
Constraint Satisfaction with Infinite Domains

Dissertation

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften (doctor rerum naturalium)

im Fach Informatik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät II
der Humboldt-Universität zu Berlin

von Dipl.-Inf.

Manuel Bodirsky

geboren am 30. Dezember 1976 in Freiburg im Breisgau

Präsident der Humboldt-Universität zu Berlin
Prof. Dr. Jürgen Mlynek

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät II
Prof. Dr. Uwe Küchler

Gutachter:

1. Prof. Dr. Hans Jürgen Prömel

2. Prof. Dr. Martin Grohe

3. Prof. Jaroslav Nešetřil

Tag der Einreichung: 6.7.2004, Vorsitzender Prof. Dr. Johannes Köbler
Tag der mündlichen Prüfung: 4.11.2004

Zusammenfassung. Constraint Satisfaction Probleme tauchen in vielen
Gebieten der Informatik auf, insbesondere im Gebiet der künstlichen Intel-
ligenz, zum Beispiel beim räumlichen und zeitlichen Schließen, maschinel-
len Sehen, Scheduling. Ein Überblick findet sich in [Kumar, 1992, Dechter,
2003]. Andere Gebiete sind Graphentheorie, Aussagenlogik, Typsysteme für
Programmiersprachen, Datenbanktheorie, automatisches Beweisen, Compu-
terlinguistik und Bioinformatik.

Viele Constraint Satisfaction Probleme können auf natürliche Weise als
Homomorphieprobleme formuliert werden. Hier betrachten wir für eine fest-
gehaltene relationale Struktur Γ das folgende Berechnungsproblem: Gegeben
sei eine Struktur S mit der gleichen relationalen Signatur wie Γ, gefragt ist
ob es einen Homomorphismus von S nach Γ gibt. Dieses Problem ist das
Constraint Satisfaction Problem CSP(Γ) für Γ, und wurde für endliches Γ –
die sogenannte Schablone des Problems – intensiv untersucht. Allerdings gibt
es viele Constraint Satisfaction Probleme, die nicht mit endlicher Schablone
formuliert werden können.

Wenn wir beliebige unendliche Schablonen zulassen, wird Constraint Sa-
tisfaction zu einem sehr ausdrucksstarken Formalismus, und wir können dann
beispielsweise unentscheidbare Probleme als Constraint Satisfaction Proble-
me formulieren. In dieser Arbeit machen wir daher zusätzliche Annahmen für
die Schablone. Eine dieser Annahmen ist ω-Kategorizität. Eine abzählbare
Struktur Γ ist ω-kategorisch, wenn alle abzählbaren Modelle der erststufigen
Theorie von Γ isomorph zu Γ sind. Dies ist ein zentrales Konzept aus der
Modelltheorie und eng verwandt mit Quantor-elimination und Homogenität.
Wir führen Argumente an, warum ω-Kategorizität ein sinnvoller Begriff ist,
wenn man Constraint Satisfaction Probleme mit einer Schablone über einem
unendlichen Wertebereich systematisch untersuchen will.

Die Berechnungskomplexität von Constraint Satisfaction Problemen hängt
im wesentlichen davon ab, welche Relationen der Schablone primitiv positiv
definierbar sind. Für ω-kategorische Schablonen können wir zeigen, daß eine
Relation in Γ genau dann primitiv positiv definierbar ist, wenn sie von den
Polymorphismen in Γ erhalten wird. Dieser Satz ist für endliche Struktu-
ren wohlbekannt [Bodnarčuk et al., 1969], und war der Ausgangspunkt des
algebraischen Ansatzes zur Untersuchung der Berechnungskomplexität von
Constraint Satisfaction mit endlichen Schablonen – siehe zum Beispiel [Jea-
vons et al., 1997]. Wir zeigen an einem Beispiel, daß für nicht ω-kategorische
Strukturen dieser Satz im allgemeinen nicht gilt.

Eine Konsequenz dieses Satzes ist, daß sowohl für endliche als auch für

i

unendliche ω-kategorische Schablonen die Existenz eines effizienten Algorith-
mus für das entsprechende Constraint Satisfaction Problem von der Existenz
gewisser Polymorphismen der Schablone abhängt. Ein Beispiel sind die ω-
kategorischen Strukturen mit einem k-stelligen fast-einstimmigen Polymor-
phismus. In diesem Fall kann das entsprechende Constraint Satisfaction Pro-
blem in polynomieller Zeit mit Hilfe eines Datalog Programmes gelöst werden.
Datalog ist ein Konzept aus der Datenbanktheorie, und wurde im Zusammen-
hang mit Constraint Satisfaction zum erstenmal in [Feder and Vardi, 1999]
betrachtet. Dort werden für Constraint Satisfaction Probleme mit endlicher
Schablone auch sogenannte kanonische Datalog Programme eingeführt, und
es wird gezeigt, daß sich jedes Constraint Satisfaction Problem mit endlicher
Schablone, das mit einem Datalog programm mit k Variablen gelöst werden
kann, auch vom sogenannten kanonischen Datalog Programm mit k Variablen
gelöst werden kann. Wir verallgemeinern dies auf ω-kategorische Schablonen
gilt.

Die zweite Anforderung, die wir in dieser Arbeit bisweilen an die Scha-
blone stellen, ist, daß Γ durch verbotene induzierte Substrukturen beschrie-
ben werden kann. In diesem Fall ist CSP(Γ) in der Klasse monoton SNP
enthalten, einem Fragment existentieller zweitstufiger Logik, das im Zusam-
menhang mit Constraint Satisfaction in [Feder and Vardi, 1999] betrachtet
wurde. Diese Annahmen für die Schablone sind allgemein genug, um vie-
le zusätzliche Constraint Satisfaction Probleme zu erfassen, die nicht mit
endlichen Schablonen formuliert werden können. Beispielsweise kann jedes
Problem in monoton monadisch SNP – einer anderen Klasse die von Feder
und Vardi eingeführt wurde – als Constraint Satisfaction Problem mit einer
solchen Schablone formuliert werden.

In den letzten zwei Kapiteln dieser Arbeit beschäftigen wir uns mit kon-
kreten Constraint Satisfaction Problemen mit ω-kategorischer baumartiger
Schablone. Manche dieser Berechnungsprobleme haben Anwendungen in Com-
puterlinguistik [Koller et al., 2000, Niehren and Thater, 2003] und Bioinfor-
matik [Steel, 1992]. Wir geben neuartige Graphalgorithmen an, die diese
Probleme in Polynomialzeit lösen, und direkt Lösungen für erfüllbare Cons-
traint Satisfaction Probleme konstruieren. Zentral ist hier der Begriff einer
freien Menge von Knoten im Constraint Graph, mit dessen Hilfe wir durch
wiederholte Zerlegungen des Constraintgraphen in Zusammenhangskompo-
nenten Lösungen rekursiv konstruieren können. Insbsondere lösen wir damit
ein Problem, das in [Cornell, 1994] gestellt wurde. Wir erreichen beim Algo-
rithmus für Cornell’s Problem subquadratische Laufzeit, wenn wir bekannte
dynamische (dekrementelle) Algorithmen für starken Zusammenhang in ge-

ii

richteten Graphen verwenden.

Dominanzconstraints wurden in der Computerlinguistik eingeführt [Mar-
cus et al., 1983, Backofen et al., 1995] und finden zahlreiche Anwendun-
gen in zum Beispiel unterspezifizierter Semantik [Egg et al., 2001, Copest-
ake et al., 1999, Bos, 1996], unterspezifizierter Diskursanalyse [Gardent and
Webber, 1998], und Syntaxanalyse mit Baumadjunktionsgrammatiken [Ro-
gers and Vijay-Shanker, 1994]. Es handelt sich um eine Formalismus, im
dem Bäume mit Hilfe der Eltern-Kind und der Vorfahre-Nachfahre Relati-
on beschrieben werden können. Erfüllbarkeit von Dominanzconstraints ist
NP-vollständig [Koller et al., 1998]. Allerdings genügt es für viele Anwen-
dungen normale Dominanzconstraints zu betrachten, und diese haben einen
polynomiellen Erfüllbarkeitstest [Althaus et al., 2003]. Mit einem ähnlichen
algorithmischen Ansatz wie bei unserem Algorithmus für Cornell’s Problem
können wir einen neuen Algorithmus für normale Dominanzconstraints an-
geben, der direkt eine Lösung (oder, falls gewünscht, alle Lösungen) eines
normalen Dominanzconstraints generiert. Der Algorithmus ist dabei effizien-
ter als die bisher bekannten Verfahren. Wieder können wir subquadratische
Laufzeit erreichen – hier verwenden wir effiziente dekrementelle Algorithmen
für zweifachen Graphzusammenhang.

Schließlich suchen wir nach schwächeren Annahmen als Normalität, die
immer noch Polynomialzeitalgorithmen zulassen, das heißt, nach größeren
handhabbaren Fragmenten von Dominanzconstraints. In diesem Kontext de-
finieren wir die Klasse der surjektiven Homomorphieprobleme. Wie im Falle
von Homomorphieproblemen sind Probleme der Klasse durch eine (in die-
sem Falle immer endliche) Schablone T gegeben, und wir fragen ob es für
eine gegebene endliche Struktur S mit der gleichen Signatur wie T einen
Homomorphismus von S nach T gibt. Wir zeigen, daß bestimmte Fragmen-
te von Dominanzconstraints unter Polynomialzeitreduktionen equivalent zu
surjektiven Homomorphieproblemen sind.

iii

Abstract. Constraint satisfaction problems occur in many areas of com-
puter science, most prominently in artificial intelligence including temporal
or spacial reasoning, belief maintenance, machine vision, and scheduling (for
an overview see [Kumar, 1992,Dechter, 2003]). Other areas are graph theory,
boolean satisfiability, type systems for programming languages, database the-
ory, automatic theorem proving, and, as for some of the problems discussed
in this thesis, computational linguistics and computational biology.

Many constraint satisfaction problems have a natural formulation as a
homomorphism problem. For a fixed relational structure Γ we consider the
following computational problem: Given a structure S with the same rela-
tional signature as Γ, is there a homomorphism from S to Γ? This problem
is known as the constraint satisfaction problem CSP(Γ) for the template Γ
and is intensively studied for relational structures Γ with a finite domain.
However, many constraint satisfaction problems can not be formulated with
a finite template.

If we allow arbitrary infinite templates, constraint satisfaction is very ex-
pressive and e.g. contains undecidable problems. In this thesis, we impose
two restrictions on the template. The first restriction is ω-categoricity, a
natural and well-studied concept in model-theory. The computational com-
plexity of CSP(Γ) is determined by the relations of Γ that have a primitive
positive definition in Γ. For ω-categorical templates we can show that a re-
lation is primitive positive definable in Γ if and only if it is preserved by the
polymorphisms of Γ. This theorem is well-known for finite templates [Bod-
narčuk et al., 1969, Geiger, 1968], and was the starting point of the alge-
braic approach to study the complexity of constraint satisfaction with finite
templates, described e.g. in [Jeavons et al., 1997]. It shows that also for
ω-categorical templates, the complexity of a constraint satisfaction problem
is determined by the clone of polymorphisms of the template. One example
where the existence of a certain polymorphism of the (finite or infinite) tem-
plate implies tractability of the corresponding constraint satisfaction problem
is the case where the polymorphism is a k-ary near-unanimity operation. In
this case the problem can be solved by a Datalog-program of width k. For
finite templates, [Feder and Vardi, 1999] proved that every constraint sat-
isfaction problem that can be solved by a Datalog program of width k can
also be solved by the canonical Datalog program of width k. This is another
result we can generalize to ω-categorical templates.

The second restriction is that the template Γ can be described by a finite
set of forbidden induced substructures. In this case the constraint satisfaction
problem for Γ is in monotone SNP, which is a fragment of existential second

iv

order logic introduced in the context of constraint satisfaction in [Feder and
Vardi, 1999]. Finitely constraint ω-categorical templates are general enough
to capture many additional constraint satisfaction problems that can not
be formulated with finite templates. In fact, every problem in the class
monotone monadic SNP – another class introduced by Feder and Vardi –
can be formulated as a constraint satisfaction problem with such a template.

We finally focus on several constraint satisfaction problems that have an
ω-categorical tree-like template. Some of these problems have applications
in computational linguistics [Koller et al., 2000] and computational biol-
ogy [Steel, 1992]. We present graph algorithms that solve these problems in
polynomial time. In particular we solve a problem posed in [Cornell, 1994],
and present a new and more efficient algorithm for normal dominance con-
straints [Althaus et al., 2001]. Subquadratic running time can be achieved
using decremental graph connectivity algorithms.

v

Acknowledgements

I want to thank my supervisor, Prof. Dr. Hans Jürgen Prömel, for providing
me with the unique research environment at Humboldt-University, and the
research group at the department for algorithms and complexity, who made
this thesis possible. I am also endebted to the European Graduate Program
“Combinatorics, Geometry, and Computation” for the great support, and
grateful to all its members and staff, for discussions, cooperation, and the
good atmosphere. I am also grateful to Prof. Jaroslav Nešetřil and the mem-
bers of the research groups ITI and DIMATIA in Prague for their hospitality
during my six month stay at Charles University.

I thank all the people who gave me feedback on earlier versions of this
text: Jan Schwinghammer, Dr. Joachim Niehren, Katharina Bodirsky, Dr.
Mihyun Kang, Stefan Kirchner, Dr. Sven Thiel, and Dr. Timo von Oerzen;
very helpful were the valuable remarks of Prof. Dr. Martin Grohe. I also
want to thank many other colleagues for discussions and suggestions, or for
answering my emails concerning their work. Special thanks also to Prof.
Dr. Anusch Taraz, who was always there when I had any queries at the
department. Finally I thank Germany and my family for education and
support.

vi

Contents

1 Introduction 1

1.1 Constraint Satisfaction . 2

1.2 Finite Templates . 4

1.3 Countable Templates . 6

1.4 Statement of the Results . 14

1.5 Related Literature . 17

1.6 Other Views on Constraint Satisfaction 18

1.7 Outline of the Thesis . 21

2 Countably Categorical Structures 23

2.1 Fundamental Concepts from Model Theory 25

2.2 The Theorem Ryll-Nardzewski 29

2.3 Model-completeness . 31

2.4 Fräıssé’s Theorem . 32

2.5 Strong and Free Amalgamation 35

2.6 Homogeneous Digraphs . 37

2.7 Tree-like Structures . 42

2.7.1 Boron Trees . 42

2.7.2 Semilinear Orders . 43

2.7.3 Dominance and Immediate Dominance 45

CONTENTS

2.8 Homomorphisms and Cores 49

3 Constraint Satisfaction 55

3.1 Introduction . 55

3.2 The Complexity of some CSPs 61

3.2.1 The CSPs for the Homogeneous Digraphs 62

3.2.2 Tree Descriptions . 66

3.2.3 The Fragments of Allen’s Interval Algebra 67

3.3 Monotone SNP . 68

3.4 Datalog . 75

4 The Clone of Polymorphisms 85

4.1 Tools from Universal Algebra 86

4.2 Clones on Finite Domains . 89

4.3 Clones on Infinite Domains . 91

4.4 The Basic Galois-Connection Inv-Aut 92

4.5 Primitive Positive Definability 94

4.6 Near-unanimity Operations 95

4.7 Adding Constants to the Signature 99

5 Graph Algorithms for Tree Constraints 103

5.1 Constraints in Computational Linguistics 103

5.2 Tree Descriptions . 104

5.3 An Algorithm for a Restricted Signature 106

5.4 Phylogenetic Analysis . 109

5.5 Reduction to Four Base Literals 111

5.6 Constraint Graphs and Freeness 112

5.7 The Algorithm . 114

viii

CONTENTS

5.8 Subquadratic Running Time 116

6 Normal Dominance Constraints 119

6.1 Dominance Graphs and Solved Forms 121

6.2 An Algorithm for Dominance Graphs 122

6.2.1 Freeness . 124

6.2.2 The Main Step . 125

6.2.3 Testing Freeness Conditions 128

6.3 Normal Dominance Constraints 129

6.3.1 Preliminaries . 130

6.3.2 Reduction to Dominance Graphs 132

6.3.3 A Duality Theorem . 133

6.3.4 Implementation and Evaluation 135

6.4 Larger Tractable Fragments 136

6.5 Surjective Homomorphism Problems 139

7 Conclusion and Outlook 145

7.1 Summary of Closure Conditions 146

7.2 Discussion . 147

7.3 Outlook . 148

7.4 List of Open Problems . 150

7.4.1 Model Theory and Combinatorics 150

7.4.2 Constraint Satisfaction and Datalog 152

7.4.3 Computational Questions 152

ix

Chapter 1

Introduction

One of the main concerns in theoretical computer science is to understand
which computational problems are tractable, and which problems are hard to
solve. Tract-able means that instances of the problem can be solved within a
reasonable amount of computational resources and time, i.e., we would like
to find a feasible algorithm. In this thesis, we consider problems as tractable
if there exists a polynomial time algorithm, and we consider problems as
hard, if they are NP-hard.

The class of tractable problems P and the class of NP-hard problems
are appealing from a theoretical point of view, for many reasons. They are
surprisingly robust concepts and for example turned out to be invariant under
any reasonable machine model that is used to formalize computation. There
are even characterizations of these classes that do not rely on the notions of
a machine and computation – e.g. in descriptive complexity theory.

Unfortunately we do not understand the class P very well. In particular
we have the tantalizing open problem whether there is a polynomial time
algorithm that solves an NP-hard problem. An assumption of this thesis will
be that this is not the case. Also, tractability and NP-hardness are not the
only options for a computational problem – in fact, under the above assump-
tion, there are infinitely many complexity classes that lie between P and the
class of all NP-hard problems [Ladner, 1975]. However, not many natural
candidates are known for such intermediate classes. Thus some researchers
posed the question: what are natural and large classes of computational
problems that exhibit a dichotomy, i.e., only contain tractable and NP-hard
problems?

Chapter 1. Introduction

Constraint satisfaction problems are computational problems that occur
in many areas of computer science, most prominently in artificial intelligence,
including temporal or spacial reasoning, belief maintenance, machine vision,
and scheduling (for an overview see [Kumar, 1992, Dechter, 2003]). Other
areas are graph theory [Hell and Nešetřil, 1990], boolean satisfiability [Scha-
effer, 1978], type systems for programming languages [Lincoln and Mitchell,
1992], database theory [Aho et al., 1981,Kolaitis and Vardi, 1998], and, as for
some of the problems discussed in this thesis, computational linguistics and
computational biology. Many of these problems have sophisticated algorith-
mic solutions. On the other hand, hardness results for constraint satisfaction
problems tend to have elegant proofs.

Several frameworks to formalize the notion of constraint satisfaction have
been proposed, most prominantly the class CSP of constraint satisfaction
problems that are defined as homomorphism problems. Such problems are
defined by a relational structure, the so-called template of the constraint
satisfaction problem. If the template has a finite domain, researchers conjec-
ture a dichotomy, and started a classification project to delineate the border
between tractability and hardness. Not much attention, however, was paid
to the class of homomorphism problems where the template has an infinite
domain.

1.1 Constraint Satisfaction

There is no established formal definition that captures everything what is
called constraint satisfaction in the literature. Most constraint satisfaction
problems are computational problems, where, informally, the instances of the
problem consist of a set of variables and so-called constraints, and the task
is to find a solution, i.e., an assignment that maps the variables to values,
chosen from some domain, that satisfies all the constraints.

In this thesis we look at constraint satisfaction problems that are ho-
momorphism problems. A homomorphism problem is given by a relational
structure Γ, the template. The computational problem CSP(Γ) is then to
determine for a finite structure S of the same signature as Γ whether S ho-
momorphically maps to Γ. This means, the elements of S must be mapped
to the domain of Γ such that if there is a tuple in a certain relation in S, the
corresponding relation holds on the images of the elements in Γ (a formal
definition is given in Chapter 3).

2

1.1 Constraint Satisfaction

?

Figure 1.1: Three-colorability as a constraint satisfaction problem.

As an example, let the template be the graph K2, i.e., two vertices joined
by an undirected edge (but without self-loops). In the corresponding con-
straint satisfaction problem CSP(K2) we have to check for a given graph G
whether G homomorphically maps to K2. This computational task is often
formulated as follows: Given a graph, find a two-coloring of the vertices of the
graph such that adjacent vertices get different colors. This problem is clearly
in P . However, if we replace K2 by K3, i.e., three pairwise joined vertices,
we get the well-known problem of graph 3-colorability, which is NP-hard (see
Figure 1.1).

3-COLORABILITY
INSTANCE: A graph G = (V ;E).
QUESTION: Can we color the vertices V with three colors such that no two
vertices adjacent in G get the same color?

One fundamental observation in this field is the trivial reformulation of
such constraint satisfaction problems in more logical terms. Now we un-
derstand the instance of a constraint satisfaction problem as a first-order
sentence of a very restricted form, namely an existentially quantified con-
junction of positive literals, and we ask whether the template is a model of
this sentence. For that, vertices in the instance correspond to existential
variables in the sentence, and relations in the instance correspond to positive
literals. These two formulations describe indeed one and the same thing:
a solution to the above model checking problem is an assignment of values
from the template to variables of the instance, and this assignment has to be
a homomorphism.

Consider for example the graph k-coloring problem. This problem can
be viewed as the constraint satisfaction problem for the complete graph on

3

Chapter 1. Introduction

k vertices, Kk. In the above interpretation, the vertices of an instance are
the variables, and the vertices of Kk are the values of the domain of the
constraint satisfaction problem. The edge relation between vertices of the
instance represents the inequality relation on variables.

From now on, if we use the term constraint satisfaction problem, we mean
a constraint satisfaction problem that is a homomorphism problem in the
sense introduced above.

1.2 Finite Templates

Constraint satisfaction with finite templates was studied intensively. Clearly,
every such problem is contained in NP. Schaeffer proved that for templates
with two elements only – we identify these elements with true and false –
the corresponding constraint satisfaction problems are either tractable or NP-
complete [Schaeffer, 1978]. He explicitely described the templates T where
CSP(T) is tractable. On the other hand, all other constraint satisfaction
problems over a two-element template can simulate the problem 1-in-3-SAT
[Garey and Johnson, 1978] and are therefore NP-hard.

1-IN-3-SAT
INSTANCE: Set V of variables, and a ternary relation C over V , i.e., a set
C of clauses over V such that each clause c ∈ C has |c| = 3.
QUESTION: Is there a truth assignment for V such that each clause in C
has at least one true literal and at least one false literal?

This problem remains NP-complete even if no c ∈ C contains a negated
literal, and this version of the problem can be cast as the constraint satis-
faction problem with the finite template ({0, 1};C) where C is the ternary
relation containing the tuples (0, 0, 1), (0, 1, 0), and (1, 0, 0) only. 1 For sim-
plicity, if we will later refer to the problem 1-in-3-SAT, we will mean the
restricted version with positive literals only.

Hell and Nešetřil restricted the signature, rather than the cardinality of
the template [Hell and Nešetřil, 1990]. They proved that if the template is a
finite graph then the constraint satisfaction problem is tractable if and only if

1It is also possible to formulate the original problem 1-in-3-SAT, or the well known
problem 3-SAT, as constraint satisfaction problems, using several ternary relations (for
each pattern of positive and negative occurrences of literals in the clause one relation).

4

1.2 Finite Templates

the template is bipartite, under the assumption that P6=NP. It is clear that a
graph G homomorphically maps to a bipartite graph if and only if G itself is
bipartite. But the difficult part was to prove that if the template contains an
odd cycle, the constraint satisfaction problem is already NP-hard. The result
does not extend to infinite templates: e.g. the complete graph on the natural
numbers contains cycles but has a trivial constraint satisfaction problem. It
is also difficult to extend this result to all digraphs: [Feder and Vardi, 1999]
shows that the dichotomy question where the template is a digraph is already
equivalent to the dichotomy question for arbitrary constraint satisfaction
problems with a finite template.

Feder and Vardi identified two classes of tractable constraint satisfaction
problems with finite templates over an arbitrary finite signature [Feder and
Vardi, 1999]. The first class consists of the constraint satisfaction problems of
bounded width – these problems can be solved by a Datalog program. They
gave an equivalent characterization of bounded width using pebble games
from finite model theory. The problems from the other class of tractable
problems discussed in [Feder and Vardi, 1999] essentially reduce to group-
theoretic problems – we will come back to such problems below.

The most systematic approach to constraint satisfaction is a connection
to universal algebras developed in [Jeavons et al., 1997,Jeavons et al., 1998,
Bulatov et al., 2000, Dalmau, 2000b, Bulatov et al., 2001, Bulatov, 2002b,
Bulatov, 2002a, Bulatov, 2003]. The fundamental observation is that the
complexity of a constraint satisfaction problem is already determined by the
clone of polymorphisms of the template. Clones are studied in universal
algebra: they are sets of functions on a common domain, containing all
projections, and closed under compositions. A polymorphism of a relational
structure Γ is a homomorphism from Γn to Γ, where Γn is a Cartesian power
of Γ, see Section 4.1. The set of all polymorphisms Pol(Γ) of Γ forms a clone.

Tractability of a constraint satisfaction problem is directly related to the
presence of certain polymorphisms in Γ, and intractability by the absence of
polymorphisms in Γ. We can describe classes of polymorphisms of a rela-
tional structure (also called operations) by functional identities. Idempotent
operations are for instance defined by the identity f(x, . . . , x) = x. The case
where the above mentioned group-theoretic algorithms apply is character-
ized by a Malt’sev operation, i.e., a polymorphism f satisfying the identities
f(x, x, y) = f(y, x, x) = y. The constraint satisfaction problems for finite
templates with a Malt’sev operation are all tractable [Bulatov, 2002a].

Bounded strict width problems, which also have a definition via Data-

5

Chapter 1. Introduction

log programs, are characterized by the presence of a near-unanimity oper-
ation, i.e., there is a k-ary polymorphism f of the template that satisfies
f(x, y, . . . , y) = f(y, x, y, . . . , y) = f(y, . . . , y, x) = y for some k ≥ 2 [Feder
and Vardi, 1999, Jeavons et al., 1998]. When classifying constraint satisfac-
tion problems with finite templates, we study their polymorphism clones and
can use nontrivial results from universal algebra for algebras over finite sets
(see for example [Szendrei, 1986,Rosenberg, 1986]).

In this approach we can also elegantly describe all the tractable cases of
Schaeffers dichotomy result: Assuming that P 6= NP, such templates have
to have either a constant operation, a majority operation, an idempotent
binary operation, or a Malt’sev operation. If there is no such operation, all
polymorphisms f are essentially unary, i.e., f(x1, . . . , xk) = g(xi) for some
1 ≤ i ≤ k and some unary operation g, and the constraint satisfaction prob-
lem is NP-hard since it can simulate the problem 1-in-3-SAT. The algebraic
approach also led to a classification of the complexity of the constraint sat-
isfaction problem with templates over a 3-element set [Bulatov, 2002b]. The
case where the template T contains a unary relation for each subset of the
domain of T also exhibits a dichotomy [Bulatov, 2003].

1.3 Countable Templates

Many natural computational problems can be formulated as constraint sat-
isfaction problems with a countable template, but not with a finite template.
Consider for instance the set of rational numbers, linearly ordered by their
size. The constraint satisfaction problem CSP

(

(Q;<)
)

can be understood as
the problem Digraph-acyclicity : A digraph can be homomorphically mapped
to the linear order if and only if it is acyclic. Later in this section we will see
several other well-known and not so well-known computational problems that
can be expressed as constraint satisfaction problems with infinite templates.

DIGRAPH-ACYCLICITY
INSTANCE: A digraph D = (V ;E).
QUESTION: Is there a directed cycle in D?

6

1.3 Countable Templates

If we do not impose any restriction on the template, constraint satis-
faction with infinite templates is very expressive. The constraint satisfac-
tion problems with arbitrary templates are precisely those problems that
are closed under disjoint unions, and whose complement is closed under ho-
momorphisms – see Section 3.1. There are also infinite templates with an
undecidable constraint satisfaction problem – we show this with a counting
argument in Section 3.1. To explore which techniques for constraint satis-
faction with finite templates can be applied for infinite templates as well, we
formulate some natural conditions on the structure of the template. These
restrictions should be general enough to still contain interesting constraint
satisfaction problems with infinite templates.

The first condition on the templates is ω-categoricity, a fundamental con-
cept in model theory. Roughly speaking, we require that the relational struc-
ture is countable and up to isomorphism fully described by its first-order the-
ory. Something similar holds trivially for finite structures: if we have equality
in our language, we can describe a structure up to isomorphism with a first-
order sentence. The concept of ω-categoricity concerns infinite structures: a
countable structure Γ is called ω-categorical, if all countable models of the
first-order theory of Γ are isomorphic to Γ. The dense linear order of the
rational numbers is an example of such an ω-categorical structure. Another
example is countable homogeneous Kn-free graph. We will see several other
examples in this section. There are various alternative characterizations of
ω-categoricity – see Chapter 2.

The second restriction concerns finite representations of our templates.
Again, the formal definitions can be found in Chapters 2 and 3. The idea
is that we describe countable relational structures by a finite set of finite
forbidden induced substructures. For the examples above there is such a
description: the dense linear order is characterized by the fact that is is a
tournament not containing an oriented triangle, in the later case the forbid-
den substructure is Kn. We do not always need this assumption – some of
the theorems we prove also hold without this condition.

In the remainder of this section we want to give an impression what kind
of computational problems can still be formulated as constraint satisfaction
problems under these restrictions on the template. We do this with a loose
collection of examples. Given the problem, it is sometimes not immediately
clear how the template should look like. This might be the case for the
following computational problem, which I could not find in the literature.

7

Chapter 1. Introduction

Figure 1.2: If we switch all arcs between the encircled and the other vertices
in the left digraph, the resulting digraph is acyclic. The right digraph is not
switching-equivalent to an acyclic graph.

SWITCHING-DIGRAPH-ACYCLICITY
INSTANCE: A digraph D = (V ;E).
QUESTION: Can we partition the vertices V into two parts, such that the
graph that arises from D by switching all arcs between the two parts is
acyclic?

We call two digraphs D1 and D2 switching-equivalent if there exists a
subset S of vertices ofD1 such that the graph that arises fromD1 by switching
all arcs between S and its complement in D1 is isomorphic to D2. In the
above problem we therefore ask whether a digraph is switching-equivalent to
an acyclic graph. See Figure 1.2 for an example of a yes- and a no-instance
of the problem.

To formulate this as a constraint satisfaction problem, partition the set
of rational numbers Q into two dense subsets Q1 and Q2. Let a, b be distinct
rational numbers. If both a and b are in Q1, or both are in Q2, then there
is an arc between numbers a and b iff a < b. If a and b are in different
parts then we put an arc between a and b iff a > b. We claim that the
resulting countable tournament2 is unique up to isomorphism, and we call it
S(2) (details can be found in Section 2.6 and 3.2). Moreover, the constraint
satisfaction problem CSP(S(2)) is precisely the problem defined above. The
tournament S(2) has various other elegant representations: it is for instance
isomorphic to a countable dense subset of the points on the unit circle in

2A tournament is a digraph where there is exactly one arc between every pair of vertices.

8

1.3 Countable Templates

the plane without antipodal points, where two points ab are connected if the
oriented line from a to b has the origin on the left side. Having that, we
see that the above problem can exchangeably be stated in the following form
(see Section 2.6):

CYCLIC-EMBEDDING
INSTANCE: A digraph D = (V ;E).
QUESTION: Can we map the vertices from V to the plane, such that every
arc in E is embedded in the plane in such a way that it has the origin on its
left side?

Another example that will be studied in this thesis is a special case of a
problem that we called pure dominance constraints in [Bodirsky and Kutz,
2002]:

CONSISTENT-GENEALOGY
INSTANCE: A digraph D with two types of arcs, called ancestorship and
non-ancestorship arcs.
QUESTION: Can we find a forest with oriented edges on the vertex set of D,
such that for every ancestor arc in D there is a directed path in the forest,
and for every non-ancestor arc there is no directed path in the forest?

The problem is a special case of a problem posed in computational lin-
guistics [Cornell, 1994]. One could illustrate it with the following setting: Let
us assume that, unlike the biological genealogy of sexual reproduction, where
every creature has two parents, every person with a PhD has one academic
parent – the advisor. An advisor can have many PhD students, and they
may again have PhD students, and so on – the advisor is an ancestor for all
of them. We are interested in the genealogy of the persons having a PhD
– which forms under the above assumption a forest, where each tree in the
forest has a unique root. (There are in fact public databases in the internet
containing such information for e.g. mathematicians.)

To build the genealogy tree we are given information of the type “A
is an ancestor of B” and information of the type “C is not an ancestor of
D”. The task is to determine whether such information is consistent, i.e.,
whether there is a genealogy forest satisfying all the constraints. Consider
Figure 1.3. Observe that certain ancestorship and non-ancestorship informa-
tion might imply other information. For instance, any tree with ancestorship

9

Chapter 1. Introduction

Hecke

Reidemeister

LindemannSchmidt

Hopf

Hilbert

Specker

Figure 1.3: Partial information about some of the academic descendents of
Felix Klein. Dotted arcs indicate ancestorship. Dashed arcs indicate non-
ancestorship. The depicted information alone implies that Lindemann was
an ancestor of Hilbert.

and non-ancestorship as specified by the arcs of the picture also satisfies that
Lindemann is an academic ancestor of Hilbert (in fact, he was his academic
father).

The same question could be asked for genealogies for the last name of
humans – again under the assumption that every human gets the last name of
one of the parents. Of course, these are toy problems. For the reconstruction
of a genealogy tree from given data, we usually do not have the type of
information that we are given in these problems. However, there are related
problems that were studied in computational biology – see Section 5.4. In
Chapter 5 we present an efficient algorithm that solves this problem as a
special case. With the same algorithmic ideas we can then also efficiently
solve tractable problems that came from phylogenetic analysis [Steel, 1992,
Henzinger et al., 1996], optimization of relational expressions [Aho et al.,
1981], and computational linguistics [Cornell, 1994].

The problem Consistent-genealogy can be formulated as a constraint
satisfaction problem. To define the template we use the following dense
proper semilinear order [Cameron, 1996,Adeleke and Neumann, 1985]. The
domain of the structure is the set of all non-empty finite sequences a =
(q0, q1, . . . , qn−1) of rational numbers. Let a < b if either

• b is a proper initial subsequence of a, or

• b = (q0, . . . , qn−1, qn) and a = (q0, . . . , qn−1, q
′
n, qn+1, . . . , qm), qn < q′n.

10

1.3 Countable Templates

a b

a

b

Figure 1.4: A dominance graph and a solution.

The relation < corresponds to ancestorship edges, this is, we write a < b
if b is an ancestor of a. The set of all ordered pairs of distinct points not
in <, denoted by �, corresponds to the non-ancestorship edges. Such and
related structures will be discussed in Section 2.7.

A problem that might look similar, but has a different nature, is the
following problem for dominance-graphs introduced in [Althaus et al., 2001],
motivated by applications in computational linguistics.

DOMINANCE-GRAPH-SOLVABILITY
INSTANCE: A digraph with two types of arcs, called dominance and imme-
diate dominance edges, respectively. The immediate dominance edges form
a set of disjoint rooted trees of height one.
QUESTION: Is there a set of disjoint rooted trees on the vertices V contain-
ing the immediate dominance edges, where the edges are directed away from
the roots, such that for every dominance edge there is a directed path in a
tree?

Consider for example Figure 1.4. The rooted tree on the right is a solution
for the dominance graph on the left.

We do not formulate this problem as a homomorphism problem, but as
a substructure problem. Such problems are again given by a template, and
we ask whether an instance is a substructure (in this thesis substructures
are weak substructures, i.e., not necessarily induced substructures) of the
template. Substructure problems and Homomorphism problems are closely

11

Chapter 1. Introduction

related, although the computational complexity for the same template might
be different - this will be discussed in Chapter 3.

The problem Dominance-graph-solvability can be formulated as a sub-
structure problem, using the following ω-categorical template ∆, which con-
tains two relations denoted by ⊳ and ⊳+. Again the domain of the structure
∆ is the set of all non-empty finite sequences a = (q0, q2, . . . , qn) of rational
numbers. We say that a dominates b, and write a ⊳+ b, if either

• a is a proper initial subsequence of b, or

• a = (p0, . . . , p2n−1, p2n) for n ≥ 0, and b = (p0, . . . , p2n−1, p
′
2n, p2n+1, . . . , pm),

where p2n < p′2n.

Note that ∆ is infinitely branching at sequences of odd length, and that there
are no maximal lower elements below sequences of even length. Also, the
structure does not contain any maximal or minimal elements. We write ’x⊳y’,
and say that x immediately dominates y, iff for every element z dominating
y in ∆ we have either z ⊳+ x or z = x. Then the (weak) substructures of
(∆; ⊳+, ⊳) are the yes-instances of Dominance-graph-configurability.

In [Althaus et al., 2001], an efficient algorithm for a restricted version of
the problem was presented. It is based on a duality theorem: An instance
S of the restricted version of the problem is a substructure of ∆ if and
only if S does not contain certain bad cycles as a substructure (for details
see Section 6.3.3). In Chapter 6 we present a different and more efficient
algorithm.

Quartet-compatibility is a problem relevant in phylogenetic analysis in
computational biology. It is NP-hard [Steel, 1992]. We refer to Section 5.4
for an introduction to these applications.

QUARTET-COMPATIBILITY
INSTANCE: A collection C of quartets xy|uv over a set X.
QUESTION: Is there some tree with leaf set X such that for each quadruple
xy|uv in C the paths from x to y and from u to v do not have common
vertices?

This problem is the constraint satisfaction problem of an ω-categorical
structure arising from Boron trees that was studied e.g. in [Cameron, 1996]
in the context of permutation groups of countable sets – for details we again
refer to Section 2.7.

12

1.3 Countable Templates

Finally we mention a problem that is an instance of an important subclass
of constraint satisfaction with ω-categorical templates. We can find it in the
list of NP-hard problems in [Garey and Johnson, 1978].

