thus G contains an
almost-triangulation P ′

A whose vertex set is V (D)∪V (D1) . . . V (Di) and which
has only one attachment face, bounded by D. Note that |P ′

A| ≤ (log2 n)3. Sim-
ilarly, G contains an almost-triangulation P ′

B of order at most (log2 n)3 such
that all vertices of P ′

B either lie on D or are typical vertices from B and such
that P ′

B has only one attachment face, bounded by D. So P ′ := P ′
A ∪ P ′

B is a
triangulation.

Choose a facial triangle D′
A of P ′ consisting of typical vertices from A and

a facial triangle D′
B consisting of typical vertices from B. Similarly as in the

proof of Lemma 13.9, one can now find disjoint triangulations PA and PB with
V (PA)∪ V (PB) = V (G−P ′) and such that one facial triangle DA of PA lies in
the common neighbourhood of the triangle D′

A while one facial triangle DB of
PB lies in the common neighbourhood of D′

B. Thus the graph obtained from
PA ∪PB ∪P ′ by adding suitable DA–D′

A edges and suitable DB–D′
B edges is a

spanning triangulation in G. �

The next corollary is an immediate consequence of Proposition 13.12 and Lemma
13.13.

Corollary 13.14 For each sufficiently small positive ε there exists an integer
n0 = n0(ε) such that the following holds. Suppose that G is a graph of order
n ≥ n0 and minimum degree at least 2n/3 which has an ε-good partition A,B,C
for which the average degree of G[C] is at least 2 + ε. Then G contains a
triangulation as spanning subgraph. �

Lemma 13.15 For each sufficiently small positive ε there exists an integer
n0 = n0(ε) such that the following holds. Suppose that G is a graph of order
n ≥ n0 and minimum degree at least 2n/3 which has an ε-good partition A,B,C
for which the minimum degree G[C] is at least 2 and for which at least 4ε|A|
vertices in A and at least 4ε|B| vertices in B are joined to all vertices in C.
Then G contains a triangulation as spanning subgraph.

Proof. Condition (ii) of Definition 13.7 implies that there is a triangle D′
A

that consists of typical vertices in A which are joined to all vertices in C.
Similarly, there is a triangle D′

B that consists of typical vertices in B which
are joined to all vertices in C. Let D′

C be a cycle in G[C]. Choose disjoint
triangulations PA and PB such that V (PA)∪ V (PB) = V (G−D′

A −D′
B −D′

C)
and such that one facial triangle DA of PA lies in the common neighbourhood
of D′

A while one facial triangle DB of PB lies in the common neighbourhood
of D′

B . The existence of such triangulations can be shown similarly as in the
proof of Lemma 13.9. The only difference is that D′

C might no longer be small
compared to C. So if |D′

C | ≥ 10εn (say), we first choose an ε-fair partition of
C \V (D′

C) into CA and CB . But instead of doing the same for A and B (as we
did in the proof of Lemma 13.9), we now proceed a little differently: the proofs
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of Proposition 13.3 and Lemma 13.9 immediately show that we can partition
A \ V (D′

A) into three sets A0, A1 and A2 such that A0 ∪ CA, A1 and A2 have
roughly the same size and each of the three bipartite graphs between these
sets can be made super-regular by removing all vertices which are not typical.
Similarly, we split B \ V (D′

B) into three sets B0, B1 and B2. Having found PA

and PB , we can extend PA ∪PB ∪D′
A ∪D′

B ∪D′
C to a spanning triangulation of

G by adding suitable edges since all vertices of D′
A and D′

B are joined to every
vertex on D′

C . �

Lemma 13.16 For each sufficiently small positive γ there exists an integer
n0 = n0(γ) such that the following holds. Suppose that G is a graph of order
n ≥ n0 and minimum degree at least 2n/3 whose vertex set can be partitioned
into A′, B′, C ′ such that (1− γ)n/3 ≤ |A′|, |B′| ≤ n/3 and such that the density
of (A′, B′)G is at most γ. Then G contains a triangulation as spanning subgraph.

Proof. Let ε be sufficiently small to satisfy the requirements of all the previous
results in this section. We may assume that γ ≤ γ(ε) where γ(ε) is as defined in
Lemma 13.8. Apply this lemma to obtain an ε-good partition A,B,C of V (G).