CYCLIC-ORDERING
INSTANCE: Finite set A, collection C of ordered triples (a, b, c) of distinct
elements from A.
QUESTION: Is there an injective function f : A→ {1, 2, . . . , |A|} such that
for each (a, b, c) ∈ C, we have either f(a) < f(b) < f(c) or f(c) < f(b) <
f(a)?

This problem can be formulated as a constraint satisfaction problem on
the rational numbers, with a single ternary relation, namely {(a, b, c) ∈
Q | f(a) < f(b) < f(c) or f(c) < f(b) < f(a)}. As a matter of fact,
this is a structure which has – as model theorists say – an interpretation
in the dense linear order (Q;<). Structures that have an interpretation in
an ω-categorical structure are again ω-categorical. A whole class of prob-
lems that can be described with templates having an interpretation in Q
are the fragments of Allen’s interval algebra, containing also many tractable
fragments. The domain there is Q2, where the elements of this domain are
viewed as closed intervals over the rational numbers. The signature contains
symbols for relations between intervals: such intervals can e.g. overlap or
include each other. Depending on which relations between intervals we have
in the signature of our template, we have different computational problems,
and these were called the fragments of Allen’s interval algebra. The frag-
ments exhibit a dichotomy: they are either NP-hard or tractable [Bürckert
and Nebel, 1995,Jeavons et al., 2003].

Uncountable Domains? We only consider countable domains. The rea-
son is that if we had some template with an uncountable domain, we can find
a template with a countable domain that has precisely the same constraint
satisfaction problem. This follows from the Löwenheim-Skolem theorem –
see Section 2.1.

13

Chapter 1. Introduction

1.4 Statement of the Results

In this Section we give a short outline of the results. At the end of the section,
we state which of the results in this thesis are already published, and where.

One of the leading questions in this thesis is: Is there a reasonable as-
sumption on infinite templates of constraint satisfaction problems, such that
many of the known techniques to study constraint satisfaction with finite
templates still apply? We propose to study constraint satisfaction with ω-
categorical templates. A countable ω-categorical structure is up to isomor-
phism described by its first-order theory. The results in this thesis show that
the class of constraint satisfaction problems with ω-categorical templates
contains many additional interesting computational problems, but they also
show, that indeed many techniques known for finite templates still work for
ω-categorical templates.

The algebraic approach to constraint satisfaction. For ω-categorical
templates we can prove that the primitive-positive definable relations are
precisely the relations that are invariant under the polymorphisms of the
template – as it is the case for finite templates. For finite templates this
observation was the starting point of one of the approaches to classify the
complexity of the corresponding constraint satisfaction problems. For ω-
categorical templates, as for finite templates, tractability of the constraint
satisfaction problem is thus related to the presence of certain polymorphisms.

One example are ω-categorical structures that have a k-ary polymorphism
f , k ≥ 3, satisfying f(x, y, . . . , y) = f(y, x, y, . . . , y) = f(y, . . . , y, x) = y;
such operations f are called near unanimity operations. In other words,
whenever k−1 arguments have the same value, then a near-unanimity oper-
ation returns that value. In this case and if the template is finite, the cor-
responding constraint satisfaction problem can be solved in polynomial time
with a Datalog program [Jeavons et al., 1998, Feder and Vardi, 1999]. Gen-
eralizing the concept of canonical Datalog programs [Feder and Vardi, 1999]
we show that this also holds for ω-categorical templates. We prove a couple
of other results that are well-known and useful for finite templates, and also
hold for ω-categorical structures Γ (e.g., Proposition 2.24, Theorem 4.7, and
Theorem 4.20)).

Constraint satisfaction as model-checking. Via the model-checking
problem, logic is an important tool to define classes of computational prob-

14

1.4 Statement of the Results

lems – see for instance the book [Immerman, 1998]. The class NP, for exam-
ple, equals the class of model checking problems for existential second-order
logic [?]. It would be interesting to know with which syntactically restricted
existential second-order sentences we can appropriately describe constraint
satisfaction problems.

The class SNP is an important subclass of NP [Kolaitis and Vardi, 1992],
and was originally introduced in the context of the theory of optimization
problems [Papadimitriou and Yannakakis, 1991, Mayr et al., 1998] – but
turned out to be closely related to homomorphism problems [Feder and Vardi,
1999]. An SNP formula is an existential second-order formula with a univer-
sal first-order part (see Section 3.3). We relate constraint satisfaction with
ω-categorical templates to the classes monotone SNP and monotone monadic
SNP (both without inequality) that were introduced by Feder and Vardi to
study the complexity of constraint satisfaction with finite templates. Using
a result of [Cherlin et al., 1999], we show that every problem in monotone
monadic SNP can be formulated as a constraint satisfaction problem with
an ω-categorical template. Moreover, in this case the template can be de-
scribed using a finite number of finite forbidden substructures. The class of
constraint satisfaction problems with such a template we denote by CSP∗;
for a formal definition see Section 3.1.

If the template has such a description, the constraint satisfaction problem
is in monotone SNP. For that we use a result of [Feder and Vardi, 2003].
Hence, we have the following inclusions (all of them are strict).

CSP ⊂ monotone monadic SNP ⊂ CSP∗ ⊂ monotone SNP ⊂ SNP ⊂ NP

Constraint satisfaction for tree-like templates. In an algorithmic part
of this thesis we study the complexity of constraint satisfaction problems
where the template is an ω-categorical tree-like structure. This is for in-
stance the case for the problems Consistent-genealogy and Dominance-graph-
configurability, which we already mentioned in Section 1.3. In Chapter 5 we
present efficient graph algorithms that directly construct solutions to these
problems. In the case of Consistent-genealogy we do this for a large gen-
eralization, and thereby solve an open problem of [Cornell, 1994]. We also
show an example where the local consistency algorithm from [Cornell, 1994]
is incomplete – in fact, we show that the problem Consistent-genealogy does
not have bounded width in the sense of [Feder and Vardi, 1999]. Finally
we show how to improve the efficiency of our polynomial time algorithm by
dynamic (decremental) graph connectivity algorithms.

15

Chapter 1. Introduction

In the case of Dominance-graph-configurability we present a novel algo-
rithm that is more efficient than the previously known algorithms, both in
theory and practice – see Chapter 6. We show that we can use this to solve
normal dominance constraints introduced in [Althaus et al., 2003], which
are a fragment of dominance constraints. For that we introduce the notion
of a solved form for a constraint satisfaction problem, which is important
for efficient implementations of the algorithms. Also here it is possible to
improve the running time with decremental graph algorithms, this time for
undirected biconnectivity.

Finally we explore larger fragments of dominance constraints that have
polynomial time algorithms. In this context we introduce the class of surjec-
tive homomorphism problems. They are again given by a (here always finite)
template T , and we ask whether a given finite structure S with the same
signature as T has a surjective homomorphism to T . We prove that cer-
tain fragments of dominance constraints are polynomial time equivalent to
problems from that class. It turns out to be more difficult to prove hardness-
results in the class of surjective homomorphism problems. To our knowl-
edge, all known tractable surjective homomorphism problems reduce to a
corresponding constraint satisfaction problem where all polymorphisms are
idempotent.

Published results. Some of the results concerning the general frame-
work of constraint satisfaction with ω-categorical templates were published
in [Bodirsky and Nešetřil, 2003]. A predecessor of the algorithm presented in
Chapter 5 appeared in [Bodirsky and Kutz, 2002]. In this thesis we present
simpler proofs for the soundness of this algorithm. Parts of the results of
Chapter 6 are published in [Bodirsky et al., 2004]. We give a slightly differ-
ent presentation here that fits into the general framework of the thesis.

Other results of the thesis are not yet published, e.g. the connection to
phylogenetic analysis for the applications in computational biology, the hard-
ness proofs of various illustrating constraint satisfaction problems, the for-
mulation of problems from monotone monadic SNP as constraint satisfaction
problems with ω-categorical templates, the generalization of the algorithm
in [Bodirsky and Kutz, 2002] to the full logic introduced in [Cornell, 1994],
the adaptation of [Bodirsky et al., 2004] to the framework developed here,
and some relevant facts from model theory.

The exploration of the border between tractability and NP-hardness for
fragments of dominance constraints in Section 6.4 is also unpublished, ex-

16

1.5 Related Literature

cept for the results in [Bodirsky et al., 2004]. In particular, this concerns the
characterization of free sets of nodes in Σ-dominance-graphs, the tractability
for binary languages without inequalities, the general equivalence to surjec-
tive homomorphism problems, and the tractability and hardness results for
unranked tree descriptions.

1.5 Related Literature

This section surveys related literature, and points to introductory books
and articles (here I make a subjective selection that reflects my personal
perspective). We also discuss the choices for terminology and notations in
this thesis.

Constraint satisfaction has its origins in artificial intelligence [Freuder,
1978, Freuder, 1982, Mackworth and Freuder, 1993, Montanari, 1974]. A re-
cent book is [Dechter, 2003]. A landmark paper for the theory of constraint
satisfaction is [Feder and Vardi, 1999] (first appeared as [Feder and Vardi,
1993]). They prove a great number of results concerning the complexity of
constraint satisfaction problems, relations to finite model theory, and group
theory. To learn about the connection of constraint satisfaction with finite
templates to universal algebra we recommend to read [Jeavons et al., 1997].
With this approach one can use classification results for clones – for instance
the beautiful classification of minimal clones [Rosenberg, 1986].

For constraint satisfaction with infinite templates we are interested in the
model theory of countable structures; our favorite introduction is [Hodges,
1997]. Since we focus on ω-categorical structures, that also have a charac-
terization via their automorphism group (a structure is ω-categorical if and
only if its automorphism group is oligomorphic), topics from infinite per-
mutation groups become relevant, e.g., from the inspiring book [Cameron,
1996] that influenced many parts of this thesis. The polymorphism clones of
ω-categorical structures – I would like to suggest to call them oligomorphic
clones – seem to be an untouched subject and I do not know of any reference.

In the later sections of this work we study constraint satisfaction problems
for certain tree-like templates. For readers that are not into logic we note
that both Chapter 5 and 6 are algorithmic, and essentially self-contained.
The computational problems have a non model-theoretic formulation and
independent motivations from various fields of applications. We will later
give separate surveys for the relevant literature in the applications for com-

17

Chapter 1. Introduction

putational linguistics and phylogenetic analysis. Some familiarity with fun-
damental graph theoretical concepts might be useful in these two chapters.
An excellent introduction is [Diestel, 1997]. We also do not need much pre-
requisites in complexity theory: everything can be found in the classical
book [Garey and Johnson, 1978].

Terminology and notation. Aside from conflicts between the nomencla-
ture from model theory and from infinite permutation groups (this is dis-
cussed e.g. in [Adeleke and Neumann, 1985]), and the notion of substructure
(either induced or not; see Section 2.1), there is always standard terminology,
which we thus use.

Concerning notation, there are many possible ways to name the objects
under consideration, due to the different areas that are touched by the sub-
ject. The most frequent mathematical symbol used here is Γ; it always
denotes a countable relational structure, usually ω-categorical, sometimes
with additional properties. We started using this symbol in [Bodirsky and
Nešetřil, 2003] because it was used for countable homogeneous structures
in the monograph [Cherlin, 1998]. For constraint satisfaction problems, Γ
denotes the template – only if the template is finite we use T for the tem-
plate, as, e.g., in [Feder and Vardi, 1999]. Some special tree-like ω-categorical
structures (or their domains) will be denoted by Λ,∆, following [Adeleke and
Neumann, 1985]. The relations on these structures will be denoted in the
same way as for axiomatizations of finite trees in [Backofen et al., 1995].
Classes of finite structures are denoted by caligraphic letters A,B,C.

The choice for other symbols was more canonical: Small letters a, b, c
denote elements of some structure, x, y, z first-order variables, big letters
A,B,C finite subsets of elements of a structure, letters S, T finite relational
structures, and R denotes relations in a relational structure etc. In Sec-
tion 2.1 most notation is formally introduced. The notation from universal
algebra is as in [Kalužnin and Pöschel, 1979], the notation from model theory
mostly as in the mentioned book [Hodges, 1997].

1.6 Other Views on Constraint Satisfaction

As already mentioned, the term constraint satisfaction is used in many dif-
ferent ways in the literature. Current research on constraint satisfaction can
be grouped into several areas, briefly described in the following paragraphs.

18

1.6 Other Views on Constraint Satisfaction

In this thesis, we will not deal with the questions in these paragraphs.

Uniform homomorphism problems. For a fixed relational structure T ,
we consider the computational problem whether a given finite structure S
homomorphically maps to T . One generalization of constraint satisfaction is
that both S and T are given in the input (here T is assumed to be a finite
structure as well). Now we ask for the complexity of this problem, if we
restrict the potential choices for S and T . Suppose C, D are classes of finite
structures with finite for the case elational signature τ . Then CSP(C,D)
denotes the computational problem to determine for given S ∈ C, T ∈ D

whether there is a homomorphism from S to T .

It was noted e.g in [Freuder, 1990] that CSP(C,D) is tractable if the
class C has bounded tree-width. This was generalized in [Dalmau et al., 2002]
and finally led to a full classification of the tractable problems of the form
CSP(C,D) where D is the set of all τ -structures [Grohe, 2003]. Such a
problem is tractable if and only if the class C has bounded tree-width, under
some complexity assumptions from parameterized complexity theory.

Function symbols. In this thesis we only look at relational structures.
The constraint satisfaction problem can be posed in the very same form for
first-order structures that might as well contain function symbols. In fact,
corresponding computational problems have been studied in the literature.
If Γ is the free term algebra of function symbols from Σ, and the only relation
symbol is first-order equality, this is nothing but the well-known first-order
unification problem (which can be solved in linear time, [Paterson and Weg-
man, 1978]).

As a first step towards a systematic picture in this setting, [Feder et al.,
2002] looked at constraint satisfaction problems with unary functions over
a finite domain – for a single function symbol and for two function symbols
with special properties a dichotomy is proven. If the template contains two
function symbols without any restriction, the dichotomy question is equiva-
lent to the dichotomy question for CSP with finite relational templates.

The literature on combining constraint solving (see the survey article
[Baader and Schulz, 2001]) has an even broader view on constraint satisfac-
tion as compared to here. They also stress the connection to model theory
and universal algebra, but are mainly concerned with decidability questions
of more expressive constraint languages.

19

Chapter 1. Introduction

Maximum constraint satisfaction. Another typical computational goal
for a given constraint satisfaction problem is to find an ‘optimal’ assignment,
i.e., an assignment of values to the variables that maximizes the number
of satisfied constraints. A number of problems including MaxSat, MaxCut,
and MaxDicut can be represented in this framework. It is well-studied in the
Boolean case, that is, if the template is defined on a two-element domain,
see e.g. [Creignou et al., 2001]. For general domains, the complexity ques-
tion [Cohen et al., 2004] and approximability [Datar et al., 2003] recently
attracted attention. The corresponding maximization class for SNP, called
MaxSNP [Creignou et al., 2001, Papadimitriou and Yannakakis, 1991, Mayr
et al., 1998], is even larger and of particular importance to the theory of
approximation algorithms; every problem in MaxSNP can be approximated
within a constant ratio.

Quantified constraints. We already mentioned that an instance of a con-
straint satisfaction problem can be considered as a primitive positive sen-
tence, and the constraint satisfaction problem is whether the template is a
model for this sentence. Allowing negated atomic formulas in the input is a
special case, since we can expand the signature appropriately. But we can
also increase the expressive power of constraint satisfaction by allowing not
only existential, but also universal or other quantifiers in the input. This was
studied in [Feder and Kolaitis, 2004,Dalmau, 2000a,Boerner et al., 2003].

Counting constraint satisfaction problems. How difficult is it to com-
pute the number of solutions of a constraint satisfaction problem? This is
called the counting constraint satisfaction problem and was studied in [Dyer
and Greenhill, 2000,Bulatov and Dalmau, 2003,Bulatov and Grohe, 2004]. Is
there a dichotomy into P and #P -hard? It turned out that many techniques
for constraint satisfaction are useful for counting constraint satisfaction as
well.

If the template is ω-categorical, we can generalize this question to ω-
categorical structures, and ask for the number of nonisomorphic solutions to
a given instance (for ω-categorical structures, this is always a finite num-
ber). Counting the number of types realized in an ω-categorical structure is
considered e.g. in [Cameron, 1996]).

20

1.7 Outline of the Thesis

1.7 Outline of the Thesis

In Chapter 2 we introduce some fundamental concepts from model theory
that are necessary to describe the infinite templates we are dealing with
here. We focus on concepts and theorems in model theory that are relevant
for constraint satisfaction with ω-categorical templates.

In Chapter 3 we introduce the framework of constraint satisfaction prob-
lems studied in this thesis. We give several examples of computational prob-
lems that have been studied in the literature. We also discuss the relationship
to fragments of existential second order logic, and to the theory of Datalog
programs.

In Chapter 4 the algebraic method, which is known from constraint sat-
isfaction with finite templates, is generalized to ω-categorical templates.

Chapter 5 contains the description of efficient algorithms that solve sev-
eral problems in the literature, containing open problems from computational
linguistics [Cornell, 1994,Bodirsky and Kutz, 2002] and well-known tractable
problems from phylogenetic analysis in computational biology [Aho et al.,
1981,Steel, 1992,Henzinger et al., 1996].

Chapter 6 applies similar algorithmic ideas to solve normal dominance
constraints used in computational linguistics [Althaus et al., 2003, Bodirsky
et al., 2004, Niehren and Thater, 2003]. Normal dominance constraints are
a restricted form of dominance constraints, where the satisfiability problem
is NP-hard [Koller et al., 1998, Egg et al., 2001]. In fact, our algorithm
applies not only to normal dominance constaints; in Section 6.4 we determine
the border between the tractable and the NP-hard fragments of dominance
constraints.

21

Chapter 2

Countably Categorical
Structures

A countable structure whose first-order theory has precisely one countable
model up to isomorphism is said to be ω-categorical (or, exchangeably used
in the literature, ℵ0-categorical). These structures play an important rôle for
constraint satisfaction, since many techniques to study the computational
complexity of constraint satisfaction for finite templates carry over to ω-
categorical templates. On the other hand, various constraint satisfaction
problems from different areas of computer science can be formulated with
ω-categorical templates, and not with finite templates.

Many examples of ω-categorical structures are easily defined via homo-
geneous structures, a concept which links model theory with combinatorics,
via Fräıssé’s theorem. In fact, every ω-categorical structure can be made
homogeneous by expanding the structure with first-order definable relations.
In this chapter we will mention results that have been made towards a clas-
sification of countable homogeneous relational structures. These structures
are studied by model theorists, and they have many remarkable properties.
For signatures with finitely many k-ary relation symbols for each k ≥ 1 they
allow quantifier elimination and are ω-categorical. This will give us many
examples of ω-categorical structures. These examples will later be useful to
formulate several interesting computational problems as constraint satisfac-
tion problems.

Usually, ω-categoricity and various other notions introduced in this chap-
ter are in model theory more generally defined for first-order theories, and
not, as it is done here, only for relational structures. But since we consider

Chapter 2. Countably Categorical Structures

ω-categorical relational structures in this thesis, and since they are up to iso-
morphism in a one-to-one correspondence with their first-order theories, it
suffices for us to define these concepts for the structures themselves. Another
model-theoretic aspect, where we have a slightly shifted focus compared to
classical model theory, is that structures in model-theory are usually consid-
ered up to first-order definability. Because of our applications in constraint
satisfaction, we need to take a closer look, since the complexity of a con-
straint satisfaction problem is very sensitive to the choice of the signature of
the template. But we can still consider structures up to so-called primitive
positive definability. Primitive positive definable relations are also important
in e.g. the model theory of modules (see [Hodges, 1993]). The relevance of
primitive-positive definability in constraint satisfaction comes from the sim-
ple fact that finite primitive positive expansions of a template do not change
the complexity of the corresponding constraint satisfaction problem.

Two different ω-categorical structures might have the same constraint
satisfaction problem. An important concept in this context is the concept
of a core of a relational structure. Cores were originally introduced for finite
templates. A finite relational structure is a core, if every endomorphism
of the structure is an automorphism. In Section 2.8 we have a look at a
possible generalization of the notion of a core to infinite structures. We say
that a relational structure is a core, if every endomorphism is an embedding,
i.e., is injective and also preserves the complements of the relations in the
structure. For finite structures, this is clearly equivalent to the previous
definition. We discuss properties of ω-categorical cores that are relevant to
constraint satisfaction.

Outline of the chapter. We first recall some fundamental concepts from
model theory, and give several equivalent characterizations of ω-categoricity.
The following sections describe a sequence of stronger and stronger properties
that an ω-categorical structure (or its finite induced substructures) might
satisfy: model-completeness, amalgamation, strong amalgamation, and finally
free amalgamation. Free amalgamation is crucial to state the classification
of the homogeneous digraphs [Cherlin, 1998], which will be presented next.

Other examples of ω-categorical structures are various tree-like structures,
and they will be of particular interest in constraint satisfaction later. We close
with a discussion of core-like properties for infinite structures.

24

2.1 Fundamental Concepts from Model Theory

2.1 Fundamental Concepts from Model The-

ory

We introduce the fundamental concepts used throughout the thesis. They
are standard, see e.g. [Hodges, 1997]. A relational signature τ is a (here
always at most countable) set of relation symbols Ri, each associated with
an arity ki.

Structures and maps. A (relational) structure Γ over relational signature
τ (also called τ -structure) is a set DΓ (the domain) together with a relation
Ri ⊆ Dki

Γ for each relation symbol of arity ki. If necessary, we write RΓ to
indicate that we are talking about the relation R belonging to the structure
Γ. For simplicity, we denote both a relation symbol and its corresponding
relation with the same symbol. For a τ -structure Γ and R ∈ τ it will also
be convenient to say that R(u1, . . . , uk) holds in Γ iff (u1, . . . , uk) ∈ R. We
sometimes use the shortened notation x for a vector x1, . . . , xn of any length,
and sometimes also call relations predicates. Sometimes we do not distinguish
between the symbol for a relational structure and its domain. The cardinality
of the domain of a relational structure Γ is denoted by |Γ|.

Let Γ and Γ′ be τ -structures. A homomorphism from Γ to Γ′ is a function
f from DΓ to DΓ′ such that for each n-ary relation symbol in τ and each
n-tuple a, if a ∈ RΓ, then (f(a1), . . . , f(an)) ∈ RΓ′

. In this case we say
that the map f preserves the relation R. A strong homomorphism f satisfies
the stronger condition that for each n-ary relation symbol in τ and each n-
tuple a, a ∈ RΓ if and only if (f(a1), . . . , f(an)) ∈ RΓ′

. An embedding of
a Γ in Γ′ is an injective strong homomorphism, and an isomorphism is a
surjective embedding. Isomorphisms from Γ to Γ are called automorphisms.
The set of all automorphisms of a structure Γ is a group with respect to
composition, and denoted by Aut(Γ). Homomorphisms from Γ to Γ are
called endomorphisms. The set of all endomorphisms of a structure Γ is
monoid with respect to composition, and denoted by End(Γ). It is sometimes
convenient to let these mappings act on the right; it will always be possible
to distinguish between these, because we then do not use brackets, i.e., we
write aef = f(e(a)) for the application of the two mappings e and f to an
element a.

A definition where we deviate from the notation in [Hodges, 1997] is that
of a substructure; here we rather generalize the notion of a subgraph [Diestel,
1997] and say that a τ -structure Γ′ is a substructure of a τ -structure Γ, iff

25

Chapter 2. Countably Categorical Structures

D′
Γ ⊆ DΓ and every relation from Γ′ is a subset of the corresponding relation

in Γ. Such substructures are also called weak substructures in the literature.
The set of all finite substructures of a relational structure Γ is denoted by
wSub(Γ). We say that a structure Γ′ is an induced substructure of Γ iff
the inclusion relation is an embedding. Substructures in Hodges’ book are
induced substructures in our sense. The set of all finite induced substructures
of a relational structure Γ is called the age of Γ, denoted by Age(Γ).

The disjoint sum of a set of τ -structures Γ1,Γ2, . . . is the τ -structure Γ
defined on the union of the domains of these structures, where the relations in
Γ are defined to be the unions of the corresponding relations of the summands
Γi.

First-order logic. First-order formulae ϕ over the signature τ (or, short,
τ -formulae) are inductively defined using the logical symbols of universal
and existential quantification, disjunction, conjunction, negation, equality,
bracketing, variable symbols and the symbols from τ . The semantics of a
first-order formula over some τ -structure is defined in the usual Tarskian
style. A τ -formula without free variables is called a τ -sentence. We write
Γ |= ϕ iff the τ -structure Γ is a model for the τ -sentence ϕ; this notation is
lifted to sets of sentences in the usual way. For a beautiful introduction to
logic and model theory see [Hodges, 1997].

We can use first-order formulae over the signature τ to define relations
over a given τ -structure: for a formula ϕ with k free variables the correspond-
ing relation R is the set of all k-tuples satisfying the formula ϕ in Γ. The
relational structure that contains all first-order definable relations from Γ is
denoted by 〈Γ〉fo – thus it has a countable signature, with a relation symbol
for each first-order definable relation.

If we add relations to a given structure Γ we call the resulting structure
Γ′ an expansion of Γ, and Γ is called a reduct of Γ′. This should not be
confused with the notions of extension and restriction. Recall from [Hodges,
1997]: If Γ and Γ′ are structures of the same signature, with DΓ ⊆ DΓ′ , and
the inclusion map is an embedding, then we say that Γ′ is an extension of Γ,
and that Γ a restriction of Γ′.

We now look at various syntactic restrictions of first-order logic. The
first is that we only allow existential quantifiers, and only atomic negation.
The corresponding formulae and sentences we call existential, and if they
are negation-free existential positive. The expanded relational structure that
contains all existentially (positive) definable relations in Γ is denoted by 〈Γ〉∃

26

2.1 Fundamental Concepts from Model Theory

(or 〈Γ〉∃p, respectively).

Of the utmost importance for constraint satisfaction is the syntactic re-
striction called primitive positivity : A first-order formula ϕ over the signature
τ is said to be primitive positive (we say ϕ is a p.p.-formula, for short) iff it
is of the form

∃x(ϕ1(x) ∧ · · · ∧ ϕk(x)) ,

where ϕ1, . . . , ϕk are atomic formulae. Let Γ be a relational structure of
signature τ . Then a p.p.-formula ϕ over τ with k free variables defines a
k-ary relation R ⊆ Dk

Γ. We call these relations p.p.-definable, and denote
the expanded relational structure that contains all such relations for a given
Γ by 〈Γ〉pp. In universal algebra the relational structures that are closed
under primitive positive definability are called relational clones [Kalužnin
and Pöschel, 1979]. It is easy to see that there is a p.p.-formula defining a
relationR if and only if there exists a finite relational τ -structure S containing
k designated vertices x1, . . . , xk such that

R =
{(

f(x1), . . . , f(xk)
)

∣

∣ f : S → Γ homomorphism
}

.

Interpretations. Definability is often too weak to capture close relation-
ships between structures – therefore we introduce interpretations. The defi-
nition will be a special case of the model theoretical definition, which applies
not only to structures but more generally to theories; see e.g. [Hodges, 1997].
Since we are mainly interested in ω-categorical relational structures, the def-
inition given here suffices for our purposes.

Definition 2.1. A τ ′-structure Γ′ is interpretable in a τ -structure Γ iff there
exists a natural number n, called the dimension of the interpretation, and

• a τ -formula δ(x1, . . . , xn) – called domain formula,

• for each m-ary relation symbol R in τ ′ a τ -formula φR(x1, . . . , xm)
where the xi denote disjoint n-tuples of distinct variables – called the
defining formulae, and

• a surjective map f : δ(Γn)→ DΓ′ – called coordinate map,

such that for all relations R in Γ′ and all tuples ai ∈ δ(Γ
n)

Γ′ |= R(f(a1), . . . , f(am)) ⇔ Γ |= φR(a1, . . . , am) .

27

Chapter 2. Countably Categorical Structures

We say that B is interpretable in Γ with finitely many parameters iff
there is a finite tuple a of elements of Γ such that Γ′ is interpretable in the
expansion of Γ by the singleton relations {ai} for ai in a.

Fundamental theorems. We close this section with three theorems that
express some of the main features of first-order logic. A (first-order) theory
is a set of first-order sentences. The first-order theory Th(Γ) of a τ -structure
Γ is the set of all first-order τ -sentences that are true in Γ. All the theorems
are classical, and we again recommend [Hodges, 1997] as an introduction.

Theorem 2.2 (Compactness). Let T be a first-order theory. If every finite
subset of T has a model then T has a model.

A n-type of a theory T is a set t of formulae in n free variables such that
for some model Γ of the theory and some n-tuple a of Γ, Γ |= ϕ(a) for all
ϕ ∈ t. We say then that a realizes t. We say that Γ omits t iff no tuple in A
realizes t. (If t contains the set of all τ -formulae ϕ such that Γ |= ϕ(a) we
say that t is a complete n-type.) An n-type t of T is principal iff t contains
a formula ϕ(x) such that T ∪ {∃xϕ} has a model, and for every formula
ψ(x) ∈ t, T |= ∀x(ϕ→ ψ).

Theorem 2.3 (Countable omitting types theorem). Let T be a theory
over a countable signature τ , and let t be a type that is not principal. Then
T has a model that omits t.

We need the following theorem to justify that it suffices to consider count-
able structures for constraint satisfaction. An embedding is called elemen-
tary, iff it preserves all first-order formulae.

Theorem 2.4 (Downward Löwenheim-Skolem theorem). Let Γ be a
structure. Then there is a countable structure Γ′ with an elementary embed-
ding in Γ.

In particular we make use of the consequence that there is a homomor-
phism from a finite relational structure S to Γ if and only if there is a homo-
morphism from S to the countable structure Γ′ from Theorem 2.4. Concep-
tually related to Theorem 2.4 is the following theorem.

Theorem 2.5 (Upward Löwenheim-Skolem theorem). Let Γ be an in-
finite structure. Then Γ has an elementary embedding in a structure Γ′ of
arbitrary, but sufficiently large cardinality.

28

2.2 The Theorem Ryll-Nardzewski

2.2 The Theorem Ryll-Nardzewski

Finite structures are up to isomorphism determined by their first-order the-
ory. We can not expect this for infinite structures: by the upward Löwenheim-
Skolem theorem, every consistent theory with an infinite model has models
of larger cardinalities. However, it might still be the case that all models
of a certain cardinality are isomorphic. If this is the case for the countable
models, we call the theory ω-categorical. A countable structure is called ω-
categorical (or countably categorical), if its first-order theory is ω-categorical.
This is for instance the case for the dense linear order of the rational num-
bers (Q, <). Despite the powerful theorems of this section, the class of ω-
categorical structures remains somewhat mysterious, and all classification
results require some additional properties (stability in e.g. [Lachlan, 1996],
or homogeneity in [Cherlin, 1998]).

We first present a theorem independently discovered by Engeler, Ryll-
Nardzewski, and Svenonius - for a proof again see e.g. [Hodges, 1997]. A
permutation group G on a set D is a subgroup of the group SD of all permu-
tations of D. The pointwise stabilizer of points v1, . . . , vn of a permutation
groupG is the subgroup of permutations fromG that fix each point v1, . . . , vn.
For two n-tuples a, b ∈ Dn set a ∼ b iff there exists a permutation g ∈ G
with ai = big for 1 ≤ i ≤ n. Note that we let permutations act on the right.
Sometimes it is also conveniant to let them act on the left, but then we use
the standard notation for the application of a function to an element, i.e., we
use brackets and write g(a) for the image of a under the permutation g. The
equivalence classes of the equivalence relation ∼ are called the orbits of G
on Dn. A permutation group G over an infinite set D is called oligomorphic
iff for every n ≥ 1 there is only a finite number of orbits of n-tuples over D.

Theorem 2.6 (Engeler, Ryll-Nardzewski, Svenonius). Let Γ be a count-
able structure. Then the following are equivalent:

1. Γ is ω-categorical.

2. Over Γ, there are only finitely many pairwise inequivalent formulae with
n free variables, for all n ≥ 1.

3. Aut(Γ) is oligomorphic.

4. All n-types of Th(Γ) are principal and realized in Γ.

The proof can be found in [Hodges, 1997]. It also follows that the com-
plete n-types of Th(Γ) are the orbits of n-tuples in Aut(Γ). In Chapter 4

29

Chapter 2. Countably Categorical Structures

we give an interpretation of this theorem as a Galois connection between
the automorphisms of Γ and the first-order definable relations in Γ. In con-
trast to homogeneity introduced next, the notion of ω-categoricity is fairly
independent of the chosen signature. In particular, if we take reducts of
an ω-categorical structure, i.e., drop certain relations in the signature, the
structure stays ω-categorical. The same is true if we insert finitely many
singleton-relations in an ω-categorical structure. The following is well-known.

Proposition 2.7. Let Γ be a relational structure interpretable in the rela-
tional structure Γ′ with finitely many parameters. If Γ′ is ω-categorical, then
Γ is also ω-categorical.

Proof. Let n be the dimension of the interpretation of Γ in Γ′ with the pa-
rameters a1, . . . , am. If Γ′ is ω-categorical, then the expansion Γ1 of Γ′ by
the singleton relations Ri = {ai} for 1 ≤ i ≤ m is ω-categorical as well. To
prove this we use Theorem 2.6, which implies that the orbit of (a1, . . . , am) in
Aut(Γ′) has a first-order definition φ. Suppose Γ2 is a countable model of the
first-order theory of Γ1. We have to find an isomorphism between Γ1 and Γ2

that maps the (unique) tuple (a1, . . . , am) satisfying φ in Γ1, to the (unique)
tuple (b1, . . . , bm) satisfying φ in Γ2. Consider the reducts of Γ2 and Γ1 to
the signature of Γ′; by ω-categoricity of Γ′ there is an isomorphism i between
these reducts. This isomorphism i in particular preserves the relation φ, and
hence (i(b1), . . . , i(bm)) satisfies φ in Γ′ and in Γ1. As φ defines an orbit
in Aut(Γ′), we find an automorphism α of Γ′, that maps (i(a1), . . . , i(am))
to (b1, . . . , bm). The mapping iα clearly preserves all the relations in the
signature of Γ′, but by construction maps (b1, . . . , bm) to (a1, . . . , am), and
therefore also preserves the relations R1, . . . , Rm. We conclude that any two
countable models of the first-order theory of Γ1 are isomorphic.

Finally, suppose Γ is not ω-categorical. By Theorem 2.6, there are in-
finitely many inequivalent formulae with m free variables in Γ. We immedi-
ately have infinitely many inequivalent formulae in Γ1, replacing the relation
symbols of the formula by their interpretations. Thus Γ1 would not be ω-
categorical, a contradiction to what we proved in the last paragraph.

Example 2.8. Consider for example the structure defined on the set of
closed intervals over the rational numbers, containing a relation that denotes
interval-inclusion, and a unary relation that holds for all intervals that con-
tain zero. This structure has an interpretation with a single parameter over
the dense order of the rational numbers, and is therefore ω-categorical.

Example 2.9. Another important example of ω-categorical structures are
countable abelian groups of finite exponent. Let A be a countable abelian

30

2.3 Model-completeness

group. We assume that the group operation ofA is given by a ternary relation
R defined by R(x, y, z) :⇔ xy = z. Then (A;R) is ω-categorical if and only
if it is of finite exponent, i.e., there is an n > 1 such that an = 0 for all a ∈ A.
See A.2 in [Hodges, 1993].

2.3 Model-completeness

In this section we look at ω-categorical structures that are model-complete.
The notion of model-completeness is an essential tool in algebraic model
theory, developed by Abraham Robinson. It is again defined for arbitrary
first-order theories. Here we concentrate on the special case where we deal
with ω-categorical model-complete structures and their theories. In the next
sections we will then look at ω-categorical structures that have even stronger
properties, namely at homogeneous ω-categorical structures. Homogeneous
structures are model-complete. All these properties have an effect on the
nature of the corresponding constraint satisfaction problems.

A homomorphism that preserves all first-order formulae must be an em-
bedding, and is called elementary. An ω-categorical structure Γ is called
model-complete iff every embedding of Γ in Γ is elementary. A first-order
theory is called a ∀∃-theory iff every sentence of the theory is equivalent
to a sentence that starts with universal quantifiers, followed by existential
quantifiers, and ends with a quantifier-free formula.

Theorem 2.10. Let Γ be an ω-categorical relational structure. Then the
following are equivalent:

1. Γ is model-complete, i.e., every embedding of Γ in Γ is elementary.

2. The first-order theory of Γ is an ∀∃-theory.

3. Every formula is over Γ equivalent to an universal formula.

4. Every formula is over Γ equivalent to an existential formula.

Proof. The equivalence of 1 and 2 can be found in [Cameron, 1990]; the
equivalence of 1 and 3 follows from Theorem 7.3.1 in [Hodges, 1997], and the
equivalence of 1 and 4 follows from Corollary 5.4.5 in [Hodges, 1997], which
states more generally that a first-order formula φ is preserved by embeddings
between models of a theory T if and only if φ is equivalent modulo T to an
existential formula. Let T be the theory of Γ. Then by ω-categoricity the

31

Chapter 2. Countably Categorical Structures

embeddings between the models of T correspond to embeddings of Γ in Γ,
and this implies the equivalence of 1 and 4.

For illustration, we show an example of an ω-categorical structure that is
not model-complete (from [Chang and Keisler, 1977]). Consider a countable
structure Γ that contains an equivalence relation E with infinitely many
infinite equivalence classes C1, C2, . . . , and a single class containing only one
element a. The function that maps a to C1 and the elements of Ci bijectively
to Ci+1 is an embedding of Γ in Γ. But it is not elementary, since the first-
order formula ¬∃y : E(x, y) ∧ x 6= y only holds for x = a.

Another example is the dense linear order defined on the interval [−1, 1]
of rational points. It is ω-categorical: if we add one singleton-relation con-
taining the element −1 and one containing the element 1, we obtain a homo-
geneous structure over a finite signature. But it is not model-complete, since
the mapping x 7→ (x + 1)/2 preserves the order, but does not preserve the
first-order formula ¬∃y : y < x, which holds for x = −1 but not for x = 0.