Case 1 |A| ≥ ⌊n/3⌋ or |B| ≥ ⌊n/3⌋.
We only consider the case when |B| ≥ ⌊n/3⌋, the other case is similar. So set
x := |A| − ⌊n/3⌋ and y := |B| − ⌊n/3⌋. Thus, by our assumption, y ≥ 0. Since
δ(G) ≥ 2n/3, it follows that each vertex in A sends at least

δA :=

⌈
2n

3

⌉
− (|A| − 1 + |C|) = |B| − ⌊n/3⌋ + 1 = y + 1 ≥ 1

edges to B and that each vertex in B sends at least max{x + 1, 0} =: δB edges
to A. We call a vertex a ∈ A rich if it has at least |B|/10 neighbours in B.
Similarly, a vertex b ∈ B is rich if it has at least |A|/10 neighbours in A. Let
RA ⊆ A and RB ⊆ B be the sets of rich vertices in A and B.

Assume first that |RB | ≤ δA. For every vertex a ∈ A choose δA edges joining
a to B. Note that there are at least |A|/9 vertices in A which send at least one
of their chosen edges to B \RB . Indeed, suppose that this is not the case. Then
|RB | = δA and each vertex in RB is joined to all but at most |A|/9 vertices in A,
and thus, by condition (iv) in Definition 13.7, to at least 8|B|/9−2εn > 7|B|/8
vertices of B, which contradicts condition (iii). So there are at least |A|/10
typical vertices in A which send (at least) one of their chosen edges to B \RB .
These chosen edges cannot all have the same endvertex in B, since this would
be rich. Therefore, there are two independent A–B edges whose endvertices in
A are typical and whose endvertices in B are not rich and thus have at most
|A|/10 neighbours in A. So Lemma 13.9 implies that G contains a spanning
triangulation.

Thus we may assume that |RB | > δA. On the other hand, Corollary 13.11
shows that we may assume that |RB | ≤ 10. Moreover, Lemma 13.10 implies
that we may assume that every two typical vertices in C have at most one
common neighbour in RB . Thus all but at most

(|RB |
2

)
≤ 45 typical vertices in

C have at most one neighbour in RB . Similarly, if x ≥ 0 and thus δB ≥ 1, we
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may assume that δB < |RA| ≤ 10 and that all but at most 45 typical vertices
of C have at most one neighbour in RA.

Suppose that x ≥ 0 and consider a (typical) vertex c ∈ C which is joined to
at most one vertex in RB and to at most one vertex in RA. Then

⌈
2n

3

⌉
≤ dG(c) ≤ |NC(c)| + (|A| − |RA| + 1) + (|B| − |RB | + 1)

≤ |NC(c)| +
⌊n

3

⌋
+ x − (x + 1) +

⌊n

3

⌋
+ y − (y + 1) (13.5)

and therefore |NC(c)| ≥ 2. The same calculation shows that if x < 0 then
every (typical) vertex c ∈ C which is joined to at most one vertex in RB must
have degree at least two in G[C]. Thus in both cases all but at most 90 typical
vertices in C have degree at least two in G[C] and therefore at most ε|C| + 90
vertices in C have degree less than two in G[C]. Since by Corollary 13.14 we
may assume that the average degree of G[C] is less than 2 + ε, this implies that
at most 3ε|C| + 180 vertices in C have degree at least 3 in G[C]. (Note that
if n is not divisible by 3, then the above calculation already shows that all but
at most ε|C| + 90 vertices in C have degree at least 3 in G[C]; and thus we
are done by Corollary 13.14 in that case. However, in what follows we will not
make use of this fact.)

Call a typical vertex c ∈ C useful if its degree in G[C] is two and if c has at
most one neighbour in RB and, in the case when x ≥ 0, if in addition c has at
most one neighbour in RA. Thus all but at most 4ε|C| + 270 ≤ 5ε|C| vertices
in C are useful. Furthermore, note that inequality (13.5) (or its analogue for
the case when x < 0) shows that a useful vertex c must be joined to exactly
one vertex in RB .

Let us now show that G[C] either contains a cycle of length at most 20 (in
which case we are done by Lemma 13.13) or G[C] contains a nontrivial path
Q = c1 . . . c2 of length less than 20 whose endvertices c1 and c2 are useful and
are joined to the same vertex b ∈ RB. Indeed, consider a family P of disjoint
subpaths of G[C] which is obtained as follows. For the first path P1 ∈ P
take a longest path in G[C]. For the second path P2 ∈ P take a longest path in
G[C]−P1. The third path P3 ∈ P is a longest path in G[C]−P1−P2. Continue
in this fashion until all vertices of G[C] lie on some path in P. Consider first a
path P ∈ P of length at least 20 (if such a path exists). If P does not contain
a subpath Q with the required properties, then at most 2|P |/3 vertices on P
can be useful. (To see this, use that |RB | ≤ 10 and divide P into consecutive
subpaths on 20 vertices and a leftover path.) As at most 5ε|C| vertices in C are
not useful, this implies that at most 10ε|C| useful vertices from C are covered
by paths in P of length at least 20, i.e. at least (1−15ε)|C| useful vertices from
C are covered by a path in P of length less than 20. If no such path can be
taken for Q, then all these paths contain at most 10 useful vertices. Thus there
are at least (1−15ε)|C|/10 paths of length less than 20 in P. Let P ′ denote the
set of all these paths. By construction of P, each endvertex of a path P ∈ P ′

either has degree one in G[C] or has a second neighbour on P (in which case
G[C] contains a cycle of length at most 20, as required) or it is joined to a
vertex in C of degree at least 3 (this vertex then lies in the interior of a path
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from P that was chosen before P ). Since at most ε|C| + 90 vertices in C have
degree at most one, we may assume that at least |C|/20 paths P ∈ P ′ have an
endvertex which is joined to some vertex in C of degree at least 3. Thus at
least |C|/20 edges of G[C] are incident to some vertex in C of degree at least
3, which contradicts the fact that

∑

c∈C: |NC(c)|≥3

|NC(c)| ≤ 2e(G[C]) −
∑

c∈C: |NC(c)|=2

2

≤ (2 + ε)|C| − 2(1 − 5ε)|C| = 11ε|C|.

So we may assume that there exists a nontrivial path Q = c1 . . . c2 of length less
than 20 whose endvertices c1 and c2 are useful and are joined to the same vertex
b ∈ RB. As |NA(b)| ≥ |A|/10 and both c1 and c2 are useful (and thus typical),
there is a typical vertex a ∈ A which is joined to each of b, c1 and c2. Similarly
as in the proof of Lemma 13.13, one can now find planar graphs PA and PB

satisfying the following properties. Both PA and PB are almost-triangulations
having only one attachment face. The attachment face of PA is bounded by
the cycle ac1Qc2 and that of PB is bounded by bc1Qc2. The vertex set of PA

consists of A, the vertices on Q and of about half of the vertices in C \ V (Q).
The vertex set of B consists of B, the vertices on Q and of the remainder of
C \V (Q). Thus adding the edge ab to PA ∪PB yields a spanning triangulation
in G (Fig. 13.4).
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Figure 13.4: A spanning triangulation obtained by adding the edge ab

Case 2 |A| < ⌊n/3⌋ and |B| < ⌊n/3⌋.
Set x := ⌊n/3⌋ − |A| and y := ⌊n/3⌋ − |B|. Thus x, y ≥ 1. Since δ(G) ≥ 2n/3,
the minimum degree of G[C] is at least x + y ≥ 2. Thus Corollary 13.14 shows
that we may assume that x = y = 1.

Case 2.1 All but at most 4ε|A| vertices in A have at least one neighbour in
B or all but at most 4ε|B| vertices in B have at least one neighbour in A.

Suppose that the former holds, the other case is similar. As in Case 1, call
a vertex b ∈ B rich if it has at least |A|/10 neighbours in A and denote the
set of all rich vertices in B by RB . Again, it follows that we may assume that
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2 ≤ |RB | ≤ 10 and that all but at most 45 typical vertices c ∈ C have at most
one neighbour in RB . But for each such vertex c we have
⌈

2n

3

⌉
≤ dG(c) ≤ |NC(c)| + |A| + |B| − 1 = |NC(c)| + 2

⌊n

3

⌋
− x − y − 1

and so c has at least 3 neighbours in C. This shows that all but at most
ε|C| + 45 vertices of C have degree at least 3 in G[C] and so we are done by
Corollary 13.14.

Case 2.2 At least 4ε|A| vertices in A have no neighbours in B and at least
4ε|B| vertices in B have no neighbours in A.

Since δ(G) ≥ 2n/3 and x = y = 1, each of these vertices is joined to all vertices
in C. So we are done by Lemma 13.15. �

13.5 Proof of Theorem 13.1

13.5.1 Applying the Regularity lemma and covering the re-

duced graph with triangles

Throughout the proof we assume that the order n of G is sufficiently large for our
estimates to hold. Moreover, we will assume that ε, c and d are sufficiently small
positive constants such that ε ≪ d ≪ c. With these parameters ε and d, we
proceed exactly as described in Section 13.3.1 to obtain a set T = {T1, . . . , Tk′}
of triangles covering the (modified) reduced graph R. Thus every edge ViVj ∈ R
corresponds to a 2ε-regular bipartite subgraph of G′ which has density > d −
ε. Moreover, if ViVj lies in some triangle from T , then this subgraph is also
(2ε, d − 3ε)-super-regular.