2.4 Fräıssé’s Theorem

A relational structure Γ is called homogeneous (in the literature sometimes
ultra-homogeneous) if every isomorphism between two finite induced sub-
structures can be extended to an automorphism of Γ. Prominent examples
of countable homogeneous structures are the dense linear order (Q, <), and
the Rado graph R (also called the Random graph). The Rado graph can be
defined as the unique (up to isomorphism) model of the almost-sure theory
of finite random graphs. Homogeneous structures have been classified for
graphs [Lachlan and Woodrow, 1980], for tournaments, for posets [Schmerl,
1979], and finally digraphs [Cherlin, 1998] (there are uncountably many ho-
mogeneous digraphs; see Section 2.6). For homogeneous structures with ar-
bitrary relational signatures a classification is not yet known.

The age of a relational structure Γ with the signature τ is the set of all
finite τ -structures that embed in Γ, denoted by Age(Γ). An important prop-
erty of countable homogeneous structures is their characterization by amal-
gamation classes. A class of finite relational structures C is an amalgamation
class if C is nonempty, closed under isomorphisms and taking induced sub-
structures, and has the amalgamation property. The amalgamation property
says that for all A,B1, B2 ∈ C and embeddings e1 : A→ B1 and e2 : A→ B2

there exists C ∈ C and embeddings f1 : B1 → C and f2 : B2 → C such that

32

2.4 Fräıssé’s Theorem

f1e1 = f2e2. We call C an amalgam of B1 and B2 over A.

Theorem 2.11 (of [Fräıssé, 1986]). A countable class C of finite relational
structures with countable signature is the age of a countable homogeneous
structure if and only if C is an amalgamation class. If this is the case, the
countable structure is unique up to isomorphism, and called the Fräıssé-limit
of C, denoted by Fl(C).

Since amalgamation classes are closed under taking induced substruc-
tures, they can be defined by a set of forbidden finite induced substructures.
For a set of finite structures N over τ we denote by Forb(N) the set of finite
τ -structures S such that no structure in N is embeddable in S.

The class of all finite graphs clearly is an amalgamation class. The Fräıssé-
limit is often called the Rado graph R. Another example is the set of all
finite total orders, i.e., transitive acyclic tournaments. The Fräıssé-limit is
isomorphic to the dense linear order of the rational numbers (Q, <). We
could describe the age of this digraph by Forb({C3, C2, C1, I2}), where Ck is
the directed circle on k vertices (and C1 is by definition a single-vertex with
a self-loop), and I2 the empty graph on two vertices.

If the signature is finite, as in the two examples above, the Fräıssé-limit
is ω-categorical. In this case we find other pleasant properties. A relational
structure Γ has quantifier elimination, if every formula is in Γ equivalent to a
quantifier-free formula. The following theorem is stated for finite signatures
in theorem [Hodges, 1997], but the generalization below can be proved in the
same way.

Theorem 2.12. Let Γ be a countable τ -structure, where τ contains finitely
many k-ary relation symbols for each k ≥ 1. Then Γ is homogeneous if and
only if it is ω-categorical and has quantifier elimination.

For ω-categorical structures without any restriction to the signature,
quantifier elimination is equivalent to homogeneity.

Theorem 2.13 (see [Cameron, 1990]). If Γ is a countable ω-categorical
relational structure, then Γ is homogeneous if and only if it has quantifier
elimination.

Every ω-categorical structure Γ can be made homogeneous, by expanding
Γ by all existentially definable relations – see e.g. Satz 9.2.2 in [Rothmaler,
1995].

33

Chapter 2. Countably Categorical Structures

Proposition 2.14. If Γ is a countable ω-categorical relational structure, then
〈Γ〉∃ is homogeneous.

Proof. By Fräıssé’s theorem we only have to check that Age(〈Γ〉∃) has the
amalgamation property. Let a be a tuple of elements from Γ, let B1, B2 be
induced substructures of Γ and e1 : a→ B1 and e2 : a→ B2 be embeddings.
Since there are relation symbols for every existential formula in the signature,
there is a relation R1 that holds on the tuple e1(a) and corresponds to the
structure B1 where the points from B1−e1(a) are existentially quantified. We
also have a relation R2 corresponding to B2 where the points from B2−e2(a)
are existentially quantified. Since e1 and e2 are isomorphic mappings, these
relations also hold on a, and using ω-categoricity we can find an extension C
of a with embeddings f1 : B1 → C, f2 : B2 → C such that f1e1 = f2e2.

The expansion 〈Γ〉∃ of an ω-categorical structure Γ by all existential for-
mulae can be characterized in terms of a closure condition. This is a direct
consequence of the Los-Tarski theorem, see [Hodges, 1997]. (Similar closure
conditions can be formulated for the expansion of Γ by all first-order, by all
existential, by all existential positive, or by all primitive positive formulae.
A summary on such results can be found in Section 7.1.)

Proposition 2.15. Let Γ be an ω-categorical structure. Then a relation R
is existentially definable in Γ if and only if R is preserved by embeddings of
Γ in Γ.

Proof. Since R is in particular preserved by all automorphisms, the relation
R has by ω-categoricity of Γ a definition by a first-order formula φ. This
follows from Theorem 2.6 of Ryll-Nardzewski and will be discussed in detail
in Section 4.4. By the Los-Tarski theorem, φ is equivalent to an existential
formula modulo Th(Γ) if and only if R is preserved by embeddings between
models of Th(Γ). In fact, the proof of the theorem of Los-Tarski, or a stan-
dard model-theoretic argument based on the theorem of Löwenheim-Skolem
(Theorem 2.4) shows that it suffices to consider embeddings between the
countable models of Th(Γ) only. Since any two countable models Γ1 and Γ2

of Th(Γ) are by ω-categoricity isomorphic, every embedding of Γ1 in Γ2 can
be seen as an injective strong endomorphism.

Sometimes an ω-categorical structure Γ has an expansion that is homoge-
neous and has a finite signature. In this case we call Γ finitely homogeneous.
The templates that we study of the constraint satisfaction problems that we
study later in this thesis will mostly be finitely homogeneous.

34

2.5 Strong and Free Amalgamation

2.5 Strong and Free Amalgamation

Sometimes the age of a countable structure satisfies a stronger form of the
amalgamation property: the strong amalgamation property. An even stronger
form is the free amalgamation property. These properties of the age of a
relational structure will have an effect on the nature of the corresponding
constraint satisfaction problems.

Strong Amalgamation. First we recall: a class of finite structures C has
the amalgamation property if for all A,B1, B2 ∈ C and embeddings e1 : A→
B1 and e2 : A → B2 there exists C ∈ C and embeddings f1 : B1 → C and
f2 : B2 → C such that f1e1 = f2e2. For strong amalgamation we strengthen
this and require that if there are b1 ∈ B1 and b2 ∈ B2 with f1(b1) = f2(b2)
then there is an a ∈ A such that e1(a) = b1 and e2(a) = b2. In other words,
we can amalgamate any two structures B1, B2 over A without identifications
outside A.

We give an alternative characterization of strong amalgamation for the
age of a homogeneous structure. For that we need the notion of algebraic closure.
Let Γ be an ω-categorical structure with relational signature τ , and A a finite
subset of elements from Γ. The algebraic closure acl(A) of A is the set of all
those elements of Γ that lie in finite orbits of the pointwise stabilizer of A. By
Theorem 2.6 this equals the set of elements b for which we have a first-order
τ -formula φ(x, y) and a tuple a from A such that Γ |= φ(b, a) ∧ ∃≤nx.φ(x, a)
for some finite n. We say that A is algebraically closed if acl(A) = A.

Theorem 2.16 (see [Cameron, 1996]). Let Γ be a homogeneous ω-categorical
structure. Then the following are equivalent:

• The age of Γ has the strong amalgamation property.

• Every finite set A ⊆ Γ is algebraically closed.

We now mention an observation that describes the effect of the strong
amalgamation property on the nature of the constraint satisfaction problem.
Let CSP(Γ) be the set of all finite structures that homomorphically map to
Γ; recall that wSub(Γ) denotes the set of all finite structures isomorphic to
a substructure of Γ.

Proposition 2.17. If the age of a relational structure Γ has the strong amal-
gamation property, then CSP(Γ) = wSub(Γ).

35

Chapter 2. Countably Categorical Structures

Proof. Let S be a structure with a homomorphism f to Γ. We have to
show that we can also find an injective homomorphism to Γ. Assume that S
contains two points u, v from S such that f(u) = f(v) = p. By Theorem 2.16
the set f(S)−{p} is algebraically closed. Hence we can find a point p′ distinct
from p that has the same type as p over the parameters f(S)−{p}. We modify
the homomorphism f and map v to p′. If we iterate this, we finally obtain
a function f ′ that is injective and still preserves all relations that hold in
S.

Free amalgamation. We sometimes need an even stronger version of
amalgamation, called free amalgamation. The idea here is that we might
be able to amalgamate two structures without adding any new relations at
all. Let Γ be homogeneous and A,B1, B2, e1, e2 as above. By homogeneity
we may suppose that the embeddings e1 and e2 are inclusions. Then the free
amalgam C of B1 and B2 is the structure defined on the vertices of B1 and
B2, where the relations on C are the unions of the relations in B1 and B2.
Clearly, free amalgamation implies strong amalgamation.

If the signature consists of a single binary relation and we are talking
about directed graphs, we describe as in [Cherlin, 1998] how to specify a free
amalgamation class with a set of tournaments T. A tournament is a directed
graph where between any two distinct vertices there is precisely one directed
arc. First define:

A(T) := {D | if T ⊆ D is a tournament then T ∈ T} (2.1)

The set of graphs A(T) is a free amalgamation class, and for every free
amalgamation class A there exists a set T of tournaments such that A =
A(T).

In later sections the following observation will be important. If the age
of a structure Γ with a single binary relation has the free amalgamation
property, it equals the set of finite graphs that homomorphically map to Γ.

Proposition 2.18. If the age of a structure Γ with a single binary relation
has the free amalgamation property, then Age(Γ) = wSub(Γ) = CSP(Γ).

Proof. Free amalgamation implies strong amalgamation, and hence CSP(Γ)
= wSub(Γ) by Proposition 2.17. So we only have to show that wSub(Γ) ⊆
Age(Γ). Let S be an induced subgraph of Γ, and let S ′ be the substructure
obtained by deleting an edge uv in S. We can then freely amalgamate S−{u}

36

2.6 Homogeneous Digraphs

Gc : The complement of the graph or digraph G.
Kn : The complete graph on n vertices (n ≥ 1, and n might be ∞).
In : An independent set of size n, i.e., the complement Kc

n of Kn.
Cn: The oriented cycle on n vertices.
Sn: The star graph on n + 1 vertices.
G1[G2] : The composition or wreath product of G1 and G2: each vertex of

G1 is replaced by a copy of G2, and arcs between distinct copies of
G2 are controlled by the edges of G1.

[G1, G2]: The disjoint sum of G1, G2 that is extended by arcs a→ b whenever
a ∈ G1, b ∈ G2. If G1 and G2 and [G1, G2] are understood as
undirected graphs we correspondingly insert undirected edges.

Figure 2.1: Convenient notation for the description of digraphs.

and S−{v}, and thus S ′ ∈ Age(Γ). By induction it follows that every finite
subgraph of Γ is an induced subgraph of Γ.

For general signature, Proposition 2.18 is not true. Consider the Rado-
graph R = (V ;E), and introduce a second binary relation E ′ such that for
all vertices u, v from V the relation E ′(u, v) holds if and only if E(u, v) holds.
Like the Rado-graph, this structure has the free amalgamation property. But
CSP((V ;E,E ′)) contains graphs that have edges in E but no edges in E ′,
and are thus not induced substructures of (V ;E,E ′).

2.6 Homogeneous Digraphs

In this section we consider countable homogeneous digraphs. Many of them
serve as examples in later sections. Although there are uncountably many,
there is a classification by Cherlin [Cherlin, 1998] that shows that all but
a countable number of well-understood homogeneous digraphs have the free
amalgamation property (Section 2.5). First we fix some useful notation for
graphs and digraphs. For adjacency between nodes a and b we use the infix-
notation a→ b.

The countable homogeneous undirected graphs. Lachlan and Woodrow
[Lachlan and Woodrow, 1980] showed that every countable homogeneous
graph is either the Rado-graph, the Fräıssé-limit of all Kn-free graphs, the

37

Chapter 2. Countably Categorical Structures

Figure 2.2: The forbidden induced subgraphs [I1, C3] and [C3, I1] of S(2).

complete n-partite graphs, or a complement of these. In the notation above
they showed that for every infinite countable homogeneous graph G either G
or Gc has one of the following forms:

1. Im[Kn] where m or n is ∞;

2. Fl(Forb(Kn+1)), the universal graph for the class of all graphs omitting
Kn+1;

3. Fl(G), the Fräısé-limit of the set of all finite graphs G (the Rado-graph).

Unlike the Rado-graph, which is also called the Random-graph, since it is the
countable model of the ω-categorical almost-sure theory of finite graphs, the
graph Fl(Forb(Kn+1)) is not a model of the almost-sure theory of the Kn+1-
free graphs. However, the almost-sure theory ofKn+1-free graphs surprizingly
is ω-categorical, and the countable model is the universal graph for the class
of all n-colorable graphs [Kolaitis et al., 1987], called D(n) there, which is
not homogeneous.

The countable homogeneous tournaments. We start with the homo-
geneous tournaments, which have been classified by Lachlan [Lachlan, 1984].
There are only three countable homogeneous tournaments: The dense linear
order on the rational numbers Q, the dense local order S(2), and the tour-
nament T∞ that is universal for the set of all finite tournaments. We have a
closer look at S(2). It is defined as the up to isomorphism unique structure
described by the following proposition. The result is well-known, but we do
not know of any reference containing the presented proof.

Proposition 2.19. Let N be the set containing the two digraphs shown in
Figure 2.2. Then the set of digraphs in Forb(N) is an amalgamation class,
and its Fräıssé-limit is called S(2) and is isomorphic to the following struc-
tures:

38

2.6 Homogeneous Digraphs

(i) A partition of the rational numbers Q into two dense subsets Q1 and
Q2 (i.e., for every rational number we will find sequences in Q1 and in
Q2 that converge against this number), where two points a, b are linked
by an arc iff a < b and they belong to the same class Qi, or b < a and
they belong to different classes.

(ii) A countable dense set of points on the unit circle without antipodal
points, where two vertices a, b are linked by an arc iff the directed line
from a to b passes the origin on the right side.

Proof. Any digraph described in (i) clearly does not contain subgraph from
N. On the other hand, consider a digraph C from Forb(N). If we fix a certain
point a in C we see that the sets B1 = {b | a→ b} and B2 = {b | b→ a}∪{a}
have to be linearly ordered by the relation ’→’. It is easy to check that if we
reverse the edges between both of these linearly ordered subsets, the resulting
tournament will be a linear order. We take an arbitrary embedding of this
linear order into the rational numbers, and found an embedding of C into a
structure described in (i).

We now specify an isomorphism from such a structure to a structure
described in (ii). Every rational number can be uniquely written as u/v for
an integer u and a relatively prime natural number v. Zero is represented
as 0/1. We consider these numbers as vectors (u, v) for points from Q1

and (u,−v) for points from Q2, and scale these vectors to unit length. The
resulting structure on these vectors is a structure described in 2, where there
is an arc between vectors (u1, v1) and (u2, v2) iff u1/v1 < u2/v2 and v1v2 > 0,
or u1/v1 > u2/v2 and v1v2 < 0. But u1v2 − u2v1 > 0 expresses the fact that
the directed line between point (u1, v1) and (u2, v2) has the origin on the left
side.

We finally note that this structure is homogeneous and unique up to
isomorphism. By Theorem 2.11 it suffices to show that its age has the amal-
gamation property. Let A and B be two finite induced substructures of the
structure described in (ii). We can easily check that the following structure
C is an amalgam of A and B: C is defined on the union of the domains of A
and B, and two points a and b in C are linked if the directed line from a to
b passes the origin on the right side.

Another proof that S(2) is homogeneous can be found in [Cameron, 1981].
Recall from the introduction that two digraphs D1 and D2 are switching-
equivalent iff there exists a subset S of vertices of D1 such that the graph
that arises from D1 by switching all arcs between S and its complement in

39

Chapter 2. Countably Categorical Structures

D1 is isomorphic to D2. The age of the homogeneous structure S(2) can also
be characterized as the class of finite graphs that is switching equivalent to
linear orders.

The countable homogeneous digraphs. They have been classified by
Cherlin [Cherlin, 1998], and there are uncountably many. But the classifi-
cation shows that the age of all but a countable number of well-understood
homogeneous digraphs has the free amalgamation property. Free amalgama-
tion classes of digraphs can be specified as A(T) where T is a set of tourna-
ments, see Section 2.5. Henson showed that the partial order of isomorphism
types of finite tournaments ordered by embeddability contains an infinite an-
tichain [Henson, 1972]. For each tournament T in this antichain A(T) has
the free amalgamation property, and all of these classes A(T) are distinct.
Thus there is an uncountable number of classes having the free amalgama-
tion property and by Fräıssé’s theorem an uncountable number of different
homogeneous digraphs. But we will see in Section 3.2 that the constraint
satisfaction problem of such structures is easy to analyze.

As in [Cherlin, 1998], we group the homogeneous digraphs without free
amalgamation into three classes. The first class contains the countable ho-
mogenous tournaments that we already know from the last paragraph in this
section, and the empty graph on a countable number of vertices.

The second class contains imprimitive structures, i.e., structures that
have a first-order definable nontrivial equivalence relation. In all cases except
the first the definable equivalence relation corresponds to the pairs of vertices
that are not connected. There are four types, classified in [Cherlin, 1987].

1. Wreathed (Composite): In[Q], In[S(2)], In[T∞] and Q[In], S(2)[In],
T∞[In], C3[I∞], where n might be infinite.

2. Twisted: Q̂, ˆT∞. The graph Q̂ is a variant of S(2) where every point
has an unconnected antipodal. The graph ˆT∞ is universal for the class
of all graphs where the pairs of disconnected vertices form an equiva-
lence relation with classes of size two, and the union of two such classes
is a copy of C4.

3. Generified n-partite (denoted by n ∗ I∞ in [Cherlin, 1987]): Starting
from Kn[I∞] we orient the undirected edges randomly.

4. Semigeneric (denoted by ∞∗ I∞ in [Cherlin, 1987]): Starting from the
undirected homogeneous graph K∞[I∞] we orient the edges arbitrarily

40

2.6 Homogeneous Digraphs

Figure 2.3: The forbidden induced subgraphs of P (3).

such that for two distinct parts U and V and distinct vertices u1, u2 ∈ U
and v1, v2 ∈ V the number of edges from u1 or u2 to v1 or v2 is even.

Finally we have the exceptional class containing the digraphs S(3), P,
and P (3). The graph S(3) denotes the set of points lying at a rational angle
φ on the unit circle, and two points a, b are joined by and arc a → b iff the
angle from a to b is in the range (0, 2π/3). Equivalently we can produce the
graph similarly to S(2), starting from a partition of Q into three dense sets
Q1, Q2, Q3. We identify the two possible orientations of an edge with +1 and
−1, and 0 represents the absence of an edge. We then cyclically shift the
edges between Qi and Qj by j − i (the indices are integers modulo 3). For
the proof that S(3) is homogeneous we refer to [Cherlin, 1987].

The countable homogeneous partial order P = Fl(P) is the Fräıssé-limit
of the class of all finite partial orders P. We call a subset P of P dense, if for
any pair a, b in P with a→ b we have an element c ∈ P such that a→ c→ b.
P (3) is the analogue of S(3), based on P instead of Q. Let P0, P1, P2 be three

41

Chapter 2. Countably Categorical Structures

dense subsets of P. The structure P (3) is defined on P0⊎P1⊎P2. The relation
→ on P (3) restricted to Pi is defined as in P. Again we identify the complete
2-types between elements of distinct parts with {−1, 0,+1}, and cyclically
shift these types between Pi and Pj by j − i. A proof that P (3) is indeed
homogeneous can be found in [Cherlin, 1998] in Section 5.2. Cherlin also
specified the age of P (3) by the forbidden induced substructures shown in
Figure 2.3 (their description can be extracted from the proof of Proposition
24 on page 126f in [Cherlin, 1998]).

2.7 Tree-like Structures

In this section we have a look at various ω-categorical structures that have
been investigated in model theory and for infinite permutation groups. In
later sections they will show up again as the templates for various constraint
satisfaction problems.

2.7.1 Boron Trees

A boron tree [Cameron, 1996] is a finite tree in which all vertices have de-
gree one (hydrogen- or H-atoms) or degree three (boron- or B-atoms). On
the H-atoms of a boron tree we can define a quaternary relation uv|xy that
holds when the paths joining u to v and c to d are disjoint (called the set of
quartets in [Steel, 1992] in the application for phylogenetics; this corresponds
to a D-relation in [Adeleke and Neumann, 1985] in the application for infi-
nite permutation groups). This relation holds for exactly one of the three
partitions of a 4-set into two 2-sets, and it already determines the boron tree
up to isomorphism: this is an exercise in [Cameron, 1996]; also see [Adeleke
and Neumann, 1985].

The class of all structures D with a quaternary relation that stem from
a boron tree as defined above is an amalgamation class. Let D be the
Fräıssé-limit of D. This structure is mentioned in [Cameron, 1996] since
its automorphism group has many remarkable properties. A permutation
group on Ω is called k-transitive, if there is only one orbit of k-tuples of
Ω. It is called k-homogeneous, if there is only one orbit of k-subsets of Ω.
Note that this terminology from permutation group theory conflicts with the
notion of homogeneity in model theory. Therefore homogeneous structures
from model theory are sometimes called ultra-homogeneous, and permutation

42

2.7 Tree-like Structures

groups that are k-homogeneous for every k are called highly homogeneous.
The structure B is ultra-homogeneous, 5- but not 6-homogeneous, and 3-
but not 4-transitive.

If we fix a point a in D and consider the ternary relation ‘:’ defined by
x : yz ⇔ ax|yz we again obtain a homogeneous structure (this is a C-set
in [Adeleke and Neumann, 1985]). The age of this structure now contains the
finite structures T that come from finite rooted trees, and the relation x : yz
says that the common ancestor of y and z is below the common ancestor of
x, y and z in the tree T (the relation ‘:’ on a rooted tree is called the set of
rooted triples in [Bryant, 1997,Ng et al., 2000]).

2.7.2 Semilinear Orders

Concerning semilinear orders we use the definitions and notation as in [Adeleke
and Neumann, 1985,Cameron, 1996].

Definition 2.20. A partial order (Λ,≤) is called semilinear iff every two
elements have an upper bound, and for all x, the set {y | y ≥ x} is lin-
early ordered. A semilinear order is proper, if it contains two incomparable
elements, i.e., a pair b, c such that neither b ≤ c nor c ≤ b.

We say that a semilinear order has least upper bounds if for any two
incomparable elements there is a unique least upper bound. A partial order
is dense, if for any two elements a ≤ b there is an element c ∈ D such that a ≤
c ≤ b. These and related structures and the corresponding automorphism
groups were studied and classified in [Droste, 1985] – he called them trees.
This should not be confused with infinite trees as we know them from graph
theory or model theory. We referred to these objects as tree-like, since they
are only branching downwards. But note that formally these are not trees
since there might be elements without a unique parent.

We give an explicit construction of a dense proper semilinear order [Cameron,
1996, Adeleke and Neumann, 1985]. The domain of the structure is the set
of all non-empty finite sequences a = (q0, q1, . . . , qn−1) of rational numbers.
Let a ≤ b if either

• b is an initial subsequence of a, or

• b = (q0, . . . , qn−1, qn) and a = (q0, . . . , qn−1, q
′
n, qn+1, . . . , qm), where

qn < q′n.

43

Chapter 2. Countably Categorical Structures

(2)

(3)
(1,4,2) (1,6)

(5,3) (6,2)(4,2,1)(3,2)

(1,4)

(1)

Figure 2.4: A small substructure of Λ.

We call this dense semilinear order Λ throughout the thesis. Also see
Figure 2.4.

For the constraint satisfaction problems of the structures discussed here,
the choice of the signature is essential for their computational complexity.
We now use notation that has been used for finite trees in computational
linguistics and computer science (e.g. in [Backofen et al., 1995]). We say
that a dominates b and write a ⊳∗ b for a ≥ b (In computer science, trees
grow from top to bottom, and correspondingly the notation is reversed).
We say that a is disjoint to b and write a ⊥ b if neither a ⊳∗ b nor b ⊳∗ a,
and a b if a ⊥ b or a = b. Note that ⊥ and are not primitive positive
definable in (Λ,≤). We therefore also consider the structure (Λ; ⊳∗, , 6=). As
we will see in Section 5.5, with this signature all binary first-order formulae
are equivalent to a primitive positive formula. An alternative choice of a
structure with the same set of primitive positive definable relations would
have been (Λ; ⊳∗ ∪ , ⊳∗ ∪ ∗⊲, 6=).

If a is lexicographically smaller than b, but not a ⊳+ b, we write a ≺ b.
The relation a � b holds iff either a ≺ b or a = b. These relations are not
first-order definable with the other relations mentioned so far. We will see
in this Section below that the 2-types in this expanded structure (Λ; ⊳+,≺)
are ⊳+,≺, their inverse relations, and equality. Correspondingly we have
25 inequivalent first-order definable binary relations in Λ. We will show in
Section 5.5 that all of them have primitive positive definitions in the structure
(Λ; ⊳∗,�, 6=,).

44

2.7 Tree-like Structures

u

zyx

Figure 2.5: In this induced substructure of (Λ; ⊳+) the relation x : yz holds.

We can show the ω-categoricity of Λ by adding the relation ‘:’ to the
signature (defined below as in [Droste et al., 1991]. Also see Figure 2.5),
and show that the age of the resulting structure has the amalgamation prop-
erty [Droste et al., 1991]. Since the signature is finite, ω-categoricity follows
from Theorem 2.12.

x : yz ⇔def ∃u.u ⊥ x ∧ u ⊳+ y ∧ u ⊳+ z (2.2)

The name-clash with the definition of the C-relation above is no coinci-
dence. If we consider the class of finite structures containing pairwise disjoint
points in Λ, carrying the relation x : yz, it has the amalgamation property,
and the Fräıssé-limit is isomorphic to the structure with the ternary relation
‘:’ derived from the structure B above. By Theorem 2.13 this structure also
has quantifier elimination. Thus, if we have a binary first-order definable
relation in (Λ; ⊳+,≺), it is equivalent to a boolean combination of the rela-
tions ⊳∗, ≺, ‘:’. Every projection of the ternary relation ‘:’ to two variables
is trivial, and therefore the binary formula is also equivalent to a boolean
combination of ⊳+, ≺, and equality.

2.7.3 Dominance and Immediate Dominance

The semilinear order Λ is ‘everywhere dense’. We next introduce a semilinear
order containing certain points that are above countably many maximal lower
elements. The order will be ‘dense except below these points’. Again we could
describe the structure via its first-order theory, since it will be ω-categorical.
But there is an explicit construction, which is similar to the last construction.
Again the domain of the structure is the set of all non-empty finite sequences
a = (q1, q2, . . . , qn) of rational numbers. Let a ⊳+ b if either

45

Chapter 2. Countably Categorical Structures

(3,2,1,2)(3,2,1,1) (3,2,1,3)

(1,2)(1,1)

(3,2)

(1,1,1)

(3)

(3,2,1)

(3,2,9)

(1)

(1/2)

(3,7/2)

Figure 2.6: A finite (weak) substructure of ∆.

• a is a proper initial subsequence of b, or

• a = (p0, . . . , p2n−1, p2n) for n ≥ 0, and b = (p0, . . . , p2n−1, p
′
2n, p2n+1, . . . , pm),

where p2n < p′2n.

We call this dense semilinear order ∆ throughout the thesis. Again, for
later chapters the choice of the signature for ∆ is crucial. Besides the relation
‘⊳+’ for dominance we use ‘⊳’ to denote immediate dominance, which is the
relation {(a, b) | ∀c. c ⊳+ b→ (c ⊳+ a ∨ c=a)}. This means, a ⊳ b if and only
if a is a prefix of b of odd length |a| and |a| = |b| − 1. In pictures we draw
dominance edges as dotted arcs and immediate dominance as solid arcs. See
Figure 2.6 for a finite substructure of ∆.

Since to our knowledge this structure has not yet been described in the lit-
erature, and since we need this structure to describe templates for constraint
satisfaction problems, we give a proof of its ω-categoricity. We can show ω-
categoricity of several other structures needed in Chapter 6 in the same way.
Again we expand ∆ by the ternary relation ‘:’, defined as above in (2.2), and
additionally by the unary relation ’even’ that holds for sequences x in ∆ of
even length, and has the following first-order definition: even(x)⇔ ∃z : z⊳x.
Then we show that the age of the resulting structure (∆; ⊳, ⊳+, :, even) has
the amalgamation property. Theorem 2.12 then implies ω-categoricity of ∆.
The structure ∆ is also interesting because the amalgamation is not a strong
amalgamation.

46

2.7 Tree-like Structures

To show that the age of (∆; ⊳, ⊳+, :, even) has the amalgamation property
we use the following Lemma, mentioned in [Cherlin, 1998] on page 9. It states
that to vertify the amalgamation property it always suffices to check the so-
called two-point amalgamation property, which says that for all A,B1, B2 in
a class of finite relational structures C, and all embeddings e1 : A→ B1 and
e2 : A→ B2, where |B1 − e1(A)| = |B2 − e2(A)| = 1, there exists C ∈ C and
embeddings f1 : B1 → C and f2 : B2 → C such that f1e1 = f2e2.

Lemma 2.21 (Two-point Amalgamation). Let C be a class of finite re-
lational structures that is closed under isomorphisms and induced substruc-
tures, and has the two-point amalgamation property. Then C is an amalga-
mation class.

Proof. We have to show that C has the amalgamation property. Let A,B1, B2

be structures in C and let e1 : A→ B1 and e2 : A→ B2 be embeddings. We
have to show the existence of a structure C ∈ C and embeddings f1 : B1 → C
and f2 : B2 → C such that f1e1 = f2e2. Let b11, . . . , b

k
1 and b12, . . . , b

k
2 be

the elements from B1 − e1(A) and B2 − e2(A), respectively. We prove by
induction, that for all 0 ≤ i ≤ k1, 0 ≤ j ≤ k2 we find structures Ci,j such
that Ci,j is the amalgam of the structures induced by e1(A)∪{b11, . . . , b

i
1} and

e2(A) ∪ {b12, . . . , b
j
2}. Note that C0,0 is a copy of A, and that Ck1,0 = B1 and

C0,k2
= B2. In particular we know that Ci,0 and C0,j exist for 0 ≤ i ≤ k1, 0 ≤

j ≤ k2. Initially, we form a two-point amalgamation of C1,0 and C0,1, and
obtain C1,1. In general, we can amalgamate Ci−1,j with Ci,j−1 and obtain
Ci,j. Finally, by induction, we also find Ck1,k2

, which is the amalgam of B1

and B2 that we were looking for.

Proposition 2.22. The age of the structure (∆; ⊳, ⊳+, :, even) has the amal-
gamation property.

Proof. By Lemma 2.21 it suffices to check the two-point amalgamation prop-
erty. Let A,B1, B2 be finite substructures of ∆, and e1 : A → B1 and
e2 : A→ B2 be embeddings, where B1− e1(A) = {v} and B2− e2(A) = {u}.
In the proof, we find a vertex v′ in ∆ such that B1 ∪ {v

′} is the amalgam C
of B1 and B2, where f1 : B1 → C is the identity and f2 : B2 → C maps v
to v′, and all other points x in B2 to e−1

2 e1(x). We can also assume without
loss of generality that e1 is the inclusion map, i.e., A is an induced subgraph
of B1.

In the first part of the proof we consider the case where u, v ∈ ∆ are
vertices that are not connected via an edge from ⊳ to any of the vertices in
B1 or B2, respectively. Let L be the set of topmost vertices below v in the

47

Chapter 2. Countably Categorical Structures

forest defined by the transitive reduction of the relation ⊳+ in B2, and let L′

be the set e−1
2 (L2). By definition, two distinct vertices in L lie at disjoint

positions in ∆; and the same holds for L′.

First suppose that L′ is non-empty. In this case there is a unique lowest
vertex l′ in ∆ that is above all vertices in L′. Note that if this vertex is in
B1, then it must be u. We pick a vertex v′ above l′ in ∆, such that every
vertex below v′ in B1 is also below l′ in B1. We also pick v′ such that it
satsifies the predicate ’even’ if and only if the vertex v does. Because ∆ is
dense, such a vertex v′ exists, and we use v′ in the way described above to
define a mapping f2 from B2 to B1 ∪ {v

′}.

We have to verify that f2 is an embedding. By the note above, the
mapping is injective. It is also clear that f2 strongly preserves the relations ⊳
and ’even’. We check that it strongly preserves ⊳+: For vertices x in B2 such
that v′ ⊳+ x or x ⊳+ v′ this is easy to check. Suppose x is a vertex such that
neither v′ ⊳+ x nor x ⊳+ v′. It follows that x is also disjoint to the vertices in
L, Hence, if L contains two elements l1 and l2, then the relation x : l1l2 holds
in B2. If x′ = xe−1

2 , l′1 = l1e
−1
2 , and l′2 = l2e

−1
2 , then x′ : l′1l

′
2 also holds in B1,

since e−1
2 preserves the relations. For the same reason x′ = xe−1

2 can not lie
above v′ since then x′ would dominate also the vertices in L′. Suppose now
that v′ ⊳+ x′. If L contains two elements l1, l2 as above, then x′ : l′1l

′
2 does not

hold in B2, a contradiction. But also in the case where L only contains one
element, by the choice of v′, the vertex x′ will also be disjoint to v′. We also
check that the embedding preserves the relation ‘:’. Let x, y be vertices in
B2; then this again follows from the definition of v′ for both the case where
v : xy and the case where x : vy.

Finally, consider the case where there is no element in B2 below v, i.e., the
set L is empty. If there is also no element above v, then the amalgamation
problem is trivial. Let t be the unique lowest element above v in B1, and let
t′ := te−1

2 . Pick a vertex v′ in ∆ that is disjoint to all vertices in B1 below
t′. Also choose v′ such that it satsifies the predicate ’even’ if and only if the
vertex v does. Again, by the definition of ∆ such a vertex always exists.
Here it is easy to check that the corresponding mapping f2 : B2 → B1 ∪ {v

′}
is an embedding. For ⊳ and ’even’ this is again immediate, and now it is also
straightforward for ⊳+ and ’:’.

Hence, in the first part of the proof we found the amalgam of B1 and B2.
Up to now, we were able to choose v′ distinct from u. The reasons why the
amalgamation can still not be a strong amalgamation lie in the second part
of the proof: In the second part of the proof we first assume that there is a

48

2.8 Homomorphisms and Cores

vertex b ∈ B2 such that v ⊳ b holds in ∆. Such a vertex b satisfies the unary
predicate ’even’, and so does b′ := be−1

2 . Hence b′ is a vertex of ∆ that is a
sequence of even length, and there exists a unique vertex v′ such that v′ ⊳ b′.
Note that this vertex v′ might be equal to u. The mapping f2 described
above clearly is an embedding.

Next, assume that there is a vertex t ∈ B2 such that t ⊳ v holds in ∆. In
this case t and also t′ = te−1

2 do not satisfy ’even’. We pick a direct sucessor
of t′ in ∆ that is disjoint to all other vertices in B1 below t′, which again
clearly exists by the definition of ∆. We can again easily check that the
corresponding mapping f2 : B2 → B1 ∪ {v

′} is an embedding.

2.8 Homomorphisms and Cores

One of the fundamental concepts for constraint satisfaction with finite tem-
plates is the notion of a core of a relational structure. Finite structures
have a core that is unique up to isomorphism, and the core has the same
constraint satisfaction problem. This notion is important for the algebraic
approach to model theory, because for cores all endomorphisms are auto-
morphisms. Unfortunately we do not have such a strong concept for infinite
relational structures. In this section we first recall the definition and simple
facts for cores of finite structures. Then we discuss related issues for infinite
structures.

The core of a finite structure. A substructure A of a relational structure
B is called a retract of B iff there exists a homomorphism from B to A that
fixes the elements in A. The retract is called proper, if |A| < |B|. A finite
relational structure A is called a core iff every endomorphism of A is an
automorphism of A. A core A is called a (proper) core of B if A is a (proper)
retract of B. The following is well-known.

Proposition 2.23. Every finite relational structure has a core, which is
unique up to isomorphism.

Proof. Any finite structure B has a core, since we can select the retract of B
with the smallest cardinality. Let A1 and A2 be cores of B, and f1 : B → A1

and f2 : B → A2 be endomorphisms. Then f1f2 restricted to A1 is an
endomorphism of A1, and since A1 is a core f1(f2(A1)) is isomorphic to
A1. For finite structure this implies that f1 restricted to A2 is an surjective

49

Chapter 2. Countably Categorical Structures

homomorphism to A1. By the symmetric argument f2|A1
is also a surjective

homomorphism, and thus the finite structures A1 and A2 are isomorphic.

Therefore, we speak of the core of a finite relational structure A, and
denote it by core(A). The notion is important for constraint satisfaction,
since the image of A under an endomorphism clearly has the same constraint
satisfaction problem as A – this also holds for infinite structures. For finite
structures, the converse is trivially true:

If CSP(A) ⊆ CSP(B) then there is a homomorphism from A to B. (2.3)

Homomorphisms between templates. Statement (2.3) is in general not
true for infinite structures. Consider for example the structure Γ = (Q+;R),
where R is a binary relation defined by R(x, y) :⇔ 2x ≤ z. Let Γ′ = (N;R)
be the substructure of Γ restricted to the natural numbers. There is no
homomorphism from Γ to Γ′: Assume for contradiction that f is such a
homomorphism. Suppose f maps the point 1 to the integer p > 0. Since
f preserves R and we know that 2f(1/2) ≤ f(1) and thus f(1/2) ≤ p/2.
Iterating this argument we finally find a point 1/2n0 such that f(1/2n0) ≤
p/2n0 < 1, and thus f can not be a homomorphism from Q to N.