13.5.2 Choosing the gluing graphs Gi

As outlined in Section 13.3.2, for all 1 ≤ i < k′ in turn we now choose the graphs
Gi that will be used later to glue the almost-triangulation corresponding to the
triangle Ti ∈ T to that corresponding to Ti+1. Given 1 ≤ i < k′, we assign
to every vertex W ∈ R the label Li(W ) := (x, y) where x := |NV (Ti)(W )| and
y := |NV (Ti+1)(W )|. So 0 ≤ x, y ≤ 3. We need to distinguish the following
cases.

Case 1 There exists a vertex W ∈ R−V (Ti ∪Ti+1) with label Li(W ) = (x, y)
such that x, y ≥ 2.

Choose two neighbours Ai and Bi of W in Ti and two neighbours Ii+1 and Ji+1

of W in Ti+1. Let Xi denote the common neighbourhood of Ai and W in R.
So |Xi| ≥ (1/3 − 30d)|R| by (13.1). By making Xi smaller if necessary, we
may assume that |Xi| ≤ |R|/3. Similarly, we choose a set Yi+1 in the common
neighbourhood of Ii+1 and W with (1/3 − 30d)|R| ≤ Yi+1 ≤ |R|/3.

Case 1.1 Xi and Yi+1 are not disjoint.

In this case Gi will be a 4-cycle. Choose a vertex W ′ in Xi ∩ Yi+1. Take Gi

to be any 4-cycle viv
′
iwiw

′
i in G with vi, wi ∈ W and v′i, w

′
i ∈ W ′ and such
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that the vertices of Gi have at least (d − 3ε)4L′ common neighbours in both
Ai and Ii+1 and such that both vi and wi have at least (d − 3ε)L′ neighbours
in Bi and at least (d − 3ε)L′ neighbours in Ji+1. (The existence of such ver-
tices follows from repeated applications of Proposition 2.3 since each edge of
R corresponds to a 2ε-regular subgraph of G′ of density > d − ε.) So Gi is
a (rather degenerate) almost-triangulation whose attachment faces F ′

i and F ′′
i

are the interior and the exterior of Gi. Recall from Section 13.3.2 that we wish
to apply the Blow-up lemma to find an almost-triangulation Pi in G(Ti) which
can be attached to Gi via an attachment 4-face Fi of Pi and F ′

i . The above
conditions on the neighbourhood of Gi ensure that this can be done as indi-
cated in Figure 13.5(a) if we restrict the images of two opposite vertices of ∂Fi

to the common neighbourhood of Gi in Ai and the images of its remaining two
opposite vertices to the neighbourhoods of vi and wi in Bi. When applying the
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Figure 13.5: Three ways of gluing together the triangulations Pi and Pi+1 by
using a gluing graph Gi. The graphs Gi are indicated by thick lines.

Blow-up lemma, the latter can always be guaranteed since by our choice of Gi

all these neighbourhoods are sufficiently large.
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Case 1.2 Xi and Yi+1 are disjoint.

In this case Gi will be the graph obtained from a K2,4 by adding two independent
edges in the larger vertex class. Note that, since Xi ∩ Yi+1 = ∅, Lemma 13.16
implies that we may assume that there exists an Xi–Yi+1 edge W ′W ′′ in R.
Indeed, if there is no such edge, then the bipartite subgraph of G′ between the
sets G(Xi) and G(Yi+1) is empty. Let γ be the density of the bipartite subgraph
of G between G(Xi) and G(Yi+1). Then it is easily checked that G(Xi) contains
a vertex x with dG(x) ≥ γn/4. Since 0 = dG′(x) > dG(x) − (d + ε)n, this
implies that γ ≤ 4(d + ε). Moreover, the sizes of both G(Xi) and G(Yi+1) lie
between (1 − 150d)n/3 and n/3 and so if d is sufficiently small we are done by
Lemma 13.16.

Choose vertices vi, wi ∈ W , v′i, w
′
i ∈ W ′ and v′′i , w′′

i ∈ W ′′ such that both vi

and wi are joined to each of v′i, v
′′
i , w′

i, w
′′
i and such that v′i is joined to v′′i and w′

i

is joined to w′′
i . Furthermore, we choose these vertices so that vi and wi have

at least (d − 3ε)L′ neighbours in both Bi and Ji+1, vi, wi, v
′
i, w

′
i have at least

(d − 3ε)4L′ common neighbours in Ai and so that vi, wi, v
′′
i , w′′

i have at least
(d − 3ε)4L′ common neighbours in Ii+1. (Again, the existence of such vertices
follows from repeated applications of Proposition 2.3.) So vi and wj form the
vertex class of size two of a K2,4 in Gi and the independent edges added to the
larger vertex class of this K2,4 are v′iv

′′
i and w′

iw
′′
i . Thus Gi can be viewed as

an almost-triangulation whose two attachment faces F ′
i and F ′′

i are bounded by
the 4-cycles viv

′
iwiw

′
i and viv

′′
i wiw

′′
i respectively. Figure 13.5(b) indicates how

Gi will be used in Case 1.2 to glue together the almost triangulations Pi and
Pi+1 corresponding to Ti and Ti+1 respectively.

Case 2 All vertices W in R − V (Ti ∪ Ti+1) have a label Li(W ) = (x, y) for
which either x ≤ 1 or y ≤ 1 (or both).

In this case Gi will again be a 4-cycle. Let Xi be the set of all those vertices
in R − V (Ti ∪ Ti+1) whose label Li is (1, 3) and let Yi+1 be the set of all those
vertices in R − V (Ti ∪ Ti+1) whose label Li is (3, 1). Then

4|R| − 90d|R| − 30
(13.1)

≤ 6 · δ(R) − 2

(
6

2

)
≤ eR(Ti ∪ Ti+1, R − Ti − Ti+1)

≤ 4(|Xi| + |Yi+1|) + 3(|R| − |Xi| − |Yi+1|)

and therefore
|Xi| + |Yi+1| ≥ |R| − 100d|R|. (13.6)

On the other hand,

2|R| − 45d|R| − 15
(13.1)

≤ 3 · δ(R) − 15 ≤ eR(Ti, R − Ti − Ti+1)

≤ |Xi| + 3(|R| − |Xi|) = 3|R| − 2|Xi|

and so |Xi| ≤ |R|/2+25d|R|. Combining this with (13.6) gives |Yi+1| ≥ |R|/2−
125d|R|. Similarly it follows that |Xi| ≥ |R|/2 − 125d|R|. Since (13.1) implies
that every vertex x ∈ Xi has more than |R|−|Yi+1| neighbours, this means that
R contains an Xi–Yi+1 edge W ′W . Let Ai be the unique neighbour of W ′ ∈ Xi
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in Ti and let Bi be any other vertex of Ti. Let Ii+1 be the unique neighbour
of W ∈ Yi+1 in Ti+1 and let Ji+1 be any other vertex of Ti+1. Take Gi to be
any 4-cycle viv

′
iwiw

′
i in G with vi, wi ∈ W and v′i, w

′
i ∈ W ′ and such that the

vertices on Gi have at least (d−3ε)4L′ common neighbours in both Ai and Ii+1

and such that furthermore both vi and wi have at least (d − 3ε)L′ neighbours
in Bi while both v′i and w′

i have at least (d − 3ε)L′ neighbours in Ji+1. (The
existence of such vertices follows from repeated applications of Proposition 2.3
again.) So Gi is an almost-triangulation whose attachment faces F ′

i and F ′′
i are

the interior and the exterior of Gi. In Case 2 we will use Gi to glue Pi to Pi+1

as indicated in Figure 13.5(c).

Since k′ does not depend on n, it is not hard to show that for all 1 ≤ i < k′

we can choose the graphs Gi to be disjoint from each other. We then remove all
the vertices of G lying in the Gi’s from the clusters they belong to. So the size
of each cluster now lies between L′ − 2k′ and L′. We remove further vertices
if necessary and add them to the exceptional set to ensure that all the clusters
have the same size L′′ ≥ L′−2k′. We still denote by V0 the enlarged exceptional
set. Thus

|V0|
(13.2)

≤ 14dn + 2k′|R| ≤ 15dn. (13.7)

13.5.3 Incorporating the exceptional vertices

Given an exceptional vertex x ∈ V0, we say that a triangle Ti is good for x if
x has at least cL′′ neighbours in at least two of the (modified) clusters of Ti.
Thus the number N of good triangles for x satisfies

3NL′′ + (1 + 2c)L′′k′ ≥ |NG(x) \ V0|
(13.7)

≥ 2n

3
− 15dn.

Hence

N ≥ 1

3L′′

(
2n

3
− 15dn − (1 + 2c)

n

3

)
>

n

12L′′

and therefore
|V0|

180dL′′
(13.7)
< N.