On the other hand, every finite induced substructure S of Γ homomorphi-
cally maps to Γ′. To see this, multiply all numbers u/v in S, where u and v
are natural numbers and relatively prime, by the smallest common multiple
of their denominators v. The resulting numbers are positive integers, and the
multiplication preserves the relation R and hence defines a homomorphism
from Γ to Γ′.

For ω-categorical structures, however, we can show that 2.3 holds. The
proof contains an application of König’s tree lemma that we will encounter
several times in later proofs.

Proposition 2.24. Let Γ be an ω-categorical structure. Then for every
countable relational structure Γ′, CSP(Γ′) ⊆ CSP(Γ) if and only if there
is a homomorphism from Γ′ to Γ.

Proof. Clearly, if there is a homomorphism from Γ′ to Γ, then every struc-
ture that homomorphically maps to Γ′ also maps to Γ. Conversely, sup-
pose CSP(Γ′) ⊆ CSP(Γ). Let a1, a2, . . . be an enumeration of the elements
in Γ′. Cosider the following infinite but finitely braching tree. The nodes
on level n in the tree are the equivalence classes of homomorphisms from

50

2.8 Homomorphisms and Cores

a1, . . . , an to Γ2, where two homomorphisms are equivalent if f1 = gf2 for
some g ∈ Aut(Γ). Adjacency between nodes on consecutive levels is defined
by restriction. By our assumption, for each finite substructure of Γ′ there is
a homomorphism to Γ, and thus the tree contains a node on each level. By
the theorem of Ryll-Nardzewski, there are only finitely many nodes at each
level. By König’s lemma the tree contains an infinite path. This path defines
a homomorphism from Γ′ to Γ.

Note that we only used the ω-categoricity of Γ, and only used Age(Γ′) ⊆
CSP(Γ) in the proof. The same idea also works to prove that if Age(Γ′) ⊆
wSub(Γ) then Γ′ is a substructure of Γ. Likewise, if Age(Γ′) ⊆ Age(Γ)
then there is an embedding of Γ′ in Γ (the last statement is an exercise
in [Cameron, 1990]). The set of all structures of a given signature are par-
tially ordered by the homomorphism relation. General facts about this ho-
momorphism order for finite structures can be found e.g. in [Nešetřil and
Tardif, 2000].

Core-like properties of infinite structures. Core-like properties for ar-
bitrary infinite relational structures Γ were studied by Bauslaugh [Bauslaugh,
1996,Bauslaugh, 1995]:

• I(Γ) holds if any endomorphism of Γ is an injection.

• S(Γ) holds if any endomorphism of Γ is a surjection.

• N(Γ) holds if any endomorphism of Γ preserves the complements of the
relations of Γ – we also say that they preserve non-relations.

• R(Γ) holds if Γ has no proper retractions.

• i(Γ) holds if there is an endomorphism e such that e(Γ) satisfies I.

• s(Γ) holds if there is an endomorphism e such that e(Γ) satisfies H .

• n(Γ) holds if there is an endomorphism e such that e(Γ) satisfies N .

• r(Γ) holds if there is a retraction e of Γ that satisfies R.

We can canonically define combinations of the uppercase properties. For in-
stance the property ISN of a finite structure A states that A is a core. For
finite structures, ISN is equivalent to e.g. IN, IS, I, S and to R. For infinite
structures, these mentioned properties are all inequivalent, with the single

51

Chapter 2. Countably Categorical Structures

exception that ISN is equivalent to SN [Bauslaugh, 1996]. For the combi-
nations of the lowercase properties we additionally require that the image of
the same endomorphism e of Γ has the required properties. Also here most
of the properties and combinations are inequivalent, and the dependencies
between these concepts were exhaustively examined in [Bauslaugh, 1996].
Finite structures A satisfy isnr. Infinite structures in general satisfy none of
the properties i, s, n, or r.

Cores of ω-categorical structures. We now focus on one of the defi-
nitions of a core of an infinite structure that turned out to be useful if we
are interested in constraint satisfaction and in ω-categorical structures. If
we require that every endomorphism is an automorphism, this seems too re-
strictive for the application to constraint satisfaction. In this case, even the
dense linear order would not be a core. Instead we say that Γ is a core if the
image f(Γ) of every endomorphism f is isomorphic to Γ. Note that for finite
structures this definition and the classical definition are equivalent. If a core
Γ′ is the image of Γ under an endomorphism of Γ, we say that Γ′ is a core of
Γ.

Definition 2.25. A structure Γ is called a core, if every endomorphism of Γ
preserves non-relations and inequality; in other words, every endomorphism
is an embedding. We say that a structure Γ′ is a core of Γ, or that Γ has a
core Γ′, if Γ′ is a core and is induced by the image of an endomorphism of Γ.

This definition of a core corresponds to the properties IN and in in the
terminology of [Bauslaugh, 1996]. Although the definition is weaker that
ISN , it suffices to prove some results on cores known for finite cores used in
constraint satisfaction. We will see such applications in Section 4.7.

Examples. As examples, we now discuss the dense linear order of the ra-
tional numbers, the ω-categorical semilinear order Λ from Section 2.7, the
Rado-graph, and the homogeneous triangle-free graph. The dense linear
order clearly is a core: for a linear order, every edge-preserving map also pre-
serves non-edges - and has to be injective. Next we consider the Rado-graph
R: It is up to isomorphism described by the following extension property:
(EP) For every two finite subsets P and Q of the graph R there exists a
vertex not contained in P or Q and adjacent to each vertex in P and to no
vertex in Q. By property (EP) of the Rado graph we can find in an infinite
process an infinite complete subgraph Kω, which is the up to isomorphism
unique core of the Rado-graph.

52

2.8 Homomorphisms and Cores

Another example of a core is the universal graph for all triangle-free
graphs Fräıssé-limit ⋪ = Fl(Forb(K3)). It is a core, since there are existential
positive definitions of non-adjacency and inequality. If we denote the edge-
relation of the graph by E, then the definition for non-adjacency of the nodes
x and y is ∃z.E(x, z) ∧E(z, y) and the definition for inequality of the nodes
x and y is ∃u, v. E(x, u) ∧ E(u, v) ∧E(v, y).

Finally we look at the semilinear order Λ from Section 2.7. It is important
which signature we use: (Λ; ⊳+) is not a core, since we find an endomorphism
to a countable dense linear order contained in Λ. It is easy to show that the
structure (Λ; ⊳+,⊥) is a core.

53

Chapter 3

Constraint Satisfaction

In this chapter we formally introduce the class of constraint satisfaction prob-
lems studied in this thesis, and make some fundamental observations. In
Section 3.2 we discuss concrete examples of constraint satisfaction problems
with ω-categorical templates. In Section 3.3 we prove that every problem
in monotone monadic SNP without inequalities – a notion introduced in the
context of constraint satisfaction in [Feder and Vardi, 1999] – is a constraint
satisfaction problem with an ω-categorical template, described by a finite set
of finite forbidden substructures. On the other hand, all such constraint sat-
isfaction problems are contained in monotone SNP. Finally, in Section 3.4,
we describe the power of Datalog programs for constraint satisfaction.

3.1 Introduction

Let Γ be an arbitrary structure with relational signature τ . The constraint
satisfaction problem for Γ is the following computational problem:

CSP(Γ)
INSTANCE: A finite structure S of the same relational signature τ as Γ.
QUESTION: Is there a homomorphism f from S to Γ?

We denote by CSP(Γ) the set of all finite τ -structures that homomor-
phically map to Γ, and call Γ the template of the constraint satisfaction
problem. Let S be a structure that has a homomorphism f to Γ; in this case
we say that f is a solution of S for the constraint satisfaction problem for Γ.

Chapter 3. Constraint Satisfaction

Sometimes the elements of S are called nodes, for instance if the signature
is binary and we are talking about digraphs, or more general if we want to
stress that the instance can be viewed as a constraint network, a term often
used in the literature on constraint satisfaction in artificial intelligence.

The class of all constraint satisfaction problems with a template T over a
finite domain we denote by CSP. This class is clearly contained in NP, since
for a given instance S we can guess a mapping f : S → T and verify in
polynomial time that it is a homomorphism. For many infinite templates Γ
the problem CSP(Γ) is also contained in NP: for instance if the template is
specified by finitely many finite forbidden induced substructures.

Definition 3.1. A relational τ -structure Γ is called finitely constrained, if
there is a first-order expansion Γ′ of Γ, such that the structure Γ′ with the
expanded signature τ ′ satisfies Age(Γ′) = Forb(N) for some finite set N of
finite τ ′-structures.

The term ’finitely constrained’ is used here in the same sense as in [Latka,
1994]. Note that we did not require that there is a set N of finite τ -structures
such that Age(Γ) = Forb(N). We only require this for a structure Γ′ with an
expanded signature τ ′.

Proposition 3.2. Let Γ be a finitely constrained relational structure. Then
CSP(Γ) is in NP.

Proof. Let Γ′ be an expansion of Γ with signature τ ′, and N a finite set of
τ ′-structures such that Age(Γ′) = Forb(N) – such an N exists because Γ is
finitely constrained. Suppose we are given an instance S of CSP(Γ) of size
n. We first guess a structure T ′ of size at most n in the expanded signature;
let T be the reduct of T ′ that has the original signature. Then we can verify
in polynomial time whether there is a strong homomorphism from S to T ,
and whether T ′ does not contain any substructure from N.

Let CSP∗ be the class of constraint satisfaction problems with finitely con-
strained ω-categorical templates. Without the assumption that the template
is finitely constrained, we find ω-categorical templates Γ such that CSP(Γ)
is undecidable; we already find countable homogeneous digraphs with an un-
decidable constraint satisfaction problem: Recall from Section 2.6 that there
are uncountably many homogeneous digraphs Γ with an age that has the free
amalgamation property, and all of them have different constraint satisfaction
problems – we discuss this at the end of Subsection 3.2.1. Since there is a
countable number of algorithms, undecidable constraint satisfaction prob-
lems exist.

56

3.1 Introduction

Constraint satisfaction with homogeneous digraphs. If we assume
that the class of finite induced substructures of a countable homogeneous
digraph Γ is described by finitely many forbidden induced subgraphs, we
can determine the complexity of CSP(Γ). In the case where we have free
amalgamation we only have to check whether the input does not contain any
of the forbidden substructures – this can be done in polynomial time. In
the other cases we can use the classification result in [Cherlin, 1998]. This is
discussed in Section 3.2.

We discuss this classification in Section 3.2 to provide more examples
of ω-categorical structures. Another reason why we present this catalog is
that – in contrast to the class of ω-categorical structures – there is some
hope that the class of homogeneous ω-categorical structures can be classified
in the spirit of [Cherlin, 1998]. Some systematic results in this direction
were made for so-called stable homogeneous structures (see e.g. [Cherlin and
Lachlan, 1986,Lachlan, 1996]). Also recall that every ω-categorical template
can be made homogeneous by expanding the signature (Proposition 2.14 on
page 34; however, this might affect the computational complexity of the
constraint satisfaction problem).

Sometimes the age of a homogeneous structure satisfies a stronger version
of the amalgamation property – the so-called strong amalgamation property,
see Section 2.5. This property affects the nature of its constraint satisfaction
problem. If the template of a constraint satisfaction has strong amalgama-
tion, every structure homomorphically mapping to Γ is also a substructure
of Γ.

Substructure problems. For a fixed infinite relational structure Γ there
is another computational question, which turns out to stand in an interesting
relationship to the constraint satisfaction problem. Again the instances are
finite structures of the same relational signature as Γ, but we ask whether
the structure is a substructure of Γ (we mean a weak substructure, i.e, a not
necessarily an induced substructure). We call this computational problem
the substructure problem of Γ, and write wSub(Γ) for the set of all finite sub-
structures of Γ. Analogously to Proposition 3.2, if Γ is a finitely constrained
structure, then wSub(Γ) is in NP.

Note that this problem is trivial for finite Γ. However, in the uniform
setting, i.e., if an instance of the problem contains two finite structures A
and B, and we ask whether A is a substructure of B, it was studied before,
and is also called the substructure isomorphism problem; see e.g. [Gupta and

57

Chapter 3. Constraint Satisfaction

Nishimura, 1996]. Here, however, we will only study the problem in its non-
uniform version and for infinite Γ.

If Γ has the strong amalgamation property, then the constraint satis-
faction problem of Γ and the substructure problem of Γ are the same, i.e.,
CSP(Γ) = wSub(Γ). In Chapter 6 we see an example of an infinite structure
Γ not having strong amalgamation, where also the computational complex-
ity of the substructure for Γ and the constraint satisfaction problem for Γ is
different (unless P=NP).

Both constraint satisfaction and substructure problems with finitely con-
strained ω-categorical template generalize the well-known class CSP of con-
straint satisfaction problems with finite templates. For every finite struc-
ture T we can find a finitely constrained ω-categorical structure Γ such that
wSub(Γ) = CSP(Γ) = CSP(T). We replace every vertex u in T by infinitely
many vertices that have the same neighborhood 1. Generalizing the termi-
nology of Section 2.6 for graphs, we write Γ = T [I∞]. We also add a unary
predicate for each vertex u ∈ T that holds on precisely these copies of u. If
we do this for all vertices u in T , it is easy to check that the age of the re-
sulting structure Γ′ has the strong amalgamation property. It is also finitely
constrained, since Age(Γ′) = Forb(N) where N is the set of all relational
structures of the same signature as Γ′ of size |T |+ 1 that are not in Age(Γ).
Thus, substructure problems and constraint satisfaction with finitely con-
strained ω-categorical templates generalize constraint satisfaction with finite
templates. This also follows from Proposition 3.9 on page 72.

Constructing solutions. Besides the question whether an instance of a
constraint satisfaction problem has a solution, we could ask to construct
this solution. For finite Γ it was observed in [Bulatov et al., 2000, Kolaitis
and Vardi, 1998] that if Γ contains all singleton relations, then these two
problems are computationally equivalent. In fact, the assumption that all
the singletons are in the signature is not necessary.

We now describe an algorithm that constructs a solution of a given in-
stance S of CSP(T) under the assumption that the decision problem CSP(T)
is tractable. For a relation symbol R in the signature of Γ we add a tuple to
the relation R in the instance, and check whether the resulting structure S ′

is in CSP(Γ). If yes, we proceed with S ′ and do this for all relation symbols
from Γ and all tuples in S. Finally we end with some structure S ′′ with the

1We say that two vertices a, b of a relational structure Γ have the same neighborhood

in Γ if there is a nontrivial automorphism of Γ that fixes all points but a and b.

58

3.1 Introduction

property that every solution of S ′′ is a strong homomorphism from S ′′ to
Γ. Such a solution can be found in polynomial time: Clearly we can map
nodes in S ′′ that have the same neighborhood to the same vertex, and thus
we identify vertices in S ′′ that have the same neighborhood. Finally we only
have to find the resulting relational structure as a substructure of T , which
can be done in constant time, since T is of constant size. This gives us a
solution of S for CSP(T).

For infinite templates it is in general not clear whether and how a solution
of a constraint satisfaction problem can be represented. If the structure is
ω-categorical, first-order logic provides an elegant way to represent solutions
of a constraint satisfaction problem up to ismorphism of solutions. Two
solutions f, f ′ : S → Γ of an instance S of CSP(Γ) are called equivalent iff
there exists an automorphism α of Γ such that f = f ′α. Let a1, . . . , an be
the nodes of S. For ω-categorical Γ, by Theorem 2.6, there are only finitely
many inequivalent solutions for each instance S of CSP(Γ). Moreover, there
exists a first-order formula φ in n free variables, that holds on x1, . . . , xn ∈ Γ
if and only if f : ai 7→ xi, 1 ≤ i ≤ n, is a solution of S for CSP(Γ).

Primitive positive definitions. Sometimes it is convenient to use logic
to talk about constraint satisfaction – we already mentioned this briefly in
the introduction. In this case we call the instance a constraint, which is
a conjunction of several atomic constraints, which are positive literals with
relation symbols taken from the signature of the template. The elements from
the domain of an instance of a constraint satisfaction problem are then called
variables, and the instance can be viewed as a primitive positive sentence that
is interpreted over the template.

For both finite and infinite Γ, the following simple lemma explains the
relevance of p.p.-definable relations in constraint satisfaction. Suppose we
extend a relational structure Γ by a p.p.-definable relation R. This does not
change the computational complexity of the corresponding constraint satis-
faction problem, since we can replace every occurrence of R in an instance
of CSP(Γ) by the τ -structure that defines R.

Lemma 3.3. Let Γ be a τ -structure and let Γ′ be the extension of this struc-
ture by a relation R that is p.p.-definable over Γ. Then CSP(Γ) is polynomial-
time equivalent to CSP(Γ′).

In Chapter 4 we characterize p.p.-definability algebraically.

59

Chapter 3. Constraint Satisfaction

Infinite templates that are not ω-categorical. Constraint satisfaction
with arbitrary templates allows to descibe precisely those problems that are
closed under disjoint unions, and whose complement is closed under homo-
morphisms. Clearly, these two properties are necessary, since the disjoint
union of two satisfiable instances is again satisfiable, and since a homomor-
phic image of an unsatisfiable instance is again unsatisfiable. On the other
hand, every problem satisfying the two mentioned properties can be expressed
as a constraint satisfaction problem with an infinite template, since we can
use the infinite disjoint sum of all satisfiable instances as a template. We
call this template Γ, and call the summands of which Γ is formed the com-
ponents of Γ. Clearly, for every yes-instance of the problem we can find
a homomorphism to Γ. Now suppose for contradiction that a no-instance
homomorphically maps to Γ. Let S be a minimal such instance. The homo-
morphic image I of S is by assumption again a no-instance, and therefore it
can not be isomorphic to one of the components of Γ. Hence, I is divided
into several substructures Il that lie in different components of Γ. Each such
substructure Il has less vertices than S and hence is a yes-instance. By as-
sumption, the disjoint union I of the substructures Il is also a yes-instance,
a contradiction.

There are concrete constraint satisfaction problems that can not be for-
mulated with an ω-categorical template, e.g., CSP((N; +, ∗, 0, 1)), where ’+’
stands for the ternary relation defined by x + y = z, ’∗’ for x ∗ y = z, and
’0’ and ’1’ are unary singleton relations containing only 0 and 1, respec-
tively. This problem is equivalent to Hilbert’s 10th problem on Diophantine
equations (which is undecidable [Matijasevich, 1993]).

To deal with such problems in a unified framework we have to deal with
the problem how such infinite templates are represented. Finite axiomati-
zations of the first-order theory of a structure do not seem appropriate to
represent templates of constraint satisfaction problems: For example, only
few ω-categorical structures have finite axiomatizations – such structures
were studied in [Lippel, 2001]. In this thesis we instead describe infinite tem-
plates by finite sets N of forbidden induced finite substructures; in the case
that Forb(N) is an amalgamation class, this describes the template uniquely,
up to isomorphism. In most cases, the corresponding relational structures
are not finitely axiomatizable (but ω-categorical, see Section 2.4).

Infinite signatures. Following [Bulatov et al., 2000], we call the constraint
satisfaction problem for a relational structure Γ with a countably infinite
signature tractable, if it is tractable for the reduct of Γ to any finite signa-

60

3.2 The Complexity of some CSPs

ture τ ′ ⊂ τ . With this definition and Lemma 3.3 it follows that CSP(Γ) is
tractable if and only if CSP(〈Γ〉pp) is tractable.

Note that there is a subtle difference to the following stronger version
of tractability, called global tractability in [Bulatov et al., 2000], where we
require that there is a polynomial time algorithm for the constraint satisfac-
tion problem for the entire infinite signature (given an appropriate represen-
tation). It is open whether there is a constraint satisfaction problem with
finite template that is tractable but not globally tractable [Bulatov et al.,
2000]. We do not know of such an example even for ω-categorical templates.
In particular we can not exclude that there is a structure Γ such that CSP(Γ)
is tractable, but CSP(〈Γ〉pp) is not globally tractable.

3.2 The Complexity of some CSPs

In this section we look at the constraint satisfaction problems and their
computational complexity for various ω-categorical structures that we en-
countered in earlier sections. Some of them were independently studied in
the literature.

Whereas for finite templates all known hard constraint satisfaction prob-
lems are hard because there is a primitive positive definition of a relation
encoding 1-in-3-SAT, for infinite templates the problem Betweenness is of-
ten used to prove hardness. The following is taken from [Garey and Johnson,
1978]:

BETWEENNESS
INSTANCE: A finite set V , and a collection C of ordered triples (x, y, z) of
distinct elements from V .
QUESTION: Is there a one-to-one function f : V → {1, . . . , |V |} such that,
for each (x, y, z) ∈ C, we have either f(x) < f(y) < f(z) or f(z) < f(y) <
f(x).

The NP-hardness of Betweenness was first proven by Opatrný in 1978.
Furthermore the problem is MaxSNP complete [Garey and Johnson, 1978]. In
[Chor and Sudan, 1998] semidefinite programming is applied to a translation
of the problem into a set of quadratic inequalities. If there exists a solution,
this procedure finds a solution satisfying half of the triples.

61

Chapter 3. Constraint Satisfaction

Betweenness is a constraint satisfaction problem with an ω-categorical
template: Since interpretations preserve ω-categoricity (Proposition 2.7) and
Q is ω-categorical, the structure B below is also ω-categorical. Clearly,
CSP(B) is the computational problem Betweenness.

B =
(

Q, {(x, y, z) ⊆ Q3 | x < y < z or z < y < x}
)

3.2.1 The CSPs for the Homogeneous Digraphs

In Section 2.6 we described the classification of the countable homogeneous
digraphs. In this paragraph we discuss their constraint satisfaction problems.

The constraint satisfaction problem of the dense linear order on the ratio-
nal number Q corresponds to digraph acyclicity and is tractable, via breadth-
first search. The wreathed structures Q[In] and In[Q] and the partial order
P have the same constraint satisfaction problem. The graph Kn[I∞] is uni-
versal for the class of all n-colorable directed graphs. Thus the constraint
satisfaction problem is NP-hard. Since T∞ is universal for the set of all tour-
naments, CSP(T∞) is the set of all digraphs and therefore trivial. The same
holds for T̂∞, T∞[In], In[T∞] and for ∞∗ I∞.

The CSPs for the exceptional class. A more interesting example is the
constraint satisfaction problem for S(2). We show that CSP(S(2)) is NP-
hard. Recall the definitions of S(2) in Section 2.6. If we fix a vertex u in S(2),
the structures induced by the point sets {x | u < x} and {x | u > x} in the
tournament S(2) are isomorphic to (Q, <). The idea for the hardness proof
is that the Betweenness-relation B has on these sets the following primitive
positive definition.

∃v, w : v > x ∧ v > y ∧ v < z ∧ w < x ∧ w > y ∧ w > z . (3.1)

A proof for that can be found in the following proposition. Also see Fig-
ure 3.1.

Proposition 3.4. CSP(S(2)) is NP-complete.

Proof. Proposition 3.2 shows that CSP(S(2)) is contained in NP, because
S(2) is finitely constrained – see Section 2.6. To prove hardness we reduce

62

3.2 The Complexity of some CSPs

the problem Betweenness to CSP(S(2)). Let (V ;C) be an instance of Be-
tweenness. We define a polynomial size instance S of CSP(S(2)) that is
satisfiable if and only if (V ;C) is a yes-instance of Betweenness. The ver-
tices of S consist of the vertices V and some additional vertices. We first
introduce a new vertex u, and add u < x to S for all x ∈ V . Then introduce
for each triple x, y, z from C two new vertices v, w and add the constraints
v > x, v > y, v < z, w < x,w > y, w > z to the instance S of CSP(S(2)).
Also see Figure 3.1.

If there is a solution to the Betweenness instance (V ;C), there is also a
homomorphism from S to S(2): We map the vertex u ∈ S to some vertex
f(u) in S(2). Then the linearly ordered set {w | f(u) < w} is isomorphic
to the linear order of the rational numbers, and we map the vertices in V to
this set in the same way as the solution of the Betweenness instance maps
them to the rational line. Finally we can map the existentially quantified
variables to S(2), in either of the two ways displayed in Figure 3.1: this is,
if x < y < z in the solution to the Betweenness instance we let x < v, v < y,
v < z, z < w, y < w, w < x. Otherwise, if z < y < x we let z < w, y < w,
w < x, y < v, x < v, v < z.

Conversely, if there is a homomorphism f from S to S(2), we also have a
solution to the Betweenness instance (V ;C). The homomorphism f maps all
vertices in V except u to the linearly ordered set {w | f(u) < w}. We claim
that in the corresponding linear order of the vertices V , for each triple in C
either x < y < z or z < y < x. Assume otherwise that y < x and y < z.
Since x and y have to be comparable, either x > z or x < z. In the first case
we find the oriented three-cycle x, v, z, x, in the second the cycle x, z, w, x.
In both cases there are arcs from y towards the vertices of that cycle, and
we found the subgraph [I1, C3], which is forbidden in P (3). The case where
y > x and y > z is analogous with the forbidden constellation [C3, I1]. Thus
we have a contradiction with the assumption that f is a homomorphism from
S to P (3).

Since there is a homomorphism from S(2) to Q̂ and from Q̂ to S(2), these
problems have the same constraint satisfaction problem. For the hardness
of CSP(S(3)) we can use the same gadget as above to simulate Betweenness
on a definable subset of vertices. Similarly to Proposition 3.4 we can prove
the NP-hardness of CSP(P (3)). Before we present a hardness proof, we
reformulate the computational problem CSP(P (3)); in this form we call the
problem switching-trigraph-transitivity.

63

Chapter 3. Constraint Satisfaction

x

w

w

z

y
v

x

y
w

x

v

z

v

z

y

Figure 3.1: On the left we find the gadget to simulate the betweenness rela-
tion on x, y, z, where an arc from a to b means that there is the constraint
a < b. On the right we find two possible ways to map these vertices homo-
morphically to S(2), where the cross marks the origin in the plane.

SWITCHING-TRIGRAPH-TRANSITIVITY
INSTANCE: A digraph D = (V ;E).
QUESTION: Can we partition the vertices V into three parts P1, P2, P3, such
that the graph that arises from D by the following three operations is tran-
sitive?
i) deleting the edges from P1 to P2, P2 to P3, and P3 to P1;
ii) reversing the arcs from P2 to P1, P3 to P2, and P1 to P3;
iiii) adding arcs between unconnected pairs from P2 to P1, P3 to P2, and P1

to P3.

Proposition 3.5. CSP(P (3)), alias Switching-trigaph-transitivity, is NP-
complete.

Proof. As in the proof of Proposition 3.4 we use Proposition 3.2 to observe
CSP(P (3)) is contained in NP, because P (3) is finitely constrained – see
Section 2.6. Again we prove hardness by reducing Betweenness to CSP(P (3)),
and we construct an instance S of CSP(P (3)) from an instance (V ;C) of
Betweenness in the same way as in the proof of Proposition 3.4. Now, we
additionally introduce new vertices a, b for all pairs of vertices x, y ∈ V , and
impose the constraint a < b, x > b, b > y, y > a, a > x; see Figure 3.2.

First we show that given a solution to the Betweenness instance (V ;C),
we can construct a homomorphism from S to P (3). Note that P (3) contains
copies of S(2) as subgraphs; fix such a copy of S(2), which we will sloppily
also denote by S(2). We map the vertex u ∈ S to some vertex f(u) in S(2).
The subset {x | f(u) < x} of S(2) induces the linear order of the rational

64

3.2 The Complexity of some CSPs

x

b

y

a

Figure 3.2: We use this gadget to ensure that the vertices x and y are mapped
to comparable vertices in P (3).

numbers. To construct a solution for S, we map the vertices in V to this
set in the same way as the solution of the Betweenness instance maps them
to the rational line. As in the proof of Proposition 3.4, we can map the
remaining existentially quantified variables to P (3) in either of the two ways
displayed in Figure 3.1.

Conversely, if there is a homomorphism f from the constructed instance
S to P (3), we also have a solution to the Betweenness instance (V ;C). Every
solution to S maps pairs of distinct vertices x, y ∈ V to comparable vertices
in P (3): Consider the corresponding subgraph x, y, a, b in S. Since this struc-
ture is a forbidden induced subgraph of P (3) (see Figure 2.3 on page 41), any
homomorphism of this structure to P (3) has to map x and y to comparable
vertices in P (3). Hence, the set f(V) induces in P (3) a tournament. Because
of the vertex f(u) < x for all x in f(V), and because [I1, C3] is a forbidden
induced subgraph in P (3), the set f(V) has to be isomorphic to the linear
order of the rational numbers. We claim that in the corresponding linear or-
der of the vertices V , for each triple in C either x < y < z or z < y < x. This
can be shown exactly as in the proof of Proposition 3.4, since the vertices
x, y, z have to be pairwise comparable in every solution of S.

Templates with free amalgamation. Finally we discuss the homoge-
neous digraphs whose age has the free amalgamation property. For a set of
tournaments T, the T-generic structure is universal for the class A(T) intro-
duced in Section 2.5. Every different substructure-closed set of tournaments
T yields a different T-generic structure. There is an uncountable number of
such sets of tournaments [Henson, 1972]. Each of these has a different con-
straint satisfaction problem, because CSP(Γ) = Age(Γ) for digraphs whose
age has the free amalgamation property – see Section 2.5. Since there is

65

Chapter 3. Constraint Satisfaction

a countable number of algorithms, undecidable constraint satisfaction prob-
lems exist, with templates that are countable homogeneous digraphs.

Proposition 3.6. There are undecidable constraint satisfaction problems
CSP(Γ), even if Γ is a homogeneous digraph.

However, if the age is described by a finite set N of finite forbidden in-
duced subgraphs, then the constraint satisfaction problem for these tem-
plates is simple, since CSP(Γ) = Age(Γ) = Forb(N). Hence it suffices to
check whether the input contains a forbidden induced subgraph, which can
be done in polynomial time. If not, the input graph is in the age of the
template and is a yes-instance.

3.2.2 Tree Descriptions

The following constraint satisfaction problem is a special case of a problem
studied in [Cornell, 1994]. The algorithm presented there is based on local
consistency (or constraint propagation), and turned out to be incomplete. In
Section 3.4 we explain this approach and give an example that shows that
the algorithm in general fails to solve the problem. However, the problem is
tractable. We present a polynomial time algorithm solving a more general
problem in Chapter 5 on page 103.

PURE-DOMINANCE-CONSTRAINT
INSTANCE: A digraph (V ;D) where each edge is labeled by a subset of the
symbols from {⊳+, +⊲,≡,⊥}.
QUESTION: Is there a mapping f from V to some rooted tree T such that
for each edge at least one of the labels is satisfied : ⊳+ (+⊲) is satisfied for
uv if there is a directed path from u to v (from v to u) in T . The label ≡
is satisfied if u = v. The label ⊥ is satisfied if none of the other labels is
satisfied.

Using the ω-categorical semilinear order Λ = (D,<) from Section 2.7 we
can formulate this problem (and related problems, e.g. the problem Centaur-
genealogy from the introduction) as a constraint satisfaction problem: the
signature of the corresponding template are all binary first-order definable
relations over Λ. This fact is easy to see: the relations play the rôle of the
various labelings in the above computational problem.

66

3.2 The Complexity of some CSPs

It is interesting to note that the constraint satisfaction problem for other
relations that are first-order definable over the semilinear order Λ can be
NP-hard. The following problem called Forbidden-triples was studied in
phylogenetic analysis [Bryant, 1997]; also see [Ng et al., 2000].

FORBIDDEN-TRIPLES
INSTANCE: A set of ordered triples (x, y, z) over a set L.
QUESTION: Is there a rooted binary tree T with leaf set L such that for
every ordered triple (x, y, z) every rooted subtree containing y and z also
contains x?

To formulate this as a constraint satisfaction problem, we again use Λ
(see Section 2.7), but this time the template contains the ternary relation
¬(x:yz) in the signature, where x:yz is defined by the first-order formula
∃u. u > y ∧ u > z ∧ u ⊥ x over Λ.

Another problem from phylogenetic analysis is the problem Quartet-
compatibility, which we already mentioned in the introduction. It is again an
NP-hard problem [Steel, 1992], by reduction of Betweenness. To formulate
this as a constraint satisfaction problem we use the 4-ary relation that arises
from the countable homogeneous Boron tree introduced in Section 2.7.

3.2.3 The Fragments of Allen’s Interval Algebra

Allen’s Interval Algebra was first introduced and studied in artificial intelli-
gence [Allen, 1983]. The maximal tractable fragments were investigated in
a series of papers, in particular we want to mention [Bürckert and Nebel,
1995, Jeavons et al., 2003]. As we will see now, all fragments correspond to
constraint satisfaction problems with ω-categorical templates.

Consider as a base set D the closed intervals on the rational numbers,
and the binary relations on these intervals defined in Figure 3.3. For any
set of relations that are unions of p, o, d, s,m, f, and ≡, the correspond-
ing countable relational structure is ω-categorical. In fact, the listed basic
relations are nothing but the complete 2-types of Q2, and every first-order
definable binary relation over (Q, <) is a union of such complete 2-types (see
Chapter 2). Allen’s algebra then is the constraint satisfaction problem for Q2

where the signature consists of all first-order definable binary relations over
Q. The fragments of this algebra are the constraint satisfaction problems of

67

Chapter 3. Constraint Satisfaction

Relation In symbols Definition
The interval x precedes y x p y x+ < y−

The interval x overlaps y x o y x− < y− < x+ and x+ < y+

The interval x is during y x d y y− < x− and x+ < y+

The interval x starts y x s y x− = y− and x+ > y−

The interval x finishes y x f y x+ = y+ and x− > y−

The interval x meets y x m y x+ = y−.
The interval x equals y x ≡ y x− = y− and x+ = y+

Figure 3.3: The basic relations of Allen’s interval algebra. The variables
x = (x−, x+) and y = (y−, y+) denote closed intervals.

the various (ω-categorical) reducts of this structure.

The complexity of these fragments have a dichotomy [Jeavons et al.,
2003,Bürckert and Nebel, 1995]. We conjecture that this result can be gen-
eralized to arbitrary structures that have an interpretation in (Q, <): Every
constraint satisfaction problem with such a template is either NP-hard or
tractable. See Section 7.3.

that is the Fräıssé-limit of all finite tournaments has a trivial constraint-
satisfaction problem: Every finite tournament homomorphically maps to it.
Thus the only interesting remaining case is the dense linear order S(2) (see
[Cherlin, 1998]). The problem CSP(S(2)) is NP-hard, since it can simulate
the hard problem Betweenness [Garey and Johnson, 1978].

3.3 Monotone SNP

The class SNP is an important subclass of NP [Kolaitis and Vardi, 1992], and
was originally introduced in the context of the theory of optimization prob-
lems [Papadimitriou and Yannakakis, 1991, Mayr et al., 1998] – but turned
out to be closely related to homomorphism problems [Feder and Vardi, 1999].
An SNP formula Φ is an existential second-order formula with a universal
first-order part. The first order part might contain the existentially quanti-
fied relation symbols and additional relation symbols from a given signature
τ (these relations will sometimes be called the input relations). We shall
assume that the first-order part is written in conjunctive normal form, and
each disjunction is written as a conjunction of positive and negative literals.
As in [Hodges, 1997], we say that such formulae Φ are in negation normal

68

3.3 Monotone SNP

form. As usual, an SNP sentence is an SNP formula without free variables.
The class of SNP sentences corresponds to a class of computational prob-
lems, which we will also call SNP. For a fixed SNP sentence Φ of signature τ
the computational task is to determine for a given structure S of signature
τ whether S satisfies Φ.

Note that logic plays a different rôle here compared to Section 1.2. There
we considered the instance as a (primitive positive) sentence, and asked
whether the fixed template is a model of that formula. Now we ask whether
the instance is a model of our fixed SNP formula.

Clearly, SNP is contained in NP. It also contains NP-hard problems, for
instance graph 3-colorability. Given a graph G = (V ;E), 3-colorability of G
can be expressed for example by the following SNP sentence:

∃E ′ ∀x, y, u, v : ¬(E(x, y) ∧ ¬E ′(x, y))

∧ ¬(E ′(x, y) ∧ E ′(x, u) ∧E ′(x, v) ∧ E ′(y, u) ∧E ′(y, v) ∧ E ′(u, v))

∧ ¬(¬E ′(x, u) ∧ ¬E ′(x, v) ∧ E ′(u, v))

This sentence says that we can find a superset E ′ of E that does not
contain a K4, and where for every edge uv all vertices are connected to u
or to v. There might be many ways how to define the same problem with
different SNP formulae. The following formula is again satisfied by exactly
the three-colorable graphs, but this time the SNP sentence is monadic, i.e.
all existentially quantified relations are unary.

∃R,B,G ∀x, y : ¬(R(x) ∧ B(x)) ∧ ¬(R(x) ∧G(x)) ∧ ¬(B(x) ∧G(x))

∧ ¬(E(x, y) ∧ R(x) ∧ R(y))

∧ ¬(E(x, y) ∧ B(x) ∧ B(y))

∧ ¬(E(x, y) ∧G(x) ∧G(y))

∧ ¬(¬R(x) ∧ ¬B(x) ∧ ¬G(x))

The class of SNP is important for constraint satisfaction [Feder and Vardi,
1999]. Unlike CSP, the class SNP contains problems that are not monotone,
i.e, an unsatisfiable instance could become satisfiable if we add tuples to the
relations of the instance, or identify nodes from the instance. Equivalently,
we say that a problem is monotone, iff the class of unsatisfiable structures

69

Chapter 3. Constraint Satisfaction

C is closed under homomorphisms, i.e., if A ∈ C and there is a homomor-
phism from A to B, then B ∈ C. Homomorphism problems and constraint
satisfaction problems are clearly monotone.

Therefore the class monotone SNP without inequalities (MSNP) was in-
troduced [Feder and Vardi, 1999]. For this class we require that there is a
defining SNP sentence Φ, written in negation normal form, where all input
relations from τ occur within a negative number of negations, and Φ does
not contain inequalities – we call such formulae negative. This is for instance
the case for both of the formulae shown above. A recent result of [Feder and
Vardi, 2003] says that for classes of finite structures closed under homomor-
phisms, MSNP is as expressive as SNP where we can also use negations and
inequality.