But this shows that we can assign each exceptional vertex x ∈ V0 greedily to
a triangle Ti ∈ T such that Ti is good for x and such that to each triangle we
assign at most 180dL′′ exceptional vertices. Let Ei be the set consisting of all
exceptional vertices assigned to Ti.

Recall that Ai and Bi are two of the vertices of Ti and denote its third vertex
by Ci. Moreover, recall that F ′

i and F ′′
i are the two attachment faces of the

gluing graph Gi. For each 1 ≤ i ≤ k′, we will now incorporate the exceptional
vertices in Ei as indicated in Section 13.3.3. However, to ensure that after
this process each of the 3 bipartite subgraphs between the vertex classes of the
remainder of G′(Ti) is still super-regular, we first apply Proposition 13.3 to the
graph G′(Ti) to obtain a partition A′

i, A
′′
i of Ai such that firstly |A′

i| ≥ |Ai|/4
and |A′′

i | ≥ |Ai|/4, secondly, for each vertex v ∈ G′(Ti) the set NG′(v) ∩ Ai is
split ε-fairly and, thirdly, for each v ∈ Ei ∪ V (∂F ′

i ∪ ∂F ′′
i−1) the set NG(v) ∩ Ai
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is split ε-fairly. We then apply Proposition 13.3 to obtain analogous partitions
B′

i, B
′′
i of Bi and C ′

i, C
′′
i of Ci. So in particular, each of the bipartite graphs

(A′
i, B

′
i)G′ , (A′

i, C
′
i)G′ and (B′

i, C
′
i)G′ is still 10ε-regular and has density > d−3ε.

Let G′
i := G′[A′

i ∪ B′
i ∪ C ′

i]. Note that for each exceptional vertex v ∈ Ei at
least two of the vertex classes of G′

i contain at least (cL′′−ε|G′(Ti)|)/2 ≥ cL′′/4
neighbours of v.

Fix an enumeration of the vertices in Ei. Let x be the first vertex in Ei.
Applying Proposition 2.3 repeatedly, it is not hard to find in G′

i a copy Qx

of the graph in Figure 13.6 such that x is joined to all the vertices on the
boundary of the face Fx of Qx. (The latter can be guaranteed since x has at
least cL′′/4 neighbours in two of the vertex classes of G′

i.) So Qx is a 3-partite

Fx

F ′
x

Figure 13.6: The graph Qx used to incorporate the exceptional vertex x

almost-triangulation with two attachment 4-faces Fx and F ′
x. Moreover, the

boundary ∂F ′
x of F ′

x contains only vertices from two of the vertex classes of
G′

i. F ′
x will be used to attach Qx to the graph Qy which we will choose below

to incorporate the second vertex y ∈ Ei. To ensure that this can be done, we
choose Qx such that ∂F ′

x has at least (d−13ε)4L′′/4 common neighbours in the
unique vertex class of G′

i that avoids ∂F ′
x and such that every vertex v ∈ ∂F ′

x

has at least (d − 13ε)L′′/4 neighbours in each of the two vertex classes of G′
i

not containing v.
Now we apply Proposition 2.3 to choose a subgraph Qy of G′

i − Qx for
the next vertex y in our enumeration of Ei. Qy will be one of the 3-partite
almost-triangulations in Figure 13.7. Again, Qy is chosen in such a way that
y is joined to all the vertices on ∂Fy . (To ensure this, we take Qy to be the
graph in Figure 13.7(a) when y has many neighbours in each of the two clusters
meeting ∂F ′

x, and take the graph in Figure 13.7(b) for Qy—possibly with the
black and the white circular vertices interchanged—otherwise.) Moreover, ∂F ′

y

will satisfy conditions analogous to ∂F ′
x. Additionally, this time, Qy has a third

attachment 4-face F ′′
y which will be used to attach Qy to Qx via F ′′

y and F ′
x

as shown in Figure 13.8. (Our choice of ∂F ′
x implies that all the necessary

∂F ′′
y –∂F ′

x edges can be guaranteed.)
We continue in this fashion until we have dealt with all the vertices in Ei.

By attaching the graphs Qz (z ∈ Ei) to each other, inserting each z into the
attachment face Fz of Qz and joining z to all vertices on ∂Fz we obtain an
almost-triangulation Qi in G′

i which has only one attachment face, namely F ′
v ,

where v is the last vertex in the enumeration of Ei. Note that the definition
of G′

i implies that the graph G′′
i := G′(Ti) − Qi is still (10ε, d/4)-super-regular
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F ′′
yF ′′

y

Fy

Fy

F ′
yF ′

y

(a) (b)

Figure 13.7: The two possibilities for the graph Qy which is used to incorporate
the exceptional vertex y
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Figure 13.8: Attaching Qy to Qx via F ′′
y and F ′

x

and that the vertices on the 4-cycle viv
′
iwiw

′
i bounding the attachment face F ′

i

of the gluing graph Gi still have at least (d − 3ε)4L′′/4 common neighbours in
Ai ∩ V (G′′

i ) and that both vi and wi have at least (d − 3ε)L′′/4 neighbours in
Bi ∩ V (G′′

i ). The 4-cycle bounding the attachment face F ′′
i−1 of Gi−1 satisfies

analogous conditions. Moreover, note that all the graphs Qz contain the same
number of vertices in each cluster of Ti and hence the same applies to G′′

i .

13.5.4 Applying the Blow-up lemma

Having incorporated the exceptional vertices, we can now apply the Blow-up
lemma to obtain a spanning almost-triangulation P1 in G′′

1 which has two at-
tachment 4-faces if E1 6= ∅ and only one attachment 4-face otherwise. The
boundary of the first attachment 4-face F1 will have two opposite vertices in
the common neighbourhood of the boundary ∂F ′

1 of the attachment face F ′
1 of

G1 in A1 ∩ V (G′′
1) while its other two vertices lie the neighbourhoods of v1 and

w1 in B1 ∩ V (G′′
1) respectively. Thus P1 can be attached to G1 via F1 and F ′

1

(see Fig. 13.5). Similarly, if E1 6= ∅, then the second attachment face of P1 will
be chosen in such a way that it can be used to attach P1 to Q1. Again, this
is possible since the boundary of the unique attachment face of Q1 has a large
(common) neighbourhood in G′′

1 .
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Next we apply the Blow-up lemma to obtain a spanning almost-triangulation
P2 in G′′

2 which has three attachment faces if E2 6= ∅ and only two attachment
faces otherwise. Similarly as for P1, each of of these will be a 4-face, one will be
chosen in such a way that it can be used to attach P2 to G2 and one to attach
P2 to Q2 (if E2 6= ∅). The third attachment face will be chosen so that P2 can
be attached to G1 via this face and F ′′

1 . Continuing in this way, we obtain a
spanning triangulation of G. (Pk′ has two attachment faces if Ek′ 6= ∅ and only
one attachment face otherwise.) This completes the proof of Theorem 13.1.

13.6 Concluding remarks

The example G∗ in Section 13.1 showed that the bound in Theorem 13.1 is
sharp if the order n of the graph G is divisible by 3. The following proposition
states that this is in fact the case for all n.

Proposition 13.17 For all n ∈ N there is a graph G of order n and minimum
degree ⌈2n/3⌉ − 1 which contains no triangulation as a spanning subgraph.

Proof. Clearly, we may assume that n ≥ 3. Write n = 3k+ℓ where ℓ ∈ {0, 1, 2}.
If ℓ = 0 then we can take for G the graph G∗ described in Section 13.1. If
ℓ = 1, we take a similar graph: this time the cliques A and B both have
order k and the independent set C has order k + 1. So we may assume that
ℓ = 2. Also in this case our graph G will again look rather similar to G∗. The
cliques A and B both have order k, the set C has size k + 2, but to ensure
that δ(G) = 2k + 1 = ⌈2n/3⌉ − 1 we now additionally insert a maximal set of
independent edges into C and, if k is odd, one extra edge joining the unique
vertex in C that is not covered by these independent edges to some other vertex
in C. So at most one vertex in C has degree two in G[C] and all other vertices
have degree one.

We have to show that G does not contain a spanning triangulation. Suppose
on the contrary that P is such a triangulation. Then P must have two facial
triangles T1 and T2 which share an edge xy ∈ G[C] and are such that T1 contains
a vertex of A while T2 contains a vertex of B. We may assume that x has degree
1 in G[C]. On the other hand, in P the vertex x has neighbours in both A and
B. Since P is a triangulation, this implies that P contains an A–B edge joining
two neighbours of x, a contradiction. �

Note that the graph G in the proof of the ℓ = 2 case of the proposition
already contains the square of a Hamilton cycle if n is large. On the other
hand, the proof of that case can be extended to show that one can take for
G[C] even a Hamilton path without creating a spanning triangulation. As soon
as G[C] contains a Hamilton cycle, a spanning triangulation obviously exists
though.