The class MSNP still contains a polynomially equivalent problem for every
problem in NP [Feder and Vardi, 1999], and hence is unlikely to exhibit a
dichotomy. However, Feder and Vardi showed that every problem in the class
of monotone monadic SNP without inequality (MMSNP) is under randomized
Turing reductions equivalent to a constraint satisfaction problem with a finite
template. Conversely, it is easy to see that MMSNP contains all constraint
satisfaction problems with finite templates. Thus, CSP has a dichotomy if
and only if MMSNP has a dichotomy.

Monotone SNP and constraint satisfaction. Recall the class CSP∗

that contains all constraint satisfaction problems with a finitely constrained
ω-categorical template. In the remainder of this section we will show that
CSP∗ contains all problems in MMSNP, and that CSP∗ is contained in MSNP.
Thus we have the following set of inclusions.

CSP ⊂ MMSNP ⊂ CSP∗ ⊂ MSNP ⊂ SNP ⊂ SO∃ = NP

All of the inclusions ’⊂’ are strict. For the first we will show an exam-
ple below. For the second, consider the problem CSP((Q, <)), which is in
CSP∗, but not in MMSNP: see Proposition 3.7 below. For the third inclusion
CSP∗ ⊂ MSNP we present a problem in MSNP which is not closed under
taking disjoint sums, and therefore can not be a constraint satisfaction prob-
lem for any template. For the last two strict inclusions, such examples are
again easy to find.

Proposition 3.7. CSP((Q, <)) is not in MMSNP.

70

3.3 Monotone SNP

Proof. Let Φ be an MMSNP sentence. We claim that if Φ is true on all
directed paths, then it is also true on a directed cycle of a certain length n,
and therefore it can not express acyclicity. We assume that Φ is in negation
normal form. Let k be the number of existential monadic predicates in Φ,
and let l be the length of a longest (not necessarily directed) path in one of
the clauses with respect to the binary input relation. Now consider a directed
path of length (2k)l+l. Since this path satisfies Φ, there are subsets of vertices
of the path for each monadic predicate, avoiding the forbidden configurations
in the clauses of Φ. These subsets can be considered as a coloring of the path
with 2k colors. By the pidgeon hole principle, a consecutive subsequence w of
the path of length (2k)l + l must occur twice, say starting at position p0 and
p1. Now, if we color a directed cycle with the word induced by the positions
from p0 to p1, we can be sure that the colored cylce also avoids all forbidden
configurations in the clauses of Φ. Hence, Φ will also be true on that cycle,
and does not express acyclicity.

No we consider an example of an MSNP sentence, whose finite models are
not closed under disjoint sums, and which can therefore not be stated as a
constraint satisfaction problem with an arbitrary finite or infinite template.
The sentence does not contain any input relation, and is true on all struc-
tures with less than R(3, 3) = 6 elements, but false on all larger structures.
This is because for every graph on at least 6 vertices either the graph or
its complement contains a triangle. (Using similar Ramsey arguments, it is
possible to construct more involved examples.)

∃E ∀x, y, z : ¬(¬E(x, y) ∧ ¬E(x, z) ∧ ¬E(y, z))

∧ ¬(E(x, y) ∧E(y, z) ∧E(z, x))

To prove the inclusions MMSNP ⊆ CSP∗ ⊆ MSNP, we will make use of
an important theorem from [Cherlin et al., 1999] (stated there for graphs
only, but the proof does not make use of this assumption on the signature,
and the theorem holds indeed for arbitrary relational signatures).

Theorem 3.8 (of [Cherlin et al., 1999]). Let N be a finite set of finite
structures that is closed under homomorphisms. Then there exists an ω-
categorical structure Γ such that Age(Γ) = wForb(N).

In fact, the structure Γ from Theorem 3.8 is universal for the set of all
at most countable N-free structures, i.e., every at most countable structure

71

Chapter 3. Constraint Satisfaction

that does not contain a subgraph from N is an induced substructure of Γ′.
Moreover, the ω-categorical structures that are constructed in Theorem 3.8
are model-complete; see [Cherlin et al., 1999].

Before we prove the two inclusions MMSNP ⊆ CSP∗ ⊆ MSNP, it will be
instructive to look at an example called No-mono-tri – a problem in mono-
tone monadic SNP, which can not be expressed as a constraint satisfaction
problem with finite templates. This was observed in [Madelaine and Stewart,
1999].

NO-MONO-TRI
INSTANCE: Graph G = (V ;E).
QUESTION: Is there a 2-coloring of the vertices so that the vertices of every
triangle in the graph are not monochromatically colored?

This problem is contained in the class of problems called G-free colorabil-
ity problems. Let G be a graph. A k-coloring of a graph H is said to be
G-free iff each color class of the coloring induces a subgraph that does not
contain G as a subgraph. All such coloring problems are clearly contained in
monotone monadic SNP with inequality (MMSNP(6=)). G-free colorability is
NP-hard if G has more than two vertices and k ≥ 2 [Achlioptas, 1997]. Thus
No-mono-tri is NP-hard.

A graph is a yes-instance of No-mono-tri if and only if it satisfies the
following MMSNP sentence

∃C ∀x, y, z. ¬(E(x, y) ∧E(y, z) ∧E(z, x) ∧ C(x) ∧ C(y) ∧ C(z))

∧ ¬(E(x, y) ∧E(y, z) ∧E(z, x) ∧ ¬C(x) ∧ ¬C(y) ∧ ¬C(z))

This problem can be formulated as CSP(K2[⋪]), where ⋪ is the countable
homogeneous triangle-free graph, i.e., ⋪ = Fl(Forb(K3)), see Section 2.6.
Since K2[⋪] has an interpretation in ⋪ it is ω-categorical by Proposition 2.7.

Proposition 3.9. Every problem in MMSNP is in CSP∗.

Proof. For a given problem in MMSNP we have to find a finitely constrained
ω-categorical structure Γ, such that the problem equals CSP(Γ). Let Φ be an
MMSNP sentence, and let P1, . . . , Pk be the existential monadic predicates
in Φ.

Again we assume that the first-order part of Φ is in negation normal form,
i.e., in conjunctive normal form where each clause is written as a negated

72

3.3 Monotone SNP

conjunction of literals. By definition of MMSNP, all such literals with input
relations are positive. For each existential monadic relation Pi we introduce
a relation symbol P ′

i , and replace negative literals ¬Pi(x) in Φ by the cor-
responding new monadic predicates P ′

i (x). After this replacement, the set
of clauses in Φ corresponds to a set of relational τ -structures N where the
vertices in a structure correspond to variables in a clause, and the signa-
ture τ contains the input relations, the existential monadic relations Pi, and
the symbols P ′

i for the negative occurences of the existential relations. We
also add to N those τ -structures that arise from clauses by identification of
variables.

Then the class of structures wForb(N) is, as Feder and Vardi call it, closed
under inverse homomorphisms. A class C is closed under inverse homomor-
phisms if B ∈ C implies that A ∈ C, whenever there is a homomorphism
from A to B. Cherlin, Shelah and Shi directly call N closed under homomor-
phisms, which means in this case that for any S ∈ N and any homomorphism
h : S → S ′, that S ′ contains a substructure in N. Theorem 3.8 states that
in this case there exists an ω-categorical structure Γ, which is universal for
wForb(N).

We use Γ to define the template for the constraint satisfaction problem.
To do this, restrict the domain of Γ to those points that have the property
that either Pi or P ′

i holds (but not both Pi and P ′
i) for all existential monadic

predicates Pi. The resulting structure is by universality nonempty. Then we
take the reduct Γ′ of the structure that only contains the input relations. This
structure is universal for the set of all structures in wForb(N) restricted to
the input signature. By Proposition 2.7 on page 30 the restricted and reduced
structure Γ′ is still ω-categorical. Moreover, Γ′ is finitely constrained: If we
add back all the relations Pi and P ′

i , for all 1 ≤ i ≤ k, the set of forbidden
induced finite substructures is N together with substructures that exclude
vertices where Pi and P ′

i hold simultaneously, and substructures that exclude
vertices where neither Pi nor P ′

i holds.

We claim that S ∈ CSP(Γ′) if and only if S |= Φ. Let S ∈ CSP(Γ′).
Since Γ′ ⊆ Γ, and since every structure embedding in Γ does not contain a
structure from N, S satisfies Φ. Conversely, let A be a structure satisfying Φ,
i.e., there exist relations Pi satisfying the first-order part of Φ. We expand
the signature of A by the relation symbols P ′

i and impose the relation P ′
i on

all vertices where the relation Pi does not hold. The expanded structure is in
wForb(N), and by universality of Γ an induced substructure of Γ. Thus the
structure A in the original signature is an induced substructure of Γ′. This
completes the proof of Proposition 3.9.

73

Chapter 3. Constraint Satisfaction

Note that CSP(Γ) = wSub(Γ) for all the constructed templates Γ in
the above proof. Another interesting illustrating example also taken from
[Madelaine and Stewart, 1999] is the following problem, which is again NP-
hard.

TRI-FREE-TRI
INSTANCE: Graph G = (V ;E).
QUESTION: Is G tripartite and does not contain a triangle?

To reduce an instance G of Three-colorability to this problem we replace
all edges xy in G by a gadget attached to x and y; all the other vertices of
the gadget are new vertices. The gadget for x and y looks as follows: Let H
be a edge-minimal triangle-free graph which is not 3-colorable (clearly, such
a graph exists; we even find graphs with arbitrarily high chromatic number
and girth [Erdös, 1959]). Consider one vertex v in H , and link some non-
empty subset of the neighbours of v in H to x and the other neighbours of v
to y. Then delete v from H . It is clear, that if we assign different colors to
x and y, then it is possible to properly 3-color the vertices from H , since the
original graph H was a minimal triangle-free graph which is not 3-colorable.
On the other hand, if x and y are assigned the same colors, we can not find
a proper 3-coloring of the remaining vertices of the gadget.

By Proposition 3.9 this problem is in CSP∗. The template looks as fol-
lows: Let C be the class of all three-colored triangle-free graphs. This class
is an amalgamation class, and thus there is a homogeneous Fräıssé-limit.
Considering only the binary edge-relation, the reduced structure Γ is still
ω-categorical. The problem CSP(Γ) is a reformulation of the above problem,
and in CSP∗.

Proposition 3.10. The class CSP∗ is contained in monotone SNP.

Proof. Let Γ be a finitely constrained ω-categorical structure. For each re-
lation symbol R in the signature we introduce an existentially quantified
relation R′ of the same arity, and let these new relations be supersets of the
input relations by the sentence ∀x¬(R(x) ∧ ¬R′(x)). Then use an univer-
sally quantified sentence to forbid the induced substructures from the finite
axiomatization for the new existentially quantified relations R′; here we need
inequalities and negation.

The resulting sentence is in SNP, but contains input relations that do
not occur negatively, and also contains inequalities. But since CSP(Γ) is

74

3.4 Datalog

closed under inverse homomorphisms, using the result from [Feder and Vardi,
2003], we can remove negation and inequalities, i.e., we can find an equivalant
monotone SNP sentence without inequalities.

3.4 Datalog

Datalog is the language of logic programs without function symbols, see
e.g. [Abiteboul et al., 1995,Kolaitis and Vardi, 1998,Immerman, 1998]. Very
often the tractability of constraint satisfaction problems can be shown by
Datalog programs. Datalog generalizes local consistency methods used in
artificial intelligence, and also generalizes the concept of tree-duality from
the theory of H-coloring problems.

This section discusses the power of Datalog for constraint satisfaction with
infinite templates. Again, if we assume that the template is ω-categorical,
some results for Datalog on constraint satisfaction problems with finite tem-
plates remain valid. We first define Datalog programs and bounded width
problems, and then generalize the notion of canonical Datalog programs to
ω-categorical templates. We also adapt a characterization of bounded width
with pebble games from [Feder and Vardi, 1999, Kolaitis and Vardi, 1995]
to the ω-categorical case. Using this we show that the problem Consistent-
genealogy formulated in the introduction in Section 1.3 does not have width
(2, 3). This is interesting, since we do not know a bounded width constraint
satisfaction problem with a finite template that does not have width (2, 3).
However, there is a (subquadratic) graph algorithm for Consistent-genealogy,
see Chapter 5.

Datalog programs. Let τ be a relational signature; the relation symbols
in τ will also be called the input relation symbols. A Datalog program consists
of a set of propositional Horn clauses C1, . . . , Ck containing atomic formulae
with relation symbols from the signature τ , together with atomic formulae
with some new relation symbols. Each clause is a set of literals where at most
one of these literals is positive. The positive literals should not contain an
input relation. The semantics of a Datalog program can be specified using
fixed point operators, as e.g. in [Chandra and Harel, 1982,Kolaitis and Vardi,
1998]. Instead of giving these definitions, we first illustrate the concepts by

75

Chapter 3. Constraint Satisfaction

an example:

oddpath(x, y) ← edge(x, y)

oddpath(x, y) ← oddpath(x, s), edge(s, t), edge(t, y)

false ← oddpath(x, x)

In this example, the binary relation edge is the only input relation,
oddpath is a binary relation computed by the program, and false is a 0-
ary relation computed by the program. The Datalog program derives false
if and only if the input graph is not 2-colorable. The first rule says that a
single edge forms an odd path, the second rule says that adding two edges to
an odd path forms an odd path, and the third rule says that the input graph
is not bipartite, since it contains an odd cycle.

A Datalog program solves a problem, if the distinguished 0-ary predicate
false is derived on an instance of the problem if and only if the instance has
no solution. We say that a Datalog program has width (k, l), k ≤ l, if it has
at most k variables in rule heads and at most l variables per rule. A problem
is of width (k, l), if it can be solved by a Datalog program of width (k, l).
The problem 2-colorability has for instance width (2, 4), as demonstrated
above. A problem has width k if it is of width (k, l) for some l ≥ k, and it
is of bounded width, if it has width k for some k ≥ 0. It is easy to see that
all bounded width problems are tractable, since the rules can derive only a
polynomial number of facts.

Least fixed point logic. [Chandra and Harel, 1982] showed that Datalog
has the same expressive power as existential least fixed-point logic (∃LFP). To
define an existential least fixed-point formula, we consider systems φ1, . . . , φs

of existential positive first-order logic formulae φi(x1, . . . , xni
, S1, . . . , Ss), where

the Sj are nj-ary relations symbols that are not in the input signature τ , for
1 ≤ i, j ≤ s. We now closely follow the presentation in [Kolaitis and Vardi,
1998]. Let A be a τ -structure. Then such a system of formulae gives rise
to an operator Φ from tuples (R1, . . . , Rs) of relations Ri of arity ni on the
domain of A to tuples of relations of the same arity. If we apply the operator
Φ to R1, . . . , Rs, then the ith relation in the result is determined by

Φi := {(a1, . . . , ani
) |A |= φi(x1/a1, . . . , xni

/ani
, S1/R1, . . . , Ss/Rs)}.

The stages Φm = (Φm
1 , . . . ,Φ

m
s) of Φ on A are defined by the following in-

duction on m simultaneously for all i ≤ s: Φ1
i = Φi(∅, . . . , ∅), Φm+1

i =
Φi(Φ

m
1 , . . . ,Φ

m
s), i ≤ s, 1 ≤ m. Since all the formulae φi are positive in

76

3.4 Datalog

the relation symbols S1, . . . , Ss, the associated operator Φ is monotone in
each of its arguments and has a least fixed point, and we denote its compo-
nents by Φ∞

i . It is well-known that these least fixed points can be computed
bottom-up, i.e., Φ∞

i = ∪∞m=1Φm
i , 1 ≤ i ≤ s [Abiteboul et al., 1995]. On a

finite structure A the operator Φ converges after finitely many iterations,
i.e., there is an integer m0 ≥ 0 such that Φm = Φm0 for every m ≥ m0. In
general, we do not require that A is finite, but define the semantics of least
fixed-point logic for arbitrary structures. We say that a formula is in ∃LFP
iff it is a component of the least fixed-point for some system of formulae. A
formula is in ∃LFPl, if the the system contains only formulae with at most l
variables.

It was noted in [Chandra and Harel, 1982] that for every Datalog program
of width (k, l) there is an ∃LFPl-sentence that is true on a finite structure
A if and only if the Datalog program Π derives false on A. Conversely, for
every ∃LFPl-sentence we find a corresponding Datalog program of width
l. In fact, every Datalog program Π of width (k, l) can be simulated by
a system of ∃LFPl-formulae in the sense that every non-input relation in Π
corresponds to a disjunction of the primitive positive formulae that define the
bodies of the rules having this relation as a head. The resulting system of
existential positive l-variable formulae simulates Π step-by-step: Each stage
of the system corresponds to a stage in the bottom-up evaluation of Π.

The expressive power of Datalog. Unfortunately we do not know of
a characterization of width k or bounded width of constraint satisfaction
problems in terms of polymorphisms, except for k = 1 for finite templates,
where bounded width corresponds to the existence of a polymorphism that
is a set-operation [Dalmau and Pearson, 1999, Feder and Vardi, 1999], i.e.,
a function f such that f(x1, . . . , xn) = F ({x1, . . . , xn}) for a function F
mapping subsets of the domain D to D. It is not known whether bounded
width, width k, or width (k, l) are decidable, for a given finite template
T . Unboundedness of the constraint satisfaction problem for some concrete
templates can be shown via the embedding of Datalog expressivity into the
logic ∃Lω

∞ω [Kolaitis and Vardi, 2000, Kolaitis and Vardi, 1998], which in
turn can be characterized by a certain two-person existential pebble game.

For every l ≥ 1, let ∃Ll
∞ω be the l-variable existential positive fragment

of Lω
∞ω, that is, the collection of all formulae that have at most l distinct

variables and are obtained from atomic formulae using infinitary disjunction,
infinitary conjunction, and existential quantification only.

77

Chapter 3. Constraint Satisfaction

Theorem 3.11 (of [Kolaitis and Vardi, 1998]). For every Datalog pro-
gram Π of width (k, l) there is a sentence in ∃Ll

∞ω that is true in a structure
S if and only if Π derives false on S.

In fact, by inspection of the proof of Theorem 4.3 in [Kolaitis and Vardi,
1998], we can assume that for each ∃LFPl-formula that corresponds to a
relation computed by the Datalog program we find an ∃Ll

∞ω-formula that
is an infinite disjunction of primitive positive formulae (this was already
mentioned in [Chaudhuri and Vardi, 1992]). Also note that Theorem 4.3
in [Kolaitis and Vardi, 1998] (this is Theorem 3.11 above) was explicitely
stated also for infinite structures S.

Canonical Datalog programs. Feder and Vardi [Feder and Vardi, 1999]
observed that any problem of width (k, l) in CSP can also be solved by
a canonical Datalog program of width (k, l). The idea is to introduce new
relation symbols for all at most k-ary relations on T , and to use them to infer
all constraints on k variables that are entailed by a substructure of size l of
the instance. The newly introduced 0-ary relation symbol corresponding to
the empty relation will serve as false. This procedure can easily be modeled
by a Datalog program of width (k, l), see [Feder and Vardi, 1999], page 23.
The same computational approach was studied independently in different
terminology in [Dechter and van Beek, 1997], and the connection is explained
in [Kolaitis and Vardi, 2000].

We can generalize canonical Datalog programs to ω-categorical templates
Γ. To define the canonical Datalog program of width (k, l) (also called the
canonical (k, l)-program), we introduce relation symbols for all at most k-ary
first-order definable relations. By ω-categoricity (Theorem 2.6), there are
only finitely many such relations. Then we insert a rule over this expanded
signature with at most l variables and at most k variables in the rule head
into our canonical (k, l)-program iff the corresponding implication is valid in
Γ. Again the empty 0-ary relation serves as false.

Theorem 3.12. Every constraint satisfaction problem with an ω-categorical
template Γ of width (k, l) is solved by the canonical Datalog program of width
(k, l).

Proof. First, we show that if the canonical Datalog program derives false on a
given instance S, then this instance is unsatisfiable. Assume for contradiction
that there is a homomorphism f : S → Γ although the canonical (k, l)-
program for Γ derives false on the instance S. The derivation tree of false

78

3.4 Datalog

corresponds via f to a set of valid implications in the template. Finally, the
implication of false corresponds to an implication of the 0-ary empty relation
in the template, a contradiction.

Let Π be a Datalog program of width (k, l) that solves the constraint
satisfaction problem CSP(Γ). We have to show that if an instance S of
the constraint satisfaction problem is unsatisfiable, then also the canonical
(k, l)-program for Γ derives false on S. Let τ be the set of non-input relation
symbols that are computed by Π. Below we will find a mapping from τ to
the signature of the canonical program such that for every rule r in Π, if we
replace all symbols in τ by their image under this mapping, we obtain a rule
from the canonical program. Moreover, this mapping will map the symbol
false ∈ τ of Π to the symbol for the empty 0-ary relation in the canonical
Datalog program. This clearly proves the claim.

We now define the mentioned mapping. Let φ be the ∃LFPl-formula that
corresponds to a relation computed by Π on the template Γ (see the remarks
after Theorem 3.11). Because of ω-categoricity, there are only finitely many
inequivalent first-order formulae with k variables, for every k. Hence, every
infinite disjunction or conjunction is equivalent to a finite conjunction or
disjunction, and φ is over Γ equivalent to a first-order formula with at most l
variables. For every relation computed by the Datalog program corresponds
to an at most l-ary first-order definable relation over Γ, for which we have
a relation symbol in the canonical Datalog program. We claim that this
correspondence is the mapping we are looking for.

First we have to show that every rule in Π corresponds to a rule in the
canonical program. Let r be a rule R← R1, . . . , Rk in the Datalog program.
Let φ, φ1, . . . , φk be the first-order formulae corresponding to the relation
symbols from the atomic formulae R,R1, . . . , Rk, respectively. Since the rule
r is part of the definition of the relation R computed by Π, φ1∧· · ·∧φk implies
φ, and is in particular a valid implication in Γ. Hence r corresponds via
renaming of the relation symbols to a rule in the canonical Datalog program.

Finally, we show that the correspondence maps false in Π to the empty
relation over Γ. Also the least fixed-point corresponding to the 0-ary relation
false in Π can be defined in the form

⋃∞
i=1 φi, where φi is a primitive positive

formula (again, see the remarks after Theorem 3.11). Here, the formulae
φi do not have free variables and are sentences. We will show that all the
sentences φi are not true in Γ, and therefore false corresponds to the empty
0-ary relation over Γ. Suppose one of these sentences φ is true in Γ. Let
w be the number of existentially quantified variables in φ. We can view

79

Chapter 3. Constraint Satisfaction

φ as an instance S ′ of CSP(Γ) on w nodes. Because φ holds in Γ, it is a
satisfiable instance of CSP(Γ). But Π derives false on S ′, which contradicts
the assumption that Π solves CSP(Γ).

Remark. The fact that every fixed-point formula is over an ω-categorical
structure equivalent to a first-order formula is well-known and has been used
to extend the so-called 0-1 law [Fagin, 1976] from first-order logic to fixed-
point logic. A language over a relational signature τ has a 0-1 law if for every
sentence φ in this language the fraction of models with universe {1, . . . , n}
that satisfy φ either tends to 0 or to 1 when n approaches infinity. We also
say that φ holds almost surely over the class of all finite τ -structures, and
the set of all such sentences we call the almost sure theory of that class. It
is an interesting question for which ω-categorical structures Γ the age of Γ
has a first-order 0-1 law. This is for instance the case for the class of Kn-free
graphs [Kolaitis et al., 1987]. In this case the almost sure theory is again
ω-categorical and therefore we even have a 0-1 law for fixed point formulae
over the class of Kn-free graphs.

Pebble games. We write A �l B to denote that every sentence in ∃Ll
∞ω

that is true in the structure A is also true in the structure B. This relation
can be characterized in terms of the following infinitary pebble game.

The existential l-pebble game is played by the players Spoiler and Dupli-
cator on finite structures A and B of the same relational signature. Each
player has l pebbles, p1, . . . , pl for the Spoiler and q1, . . . , ql for the Duplica-
tor. Spoiler places his pebbles on elements of A, Duplicator on elements of
B. Initially, no pebbles are placed. In each round of the game, Spoiler picks
up some pebble, say pi. If pi is already placed on A, then Spoiler removes pi

from A, and Duplicator responds by removing the pebble qi from B. If pi is
not placed on an element of A, then Spoiler places pi on some element of A,
and Duplicator responds by placing qi on some element of B.

Let i1, . . . , im be the indices of the pebbles that are placed on A (and B)
after the i-th round. Let ai1 , . . . , aim (bi1 , . . . , bim) be the elements of A (B)
pebbled by the pebbles pi1 , . . . , pim (qi1 , . . . , qim) after the i-th round. If the
mapping h with h(aij) = bij , 1 ≤ j ≤ m, is not a homomorphism between
A restricted to {ai1 , . . . , aim} and B restricted to {bi1 , . . . , bim}, then Spoiler
wins the game. Duplicator wins, if the game continues forever, i.e., if Spoiler
can never win the game.

80

3.4 Datalog

Theorem 3.13. Let A and B be relational structures. Then A �l B if and
only if Duplicator wins the existential l-pebble game on A and B.

A proof of this theorem can be found according to Theorem 4.8 and
Remark 4.12 in [Kolaitis and Vardi, 1995]. Again, we would like to stress
that there it is not required that A and B are finite.

For constraint satisfaction problems, we even have the stronger property
that CSP(Γ), where Γ is ω-categorical, can not be solved by a Datalog pro-
gram if and only if for each k we find a structure such that Duplicator wins
the game on that structure and the template. Using the canonical Datalog
program, this was stated for finite templates in [Feder and Vardi, 1999]. The
same proof works for ω-categorical structures, using the definition of canon-
ical (k, l)-program presented in this section. Feder and Vardi could also
characterize width (k, l) by the following modification of the pebble game
from [Kolaitis and Vardi, 1995] that we described above. The idea is that
in this modified so-called existential (k, l)-pebble game, in each round the
players keep only k out of l placed pebbles, and then Spoiler places at most
l−k of the other pebbles one-by-one on new vertices, and Duplicator answers
as before. Hence, each round now consists of at most l − k placements of
pebbles.

Theorem 3.14 (of [Feder and Vardi, 1999]). Let Γ be ω-categorical.
Then the canonical (k, l)-program for CSP(Γ) accepts an instance S if and
only if Spoiler has a winning strategy in the existential (k, l)-pebble game on
S and Γ.

A lower bound for Consistent-genealogy. Now we prove that the prob-
lem Consistent-genealogy does not have width (2, 3). Recall that this problem
can be seen as CSP((Λ;<,�)); see Section 1.3. To formulate the canonical
(2, 3)-program for this problem we introduce names for all binary first-order
definable relations. It will turn out that we can restrict our attention to
the binary relations on distinct elements. In Section 2.7 we showed that
they are all boolean combinations of the two complete 2-types ‘<’ and ‘⊥’.
The relation � in the signature of the template is for instance defined by
x � y ⇔ x > y ∨ x ⊥ y. Besides the symbols R and ∅ that we use for
the full and the empty relation on two distinct elements, the only remaining
relation is the comparability relation in the semilinear order Λ, denoted by
‘∼’, with the following definition: x ∼ y ⇔ x < y ∨ y < x.

The canonical (2, 3)-program is already quite large: It contains a rule for
all implications of the form ∃y. xR1y ∧ yR2z → xR3z that are valid in Λ,

81

Chapter 3. Constraint Satisfaction

◦ R < > ⊥ � � ∼ ∅

R R R R R R R R ∅
< R < R ⊥ R � R ∅
> R ∼ > � � R ∼ ∅
⊥ R � ⊥ R R R � ∅
� R R � R R R R ∅
� R � R R R R R ∅
∼ R ∼ R � R R R ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

a_5

b_4

a_4

b_3

a_3

b_2

a_2a_1

b_5

b_1

Figure 3.4: The instance C. A dashed arc from vertex a to vertex b indicates
a � b, a dotted arc from a to b indicates a > b.

where R1, R2, R3 are binary first-order definable relations in Λ. It is most
convenient to describe it by a composition table. The composition operation
◦ maps two binary relations to another binary relation:

R1 ◦R2 := {(x, z) | ∃y. xR1y ∧ yR2z}

This composition operator essentially describes the canonical (2, 3)-program,
and the composition table for this operator is shown for CSP((Λ;<,�)) in
Figure 3.4. We now show that CSP((Λ;<,�)) does not have width (2, 3).
To this end, we define a instance C without a homomorphism to (Λ;<,�),
but where the canonical (2, 3)-program does not derive false.

Proposition 3.15. The instance C of CSP((Λ;∼,�)) shown in Figure 3.4
is not satisfiable.

82

3.4 Datalog

Proof. Assume there is a homomorphism f from C to (Λ;<,�). Clearly, the
transitive reduction of the relation < on a finite subset of Λ is a forest. First
note that for f(C), this forest is a single tree: Suppose for contradiction that
the solution contains two trees, and let u, v be vertices in C that are mapped
to the two roots of these trees. Then there is a (undirected) path of vertices
in C that connects u with v in ‘<’. If we follow this path, all vertices have
to be mapped below f(u), since they are connected to the previous vertex
either with ‘<’ or ‘>’, and because the vertex u was topmost in the solution.
Eventually, we end at v, but f(v) lies disjoint to f(u), a contradiction. Next,
note that no vertex in C can denote the root of a solution to C, since every
vertex has an in-coming edge in �, which prevents the vertex to lie top-most
in the solution. Hence, C has no solution.

Proposition 3.16. The canonical (2, 3)-program does not derive false on the
instance C of CSP((Λ;∼,�)).

Proof. The canonical program first derives that ai ∼ ai+1, where i ≥ is un-
derstood modulo 6. It also derives that ai that ai � bi+1 and ai � bi+2. Then
it reaches a fixed-point: for all further triples in C, none of the composition
rules shown in Figure 3.4 applies. All the triples such that the induced sub-
structure contains at least two constraints are shown in Figure 3.5: up to
isomorphism, there are 13. It can be checked that in each of them no further
constraint is entailed.

Proposition 3.16 and 3.15, together with Theorem 3.12, yield the follow-
ing.

Corollary 3.17. There is no Datalog program of width (2, 3) that solves the
problem Consistent-genealogy.

83

Chapter 3. Constraint Satisfaction

Figure 3.5: These are all the 13 constellations on three vertices containing
at least two constraints in the fixed point computed by the canonical (2, 3)-
program on the instance C.

84

Chapter 4

The Clone of Polymorphisms

Adding fintely many relations to a template Γ that are primitive positive
definable over Γ does not change the computational complexity of CSP(Γ).
For finite templates Γ, it is a central theorem for the approach in [Jeavons,
1998] that a relation is primitive positive definable over Γ if and only if it
is invariant under the polymorphisms of Γ [Bodnarčuk et al., 1969, Geiger,
1968]. This was first used in the context of constraint satisfaction in [Jeavons
et al., 1997, Jeavons et al., 1998], and initiated the algebraic approach to
constraint satisfaction, which has successfully been carried further e.g. in
[Jeavons et al., 1997,Jeavons et al., 1998,Bulatov et al., 2000,Dalmau, 2000b,
Bulatov et al., 2001, Bulatov, 2002b, Bulatov, 2002a, Bulatov, 2003]. We
generalize this result to ω-categorical structures Γ: A relation is p.p.-definable
in Γ if and only if it is invariant under the polymorphisms of Γ.

We first introduce the necessary tools from universal algebra in Sec-
tion 4.1. We then state some facts for finite clones 4.2, and show how some
of them fail for arbitrary infinite clones 4.3. Section 4.4 will be the starting
point to generalize various Galois-connections from finite to ω-categorical
structures. In Section 4.5 we then present the characterization of primitive
positive definability in ω-categorical structures. Section 4.6 contains a dis-
cussion of one case where the presence of a polymorphism in a template
implies tractability of the constraint satisfaction problem: this is so if the
template of a constraint satisfaction problem has a near-unanimity opera-
tion. Finally we present an application of the notion of a core, and show that
we can expand ω-categorical cores by singleton-relations without increasing
the computational complexity of the corresponding constraint satisfaction
problem – for finite templates, this was proven in [Bulatov et al., 2003].

Chapter 4. The Clone of Polymorphisms

4.1 Tools from Universal Algebra

In this section, D will stand for a countable set and O for the set of finitary
operations on D, i.e., functions from Dk to D for finite k. We say that
f ∈ O preserves a k-ary relation R ⊆ Dk iff R is a subalgebra of (D, f)k.
An operation that preserves all relations of a relational structure Γ is called
a polymorphism of Γ. The set of all k-ary polymorphisms of Γ is denoted
by Pol(k)(Γ), and we write Pol(Γ) for the set of all finitary polymorphisms
Pol(Γ) =

⋃

i=1 Pol
(i)(Γ).

The notion of a product of relational structures allows an equivalent def-
inition of polymorphisms, relating polymorphisms to homomorphisms. The
(categorical- or cross-) product Γ1 × Γ2 of two relational τ -structures Γ1 and
Γ2 is a τ -structure on the domain DΓ1

× DΓ2
. For all relations R ∈ τ the

relation R
(

(x1, y2), . . . , (xk, yk)
)

holds in Γ1×Γ2 iff R(x1, . . . , xk) holds in Γ1

and R(y1, . . . , yk) holds in Γ2. Comparing the corresponding definitions we
see that a k-ary polymorphism f of a relational structure is a homomorphism
from Γk = Γ× . . .×Γ to Γ, i.e., for an m-ary relation R in τ , iff R(x1, . . . , xm)
holds in Γk then R

(

f(x1), . . . , f(xm)
)

holds in Γ.

An operation π is a projection (or a trivial polymorphism) iff π(x1, . . . , xn) =
xi for all n-tuples and some fixed i ∈ {1, . . . , n}. The composition of a k-
ary operation f and k operations g1, . . . , gk of arity n is an n-ary operation
defined by

f(g1, . . . , gk)(x1, . . . , xn) = f
(

g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)
)

.

A clone C is a set of operations from O that is closed under composition and
that contains all projections. We write DC for the domain D of the clone
C. For a set of operations F from O we write 〈F 〉 for the smallest clone
containing all operations in F . We say that the clone 〈F 〉 is generated by F
in this way; this defines an algebraic closure operator. Thus, the clones of
operations on D form an algebraic lattice. Observe that Pol(Γ) is a clone
with the domain DΓ [Kalužnin and Pöschel, 1979].

Local Closure. Moreover, Pol(Γ) is also closed under interpolation: We
say that an operation f ∈ O is an interpolation of a subset F of O iff for ev-
ery finite subset B of D there is some operation g ∈ 〈F 〉 such that f |B = g|B
(f restricted to B equals g restricted to B, i.e., f(a) = g(a) for every tuple
a over the set B). The set of interpolations of F is called the local closure
of F and denoted by Loc(F). Note that the clone of polymorphisms of a

86

4.1 Tools from Universal Algebra

countable structure is locally generated by a countable number of polymor-
phisms: choose for each finite set B and all potential images of tuples from
B a polymorphism if there exists such a plymorphism. The following is a
well-known fact.

Proposition 4.1. A set F ⊆ O of operations is locally closed if and only if
F is the set of polymorphisms of Γ for some relational structure Γ.

Many results on clones in general can be found in [Szendrei, 1986]. Impor-
tant properties of operations in a clone can be specified with identities that
are satisfied by the operations. We list some fundamental properties below,
where the free variables in the identities below are understood as universally
quantified. A k-ary operation f is

• a projection iff there is an i ∈ {1, . . . , k} such that f(x1, . . . , xk) = xi;

• conservative iff f(x1, . . . , xk) ∈ {x1, . . . , xk};

• idempotent iff f(x, . . . , x) = x;

• essentially unary iff there is an i ∈ {1, . . . , k} and an unary operation
f0 such that f(x1, . . . , xk) = f0(xi);

• a ternary majority operation iff f(x, y, y) = f(y, x, y) = f(y, y, x) = y;

• a ternary minority operation iff f(x, y, y) = f(y, x, y) = f(y, y, x) = x;

• a semiprojection iff f(x1, . . . , xk) = xi whenever |{x1, . . . , xk}| < k, and
otherwise f(x1, . . . , xk) = xj with fixed i, j.

Let F be a (local) clone with domain D. Then R ⊆ Dm is invariant
under F iff every f ∈ F preserves R. We denote by Inv(F) the relational
structure containing the set of all relations invariant under F . The set of
relations in this relational structure is closed under projections and various
other closure operators on sets of relations over D, and is called a relational
clone [Kalužnin and Pöschel, 1979].

Minimal clones. The atoms of the lattice of all clones on a set are called
minimal clones. This implies immediately that a clone C is minimal if and
only if every nontrivial f ∈ C generates every nontrivial g ∈ C. Nontrivial
operations of minimal arity in a minimal clone are called minimal operations.
Clearly all nonunary minimal operations are idempotent.

87

Chapter 4. The Clone of Polymorphisms

For infinite structures, such atoms need not necessarily exist: This is for
instance the case for the clone generated by the successor function on the
natural numbers. In this clone we find the operations sz(x) := x + 2z. If
z1 < z2, then sz1

generates sz2
, but not the other way. This clone does not

contain a minimal clone.

However, if a clone is minimal, it falls into one out of five classes. Al-
though this was mainly used for clones over a finite domain, it also holds for
clones on infinite domains [Rosenberg, 1986].

Theorem 4.2 (of [Rosenberg, 1986]). Every minimal operation is of one
of the following types:

1. a unary operation,

2. a binary idempotent operation,

3. a ternary majority operation,

4. a ternary minority operation,

5. an m-ary semiprojection (m ≥ 3).

Let m > n ≥ 1. Then an m-ary semiprojection on an n-element set
necessarily is a projection. Thus the theorem shows that a clone on a finite
set only has a finite number of minimal operations, and only contains a finite
number of minimal clones.