Theorem 13.1 can easily be extended to arbitrary surfaces:

Theorem 13.18 For each surface S there exists an integer n0 = n0(S) such
that every graph of order n ≥ n0 and minimum degree at least 2n/3 contains
some triangulation of S as a spanning subgraph.
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To see this, first note that in every case of the proof of Theorem 13.1 we
apply the Blow-up lemma at least once to find a large planar (almost-) trian-
gulation P similar to the one in Figure 13.1. (In particular, P is 3-chromatic
and its colour classes have equal size.) For an arbitrary surface S, all we have
to change is that in one of these applications we choose a 3-chromatic (almost-)
triangulation of S with colour classes of equal size instead of P . (Such triangu-
lations of S are easily seen to exist. For example, they too can be obtained by
a slight modification of the graph in Figure 13.1.)

As remarked in the introduction, the proof of Theorem 13.1 shows that
the spanning triangulation can be found in polynomial time. Indeed, both the
Regularity lemma and the Blow-up lemma can be implemented in polynomial
time (see [4] and [52] respectively). Furthermore, the probabilistic splitting
argument in Proposition 13.3 can be derandomized using standard techniques
(see e.g. [7]) and it is easy to see that the cycle of logarithmic length in Propo-
sition 13.12 can be found in polynomial time using a shortest path algorithm.
As the order of the reduced graph R is constant, the remaining steps can also
be done in polynomial time.

In the remainder of this section we discuss how Theorem 13.1 might perhaps
be strengthened. Obviously a minimum degree of 2n/3 will not force every
given triangulation P of order n as a subgraph. For example, G might be 3-
partite, which implies that we can only hope for triangulations P with chromatic
number 3. Of course, we cannot guarantee all of these either, as there are
triangulations whose chromatic number is 3 and whose maximum degree is n−2.
However, in view of our proof of Theorem 13.1, it might be helpful to restrict
one’s attention to triangulations P of bounded band-width, as this imposes a
linear structure on P . (The band-width of a graph H is the smallest integer k
for which there exists an enumeration v1, . . . , v|H| of the vertices of H such that
every edge vivj ∈ H satisfies |i− j| ≤ k.) Bollobás and Komlós [48] conjectured
that for every γ > 0 and all r, ∆ ∈ N there are α > 0 and n0 ∈ N such that every
graph G of order n ≥ n0 and minimum degree at least (1 − 1

r + γ)n contains a
copy of every graph H of order n whose chromatic number is at most r, whose
maximum degree is at most ∆ and whose band-width is at most αn.

This would imply that every sufficiently large graph of minimum degree
at least (2/3 + γ)n contains every 3-chromatic triangulation of bounded band-
width. Even in this special case the error term γn cannot be omitted completely:
there are 3-chromatic triangulations whose colour classes have different sizes
(modify the graph in Figure 13.1). These obviously do not embed into the
complete 3-partite graph whose vertex classes have equal size. However, it
might be true that for all integers b there exists a constant C = C(b) such that
every graph of order n and minimum degree at least 2n/3 + C contains every
3-chromatic triangulation of order n and band-width at most b as a subgraph.

Also, we do not know whether one can strengthen Theorem 13.1 in the
following way. Given n, is there a triangulation Pn of order n which is contained
in every graph G of order n and minimum degree at least 2n/3? When n is
divisible by 3, then the preceding arguments show that Pn would have to be
3-chromatic with equal size colour classes. Moreover, Pn would have to contain
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induced cycles of many different lengths. To see the latter, consider a graph
G which is similar to the graph G∗ from Section 13.1. This time the cliques
have order n/3 − 1, the independent set C has order n/3 + 2 and we insert a
2-factor into C. Then the proof of Proposition 13.17 shows that every spanning
triangulation of G must contain one of the cycles in G[C].
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eds.), Budapest (1996), 295–352.
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[67] D. Kühn and D. Osthus, Subdivisions of Kr+2 in graphs of average degree
at least r + ε and large but constant girth, Combin. Probab. Comput., to
appear.
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[73] D. Kühn, D. Osthus and A. Taraz, Large planar subgraphs in dense
graphs, submitted.

[74] L. Lovász, Combinatorial Problems and Exercises (2nd edition), North-
Holland, 1993.

[75] W. Mader, Homomorphieeigenschaften und mittlere Kantendichte von
Graphen, Math. Annalen 174 (1967), 265–268.

[76] W. Mader, Homomorphiesätze für Graphen, Math. Annalen 178 (1968),
154–168.

[77] W. Mader, Existenz n-fach zusammenhängender Teilgraphen in Graphen
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