The unary case. We say that a k-ary operation f depends on an ar-
gument i iff there is no k−1-ary operation f ′ such that f(x1, . . . , xk) =
f ′(x1, . . . , xi−1, xi+1, . . . , xk). Hence, an essentially unary operation is an
operation that depends on one argument only. We claim that a k-ary opera-
tion f depends on argument i if and only if there are x1, . . . , xk and x′i such
that f(x1, . . . , xk) 6= f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xk): first suppose there were

x1, . . . , xk and x′i such that f(x1, . . . , xk) 6= f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xk),

and suppose these was such a function f ′. Then we have f(x1, . . . , xi, . . . , xk) =
f ′(x1, . . . , xi−1, xi+1, . . . , xk) = f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xk), a contradic-

tion. For the converse, suppose that we do not find points x1, . . . , xk and x′i
such that f(x1, . . . , xk) 6= f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xk). In this case we can

define a function f ′ by f ′(x1, . . . , xi−1, xi+1, . . . , xk) = f(x1, . . . , xi, . . . , xk)
for some value of xi – this is well-defined since the result is the same for all

88

4.2 Clones on Finite Domains

possible choices for xi. This operation f ′ shows that f does not depend on
the i-th argument.

The essentially unary clones have a characterization on the relational side,
which also holds for infinite domains. Consider the following relation on Γ.

P4 := {(a, b, c, d) | a = b or c = d; a, b, c, d ∈ DΓ}

Proposition 4.3 (Lemma 1.3.1 in [Kalužnin and Pöschel, 1979], page
56). A clone F is essentially unary if and only if P4 ∈ Inv(F).

Proof. Clearly every essentially unary operation preserves P4. Suppose a
k-ary function f is not essentially unary, but depends on the i-th and j-
th argument, 1 ≤ i 6= j ≤ k. Hence there exist tuples a1, b1, a2, b2 ∈ Dk

F

where a1, b1 and a2, b2 only differ at the entries i and j, respectively, such
that f(a1) 6= f(b1) and f(a2) 6= f(b2). Since (a1(l), b1(l), a2(l), b2(l)) ∈ P4

for all l ≤ k, but (f(a1), f(b1), f(a2), f(b2)) /∈ P4, we conclude that P4 /∈
Inv(F).

4.2 Clones on Finite Domains

Most results on clones were formulated for clones with a finite domain.
See [Szendrei, 1986]. We start with a fundamental result of [Bodnarčuk
et al., 1969, Geiger, 1968] (other presentations can be found in [Kalužnin
and Pöschel, 1979]), which says that for arbitrary finite relational structures
T the p.p.-definable relations can be characterized as the invariants of the
polymorphisms of T .

Theorem 4.4 (of [Bodnarčuk et al., 1969,Geiger, 1968]). Let T be a
finite relational structure. Then

〈T 〉pp = Inv(Pol(T)) .

The proof of Theorem 4.4 also shows that it is decidable whether for a
given finite relational structure T a given relation R is p.p.-definable or not.
If w = |R| is the number of tuples in the relation R then Pol(R) is generated
by the polymorphisms of arity w. To test whether R is p.p.-definable we only
have to check whether all functions f : Tw → T that are polymorphisms of
T also preserve R. There is a finite number of such functions.

89

Chapter 4. The Clone of Polymorphisms

Projectivity. A relational structure Γ is called projective iff all idempotent
polymorphisms of Γ are projections.

Proposition 4.5. If a finite relational structures Γ is a core, then Γ is
projective if and only if every polymorphism is essentially unary.

Proof. Let f be an idempotent operation, and assume that f is essentially
unary, i.e., f(x1, . . . , xk) = f0(xi) for some unary function f0 and some i ≤ k.
But f(x1, . . . , xk) = f0(xi) = f(xi, . . . , xi) = xi, i.e., f is a projection.

Conversely, assume that Γ is a projective core, and let f be a polymor-
phism of Γ. Then f ∗(x) = f(x, . . . , x) is an endomorphism, and, since Γ
is a finite core, an automorphism of Γ. Let g(x) be the inverse of the au-
tomorphism f ∗. The operation g(f(x1, . . . , xk)) is idempotent, and by pro-
jectivity of Γ a projection, say, a projection to the i-th argument. Then
f(x1, . . . , xk) = f ∗(g(f(x1, . . . , xk))) = f ∗(xi), and therefore f is essentially
unary.

Projectivity and hardness. Theorem 4.4 and Proposition 4.5 can be
used to prove the hardness of a constraint satisfaction problem with a finite
template T . First assume without loss of generality that T is a core – see
Section 2.8. If a finite structure T is projective, then all polymorphisms are
essentially unary, i.e., for every polymorphism f of arity k there exists a unary
function f0 and an index i ≤ k such that f(x1, . . . , xk) = f0(xi). Since T is a
finite core the endomorphism f0 is an automorphisms, and thus preserves the
inequality relation. Therefore every polymorphism preserves the inequality
relation. By Theorem 4.4, 6= has a primitive positive definition in T . By
Lemma 3.3, and because n-colorability is NP-hard for any finite n ≥ 3, we
conclude that CSP(T) is NP-hard for |T | ≥ 3.

For finite structures T we have special tools to test whether a structure is
projective. Observe that every clone C on a finite domain contains a minimal
clone. To prove this take any nontrivial operation in C of minimal arity k.
By Theorem 4.2 k cannot exceed the number of elements in the domain of
C, and thus there is only a finite number of such operations. The set of all
clones generated by such operations, partially ordered by inclusion, contains
at least on minimal element, which is a minimal clone contained in C.

Since T is a core, all unary polymorphisms are automorphisms. To find
out whether T is projective, we use the classification of minimal clones from
Section 4.1, and it suffices to check whether the clone contains a binary idem-

90

4.3 Clones on Infinite Domains

potent operation, a ternary majority or minority operation, or a semiprojec-
tion of arity ≤ |T |.

Of course, it could be the case that T is not projective, but CSP(T)
is still NP-hard. But in any case the above technique helps to understand
the polymorphism clone of T . For infinite structures this method fails: The
random graph for instance is projective [Luczak and Nešetřil, 2004], but has
a trivial constraint satisfaction problem.

4.3 Clones on Infinite Domains

Generalizations of Theorem 4.4 and the related Galois connections were also
studied for infinite domains. For arbitrary relational structures Γ the struc-
ture Inv(Aut(Γ) is homogeneous. The set of relations Inv(Pol(Γ)) was char-
acterized with local closure operators on relational algebras in [Szabó, 1978]
(see also [Pöschel, 1980], page 32).

In Section 4.5 we give a direct proof that for ω-categorical structures Γ a
relation is in 〈Γ〉pp if and only if it is preserved by all polymorphisms. But
first we note that the following is well-known for arbitrary cardinalities of
the domain.

Proposition 4.6 (see e.g. [Kalužnin and Pöschel, 1979]). Let Γ be a
relational structure. Then

〈Γ〉pp ⊆ Inv(Pol(Γ)) .

Proof. Let R be a relation in 〈Γ〉pp. We prove that R ∈ Inv(Pol(Γ)) by
induction on the length of a defining p.p.-formula ϕ. The claim is true for
ϕ = R(x1, . . . , xn). For ϕ = ∃x.ϕ′ we observe that every polymorphism that
preserves ϕ′ also preserves ϕ. The same holds for ϕ = ϕ1 ∧ ϕ2.

For a structure with a countable domain the inclusion of Proposition 4.6
might be strict. Consider for instance the following relational structure Γ =
(N; P4, {0}, suc) on the natural numbers N. Here P4 is the relation introduced
in Section 4.1, and ‘suc’ is the binary successor relation {(a, a + 1) | a ∈ N}
on the natural numbers. We show that Inv(Pol(Γ)) contains relations that
are not p.p.-definable. Every function preserving P4 is essentially unary. If
a unary function f preserves the unary predicate containing 0 only, then
f(0) = 0. Furthermore, if f preserves the successor relation we have f(a +

91

Chapter 4. The Clone of Polymorphisms

1) = f(a) + 1 for all a, and inductively it follows that f(a) = a. Therefore
Pol(Γ) is the set of all projections. Every projection preserves all relations.
There are uncountably many relations but only countably many primitive
positive formulas. Therefore 〈Γ〉pp is a strict subset of Inv(Pol(Γ)).

For ω-categorical structures Γ the situation looks better: It is known that
the first-order definable relations are precisely the relations that are preserved
by the automorphisms of Γ, i.e.

〈Γ〉fo = Inv(Aut(Γ)) (4.1)

See e.g. [Hodges, 1997, Cameron, 1990]. We prove a corresponding theorem
for primitive positive definability in Section 4.5; but first we take a closer
look at (4.1) in Section 4.4.

4.4 The Basic Galois-Connection Inv-Aut

In this section we discuss what is well-known in model theory (see again
[Hodges, 1997,Cameron, 1990]), but transfer it to the language of [Kalužnin
and Pöschel, 1979] in universal algebra. In particular, we will reformulate
the theorem of Ryll-Nardzewski as a Galois connection. This aspect of the
classical result in model theory is our starting point to generalize other Galois
connections from finite structures to ω-categorical structures. As we have just
seen in Section 4.3, these theorems do not hold for arbitrary structures on
infinite domains.

The first observation is that the assumption of ω-categoricity for (4.1) in
Section 4.3 is even best-possible, since (4.1) holds if and only if the structure
Γ is ω-categorical.

Theorem 4.7. A structure Γ is ω-categorical if and only if

Inv(Aut(Γ)) = 〈Γ〉fo .

Proof. Let Γ be an ω-categorical structure. Since clearly 〈Γ〉fo ⊆ Inv(Aut(Γ))
we only have to prove that a relation R preserved by all automorphisms is
first-order definable. The relation R is a union of orbits of Γk for some k.
On ω-categorical structures the orbits of k-tuples are the complete k-types.
The Theorem 2.6 of Ryll-Nardzewski implies that all types are principal the
relation R is first-order definable.

92

4.4 The Basic Galois-Connection Inv-Aut

Now suppose Γ is not ω-categorical. Then for some k, there is an infinite
number of orbits of k-tuples. Since the union of every subset of such orbits is
preserved by all automorphisms, there is an uncountable number of relations
in Inv(Aut(Γ)). Since there is only a countable number of formulas, there
exists an invariant relation which is not first-order definable over Γ.

Note that this establishes a Galois connection: Generally, suppose P and
Q are partially ordered sets and f : P → Q and g : Q → P are order
preserving maps. Assume fgf ≥ f and gfg ≥ g. Then gfgf = gf . It
follows that f and g set up a bijective correspondence between gf [P] and
fg[Q]. In our case, P is the set of ω-categorical structures closed under first-
order definability, and g=Inv and f=Aut. Theorem 4.7 characterizes the
closure operator gf .

Next we present a well-known characterization of the closure operator
fg. There is a natural topology defined on the symmetric group, that of
pointwise convergence: A sequence (gn) of permutations tends to the limit g
iff for any a ∈ D there is a n0 ≥ 0 such that for all n ≥ n0 : gn(a) = g(a). A
permutation group is closed iff for all sequences (gn) in the group that tend
to some limit g, the permutation g is also in the group.

Theorem 4.8 (see [Cameron, 1996]). A permutation group G is closed
if and only if G = Aut(Inv(G)).

Note that the structure Inv(G) for a closed permutation group G is
related, but slightly different to the canonical structure of G defined in
[Cameron, 1996, Hodges, 1997]. The canonical structure associated to a
closed permutation group contains for each orbit O ⊆ Dk a k-ary relation
symbol R which is interpreted by O. Thus each relation in Inv(G) has a def-
inition in the canonical structure with a disjunction, and if G is oligomorphic
has a definition with a finite disjunction.

Finally we make the remark that the automorphism group of an ω-
categorical structure always has cardinality 2ω. To see this note that by
ω-categoricity the pointwise stabilizer of a finite set of points is always non-
trivial. Thus we find uncountably many permutations as the limit points in
the closed group.

93

Chapter 4. The Clone of Polymorphisms

4.5 Primitive Positive Definability

We characterize the primitive positive first-order definable relations over an
ω-categorical structure Γ by the polymorphisms of Γ of finite arity.

Theorem 4.9. Let Γ be an ω-categorical structure with relational signature
τ . Then a relation R on Γ is invariant under the polymophisms of Γ if and
only if R is p.p.-definable, i.e.,

〈Γ〉pp = Inv(Pol(Γ)).

Proof. We already stated in Proposition 4.6 that the p.p.-definable relations
over Γ are invariant under the polymophisms of Γ. For the converse, let R
be a k-ary relation from Inv(Pol(Γ)). Note that R is first-order definable
in Γ: By ω-categoricity and Ryll-Nardzewski, and since Γ and Inv(Pol(Γ))
have the same automorphism group, the relation R is a union of finitely
many orbits of the automorphism group of Γ, and it can be defined by a
disjunction ϕ of τ -formulas that define these orbits. Let M1, . . . ,Mw be the
satisfiable monomials in this disjunction, and let x1, . . . , xk be the variables
of the monomials.

We have to construct a finite τ -structure Q with designated vertices
v1, . . . , vk such that

R =
{(

f(v1), . . . , f(vk)
)

∣

∣ f : Q→ Γ homomorphism
}

.

The idea is to first consider an infinite τ -structure, namely the categorical
product Γw, and then to apply König’s Lemma to prove the existence of a
suitable finite substructure.

For each monomialMj ∈M1, . . . ,Mw of ϕ we find a substructure aj
1, . . . , a

j
k

of Γ, such that aj
1, . . . , a

j
k satisfies Mj in Γ. Let b1, b2, . . . be an enumeration

of the w-tuples in Dw
Γ , starting with bi = (ai

1, . . . , a
i
w) for 1 ≤ i ≤ k. Let us

call a partial mapping from Γw to Γ a bad mapping if it maps b1, . . . , bk to
a tuple not satisfying ϕ. Since R is invariant under all polymorphisms, no
homomorphism from Γw to Γ is bad.

We now claim that there is a finite substructure Q of Γw such that no
homomorphism from Q to Γ is bad. Assume for contradiction that all finite
substructures of Γw containing b1, . . . , bk have a homomorphism to Γ mapping
b1, . . . , bk to a tuple not satisfying ϕ. We now construct a bad homomorphism
from Γw to Γ, i.e. the images of b1, . . . , bk do not satisfy ϕ. This contradicts
the fact that R is invariant under all polymorphisms.

94

4.6 Near-unanimity Operations

To this end, consider the following infinite but finitely branching tree.
The nodes on level n in the tree are the equivalence classes of the bad ho-
momorphisms from Γw|b1,...,bn

to Γ, where two homomorphisms f1 and f2 are
equivalent if f1 = gf2 for some g ∈ Aut(Γ). Adjacency between nodes on
consecutive levels is defined by restriction. By our assumption, for each finite
substructure of Γw there is a bad homomorphism, and thus the tree contains
a node on each level. By the theorem of Ryll-Nardzewski, there are only
finitely many nodes at each level. By König’s Lemma the tree contains an
infinite path. This path defines a bad homomorphism from Γw to Γ.

We proved by contradiction that there must be a finite substructure Q
containing the vertices b1, . . . , bk of Γw such that all homomorphisms from
Q to Γ map b1, . . . , bk to a tuple satisfying ϕ. Conversely, every mapping
f : Q→ Γ such that the tuple (f(b1), . . . , f(bk)) satisfies in Γ the monomial
Mj can be extended to a homomorphism f : Γw → Γ. To see this note
that both aj

1, . . . , a
j
k and (f(b1), . . . , f(bk)) satisfy Mj and thus both lie in

the same orbit of Aut(Γ). Thus we can choose f to be the jth projection
combined with the automorphism sending (aj

1, . . . , a
j
k) to (f(b1), . . . , f(bk)).

This completes the proof.

The proof says something about the arity of the polymorphisms we have
to consider if we are interested in a particular relation. Let R be a first-order
definable k-ary relation over an ω-categorical structure Γ. Then R is the
union of a finite number w of orbits of k-typles in Γ, or equivalently, R can
be defined by a disjunction of a finite number w of complete k-types. The
proof shows that Pol(R) is locally generated by all w-ary polymorphisms.

4.6 Near-unanimity Operations

In this section we study the case where the clone of polymorphisms of a rela-
tional structure contains a so-called near-unanimity operation. The existence
of such an operation has several different characterizations, in terms of local
consistency, and Datalog programs. The connections were exhibited for finite
structures in [Feder and Vardi, 1999,Kolaitis and Vardi, 2000,Jeavons et al.,
1998]. We will study these connections and their implications for infinite
templates of constraint satisfaction problems.

A prominent concept in the early work on constraint satisfaction is the
concept of local consistency [Freuder, 1978,Freuder, 1982]. The relationship
between local and global consistency were studied in [Dechter, 1992,Cooper,

95

Chapter 4. The Clone of Polymorphisms

1989,Dechter and van Beek, 1997].

Definition 4.10. Let Γ be a relational structure. An instance S of CSP(Γ)
is called k-consistent (with respect to Γ) iff for any subset V of nodes of S
containing k−1 variables, and any variable v ∈ S−V , any solution to S|V can
be extended to a solution to S|V ∪{v}. If S is i-consistent for i = 2, 3, . . . , k,
then it is said to be strongly k-consistent. If S is k-consistent for all k, then
it is said to be globally consistent.

If an instance of a constraint satisfaction problem is globally consistent,
we can find a solution with back-track free search [Freuder, 1982]. To apply
the notion of k-consistency computationally, there is the notion of establishing
strong k-consistency. As already pointed out in [Kolaitis and Vardi, 2000],
this notion has been defined rather informally in the literature. The idea is to
propagate constraints in an appropriately extended language. We introduce
the notion similarly as in [Kolaitis and Vardi, 2000], and then relate it to the
notion of the canonical Datalog program.

Definition 4.11. Let Γ and S be structures with relational signature τ . Es-
tablishing strong k-consistency for S (with respect to Γ) means that we can
find expansions S ′ and Γ′ of S and Γ that have the same signature τ ′, such
that

• S ′ is strongly k-consistent with respect to Γ′.

• A mapping from the domain of S to the domain of Γ is a homomorphism
from S to Γ if and only if it is a homomorphism from S ′ to Γ′.

For finite structures, we can use the canonical Datalog program of width
(k − 1, k) to establish k-consistency. The expansion from Definition 4.11 is
the set of all k − 1-ary relations on the domain of the template, and the
fixed-point of the Datalog program is the structure S ′ that established k-
consistency. For arbitrary infinite structures it might be the case that estab-
lishing i-consistency is computationally not feasible, since it would require
to introduce an infinite number of distinct k-ary relations.

Proposition 4.12. There exists a relational structure with a near-unanimity
function where we can not establish 1-consistency with a finite signature.

Proof. Consider the relational structure P := (Q ; y ≥ x− 1, y ≥ x2, y ≤ 0).
This structure is closed under the ternary median operation, since the median

96

4.6 Near-unanimity Operations

preserves the monotone operations of translation and taking sqares. We claim
that we can in general not establish 1-consistency for an instance of CSP(P).
Suppose Σ′ is the expanded but still finite signature that we want to use to
establish 1-consistency. Consider the range of values of a variable where we
imposed a set of unary constraints from the signature Σ′. Since there are still
only finitely many ways how this range can look like, there is a range that
consists of a finite union of disjoint intervals I1, . . . , In where n is maximal.

Using large degree polynomials we can find a primitive positive definition
of a unary predicate that consists of a disjoint union of an arbitrarily large
but finite number of intervals. For example, x ∈ [−1, 1] can be defined by

∃ y1, y2. y1≥x
2 ∧ y2≥y1−1 ∧ y2≤0 .

The predicate x ∈ [−b, a] ∪ [a, b], where 0 < a < b are certain constants, can
be defined by

∃ y1, y2, y3, y4, y5. y1≥x
2 ∧ y2≥y1−1 ∧ y3≥y2−1 ∧ y4≥y

2
3 ∧ y5≥y4−1 ∧ y5≤0 .

In the last example, the relation between x and y5 is given by y5 ≥ (x2 −
2)2 − 1. The values −b,−a, a, b are the roots of this polynomial. Imposing
the constraint y5 ≤ 0 yields the two intervals of solutions for x. Using
larger degree polynomials it should be clear now that we can obtain primitive
positive definitions of predicates that consist of arbitrarily many intervals.

Let S be an instance to the constraint satisfaction problem and u a vari-
able in S, such that S defines on u a predicate P that consists of a disjoint
union of more than n intervals. No superstructure of S in the signature Σ′

can be 1-consistent, since every predicate from Σ′ that we can impose on u
must be larger than P . Thus we always find assignments of u satisfying all
these predicates and that can not be extended to a solution of S.

Near-unanimity operations. Recall that a polymorphism of Γ is called
a near-unanimity operation iff it satisfies for all x, y

f(x, y, . . . , y) = f(y, x, y, . . . , y) = f(y, . . . , y, x) = y.

An example of an infinite structure with a ternary near-unanimity operation
is the dense linear order on the rational numbers (Q;<), which admits the
median operation, i.e., the operation which returns the medium size element
of its three arguments.

Theorem 4.13. Let Γ be a structure with relational signature τ . Then for
k ≥ 2 the following are equivalent:

97

Chapter 4. The Clone of Polymorphisms

1. If we can establish strong k-consistency of a (finite or infinite) τ -
structure S, then this ensures global consistency.

2. Γ has a k-ary polymorphism that is a near-unanimity operation.

The equivalence of one and two is proven in [Jeavons et al., 1998], and
it is stated there that the proof works for arbitrary infinite structures Γ. If
Γ is finite, it suffices to consider finite instances S in the first statement in
Theorem 4.13. But if Γ is infinite, it is in fact necessary to consider countable
τ -structures S. To illustrate this, we give an example of a relational structure
Γ where every finite k-consistent structure has a homomorphism to Γ, but
where we do not have a k-ary near-unanimity operation in Pol(Γ).

The example is again the countable homogeneous graph ⋪ that is uni-
versal for the class of all finite triangle-free graphs, ⋪:=Fl(Forb(K3)); see
Section 2.4. This graph is projective; see [Luczak and Nešetřil, 2004]. In
particular, there is no majority operation in Pol(⋪), which directly follows
from Lemma 2.3 in [Larose and Tardif, 2001]: This lemma says that a (finite
or infinite) graph without isolated vertices and admitting a majority opera-
tion is bipartite. Clearly, the graph ⋪ is not bipartite and does not contain
isolated vertices.

Consistency and Datalog. For finite structures Γ, we say that a con-
straint satisfaction problem for Γ has strict width (k, l), if the canonical
Datalog program computes globally consistent expansions S ′ of instances
S of CSP(Γ). Since we generalized the notion of canonical Datalog programs
to ω-categorical templates, we can define strict width also for ω-categorical
templates, and obtain the following generalization of a result by [Feder and
Vardi, 1999].

Theorem 4.14. Let Γ be ω-categorical with a k+1-ary near-unanimity op-
eration, for k ≥ 2. Then CSP(Γ) has strict width k.

Proof. Theorem 4.13 shows that if we can establish strong k-consistency of
an instance S of CSP(Γ), this ensures global consistency. For ω-categorical
structures, the canonical (k, k + 1)-program computes a strong k-consistent
expansion of S ′, which will then be globally consistent.

In fact we could also use the same proof as in [Feder and Vardi, 1999],
which was stated there only for finite Γ, but also works if we have the notion
of canonical Datalog programs for ω-categorical structures, and thereby avoid
the reference to Theorem 4.13.

98

4.7 Adding Constants to the Signature

4.7 Adding Constants to the Signature

Why can it be useful to look at the constraint satisfaction problem of a core
of Γ, instead of the constraint satisfaction problem of Γ itself? We provide
some arguments in this sections.

The endomorphism monoid. Homomorphisms from Γ to Γ are called
endomorphisms. The set of all endomorphisms of a given structure is a
monoid with respect to concatenation, i.e., it is a semigroup with an identity
element (which is the identity mapping). We study the relations that are
preserved by all endomorphisms.

Proposition 4.15. Let Γ be an ω-categorical structure. Then a relation R
has a positive definition if and only if R is preserved by surjective endomor-
phisms of Γ.

Proof. Since R is in particular preserved by all automorphisms, the relation
R has by ω-categoricity of Γ and Theorem 2.6 a definition by a first-order
formula φ. The well-known preservation theorem of Lyndon asserts (see
[Hodges, 1997]) that φ is equivalent to a positive formula modulo Th(Γ) if
and only if φ is preserved by surjective homomorphisms between models of
Th(Γ). Again, it is also known that we can restrict to preservation between
countable models in Lyndon’s theorem. Since any two countable models of
Th(Γ) are by ω-categoricity isomorphic, this is the case if and only if R is
preserved by all surjective endomorphisms of Γ.

It is also well-known that one can combine the proof technique for Lyn-
don’s preservation theorem and for the preservation theorem of Los-Tarski
to show that a formula is preserved by all homomorphisms between models
of a theory T if and only if the formula is over T equivalent to an existential
positive formula. This is called the homomorphism preservation theorem.
Thus we can deduce the following proposition in the same way as above.

Proposition 4.16. Let Γ be an ω-categorical structure. Then a relation R
has an existential positive definition in Γ if and only if R is preserved by all
endomorphisms of Γ.

For finite Γ, Proposition 4.16 goes back to [Krasner, 1945,Krasner, 1968].
Finite relational structures that contain all existential positive definable re-
lations (all first-order definable relations) were called weak Krasner-clones

99

Chapter 4. The Clone of Polymorphisms

(Krasner-clones) in [Kalužnin and Pöschel, 1979] and are central notions
there. Because of Proposition 4.16 we suggest to extend this terminology to
ω-categorical structures.

Remark. As we just stated, Proposition 4.16 also holds for finite Γ. On
the other hand, it is open whether the models of a first-order sentence φ
are closed under homomorphisms if and only if the sentence is equivalent
to an existential positive sentence. The corresponding finite version of the
theorem of Los-Tarski is wrong [Tait, 1959]. For related results see [Gurevich,
1984,Ebbinghaus and Flum, 1999,Rosen, 2002].

Lemma 4.17. Let Γ be an ω-categorical core. Then every existential formula
is equivalent to an existential positive formula.

Proof. Proposition 2.15 states that a relation has an existential definition in
Γ if and only if it is preserved by embeddings between models of the first-
order theory of Γ. Since Γ is a core, all endomorphisms are embeddings.
The homomorphism preservation theorem, Theorem 4.16, implies that if a
relation is preserved by all endomorphisms of an ω-categorical structure, it
has an existential positive definition.

A structure Γ admits quantifier elimination, if every first-order formula
has in Γ a quantifier-free definition. For an example, consider modules, and
add all p.p.-definable relations to the signature. The theorem of Baur and
Monk says that the resulting structure admits quantifier elimination (see
e.g. [Hodges, 1997]). Cores behave similarly in this aspect. But we first need
the following crucial lemma.

Theorem 4.18. Let Γ be an ω-categorical core. If we expand Γ by all prim-
itive positive definable relations, the resulting structure is homogeneous and
admits quantifier elimination.

Proof. Let φ be a first-order formula. It holds in general, that if we add all
primitive formulae to a structure, its age has the amalgamation property, see
Proposition 2.14. Thus the structure with all primitive relations is homoge-
neous, and admits quantifier elimination. In particular, φ can be written as
a boolean combination of existential formulae. Since Γ is a core, Lemma 4.17
shows that φ can be written as a boolean combination of existential positive
formulae. Since existential quantification and disjunction commute, this is
the case if and only if every first-order formula can be written as a boolean

100

4.7 Adding Constants to the Signature

combination of p.p.-formulae. Thus also the expansion of Γ by all primitive
positive definable relations has quantifier elimination.

In particular, the expanded core Γ′ is model-complete, i.e., every embed-
ding of Γ′ into itself preserves all first-order formulae. Since this is equivalent
to the property that every first-order formula is over Γ′ equivalent to an exis-
tential formula (see e.g. Theorem [Hodges, 1997]), it follows from quantifier
elimination of Γ′.

As we will see soon the following will be of importance for the theory of
constraint satisfaction:

Corollary 4.19. Let Γ be an ω-categorical core, and let R be an orbit of
k-tuples in ω. Then R has a primitive positive definition in Γ.

Proof. Let Γ′ be the expansion of Γ by all primitive positive definable rela-
tions. By Theorem 4.18, Γ′ admits quantifier elimination. Every quantifier-
free definition ϕ of R in Γ′ can be written in disjunctive normal. Let M1

and M2 be two monomials in the disjunctive normal form of ϕ. Then M1

and M2 have to denote the same relation, since R is the orbit of an k-tuple
also in Aut(Γ′). Thus we can assume without loss of generality that ϕ is a
conjunction of atomic formulae. Finally we replace all relation symbols in ϕ
that are contained in the signature of Γ′, but not in the signature of Γ, by
their primitive positive definition. The resulting formula is equivalent to a
p.p.-definition of R in Γ.

It is one of the most often cited results in [Bulatov et al., 2003], that if Γ
is a finite core, adding a singleton-relation does not increase the complexity
of the constraint satisfaction problem. In this section we will show that
the same holds for constraint satisfaction problems where the template is an
ω-categorical core.

Theorem 4.20. Let Γ be an ω-categorical core, and Γ′ be the expansion of
Γ by a unary singleton relations P = {c}. If CSP(Γ) is tractable, then so is
CSP(Γ′).

Proof. Let S ′ be an instance of CSP(Γ′). The orbit Oc of c in the auto-
morphism group of Γ is by Corollary 4.19 primitive positive definable in Γ.
By Lemma 3.3 we can assume without loss of generality that Γ contains the
relation Oc. Replace all occurrences of the relation P in S ′ by the relation
Oc. Solve the resulting instance S of CSP(Γ); by assumption this is possible

101

Chapter 4. The Clone of Polymorphisms

in polynomial time. If S is not satisfiable, then in particular S ′ could not
have been satisfiable. On the other hand, if there is a homomorphism h from
S to Γ, we also find a homomorphism from S ′ to Γ′: Since Oc is the orbit of
vertex c, there is an automorphism a of Γ such that ha is a solution of the
instance S ′ of CSP(Γ′).

102

Chapter 5

Graph Algorithms for Tree
Constraints

In this chapter we describe efficient algorithms solving constraint satisfaction
problems for ω-categorical tree-like structures. With these algorithms we can
also solve several constraint satisfaction problems that we already encoun-
tered earlier, which are motivated by applications in phylogenetic analysis
and computational linguistics. Compared to the algorithms for the tractable
constraint satisfaction problems with finite templates, the algorithms of this
chapter are of a new type.

5.1 Constraints in Computational Linguistics

Tree description languages became an important tool in computational lin-
guistics over the last twenty years. Grammar formalisms have been pro-
posed which derive logical descriptions of trees representing the syntax of a
string [Marcus et al., 1983, Rogers and Shanker, 1992, Duchier and Thater,
1999]. Acceptance of a string is then equivalent to the satisfiability of the
corresponding logical formula.

In computational semantics, the paradigm of underspecification aims at
manipulating the partial description of tree-structured semantic representa-
tions of a sentence rather than at manipulating the representations them-
selves [Pinkal, 1996, Egg et al., 2001]. So the key issue in both, constraint
based grammar and semantic formalisms, is to collect partial descriptions
of trees and to solve them, i.e., to find a tree structure that satisfies all

Chapter 5. Graph Algorithms for Tree Constraints

constraints.

Cornell [Cornell, 1994] introduced a simple but powerful tree description
language. It contains literals for dominance, precedence and equality between
nodes, and disjunctive combinations of these. He also gave a saturation algo-
rithm based on local propagations which turned out to be incomplete: there
is a counterexample even for the restricted version of the problem Genealogy-
consistency, which we presented in Section 3.4.

If nodes in a tree are interpreted as intervals over the real line, we can
translate tree descriptions into a fragment of Allen’s interval algebra [Allen,
1983] where all the intervals are laminar, i.e., they are overlap-free. Domi-
nance between nodes then corresponds to containment of intervals, and dis-
jointness of nodes corresponds to disjointness of intervals. Allen’s full inter-
val constraint logic has many applications in temporal reasoning but is NP-
complete in its unrestricted form. There are fragments of this logic [Bürckert
and Nebel, 1995, Jeavons et al., 2003] that are tractable. The non-overlap
constraint together with disjointness and containment constraint is not one
of them. Thus we can not use the known algorithms for interval constraints
to solve Cornell’s problem.

In this chapter we present an efficient algorithm that tests satisfiability
of a tree description of Cornell’s tree description language and directly con-
structs a solution to the problem instance. A predecessor of this algorithm,
which applies to a slightly restricted language, appeared in [Bodirsky and
Kutz, 2002]. It runs in time O(nm), where n is the number of nodes and m
the number of constraints in the input. The performance is achieved by a
recursive strategy that works directly on the constraint graph, and avoids the
saturation techniques described in Section 3.4. Subquadratic running time
can be achieved using decremental graph algorithms for strong connectivity
- this is explained in Section 5.8.

5.2 Tree Descriptions

We first fix some conventions for finite digraphs and trees. An undirected
path in a directed graph may use arcs in any direction, ignoring their orien-
tation. A strongly (weakly) connected component of D = (V ;E) is a maximal
induced subgraph U of D with a directed (an undirected) path from a to b for
any two vertices a, b ∈ V . D|S is the subgraph of D induced by the subset S
of its vertices. A digraph D = (V ;E) is transitive if for all (u, v), (v, w) ∈ E

104

5.2 Tree Descriptions

a

d

f

g

h

c

e i

b

Figure 5.1: A forest, consisting of rooted and ordered trees.

we have (u, w) ∈ E. The transitive closure of a digraph D = (V ;E) is the
unique transitive digraph D′ = (V ;E ′) where E ′ is minimal and contains E.

The trees considered here are always rooted and thus we consider the
edges as directed, pointing away from the root. The height of a tree is the
length of the longest directed path in the tree. If we say that the tree is
ordered we mean that the children of the vertices are linearly ordered, and
we use the terms left and right to compare them. We call a set of such rooted
trees a forest. If the rooted trees in a forest are ordered, and also the roots
of the trees are linearly ordered, we call the forest ordered. In pictures we
indicate this ordering by distinguishing between left and right. Figure 5.1
shows an example of such a forest containing two trees, rooted at the vertices
a and f . In this picture, a ≺ f and b ≺ e, and a ⊳+ e, for example.

Note that in graph theory the notion of forest and tree are mostly used
differently: a forest is an acyclic undirected graph, and a tree is a connected
component of a forest. But this should cause no confusion here. The notation
that we introduce now is as in [Backofen et al., 1995].

Usually the vertices of a tree are denoted by u, v, w. If u is the father of v
in a tree, we write u ⊳ v. We write u ⊳∗ v and say that u dominates v if u is
an ancestor of v in the tree. We write u ⊳+ v for u ⊳∗ v and u 6= v. If for two
vertices u and v neither u ⊳∗ v nor v ⊳∗ u we say that u and v are disjoint,
and write u ⊥ v. In this case we distinguish two cases: either u precedes or
succeeds v. A vertex u precedes (succeeds) a vertex v, and we write u ≺ v
(u ≻ v), if there is a common ancestor of u and v in the tree that has two
children w1 and w2, where w1 ⊳

∗ u and w2 ⊳
∗ v, and u is to the left of v. We

write u � v if u ≺ v or u = v.

We can use the notation for trees introduced above for forests. Note
that these notations coincide with the notations on ω-categorical tree-like
structures of Section 2.7, restricted to finite induced substructures. For every

105

Chapter 5. Graph Algorithms for Tree Constraints

pair u, v of vertices in an ordered tree or ordered forest, exactly one of the
following cases holds:

u ⊳+ v, u +⊲ v, u ≺ v, u ≻ v, u = v.

The following problem allows to partially describe the structure of a tree
using arbitrary disjunctions of these five cases. It was introduced by Cornell
in computational linguistics [Cornell, 1994]. To clearly distinguish between
equality in this language and the common usage of the symbol ‘=’, we denote
equality in this language by ‘≡’.

TREE-DESCRIPTION-CONSISTENCY
INSTANCE: A set of variables V ranged over by x, y, z, and a set C of binary
constraints of the form xRy, where R ⊆ {+⊲, ⊳+,≺,≻,≡}.
QUESTION: Is there an ordered forest F together with a mapping α : V → F
from the variables to the vertices of the forest satisfying all constraints in C?
A constraint xRy is satisfied by (F, α) if α(x)Rα(y) holds in the forest for
some relation R ∈ R.

Matching the definitions we see that this problem corresponds to

CSP
(

(Λ; {∪R |R ⊆ {⊳+, +⊲,≺,≻,≡})
)

,

where the semilinear order Λ is introduced in Section 2.7 - and the signa-
ture of the template contains all boolean combinations of relations in Λ. A
solution of this constraint satisfaction problem, as it was defined in Chap-
ter 3, corresponds to the ordered forest of a yes-instance of the problem
tree-description-consistency, and instances having such a solution are called
satisfiable.

Figure 5.2 shows an unsatisfiable instance. Solid arcs stand for the con-
straint {⊳+} and dashed arcs for the constraint {≺}. In this chapter we
develop an efficient algorithm for this problem.

5.3 An Algorithm for a Restricted Signature

We will first illustrate the algorithmic idea of our approach for a small frag-
ment of pure dominance constraints. As we will see in Section 5.4, this frag-
ment is already powerful enough to express the Common-supertree problem.

106

5.3 An Algorithm for a Restricted Signature

Figure 5.2: A constraint graph with no solution.

Thus we can solve this computational problem from phylogenetic analysis by
the algorithm presented in this section – even without loss in asymptotic run-
ning time, compared to the best known algorithm described in [Henzinger
et al., 1996]. In this fragment, we only allow the following two types of
constraints:

x {⊳+} y and x {≺,≻} y

The first constraint is called (strict) dominance, and the second disjointness,
and we use the shorthands x ⊳+ y and x ⊥ y for these two cases. Thus,
the constraint can be viewed as a graph (V ; ⊳+,⊥) with two types of edges,
namely directed edges ⊳+ and undirected edges ⊥. Because our algorithm
is given in terms of graph theory, we will also call elements x ∈ V nodes.
Observe that the binary relations ⊳+ and ⊥ are now defined on the vertices
of a tree F and on the nodes of a constraint C. The reference will always be
clear.

In pictures we draw this constraint graph using two types of arcs. For a
dominance edge x ⊳+ y we draw a directed arc from x to y, for a disjointness
edge x ⊥ y we draw a dashed line without direction. Figure 5.2 for instance
shows such a constraint.

Before we start explaining the algorithm, we would like to point out that
also this problem is a constraint satisfaction problem in the sense of Chap-
ter 3. The ω-categorical template is the reduct of the structure Λ with the
two relations ⊳+ and ⊥ only. The algorithm in this section solves the problem
CSP((Λ; ⊳+,⊥)). The age of the template of this constraint satisfaction prob-
lem is Forb(N), where N is the set of structures shown in Figure 5.3 (however,
Forb(N) does not have the amalgamation property; see Section 2.7).

Freeness. The key idea of the algorithm is the notion of freeness of nodes.

107

Chapter 5. Graph Algorithms for Tree Constraints

Figure 5.3: The set N of forbidden induced subgraphs of (Λ; ⊳+,⊥).

Definition 5.1. A node x in a constraint C is free, if C has a solution (F, α)
where F is a tree and α(x) is the root in F .

Hence, a constraint with a free node is by definition satisfiable. We use
freeness algorithmically: Informally, the algorithm takes out a free node, de-
composes the remaining constraint graph into weakly connected components,
and recursively solves these parts. If there is no free node of a connected
constraint graph, the constraint is not satisfiable. To prove this we need the
following key lemma:

Lemma 5.2. Let C be a constraint with a weakly connected constraint graph
G = (V ; ⊳+,⊥), and let y and y′ be variables in C. In every solution (F, α)
of C there exists a variable x ∈ V such that α(x) ⊳∗ α(y) and α(x) ⊳∗ α(y′)
in F .

Proof. Since the vertices y and y′ are weakly connected there exists a chain
of nodes (y1, y2, . . . , yr) that starts at y = y1, ends at y′ = yr, and is linked
by edges (yi, yi+1) ∈ ⊳+ ∪ (⊳+)−1. We prove by induction on r that for every
solution (F, α) of C there exists an index j ∈ {0, . . . , r} with α(yj) ⊳

+ α(y0)
and α(yj) ⊳

+ α(yr) in F . If r = 0 or r = 1 then we can choose x to be
either α(y0) or α(yr). Otherwise, we can apply the induction hypothesis to
the chain (y1, . . . , yr−1). Thus, there exists a j, 0 ≤ j ≤ r − 1, such that
α(yj) is a common ancestor of α(y1) and α(yr−1) in F . If α(yr−1) ⊳

+ α(yr)
then α(yj) is also a common ancestor of α(y1) and α(yr), so we can choose
x = yj . Otherwise, α(yr) ⊳

+ α(yr−1) in F . Thus, both α(y0) and α(yr) are
ancestors of yr−1 in F . Since F is a forest, it follows that either α(yr)⊳

+α(yj)
or α(yj) ⊳

+ α(yr) in F . In the first case, we choose x = yr, and in the second
one x = yj.

Proposition 5.3. A constraint C whose constraint graph has a weakly con-
nected component without a free node does not have a solution.

Proof. Assume there is a solution (F, α) and consider the nodes of C whose
interpretations are maximal in F with respect to ⊳+. If there is only one, say

108

5.4 Phylogenetic Analysis

x, then the subtree rooted at α(x) is also a solution of C, thus contradicting
the assumption that x was not free. If there are at least two upmost nodes
x, x′, then α(x) and α(x′) are disjoint in F . Since G is weakly connected, we
can apply Lemma 5.2. This contradicts that the interpretations of x and x′

lie highest in F .

Free nodes have a simple equivalent graph characterization.

Proposition 5.4. Let G = (V ; ⊳+) be the constraint graph of a satisfiable
constraint C. Then a node x of C is free if and only if

(P1) x has in-degree zero in G, and

(P2) there is no constraint x ⊥ y in C.

Proof. If there is another y s.t. y ⊳+ x the vertex x can not be topmost in
any solution of C, and thus can not be free. If the vertex x is involved in a
disjointness constraint it can also not be free, since the root of a tree is not
disjoint to the other nodes in the tree.

Conversely, assume that the node x of a satisfiable constraint satisfies
(P1) and (P2). The weakly connected components of G|V −{x} are also sat-
isfiable. Then we have the following solution for C: introduce a tree node
denoted by x, and let the solutions of the weakly connected components be
the children of this node. The disjointness constraints between the different
weakly connected components are thus satisfied by construction. It is clear
from (P1) and (P2) all the constraints adjacent to x are also satisfied.

Figure 5.4 on the following page shows the entire algorithm for the re-
stricted constraint language. If it detects a weakly connected component
without a free node, we know by Proposition 5.3 that the constraint does
not have a solution. Otherwise Proposition 5.4 guarantees that we can pro-
ceed by making the free node the root of our solution. The algorithm runs
in time O(nm), where n is the number of nodes and m the number of con-
straints. We will later see in Section 5.8 how to further improve the running
time.

5.4 Phylogenetic Analysis

We quote from [Gusfield, 1997]: The dominant view of the evolution of life
is that all existing organisms are derived from some common ancestor and

109

Chapter 5. Graph Algorithms for Tree Constraints

Solve
(

C = (V ; ⊳+,⊥)
)

:

Compute the weakly connected components C1, . . . , Ck

of the constraint graph (V ; ⊳+) of C

for i = 1 to k do

if no node satisfying (P1) and (P2) exists
then return “problem has no solution”
else pick a node x ∈ Ci satisfying (P1) and (P2)
create a new vertex ri, and let α[x] := ri

add the roots of Solve(C|Ci−{x}) as new children to ri

od

return the set of trees rooted at r1, . . . , rk

Figure 5.4: The function Solve for a constraint with the literals ⊳+ and ⊥.

that a new species arises by a splitting of one population into two (or more)
populations that do not cross-breed, rather than by a mixing of two popula-
tions into one. Therefore, the high level history of life is ideally organized
and displayed as a rooted, directed tree. The extant species (and some of the
extinct species) are represented at the leaves of the tree, each internal node
represents a point when the history of two sets of species diverged (or repre-
sents a common ancestor of those species), . . . , and so the path from the root
of the tree to each leaf represents the evolutionary history of the organisms
represented there.

An evolutionary tree for a set of species is a rooted tree, where the leaves
are bijectively labeled by the species from the set. Constructing evolutionary
trees from biological data is a difficult problem for a variety of reasons, see
[Gusfield, 1997]. Many approaches assume that the evolutionary tree is built
from a set of taxa based on the comparison of a single protein or a single
position in aligned protein sequences, but very often the resulting tree will
be different depending on which particular protein or position is used. Now
several trees, each from a different protein or position, must be built and be
shown to be ’generally consistent’ before the implied evolutionary history is
considered reliable.

This motivates to consider the following problem.

110

5.5 Reduction to Four Base Literals

COMMON-SUPERTREE
INSTANCE: A set S of evolutionary trees with common leaf set L.
QUESTION: Is there an evolutionary tree T on the leaf set L such that every
tree in S is a refinement of T , i.e., can be obtained by a series of contractions
of edges from T ?

We reduce this problem to a tree-description problem in the restricted
language of 5.3. The variables of the tree-description are the vertices of the
trees in S. Tree-edges translate to dominance constraints. Siblings x, y in
a tree from S will be related via x ⊥ y in the tree description. Clearly the
resulting tree-description is of linear size in the representation size of S and
has a solution if and only if there is a common supertree for the trees from
S. Note that it is not possible to reduce the consistency problem for tree-
descriptions to the problem Common-supertree in a similar straightforward
way.

Often the biological data comes without an information about the root of
the trees. In this case we analogously define the notion of refinements between
(unrooted) trees. The corresponding Common-supertree problem already
becomes hard if we consider trees with four leaf vertices only [Steel, 1992].
In this case, we can again formulate the problem as a constraint satisfaction
problem: We called this problem Quartet-consistency in Section 1.3 in the
introduction, and the corresponding template is described in Section 2.7.

5.5 Reduction to Four Base Literals

In this section we show that every binary first-order definable relation in
(Λ; ⊳+,≺) has a primitive positive definition in a restricted signature, where
we only use the following set of four basic relations. Thus we can reduce all
constraints from Cornell’s tree description language to this simpler language.

x {⊳+,≡} y, x {≺,≡} y, (5.1)

x {⊳+, +⊲,≺,≻} y, x {≺,≻,≡} y.

The constraints {+⊲,≡} and {≻,≡} are simply the first and second constraint
of (5.1) flipped, and the singletons {⊳+}, {≺}, and {≡} can be written as
intersections of these. The two extremal sets {+⊲, ⊳+,≺,≻,≡} and ∅ are not
needed since the former imposes no restrictions on the tree and the latter is,

111

Chapter 5. Graph Algorithms for Tree Constraints

by definition, unsatisfiable. If we show how to express the constraints

x {⊳+, +⊲,≡} y, x {⊳+,≺,≻,≡} y, (5.2)

x {⊳+,≺,≡} y, x {⊳+,≻,≡} y

with those in (5.1) we are finished, since the other constraints are again rep-
resentable as intersections of constraints from (5.1) and (5.2). It is easy to
check that the constraints in (5.2) have the following primitive positive defi-
nitions in the language with the relations from (5.1); we show two examples.

x {⊳+, +⊲,≡} y ⇔ ∃z.x {⊳+,≡} z ∧ y {⊳+,≡} z

x {⊳+,≺,≡} y ⇔ ∃z.x {⊳+,≡} z ∧ z {≺,≡} y

Thus we can express any 2-type in (Λ; ⊳+,≺) with the four basic binary
relations from (5.1). Our algorithm works on pure dominance constraints
containing these four kinds of constraints only. We therefore introduce special
names and notation:

• x {⊳+,≡} y: the dominance constraint x ⊳∗ y,

• x {≺,≡} y: the precedence constraint x � y,

• x {≺,≻,≡} y: the disjoint-or-equal constraint x y,

• x {⊳+, +⊲,≺,≻} y: the inequality constraint x 6≡ y.

Note that from now on, the notions of dominance and precedence relation
are meant in the non-strict sense, i.e., they are reflexive relations.

5.6 Constraint Graphs and Freeness

We will give a graph theoretical characterisation of unsatisfiable pure dom-
inance constraints. To this end, for a given constraint C we consider two
different graphs:

• The dominance graph (V,D), where

D = {xy | x ⊳∗ y or x y or x � y or y � x}.

112

5.6 Constraint Graphs and Freeness

x

y y

z

x

Figure 5.5: A tree description. The precedence constraints are dashed arcs,
the dominance constraints dotted arcs. The strongly connected components
of the dominance graph are {v1, v2, v4, u}, and {v3}. The strongly connected
components of the precedence graph are {v1, v3, v4, u}, and {v2}.

• The precedence graph (V, P), where

P = {xy | x � y or x ⊳∗ y or y ⊳∗ x}.

Note that the precedence constraints are bidirectional in the dominance
graph, and the dominance edges are bidirectional in the precedence graph.
Moreover, the dominance graph contains edges corresponding to the disjoint-
or-equal literals. See Figure 5.5 for an illustration.

Cycles in the dominance graph only admit solutions that map the entire
cycle on the same node in a tree. The fact that the constraints can express
equality on nodes must be reflected in our definition of freeness, which is now
defined on sets of nodes.

Definition 5.5. A set S of nodes of an instance C is called free, if there is
a solution (F, α) where F is a tree and for all nodes x ∈ S the vertex α(x)
is the root of F .

Again, if C is satisfiable, the following two straightforward necessary
properties of free sets of nodes turn out to be sufficient for freeness.

Proposition 5.6. Let C be a satisfiable constraint. Then S is a free set of
nodes, if and only if all of the following holds:

(C1) There is no edge xy ∈ D in the dominance graph such that x /∈ S and
y ∈ S.

113

Chapter 5. Graph Algorithms for Tree Constraints

(C2) There is no pair x, y ∈ S such that x 6≡ y.

Proof. It is easy to verify the only-if direction. For the other direction, let
S be a set of nodes that satisfies conditions (C1) and (C2). Fix an arbitrary
linear extension of the acyclic structure formed by the strongly connected
subgraphs of the precedence graph without S.1 We inductively assume that
every such subgraph has a solution. Take these solutions and arrange their
roots in the order of the linear extension as the children of a root vertex.
This satisfies all constraints in the subgraphs and in S, and all dominance,
precedence, and inequality constraints between the subgraphs, and between
the subgraphs and S. Thus we have constructed a solution of C, where S
denotes the root of the solution.

We now show that a satisfiable constraint with a strongly connected prece-
dence graph always has such a free set.

Proposition 5.7. Let C be a constraint whose constraint graph has a strongly
connected precedence subgraph without a free set. Then C has no solution.

Proof. Suppose (F, α) is a solution of C. We consider the nodes S in C that
are minimal with respect to the linear order ⊳+ ∪ ≺ in F , i.e., we look at
the set of nodes S that denote the topmost vertex u in the leftmost tree in
F . The vertex u can not dominate all vertices in α(V), otherwise S is a
free set. So let y ∈ V be a variable such that α(y) is not dominated by u.
Since the precedence constraint of C is strongly connected, there is a path
x1, x2, . . . , xk, y from some x1 ∈ S to y /∈ S in the precedence graph. The
path α(x1), α(x2), . . . , α(xk), α(y) must eventually leave the subtree rooted
at u, contradicting the minimality of S with respect to the relation ⊳+ ∪ ≺
in the forest F .

5.7 The Algorithm

In this section we present an algorithm that checks whether a tree descrip-
tion has a solution. If there exists a solution, it is explicitely constructed.
Figure 5.6 shows the algorithm. The algorithm consists of two procedures,

1By this we mean that there is an arc between two connected components A and B, iff
there is an arc from a node in A to a node in B. If there was a cycle in this graph defined
on the strongly connected components, all nodes on that cycle must belong to the same
stongly connected component in the underlying graph, a contradiction.

114

5.7 The Algorithm

Solve(C):

Compute the scc’s of the precedence graph of C,
and let C1, . . . , Ck be a linear extension of their acyclic structure
return the ordered forest consisting of the ordered trees
Solve con(C|Ci

), for 1 ≤ i ≤ k, in this order

Solve con(C):

precond: The precedence graph of C is strongly connected.

if no set of nodes satisfying (C1) and (C2) exists
then return “problem has no solution”
else choose a set of nodes S satisfying (C1) and (C2)
create a new vertex r, and set α[S] = r
add the ordered roots of the forest Solve(C|V −S) as children below r
return the ordered tree rooted at r

Figure 5.6: The function Solve for the full tree description language.

called Solve and Solve con. Initially, for a given instance C, we call Solve(C).
There the graph is decomposed into the strongly connected components with
respect to the precedence graph. If the precedence graph of C is stongly con-
nected, we can compute Solve con(C). The algorithm contains a statement
choose, that influences which free set of nodes is chosen, and which solution
is constructed.

Finally we are left with the problem to efficiently find free sets of nodes,
if they exist. Because of (C1) the set has to be a union of strongly connected
components. The strongly connected components of a graph form an acyclic
structure. It suffices to check whether there is an initial strongly connected
component, i.e., a component S with no edge uv ∈ D where u /∈ S and v ∈ S,
which does not contain an inequality constraint - and this can be done in
linear time in the input, using e.g. depth first search.

Proposition 5.8. If we run algorithm Solve con of Figure 5.6 on a tree
description C it returns in time O(n(n+m)) either a forest that is together
with the assignment α a solution of C – if it exists – or it returns “problem
has no solution”.

Proof. The procedure Solve con requires that the precedence graph of the
input is strongly connected. Thus, if it returns “problem has no solution”,

115

Chapter 5. Graph Algorithms for Tree Constraints

the constraint was unsatisfiable by Proposition 5.7 on page 114. Otherwise,
Proposition 5.6 guaranties that we can construct a solution by taking out
a free component. On each level of the recursive procedures we have to
compute the strongly connected components either of the precedence or of
the dominance graph, which can be done using depth first search in time
O(n+m). Since we take out at least one vertex in each call of Solve con,
the overall running time is in O(n(n+m)).

5.8 Subquadratic Running Time

During the performance of the algorithm, the connectivity structure of the
constraint graph is computed several times. However, the input graphs for
our connectivity computations are very similar: they are obtained from each
other by vertex-deletions only. We want to find a faster implementation that
avoids redundant computation. Decremental, or more generally, dynamic
connectivity has been studied intensively in the last years. In fact, it is pos-
sible to maintain the weakly connected components of a graph on n vertices
under a series of m edge-deletions in amortized and deterministic O(m log2 n)
time [Holm et al., 2001]. For decremental strong connectivity amortized sub-
quadratic algorithms are known [Henzinger and King, 1995,Demetrescu and
Italiano, 2000,Thorup, 1999].

We demonstrate how to use these dynamic algorithms for the restricted
language introduced in Section 5.3 on page 106, and show how to maintain
data structures for connectivity queries and detect the free nodes in sublinear
time. We can thereby improve the overall running time to O(m log2 n), using
the decremental deterministic graph connectivity algorithm from [Holm et al.,
2001]. Similarly it is possible to use decremental strong connectivity results
for the general problem [Thorup, 1999].

Employing a decremental weak connectivity algorithm. In a decre-
mental connectivity problem, we are considering a graph G over a fixed vertex
set V , |V | = n. The graph G may be updated by deletions of edges. The
updates might be interspersed with connectivity queries, asking whether two
given vertices are connected in G. The connectivity problem reduces to the
spanning tree problem [Sleator and Tarjan, 1983]: if we can maintain any
spanning forest F for G at cost O(t(n) logn) per update, then we can an-
swer connectivity queries in time O(logn/ log t(n)). There is a deterministic
algorithm for maintaining a spanning forest in a graph in amortized time

116

5.8 Subquadratic Running Time

O(log2 n) per update [Holm et al., 2001]. Connectivity queries are then an-
swered in time O(logn/ log logn).

If we want to improve the asymptotic running times of our original al-
gorithm in Section 5.3 on page 106, we do not only have to maintain the
connectivity structure, but also find a free node at each step of the recursion
in sublinear time. This can be done by a heap, the candidate heap, which
stores nodes that are root candidates. The priority of elements in the heap
is the number of adjacent disjointness edges plus the in-degree in the domi-
nance graph. If a node has priority 0 and hence is topmost in the heap, the
node is free.

It is convenient to formulate the improved algorithm in an iterative fash-
ion. In each iteration we have to take out a free node of some connected
component, which is then linked under the corresponding leaf of the incre-
mentally built solution tree. It is easy to see that this corresponding leaf can
be found using the data structure of the decremental connectivity algorithm
in [Holm et al., 2001].

With the free node, all adjacent constraints are deleted. This might
cause updates both in the connectivity structure, and the priorities in the
candidate heap. If a connected component got separated into two parts
by an edge deletion, the decremental connectivity algorithm provides for a
representative in the smaller of the two components. We check for every
disjointness edge incident to this component, whether the other end of the
edge lies in the rest of the graph. In this case the disjointness edge becomes
redundant and we remove it, and the priorities of the incident nodes in the
candidate heap is updated. Every time an edge is considered for deletion, the
size of the involved component has at most half the size of the component
where the edge was considered for the last time. Thus every disjointness edge
is considered at most a logarithmic number of times. The overall amortized
running time is thus dominated by the update operations of the decremental
connectivity algorithm, and in O(m log2 n), where m is the number of edges
in the constraint graph.

117

Chapter 6

Normal Dominance Constraints

In this section we present a polynomial time algorithm for the problem
Dominance-graph-solvability, stated below. We later solve several substruc-
ture and constraint satisfaction problems for tree-like templates from Sec-
tion 2.7 with the same algorithmic ideas. The problems are motivated by
applications in computational linguistics [Althaus et al., 2003, Koller et al.,
2000,Bodirsky et al., 2004,Niehren and Thater, 2003].

DOMINANCE-GRAPH-SOLVABILITY
INSTANCE: A dominance graph G = (V ; ⊳+, ⊳) with two sets of directed
edges, called dominance and immediate dominance edges, respectively. The
immediate dominance edges in ⊳ form a forest of height one.
QUESTION: Is there a forest on the vertices V containing ⊳, where the edges
are directed away from the root for each tree in the forest, such that for every
dominance edge in ⊳+ there is a directed path in the forest?

Figure 6.1: An unsolvable dominance graph.

Chapter 6. Normal Dominance Constraints

If there exists such a forest for a dominance graph G we call it a solution
of G, and say that G is solvable. In pictures we draw immediate dominance
edges as solid arcs, and dominance edges as dotted arcs. See Figure 6.1 for
an example of an unsolvable dominance graph.

The problem Dominance-graph-solvability is precisely the substructure
problem wSub(∆) of the ω-categorical semilinear order ∆ defined in Sec-
tion 2.7. Recall the definition of ∆: the domain is the set of all non-empty
finite sequences a = (q1, q2, . . . , qn) of rational numbers. We say that a dom-
inates b in ∆, and write a ⊳+ b, if either

• a is a proper initial subsequence of b, or

• a = (p0, . . . , p2n−1, p2n) for n ≥ 0, and b = (p0, . . . , p2n−1, p
′
2n, p2n+1, . . . , pm),

where p2n < p′2n.

The immediate dominance relation a ⊳ b holds iff for every element c domi-
nating b in ∆ we have either c ⊳+ a or c = a. See also Figure 2.6 on page 46.

Proposition 6.1. Let G = (V ; ⊳+, ⊳) be a dominance graph. Then G is
solvable if and only if G is a substructure of ∆.

Proof. Let G be a solvable dominance graph, i.e., there exists a forest on V
containing ⊳, where the edges are directed away from the root for each tree
in the forest, such that for every edge in ⊳+ there is a directed path in the
forest. If we replace ⊳+ by the transitive closure of this forest we obtain a
dominance graph G′, and we can recursively embed G′ in ∆.

To see this, let us furthermore assume that G is a forest and we want to
find a solution that maps the root x of G to a given sequence a of odd length.
If there are immediate dominance edges x ⊳ yi, then we assign the sequence
(a, i) to yi. Since ⊳ forms a tree of heigth one, the maximal elements zi

j below
the nodes yi with respect to ⊳+ can not be linked to yi by ⊳. We can thus
map zi

j to (a, i, j). Then there might be other maximal elements zi below x,
that are not linked to x in ⊳. These nodes are assigned the sequence (a, 0, i).
Then we recusively construct solutions for all trees rooted at some vertex zi

or zi
j . Initially, and if G is not a tree, we apply this procedure for all roots

with an arbitrary set of odd sequences at disjoint positions in ∆.

Conversely, the transitive reduction of a substructure of ∆ clearly is a for-
est, and the edges from ⊳ form a forest of height one. Thus every substructure
of ∆ is a solvable dominance graph.

120

6.1 Dominance Graphs and Solved Forms

A polynomial time algorithm for a slightly restricted version of the prob-
lem was presented in [Althaus et al., 2001], and is based on a duality theorem
(see Section 6.3.3). Dualities as a general concept for homomorphism prob-
lems were studied in [Nešetřil and Tardif, 2000]. However, for the problem
introduced above we do not know of a duality theorem that leads to an
efficient algorithm.

Results and outline of the chapter. We first present a novel algorithm
for the problem Dominance-graph-solvability. The algorithm does not de-
pend on a duality argument, but rather uses the notion of a free node that
we already used in Chapter 5. It will be easy to adapt it to also deal with
disjointness constraints, see Section 6.3.3. The new algorithm has better run-
ning times than the running time of the algorithm in [Althaus et al., 2003].
However, there is an improved version of [Althaus et al., 2003] that has a
linear running time for the restricted version of the solvability problem where
we can apply the duality argument [Thiel, 2004b]. If we are interested in con-
structing a solution for a given input, our algorithm is still faster. Moreover,
subquadratic running time can be achieved by decremental graph biconnec-
tivity algorithms, see Section 5.8. An evaluation of an implementation of the
new algorithm shows that our algorithm also behaves well in practice.

We then introduce dominance constraints, which is a tree description
language used in computational linguistics. Satisfiability of dominance con-
straints is NP-hard in general, but there is a tractable fragment called normal
dominance constraints that suffices for many applications. Satisfiability of
normal dominance constraints can be reduced to solvability of dominance
graphs, and thus we can apply our algorithm. Finally we investigate larger
fragments of dominance constraints and explore the border between tractable
and intractable tree description languages.

6.1 Dominance Graphs and Solved Forms

The solutions of a dominance graph might contain a quadratic number of
edges. For efficiency reasons, we will not explicitely construct solutions. In-
stead we introduce the notion of solved forms of a constraint, which are sparse
representations of solutions that still allow to easily read off the solutions.

The general ideas behind solved forms apply to constraint satisfaction
and substructure problems in general. Often we would like to work with

121

Chapter 6. Normal Dominance Constraints

Figure 6.2: Three solved forms of which the left one is least specific.

concise representations of the solutions of a constraint satisfaction problem.
A solved form of a constraint C is a constraint that contains at least the
information of the constraint C. Moreover it should be easy to read off the
solutions from the set of solved forms of a constraint. For efficiency, we
are interested in solved forms that contain as few constraints as possible to
represent a solution.

For dominance graphs we give a formal definition of solved forms that
accomplishes these goals. The reachability relation RG of a dominance graph
G = (V ; ⊳+, ⊳) is the reflexive transitive closure of ⊳+ ∪ ⊳ . A dominance
graph G is less specific than G′ if:

• G and G′ differ only in their sets of dominance edges, and

• the reachability relation is extended: RG ⊆ RG′

Definition 6.2. We call a dominance graph (V ; ⊳+, ⊳) a solved form if it is
a forest, i.e., a collection of rooted trees. A solved form of a dominance graph
G is a solved form that is more specific than G. A minimal solved form (of
G) is a solved form (of G) that is minimal with respect to specificity.

Fig. 6.2 shows a minimal solved form and two others that are more spe-
cific. Fig. 6.3 presents a dominance graph and its two minimal solved forms.
In general, the solutions of a normal dominance constraint are partitioned
by the minimal solved forms.

6.2 An Algorithm for Dominance Graphs

In this section we present a graph algorithm that computes the minimal
solved forms of a dominance graph.

122

6.2 An Algorithm for Dominance Graphs

y

xy

x

yx

Figure 6.3: A dominance graph with two distinct minimal solved forms.

A dominance graph G = (V ; ⊳+, ⊳) is weakly connected if for any two
nodes x and y there is an undirected path from x to y in ⊳+ ⊎ ⊳. A weakly
connected component (wcc) of G is a maximal weakly connected subgraph
of G. Given a set of nodes V ′ ⊆ V , we write G|V ′ for the restriction of G to
nodes in V ′ and edges in V ′ × V ′. The wccs of G = (V ; ⊳+, ⊳) form a proper
partition of V , ⊳+ and ⊳.

Proposition 6.3. A dominance graph is solvable if and only if all its weakly
connected components are solvable.

Proof. Let G be a dominance graph. If all wccs are solvable then we can
choose some solved form for each component. The union of these solved
forms is a solved form of G. Conversely, if G′ is a solved form of G, and W
are the nodes of a wcc of G, then G′|W is a solved form of G|W .

We will now prove that a solved form of a weakly connected dominance
graph is a rooted tree. This is equivalent to the following lemma, which
states the key inductive property underlying the proofs of this chapter.

Lemma 6.4. Let G = (V,E) be a dominance graph with solved form G′. If
y, y′ are weakly connected nodes in G then there exists a node x that is a
common ancestor of y and y′ in G′.

Proof. Analogously to Lemma 5.2 in Section 5.3 (by induction).

123

Chapter 6. Normal Dominance Constraints

6.2.1 Freeness

This section prepares a satisfiability criterion for dominance graphs. As for
the algorithms in Chapter 5, the idea of the efficient algorithm is based on
the notion of free nodes in the constraint graph.

Definition 6.5. A node x of a dominance graph G is called free in G if there
exists a solution of G where x has in-degree zero.

Proposition 6.6. A weakly connected dominance graph without free nodes
is unsolvable.

Proof. If G is weakly connected and solvable then it has a solved form which
is a tree (Lemma 6.4). The root of this tree is free for G.

The absence of solved forms can thus be proved by showing the absence
of free nodes. Lemma 6.7 states two properties of free nodes, which can be
used for this purpose.

Lemma 6.7. A dominance graph G = (V ; ⊳+, ⊳) with free node x satisfies:

(F1) The node x has in-degree zero in G.

(F2) No distinct nodes y, y′ that are linked to x by tree edges in G are weakly
connected in G|V \{x}.

Proof. We assume that x is a free node of G and show that both conditions
hold. (F1) A free node cannot have any incoming edge in G since it would
have one in all its solved forms. (F2) Let y and y′ be distinct nodes that
are linked to x in G via tree edges. If y and y′ are weakly connected in
G|V \{x} then some node z of G|V \{x} must be a common ancestor of y and
y′ in all solved forms of G (Lemma 6.4), yet distinct from their mother x:
therefore z is an ancestor of x in all solved forms of G, in contradiction with
the assumption that x is free.

Proposition 6.6 and Lemma 6.7 imply the unsolvability of the dominance
graph in Figure 6.1, where the nodes x0 and y0 violate (F2) while all other
nodes violate (F1).

124

6.2 An Algorithm for Dominance Graphs

Sat(G):
forall weakly connected components G′ = (V ′; ⊳+, ⊳) of G:

choose a node x ∈ V ′ satisfying (F1) and (F2) in G′|V ′ else fail

Let y1, . . . , yn ∈ V
′ be all nodes s.t. x ⊳ yi.

call Sat(G|V ′−{x,y1,...,yn})

Figure 6.4: Checking solvability of dominance graphs.

6.2.2 The Main Step

The idea to construct a solved form of a given weakly connected dominance
graph G = (V ; ⊳+, ⊳) is to remove a node satisfying (F1) and (F2) together
with its neighborhood in ⊳, and to fail if there is no such node. We then
decompose the remaining digraph of G into weakly connected components,
and recursively solve these subgraphs. If successful it is easy to construct a
solved form of the whole graph.

Lemma 6.8. Let G be a non-empty dominance graph. Then the following
properties are equivalent:

1. The procedure Sat(G) in Fig. 6.4 fails for some nondeterministic choice.

2. G is not solvable.

3. The procedure Sat(G) fails for all nondeterministic choices.

Proof. (1 ⇒ 2) If Sat(G) fails for some nondeterministic choices, then G
contains a weakly connected subgraph G′ whose nodes all violate (F1) or
(F2). By Lemma 6.7, G′ has no free node and by Prop. 6.6 it is unsolvable.
Since any graph which has an unsolvable subgraph is unsolvable, G must be
unsolvable, too.

(2 ⇒ 3) Suppose Sat(G) is successful for some nondeterministic choices.
We will prove by induction on the size of G = (V ; ⊳+, ⊳) that G has a solved
form. If G is not weakly connected, then G′ is solvable by induction hypoth-
esis for all wcc’s G′ of G, and hence G is solvable by Prop. 6.3. Otherwise
G is weakly connected. Since the algorithm did not fail, there exists some
node x in G that satisfies (F1) and (F2). By induction hypothesis, the wcc’s
G|V −{x,y1,...,yn} have solved forms G′

1, . . . , G
′
k. For each G′

i, if G has a domi-
nance edge from yj to some node in G′

i, we attach G′
i with a dominance edge

under yj; otherwise, we attach it with a dominance edge under x. Using

125

Chapter 6. Normal Dominance Constraints

x

y

x

y

x
solve recursively:

choose y, return:

Figure 6.5: The algorithm in action.

(F1) and (F2) and the definition of dominance graphs we verify that (0) the
resulting graph G′ is a dominance graph, (1) G′ is a tree that (2) contains
all tree edges of G, and (3) refines ⊳+ ⊆ RG′ . Thus G′ is a solved form that
is more specific than G.

(3 ⇒ 1) Clearly, if Sat(G) fails for all nondeterministic choices then it
also fails for some nondeterministic choice.

The algorithm contains a nondeterministic choice statement. We will now
show that if we consider all different possibilities at this point all minimal
solved forms of a given dominance graph are enumerated. The enumeration
algorithm is given in Figure 6.6.

An example for a run of the algorithm is given in Figure 6.5. Procedure
Solve applied to the graph on the left first computes the weakly connected
components – there is only one. Then the procedure Solve con is applied
to this component. The only node satisfying (F1) and (F2) in the graph on
the left is x3. Note in particular that x0 violates (F2). The algorithm thus
removes the tree fragment of x3, i.e., nodes x3, x4, x5. The resulting graph,
drawn in the middle of Figure 6.5, has only one connected component, and
we again apply Solve. After several steps, a single solved form is returned
(it equals the graph in the middle again). For the final result, the algorithm
adds the previously removed tree fragment of x0 on top of this graph. A
dominance edge from x4 to x0 is inserted since x4 dominates x6 in G, and
since x6 belongs to the same component as x0 in the middle.

126

6.2 An Algorithm for Dominance Graphs

Theorem 6.9. The algorithm Solve of Figure 6.6 applied to a dominance
graph G produces all and only the minimal solved forms of G.

Proof. The algorithm reflects the construction of a solved form in the proof
of Lemma 6.8. By its recursive structure, the dominance graphs returned
by Solve con(G) are rooted trees, and therefore Solve(G) is a forest. It is
also easy to see that it is more specific than G and thus the algorithm only
produces solved forms of G. Different choices of free nodes lead to different
solved forms, and thus each solved form is produced at most once.

We only have to prove that the algorithm produces all minimal solved
forms of G. Since at each recursive step in Solve con we process a weakly-
connected graph, by Lemma 6.4 the algorithm must return a solved form that
is a tree; therefore some node x must be chosen to be top-most. If we want
to make this node the root of our solved form, we must insert the dominance
edges added in the last or next to last line of the algorithm. Therefore, we
only enumerate minimal solved forms of G. The node x is by definition free,
and thus the algorithm will eventually choose it. Thus we enumerate all
minimal solved forms of G.

Corollary 6.10. For a node of a solvable dominance graph, (F1) and (F2)
are necessary and sufficient conditions for freeness.

Proof. Free nodes satisfy (F1) and (F2) by Lemma 6.7. Conversely, let x be
a node of a dominance graph G satisfying (F1) and (F2). Then algorithm
Solve(G) calls Solve con(G) for the weakly connected component G′ of x,
and in Solve con(G) the node x can be chosen to construct a solved form of
G′. It will never fail since G is solvable (Lemma 6.8) and finally produces a
solved form of G′ (Theorem 6.9), which is a tree rooted at x.

In Section 6.2.3 we describe how to compute all nodes satisfying (F1) and
(F2) in time O(n+m) where n is the number of nodes and m the number
of edges in a dominance graph G. This will prove:

Theorem 6.11. The overall running time of the enumeration algorithm in
Figure 6.6 is in O(n · (n+m)) per solved form for solvable dominance graphs;
otherwise it returns “problem has no solution” in time O(n · (n+m)).

127

Chapter 6. Normal Dominance Constraints

Solve(G):
Let G1, . . . , Gk be the wcc’s of G = (V ; ⊳+, ⊳)
Let (Vi; ⊳

∗
i , ⊳i) be the result of Solve con(Gi)

return (V ; ∪k
i=1⊳

∗
i , ⊳)

Solve con(G):
precond: G = (V ; ⊳+, ⊳) is weakly connected
choose a node x satisfying (F1) and (F2) in G
else return “problem has no solution”
Let y1, . . . , yn be all nodes s.t. x ⊳ yi

Let G1, . . . , Gk be the weakly connected components of G|V −{x,y1,...,yn}

Let (Wj; ⊳
∗
j , ⊳j) be the result of Solve con(Gj), and xj ∈Wj its root

return (V ; ∪k
j=1 ⊳

∗
j ∪ ⊳

∗
k+1 ∪⊳

∗
k+2, ⊳), where

⊳∗k+1 =
{

(yi, xj) | ∃x
′ : (yi, x

′) ∈ ⊳+ ∧ x′ ∈Wj

}

,
⊳∗k+2 =

{

(x, xj) | ¬∃x
′ : (yi, x

′) ∈ ⊳+ ∧ x′ ∈Wj

}

Figure 6.6: Algorithm enumerating the solved forms of a dominance graph.

6.2.3 Testing Freeness Conditions

We now want to efficiently compute the set of nodes that satisfy the freeness
conditions (F1) and (F2). We have to check for each node u with in-degree
zero whether it has a pair of children (linked to u by outgoing tree edges)
that are weakly connected in the dominance graph of the constraint without
u. Thus the naive way would be to compute for all these nodes u the weakly-
connected components of the constraint graph without node u. This takes
quadratic time per node, and thus cubic time to compute all free nodes.

We now show how to compute the set of free nodes in linear time. A
(vertex-) biconnected component of a graph is a maximal subgraph that re-
mains connected when one of its nodes is deleted. Biconnected components
form a proper partition of the graph edges.

Proposition 6.12. A node x in a dominance graph G satisfies (F2) if and
only if all different tree edges (x, y) and (x, y′) of G lie in different biconnected
components of G.

Proof. If x does not have any children there is nothing to show. So first as-
sume that y and y′ are in the same weakly connected component of G|VG\{x}.
Then there is a path between y and y′ not using x and thus the edges (x, y)
and (x, y′) must be in the same biconnected component. Conversely, assume

128

6.3 Normal Dominance Constraints

that (x, y) and (x, y′) are in the same biconnected component. Then there is
a path from y to y′ not using x and therefore there still must be a path from
y to y′ after removing x.

A linear time algorithm that given a graph computes a mapping from
each edge to a unique element of its biconnected component can be found
in textbooks that cover graph algorithms. To compute the set of free nodes,
we use a control bit for each biconnected component. When processing a
candidate x, we can use the bit to check for each edge x ⊳ y whether we
already encountered another edge x⊳ y′ in the same biconnected component.
Since we spend only constant time on every tree edge, we have a linear time
procedure that finds the free roots.

In each step, the algorithm computes the weakly connected components
and biconnected components from scratch again. It is possible to further
improve the running time and to avoid these redundant computations using
dynamic graph connectivity algorithms, that allow to answer weak connec-
tivity and biconnectivity queries in amortized sublinear time [Holm et al.,
2001].

6.3 Normal Dominance Constraints

Dominance constraints were introduced in computational linguistics [Mar-
cus et al., 1983, Backofen et al., 1995], and they are logical descriptions of
trees that can talk about the parent and the ancestor relations between the
nodes of a tree. They have numerous applications e.g. in underspecified
semantics [Egg et al., 2001, Copestake et al., 1999, Bos, 1996], underspeci-
fied discourse [Gardent and Webber, 1998], and parsing with tree adjoining
grammar [Rogers and Vijay-Shanker, 1994]. Satisfiability of dominance con-
straints was proved to be NP-complete in [Koller et al., 1998]. This shed
doubts on the feasibility of dominance based applications. The doubts were
removed by [Althaus et al., 2003], who distinguished the language of nor-
mal dominance constraints which suffices for many applications and has a
polynomial time satisfiability problem.

One relevant problem for normal dominance constraints is to enumerate
solved forms, i.e., all trees satisfying a constraint. [Althaus et al., 2003] pre-
sented an enumeration algorithm whose running time is O(n4) per solved
form. This algorithm relies on an efficient satisfiability test. Thiel [Thiel,
2004b] improved this result to O(n3) by faster satisfiability testing. We show

129

Chapter 6. Normal Dominance Constraints

here that this problem can be solved by the algorithm described in the pre-
ceeding sections. We can enumerate all solved forms of a normal dominance
constraint in O(n2) per solved form, and thereby improve on the best previ-
ously known algorithm in efficiency. If we use decremental graph biconnec-
tivity algorithms we can achieve subquadratic running time, as mentioned
in Section 6.2.3. Our algorithm even applies to the extended language of
weakly normal dominance constraints introduced in [Bodirsky et al., 2004].
This improves the applicability of dominance constraints in the area of nat-
ural language semantics [Niehren and Thater, 2003].

6.3.1 Preliminaries

We start with a brief exposition of dominance constraints [Marcus et al.,
1983, Backofen et al., 1995], recall the notion of normality [Althaus et al.,
2003], and then introduce weak normality.

Let f, g range over the elements of some finite signature Σ of function sym-
bols with fixed arities and a, b over constants, i.e., function symbols of arity
0. A constructor tree over this signature is a ground term τ constructed from
the function symbols, as for instance f(g(h, i)). We identify ground terms
with trees that are rooted, edge-ordered, and node-labeled. See Figure 6.7 for
a graphical representation of the tree f(g(h, i)). Clearly, if Σ does not con-
tain a constant symbol, there is no such constructor tree. If Σ only contains
function symbols of arity zero and one, all these trees do not branch. Thus
we assume that Σ contains at least one constant and at least one function
symbol of arity larger than one.

f

g

h i

Figure 6.7: f(g(h, i))

Dominance constraints are logic formulae that describe constructor trees.
They can talk about the mother-child relation ⊳ between the nodes of a tree,
dominance ⊳∗ which is the reflexive ancestor relation, and inequality 6=. Let
x, y, z range over an infinite set of node variables. A dominance constraint φ

130

6.3 Normal Dominance Constraints

is then a conjunction of literals:

φ ::= x:f(y1, . . . , yn) | x ⊳∗ y | x6=y | φ′ ∧ φ′′

A solution of a dominance constraint consists of a constructor tree τ and a
variable assignment α to the nodes of τ . A labeling literal x:f(y1, . . . , yn) is
satisfied if α(x) is labeled by f in τ and has the children α(y1), . . . , α(yn) in
that order. A dominance literal x ⊳∗ y requires that α(x) dominates α(y) in
τ . An inequality literal x6=y requires α(x) and α(y) to be distinct.

The constraint of Figure 6.8 requires that the node values of x1 and x2

are sisters, and ancestors of the node value of y. This is clearly impossible
in a tree since the subtrees rooted in two sister nodes, the values of x1 and
x2, are necessarily disjoint and therefore cannot share a common node y.

Definition 6.13. A dominance constraint φ is normal if it satisfies:

1. (a) each variable of φ occurs at most once in the labeling literals of φ.
A variable yi is a hole of φ whenever it occurs at the right of some
labeling literal x:f(y1, . . . , yn) of φ; else it is a head of φ.

(b) each variable of φ occurs at least once in the labeling literals of φ.

2. if x and y are distinct heads in φ, x 6= y occurs in φ.

3. (a) if x ⊳∗ y occurs in φ, y is a head in φ.

(b) if x ⊳∗ y occurs in φ, x is a hole in φ.

A dominance constraint is weakly normal if it satisfies all above properties
except for 1.(b) and 3.(b).

Dropping 3.(b) allows head-to-head dominances which improves the ap-
plicability in natural language processing discussed in [Bodirsky et al., 2004,

f

yx

z

Figure 6.8: Unsatisfiable constraint: u:f(x, y) ∧ x ⊳∗ z ∧ y ⊳∗ z

131

Chapter 6. Normal Dominance Constraints

Niehren and Thater, 2003]. Dropping condition 1.(b) adds convenience. The
unsatisfiable constraint in Figure 6.8, for instance, has holes x1 and x2 and
heads x and y. Extended by the entailed inequality x6=y, this constraint
becomes weakly normal, but not normal as head y violates condition 1.(b).

Compactification. Condition 1.(a) could be relaxed in order to support
nested labelings, such as x1:f(y1, x2) ∧ x2:g(y2, y3) modeling the nested term
f(y1, g(y2, y3)). We do not do so here, as nested labeling can always be elimi-
nated by compactification: The idea is to replace x1:f(y1, x2)∧x2:g(y2, y3) by
x1:h(y1, y2, y3) where h is a new function symbol. In general, compactification
preserves (un)solvability.

We call φ well-formed if it does not contain any subconstraint of the form
x:a ∧ x ⊳∗ y. In the remainder of this chapter we assume well-formedness.
This does not restrict generality as every constraint can be made well-formed
in a linear time: suppose that φ contains a subconstraint x:a ∧ x ⊳∗ y. If x
is the same variable as y then we can remove x ⊳∗ y. Otherwise, x and y
are distinct heads of φ so that x6=y belongs to φ; this is unsatisfiable since x
must denote a leaf (which does not properly dominate any other node).

6.3.2 Reduction to Dominance Graphs

To every weakly normal dominance constraint we assign a unique dominance
graph G = (V ; ⊳, ⊳+). The nodes of the graph of φ are the variables of
the constraint φ. Labeling literals x:f(x1, . . . , xn) of φ contribute immedi-
ate dominance edges x ⊳ xi, and dominance literals contribute dominance
edges x ⊳+ y. Weak normality (Definition 6.13) ensures that the immediate
dominance edges form indeed a forest of height one.

Proposition 6.14. A well-formed weakly normal dominance constraint is
satisfiable if and only if its dominance graph is solvable.

Proof. From a solution of a dominance constraint, one can easily read off
a solved form for the corresponding dominance graph. It is sufficient to
ignore all nodes of solutions that are not values of variables (together with
all adjacent edges), and to replace vertices that correspond to both a head
and a tail variable by two vertices v1 ⊳

+ v2, where the tail variable denotes v1

and the head variable denotes v2. Vice versa, one can construct a solution
for a solved form of a weakly normal dominance constraint inductively top
down, as long as the constraint is well-formed, which is always possible since

132

6.3 Normal Dominance Constraints

Figure 6.9: A harmful cycle.

Σ contains a function symbol of arity larger than one and a constant symbol;
we need this to construct the tree such that it satisfies multiple outgoing
dominance edges.

6.3.3 A Duality Theorem

If we look at the dominance graphs of normal dominance constraints, rather
than the more powerful weakly normal dominance constraints, there is a
beautiful characterization of unsatisfiability, based on a duality theorem.
This duality theorem underlies the first polynomial time algorithm for normal
dominance constraints [Althaus et al., 2003]. We present this approach here
to show that it fails for weakly normal dominance constraints.

Let τ be a relational signature. In the same spirit as in [Nešetřil and
Tardif, 2000] we say that a homomorphism-duality is a pair (C, A), where A
is a τ -structure and C a class of τ -structures, such that every τ -structure B
homorphically maps to A if and only if there is no element C ∈ C such that
C homomorphically maps to B. Analogously, we can define a substructure-
duality. Consider for example the countable homogeneous complete bipartite
graph K2[I∞], and the set C of all cycles of odd length. Then (C, K2[I∞]) is
a substructure-duality.

Now we present a class of structures C with the signature {⊳, ⊳+} such that
(C,∆) is a substructure-duality. The members of C were called hypernormal
cycles in [Althaus et al., 2003], and harmful cycles in [Thiel, 2004a]. By a
cycle of a graph G = (V,E) we mean a connected two-regular subgraph.

Definition 6.15. An undirected cycle of a dominance graph G is called
harmful iff it does not contain nodes x, y, z such that y ⊳+ x and y ⊳+ z.

133

Chapter 6. Normal Dominance Constraints

Figure 6.10: A harmless example: a graph without a harmful cycle.

See Figure 6.9 for an example of a harmful cycle, and Figure 6.10 for a
solvable example with a graph that contains a cycle, but no harmful cycle.

Proposition 6.16. The dominance graph of a normal dominance constraint
is contained in ∆ if and only if it does not contain a harmful cycle.

The algorithm from [Althaus et al., 2003] is based on a procedure to test
whether a given graph contains a harmful cycle. A linear time procedure for
this test can be found in [Thiel, 2004b,Thiel, 2004a].

To demonstrate the difference of the algorithms we consider a natural
extension of our constraint language by means of disjointness literals. These
are part of various tree description languages [Egg et al., 2001,Backofen et al.,
1995, Cornell, 1994], and they were part of the input of the algorithms in
Chapter 5. To recall, a disjointness constraint x ⊥ y is satisfied by a solution
(F, α) if neither α(x) dominates α(y) nor α(y) dominates α(x) in the forest
F . We draw disjointness constraints in the constraint graph with dashed
two-headed arcs, as in Figure 5.2 on page 107. This graph is unsatisfiable,
since it does not contain a free node.

Our algorithm can easily be adapted to deal with this extended constraint
language. We now have the following additional property of a free node x:

(F3) x has no incident disjointness edge: ∀ y∈V : (x ⊥ y) /∈ Φ

The proofs can readily be adapted to show that, for satisfiable constraints,
(F1), (F2) and (F3) are again necessary and sufficient conditions for freeness.

In contrast, we do not know of any way to adapt the approach of [Althaus
et al., 2003] to deal also with disjointness constraint. To test unsatisfiability
via the presence of certain kinds of ‘harmful cycles’ in the constraint graph
does not naturally extend to graphs also containing disjointness edges. Ob-
serve that after deleting any edge in Figure 5.2 the constraint is satisfiable.

134

6.3 Normal Dominance Constraints

Problem [Althaus et al., 2003] [Thiel, 2004a] New n m N
Chain 2 0.128 0.055 0.0435 8 8 2
Chain 3 0.2136 0.0818 0.0422 12 13 5
Chain 4 0.292857 0.104286 0.040714 16 18 14
Chain 5 0.369524 0.131429 0.04 20 23 42
Chain 6 0.435379 0.149545 0.038409 24 28 132
Chain 7 0.498834 0.164336 0.036596 28 33 429
Chain 8 0.561818 0.18042 0.036363 32 38 1430
Chain 9 0.641094 0.214109 0.034348 36 43 4862
Chain 10 0.713027 0.234996 0.030304 40 48 16796
Chain 11 0.77379 0.249430 0.027268 44 53 58786
Chain 12 0.837788 0.263831 0.023364 48 58 208012
Chain 13 0.896218 0.277453 0.020016 52 63 742900
Chain 14 0.944325 0.292304 0.017992 56 68 2674440
Chain 15 0.307242 0.015540 60 73 9694845
H&S 0.342262 0.117262 0.03869 19 20 168

Table 6.1: Average time in milliseconds per solved form, for constraint graphs
with n nodes, m edges, and N solved forms

It seems that harmful cycles and disjointness constraints do not go together
well. It already seems impossible to adapt the duality for the dominance
graphs of weakly normal dominance constraints. This observation and an
illustrating example can be found in [Thiel, 2004a].

6.3.4 Implementation and Evaluation

We implemented the algorithm (without using the mentioned decremental
graph connectivity algorithms) and compared it to the best known previ-
ous implementations of [Althaus et al., 2003] and of [Thiel, 2004a]. All
implementations are done with C++/LEDA and were run on a Pentium-IV
2GHz. The software and the instances for experimentation are available at
http://ps.uni-sb.de/~smiele/dom-solving.

Table 6.1 reports on comparative benchmarks for a collection of proto-
typical examples in the application to scope underspecification. Chain k is a
dominance constraint that models a natural language sentence with k quan-
tifiers. Furthermore, we consider a famous example of Hobbs and Shieber
(H&S).

135

Chapter 6. Normal Dominance Constraints

6.4 Larger Tractable Fragments

In this section we explore how the definition of normality of dominance con-
straints can be relaxed such that the satisfiability problem remains tractable.

We did not give a formulation of normal dominance constraints as a ho-
momorphism problem. The reason is Condition 2 of Definition 6.13, where we
require that distinct variables denote distinct nodes in the template in nor-
mal dominance constraints. This is why we can only formulate the problem
as a substructure problem in the form wSub(Γ) for an appropriate relational
structure Γ. It will turn out that we can use the structure ∆ that we defined
in Section 2.7.

In this section we drop this distinctness requirement in the definition of
normality. The resulting consistency problem can then be formulated as a
constraint satisfaction problem CSP(Γ) for an appropriately chosen relational
structure Γ. Now several variables can denote the same vertex in Γ. To apply
the notion of freeness, we have to again consider sets of free nodes, as we
did in Chapter 5. We show that the problem is computationally equivalent
to a certain surjective homomorphism problem. We show that under cer-
tain assumptions on the signature Σ of the labeling constraints this problem
becomes tractable, and under other assumptions intractable.

If we drop Conditions 1.(b), 2, and 3.(b) in the definition of normality
(Definition 6.13 on page 131), the only remaining conditions on dominance
constraints are:

• each variable of φ occurs at most once in the labeling literals of φ. A
variable yi is a hole of φ whenever it occurs at the right of some labeling
literal x:f(y1, . . . , yn) of φ; else it is a head of φ;

• if x ⊳∗ y occurs in φ, y is a head in φ.

In this case the satisfiability problem for dominance constraints translates
to the following computational problem.

Σ-DOMINANCE-CONSTRAINT-SATISFIABILITY
INSTANCE: A finite set V variables, and a set of labeling constraints of the
form x0 : f(x1, . . . , xar(f)), where x0, . . . , xar(f) ∈ V and f ∈ Σ. We call
x1, . . . , xar(f) the holes of the labeling constraint. We are also given a set
of inequality constraints x1 6= x2, for x1, x2 ∈ V , and a set of dominance

136

6.4 Larger Tractable Fragments

f f g

f

g

Figure 6.11: An {f, g}-dominance graph (left side) and its solution (right
side). Both f -labeled vertices on the left are mapped to the root on the
right.

constraints x1 ⊳
∗ x2. For the dominance constraints we require that x2 is not

a hole of some labeling constraint.
QUESTION: Can we find a mapping α from V to a rooted forest F in which
some vertices are labeled by at most one label from Σ, such that
(i) for every constraint x1 ⊳

∗ x2 there is a directed path in F from α(x1) to
α(x2),
(ii) for every inequality constraint x1 6= x2 we have α(x1) 6= α(x2), and
(iii) for every labeling constraint x0 : f(x1, . . . , xar(f)) the vertices α(x1), . . . ,
α(xar(f)) are the distinct children of the f -labeled vertex α(x0), in this order?

For every Σ this problem is in CSP∗, and can be described as CSP(Γ)
for an appropriate ω-categorical template Γ – see the techniques to construct
tree-like structures in Section 2.7. Instances C of this constraint satisfac-
tion problem we call Σ-dominance-constraints. As before, the pair (F, α)
described in the problem definition is called a solution, and a Σ-dominance-
graph having a solution is called satisfiable.

Consider Figure 6.11. We write the labels of the nodes close to the node
of the shown {f, g}-dominance-graph. Note that there is no free node in
the sense of Section 6.2.1, and that it contains a harmful cycle in the sense
of Section 6.3.3. But still it is satisfiable since we can map both f -labeled
vertices to the root of the tree shown on the right hand side. Figure 6.12
shows an unsatisfiable constraint.

137

Chapter 6. Normal Dominance Constraints

f g

Figure 6.12: An unsatisfiable {f, g}-dominance graph.

Free sets of nodes. We again use the concept of freeness.

Definition 6.17. A set of nodes S of a Σ-dominance-constraint is called
free, if there exists a solution (F, α) where F is a tree and α maps all nodes
in S to the root of F .

As in Section 6.2.1 we see that a weakly connected Σ-dominance-graph
without a free set of nodes is unsatisfiable. To characterize freeness it will
be convenient to use the notion of the dominance graph G of a Σ-dominance
constraint C. This is defined exactly as in Section 6.3.1.

Proposition 6.18. Let C be a satisfiable Σ-dominance-constraint. Then S
is a free set of nodes if and only if S satisfies the following conditions:

(F1) There are no nodes x ∈ S, y /∈ S such that y ⊳∗ x is in C.

(F2) There are no nodes x, y ∈ S such that the constraint x 6= y is in C.

(F3) All nodes in S that are heads in labeling constraints are labeled with the
same label f ∈ Σ.

(F4) If x0 : f(x1, . . . , xar(f)) is a labeling constraint in C then the edges
x0xi and x0xj are in different biconnected components in the dominance
graph G of C, for 1 ≤ i 6= j ≤ ar(f).

With the same algorithmic approach as in Section 6.2 we thus reduced
dominance graph satisfiability to the problem of finding a free set of nodes.
However, for Σ-dominance-constraints this problem might be hard. We now
discuss for which Σ this problem is hard and for which Σ it is tractable.

138

6.5 Surjective Homomorphism Problems

A tractable case. First we give a polynomial time algorithm for a special
case: We assume that the input contains no inequalities, and that the signa-
ture only contains symbols of arity at most two. For each f ∈ Σ we define
the following auxiliary digraph. The vertices of the graph are the holes of
the labeling constraints x0 : f(x1, . . . , xar(f)) in C where x0 has indegree zero
in the dominance graph of C. Two vertices uv are joined by an arc if they
belong to the same labeling constraint, and u is to the left of v. Two vertices
are joined by arcs uv and vu if there is an undirected path from u to v in the
dominance graph avoiding f -labeled vertices. A set of free f -labeled nodes
corresponds to a directed nontrivial cut (i.e., a partition of the vertices into
two nontrivial sets such that all edges between the two parts are oriented in
the same way) in the auxiliary graph for f , and vice versa. Using depth-first
search it is easy to compute whether such a cut exists. These ideas can be
used to show the following:

Proposition 6.19. Let n be the number of nodes and m be the number of
constraints in a Σ-dominance-constraint without inequalities. If Σ contains
function symbols of arity at most two, then there is an algorithm that tests
satisfiability in time O(n(n+m)).

6.5 Surjective Homomorphism Problems

The problem of finding a directed nontrivial cut in the auxiliary digraph is
an example of a class of computational problems, which we call surjective
homomorphism problems. Let T be a fixed finite structure with relational
signature τ .

SCSP(T)
INSTANCE: A finite structure S of the same relational signature τ as T .
QUESTION: Is there a surjective homomorphism from S to T ?

As for constraint satisfaction, we call T the template and S an instance of
the problem SCSP(T). The above mentioned problem is thus the following
surjective homomorphism problem where the template is a single directed
edge.

If Σ contains function symbols of maximal arity k, the Σ-dominance-
constraint problem becomes equivalent to the surjective homomorphism prob-
lem with the following template Q = ({0, . . . , k−1};R) where R is defined

139

Chapter 6. Normal Dominance Constraints

as follows

R := {(0, 1, . . . , k − 1), (0, 0, . . . , 0), . . . , (k−1, . . . , k−1)} .

Conversely, it is easy to reduce every instance of the surjective homomor-
phism problem for Q to satisfiability of a Σ-dominance-constraint without
inequalities. We believe that the problem SCSP(Q) is NP-hard. Note that
Q is projective:

Proposition 6.20. The only polymorphisms of Q are constants or projec-
tions.

Proof. It is easy to see that the only unary polymorphisms of Q are the con-
stants and the identity. We will now prove that there cannot be any essential
polymorphism of Q (i.e. a function depending on at least two arguments).
Suppose otherwise there is such an essential function f and wlog. f depends
on at least the first two arguments. Then define g(x, y) = f(x, y, c, ...c) for
some constant c. Consider g∗(x) = g(x, x), which is either a constant d or
the identity.

In the first case, we directly see that all the functions hp(x) = g(x, p) and
h′q(x) = g(q, x) are also the constant d, except for hd and h′d. But then all
other function values of g must be d as well, a contradiction to the essentiality
of g.

In the latter case, where g∗(x) = x for all x, consider the function hd(y) =
g(d, y) (the choice of d is arbitrary). Again hd is either constant or the
identity. If it is constant d then all functions he(x) = g(x, e) except for e = d
have to be the identity. But then we see that g only depends on the first
variable, a contradiction to the essentiality of g. If hd(y) = g(d, y) is also the
identity, then all functions he(x) = g(x, e) have to be constants, and we see
that g only depends on its second variable, a contradiction to the essentiality
of g.

Combining Theorem 4.4 and Lemma 3.3, we see that the constraint sat-
isfaction problem for the template

Q′ = ({0, . . . , k−1};R,P1, . . . , Pk)

where Pi = {i} is the unary singleton relation containing element i only, is
NP-hard, by reduction of 3-colorability. For surjective homomorphism prob-
lems, however, there is no such general theory, and the complexity remains
open.

140

6.5 Surjective Homomorphism Problems

The constraint satisfaction problem CSP(Q′) for Q′ can simulate the sur-
jective homomorphism problem SCSP(Q) for Q. If the skeleton graph1 of
an instance S to SCSP(Q) consists of k or more connected components, the
problem is trivial and obviously there exists a desired labeling. Otherwise,
for each edge in S, impose singleton relations on the vertices of the edge
consistently with their ordering and solve the corresponding constraint sat-
isfaction problem for Q′. A valid solution of this algorithm is also a solution
for the surjective problem. On the other hand, if there was no solution for
none of the edges in S, clearly there is no surjective solution.

Describing unordered trees. As another example for the connection be-
tween constraint satisfaction problems for tree-like templates and surjective
homomorphism problems, consider the following variant of the Σ-dominance-
constraint problem. We relax the third condition and do no longer require
that the vertices x1, . . . , xar(f) of a labeling constraint x0 : f(x1, . . . , xar(f))
are mapped to the children of α(x0) in this order. Thus we only describe
unordered trees. Consider again Figure 6.12. This constraint now becomes
satisfiable.

For unordered trees we can in fact delineate the border between tractabil-
ity and intractability. The problem is NP-hard if Σ contains a symbol of arity
larger than three, and tractable in the case where Σ only contains symbols
of arity at most three.

As in the tractable case for binary signatures, we solve a surjective ho-
momorphism problem for each relation symbol f ∈ Σ. If f is k-ary, the
surjective homomorphism problem we have to solve is defined as follows.
We use the template T = ({0, . . . , k−1};R) where R consists of all tuples
with only distinct elements and all k-tuples with only identical elements.
Note that for k = 3 this is equivalent to saying that (v0, v1, v2) ∈ R iff
v0 + v1 + v2 ≡ 0 mod 3. If SCSP(T) is tractable for all relation symbols
f ∈ Σ, then we can solve the unordered Σ-dominance-constraint problem
analogously to Section 6.4.

Proposition 6.21. Let Tk = {{0, 1, . . . , k};R} be the relational structure
described above. Then SCSP(Tk) is NP-hard for k ≥ 4, and tractable for
k ≤ 3.

1Sometimes also called the shadow graph or the Gaifman graph of S, i.e., the graph on
the nodes of S where we put an edge between between nodes x and y if there exists an
entry of a relation that contains both x and y.

141

Chapter 6. Normal Dominance Constraints

Proof. For k = 1 or k = 2 the problem is trivial. For larger k, we can view
an instance of SCSP(Tk) as a k-uniform hypergraph. If the skeleton of the
hypergraph has k components, the problem has a trivial solution, since we
can assign the same color to all vertices of one component, and different
colors to the k different components,and thereby found a homomorphism
that uses all the k colors. If the skeleton of the hypergraph has less than
k components, every surjective homomorphism has to color the vertices of
some hyperedge with k colors.

For k = 3 we can think of the nodes in the hypergraph are variables
denoting values in Z3. A hyperedge {v0, v1, v2} in the instance is considered
as an equation v0 + v1 + v2 ≡ 0 mod 3. Now we select some hyperedge
{v0, v1, v2}, and set the value of v0 to 0, v1 to 1, and v2 to 2, and solve
the resulting equation system, e.g., with Gaussian elimination. If there is
a solution, we found a three-coloring that uses all colors. If there is no
solution, we try the same with a different hyperedge. Suppose there is a
surjective homomorphism. As already mentioned, this homomorphism colors
the vertices of some hyperedge {v0, v1, v2} with k colors. By symmetry of the
colors, we can assume without loss of generality that the homomorphism
maps v0 to 0, v1 to 1, and v2 to 2. Since the algorithm will eventually choose
this edge, it finds a surjective homomorphism.

Then we prove that the problem is hard for k = 4 (for larger k we just use
the first k entries of the tuples in R and can use the some proof). We reduce
3-colorability to the corresponding surjective homomorphism problem. Let
S be an instance of CSP(K3). Without loss of generality we can assume
that the skeleton graph of S is connected. We define an instance S ′ of
SCSP(T4), defined on the vertices of S and a polynomial number of additional
vertices. In the trivial case that S does not contain any edge, we let S ′ be
any satisfiable instance to the surjective homomorphism problem. Otherwise
arbitrarily order the edges e1, . . . , em of S. Let (xy, uv) be a pair or edges,
chosen from among the pairs (ei, ei+1) and (em, e1), and insert the following
gadget G, where a0, . . . , a9 are new vertices for each pair of edges in S ′. The
gadget is also illustrated in Figure 6.13.

{{a0, a1, x, x3}, {a1, a2, a3, a4}, {a4, u, a6, v},

{x, a3, y, a5}, {y, a5, a7, a8}, {a5, a6, a8, a9}}

We can see that if α(x) = α(y) in a solution α of G, then all nodes of the
gadget have to be mapped to the same vertex, and α(u) = α(v). Moreover
we can exhaustively check that if we assign two different values to u and v,
then we can still consistently assign any two distinct values to x and y and
still extend this mapping to a solution of G.

142

6.5 Surjective Homomorphism Problems

a_0 a_1 a_2

a_4

a_6

a_3

a_7

a_5

a_9

x

y

a_8

u

v

Figure 6.13: The gadget for the simulation of 3-colorability with SCSP(T4).

We claim that S ′ is a satisfiable instance of SCSP(T4) if and only if S is
3-colorable. If S is 3-colorable, we can consistently satisfy all hyperedges in
G according to the above remark and find a surjective homomorphism from
S ′ to T4. Now let S be not 3-colorable, and let α be an arbitrary mapping
from S to three vertices. By construction the mapping α corresponds to
a partial mapping from S ′ to T4. We show that this mapping can not be
extended to a surjective homomorphism from S ′ to T4. Since α was chosen
arbitrary this suffices for the claim. Since S is not 3-colorable there is an
edge xy such that α(x) = α(y). Because the skeleton of S is connected, and
since all of the edges in S ′ are strongly connected by the gadget G, all nodes
in S ′ have to be mapped to the same vertex. Thus no surjective solution
exists.

143

Chapter 7

Conclusion and Outlook

Constraint satisfaction problems with ω-categorical templates cover several
classes of constraint satisfaction problems that were investigated in the liter-
ature, for example several tree description languages, the fragments of Allen’s
interval algebra, and all problems in monotone monadic SNP. If the template
of the constraint satisfaction problem is finitely constrained, we can place
the corresponding class of constraint satisfaction problems between mono-
tone monadic SNP and monotone SNP, two classes introduced in [Feder and
Vardi, 1999] to study the complexity of constraint satisfaction problems with
finite templates. In the first part of the thesis we demonstrated that several
techniques for constraint satisfaction problems with finite templates also ap-
ply to ω-categorical templates. In the second part we discussed some concrete
constraint satisfaction problems, motivated in computational linguistics and
bio-informatics, and developed a new type of graph algorithm, which was not
yet used for constraint satisfaction with finite templates.

The algebraic approach of constraint satisfaction. To study the com-
plexity of a constraint satisfaction problem CSP(Γ) it is useful to know
which relations have a primitive positive definition over Γ. In Chapter 4 we
showed that p.p.-definability in an ω-categorical structure Γ is characterized
by the clone of polymorphisms of Γ. Between primitive positive definability
and first-order definability we find several intermediate levels of definability,
for instance positive, existential, and positive existential definability. On ω-
categorical structures, they can again be characterized by closure conditions
under certain sets of polymorphisms - for the three classes mentioned above
it suffices to look at certain unary polymorphisms, i.e., endomorphisms.

Chapter 7. Conclusion and Outlook

The remainder of this chapter is organized as follows: we first give in Sec-
tion 7.1 a summary on various preservation results for ω-categorical struc-
tures mentioned in this thesis, since they played a crucial rôle for a system-
atic approach to the constraint satisfaction problem on countable templates.
Some of them are direct consequences from general results in model theory
(Los-Tarski, Lyndon), others are new. A general picture was given in the lit-
erature only for the special case of finite structures: [Kalužnin and Pöschel,
1979] distinguish between relational clones, weak Krasner clones (also called
Krasner algebras of the first kind), and Krasner clones (also called Kras-
ner algebras of the second kind), and characterize all of them by closure
conditions. For ω-categorical structures the Galois-connections that relate
definability with closure conditions remain valid, but now we find several
intermediate levels of definability.

In Section 7.2 we discuss our approach to consider ω-categorical templates
for constraint satisfaction problems with templates over an infinite domain.
We list some of the results that hold for ω-categorical structures, but do not
hold in general.

In Section 7.3 several lines of future research are mentioned. Finally, in
Section 7.4, we collect interesting open questions related to the topics dis-
cussed here, most of which were already mentioned in the previous chapters.
Some of them are well-known open problems, others are new.

7.1 Summary of Closure Conditions

If we look at the various preservation theorems for ω-categorical structures,
a general picture suggests itself. Let C be a subset of the logical connectives
{∀,∨,¬, 6=} that can be used together with ∃ and ∧ in a definition of a logical
formula (where we always assume that the formula is written in negation
normal form). Then the corresponding closure condition can be found by
looking at all polymorphisms subject to the following conditions:

1. If ∀ is in C, then we only consider surjective polymorphisms.

2. If ∨ is in C, then we only consider unary polymorphisms.

3. If 6= is in C, then we only consider injective polymorphisms.

4. If ¬ is in C, then we only consider strong polymorphisms.

146

7.2 Discussion

This gives rise to 16 Galois-connections. For finite templates, several of them
collapse. Such collapses can be proven on both sides: For example surjec-
tive endomorphisms are isomorphisms on finite structures. Equivalently we
observe that every first-order formula including equality can be defined in
negation normal form using the connectives ∀, ∃,∧,∨ only. For ω-categorical
structures all the Galois-connections are different.

Note that what looks canonical is not yet proven in a systemtic way, but
consists of several single results and proofs for each Galois-connection. The
proofs are different, and some of them part of classical model theory, for
instance the theorems of Los-Tarski, Lyndon, and Ryll-Nardzewski. Some
others were only found recently, for instance the correspondence of definabil-
ity with the connectives {∃, ∀,∧} to all surjective polymorphisms for finite
structures in [Boerner et al., 2003], and also the correspondence of defin-
ability with the connectives {∃,∧} to all polymorphisms for ω-categorical
structures in [Bodirsky and Nešetřil, 2003], described in Section 4.5.

Name Syntactic Closure Sect. Related concept
connectives condition or theorem

Primitive Positive ∃,∧ Polymorphisms 4.5 Projectivity
Existential Positive ∃,∧,∨ Endomorphisms 2.8 Cores
Existential ∃,∧,∨,¬ Injective strong 2.4 Model-compl,

Endomorphisms Los-Tarski
Positive ∃, ∀,∧,∨ Surjective 2.8 Lyndon

Endomorphisms
First-order ∃, ∀,∧,∨,¬ Automorphisms 4.4 Ryll-Nardzewski

7.2 Discussion

We believe that ω-categoricity is an important concept if we want to system-
atically study constraint satisfaction problems for templates with an infinite
domain. One can view ω-categoricity as the abscence of non-standard models
of the first-order theory of a template. Every structure can be made homo-
geneous by expanding the structure with a k-ary relation for every orbit of
k-tuples, for each k. To make an ω-categorical structure Γ homogeneous,
it suffices to expand with finitely many first-order definable k-ary relations,
for each k. We can thus descibe Γ by (the amalgamation class of) its finite
induced substructures in this expanded signature.

147

Chapter 7. Conclusion and Outlook

For infinite templates it is in general not clear how to represent solutions
of a given instance S. If the template is ω-categorical, we have a convenient
way to specify a solution. The reason is that a solution is uniquely charac-
terized by its first-order formulas, up to automorphisms of the template.

We now give a summary of the points in this thesis where the assumption
of ω-categoricity of a structure Γ was essential. All of the following facts fail
for arbitrary relational structures.

1. CSP(Γ1) ⊆ CSP(Γ2) if and only if there is a homomorphism from Γ1

to Γ2. (Proposition 2.24 on page 50)

2. Every constraint satisfaction problem with an ω-categorical template
Γ of width (k, l) is solved by the canonical Datalog program of width
(k, l).
(Theorem 3.12 on page 78)

3. 〈Γ〉pp = Inv(Pol(Γ)). (Theorem 4.9 on page 94)

4. 〈Γ〉fo = Inv(Aut(Γ)). (Theorem 4.7 on page 92)

5. The existence of a near-unanimity function implies bounded strict width.
(Theorem 4.14 on page 98)

6. Adding singleton relations to an ω-categorical core does not change the
computational complexity of the corresponding constraint satisfaction
problem. (Theorem 4.20 on page 101)

7.3 Outlook

The polymorphisms of the semilinear order Λ. The constraint satis-
faction problem for the ω-categorical structure (Λ; ⊳+,⊥) is tractable. There
are many first-order definable relations in Λ that are not primitive positive
definable. This implies that there are nontrivial polymorphisms. We would
like to characterize the applicability of the algorithmic techniques in Chap-
ters 5 and 6 in terms of these polymorphisms.

Primitive positive interpretations. In Section 3.2 in Garey and John-
son’s Book on the theory of NP-hardness three techniques of proving NP-
hardness of a computational problem are mentioned: restriction, local re-
placement, and component design. The second type of reductions is a very

148

7.3 Outlook

powerful concept to study a problem CSP(Γ). By Lemma 3.3 on page 59
the concept of primitive positive definability captures the technique of local
replacement for proving hardness.

It would be interesting to fully characterize polynomial time reductions
between constraint satisfaction problems by a certain relationship between
templates. Clearly, primitive positive definability is not enough – this can
already be seen for finite templates. It is easy to see that also for infinite
templates Γ and Γ′, if Γ has a primitive positive interpretation in Γ′ then
the problem CSP(Γ) reduces in polynomial time to CSP(Γ′). An example
that shows that the converse is not true is S(2) and the ternary betweenness
relation on Q. The problem Betweenness reduces to CSP(S(2)), but there
is no primitive positive interpretation (without additional parameters) that
allows to define Q. However, there is a primitive positive definition of the
betweenness relation of a set that is definable with a single parameter – see
also Section 3.2.

We give another example where even a finite number of parameters does
not suffice to define the domain of the simulated template. Consider the
Fräıssé-limit of the leaves of the Boron trees described in Section 2.7, where
we fixed a point (a so-called C-set in [Adeleke and Neumann, 1985]). Let
us call this structure C, where we use the signature containing the ternary
relation ‘:’ only, defined in Section 2.7. The constraint satisfaction prob-
lem CSP(C) can be solved by CSP(Λ), using primitive positive definitions.
However, there is no primitive positive interpretation with finitely many pa-
rameters of C in Λ. It seems that we need an adjustment in how we can
define the universe of the template that is simulated by another template.

Allen’s interval algebra. We already mentioned that the fragments of
Allen’s interval algebra exhibit a complexity dichotomy. We would like to
generalize this dichotomy to all constraint satisfaction problems with a tem-
plate that has an interpretation over the dense linear order. We believe that
hardness of such a constraint satisfaction problem can always be proven by a
simulation of the problem Betweenness, and we conjecture a dichotomy: In
fact we think that all other cases can be solved by a Datalog program.

149

Chapter 7. Conclusion and Outlook

7.4 List of Open Problems

There are plenty of open problems and questions, and we are hopeful that for
some of them solutions and answers are not out of reach. They are grouped
into questions from model theory, finite model theory, and computational
problems.

7.4.1 Model Theory and Combinatorics

We already wrote that algebraic techniques and cores might be applied to
simplify the technical and intricate proofs in the classification of the tractable
fragments of Allen’s interval algebra [Jeavons et al., 2003]. The result might
them be generalized for the following more general problem.

Question 1. Which structures interpretable in the dense linear order of the
rational numbers (Q;<) have tractable constraint satisfaction problems?

We can often turn a mathematical classification or characterization ques-
tion, such as Question 1, into a concrete and formal question, if we pose it as
a decision problem. Usually the solution to such a decision problem requires
the mathematical knowledge that we are interested in. For instance we could
ask instead of Question 1: Is it decidable whether a structure interpretable
in Q has a tractable constraint satisfaction problem (under the assumption
that P 6= NP)?

Correspondingly we have the same problem for the semilinear order Λ:

Question 2. Which structures interpretable in the ω-categorical semilinear
order Λ (defined in Section 2.7) have tractable constraint satisfaction prob-
lems?

For Λ we presented in Chapter 5 efficient algorithms for the constraint
satisfaction problem for Λ with various choices of the relational signature.
We do not yet know a criterion for tractability that is formulated in terms
of polymorphisms.

Question 3. What are the polymorphisms of Λ that are responsible for the
existence of the polynomial time algorithms?

To answer the question whether the model checking problem of a given
monotone SNP formula can be described as a constraint satisfaction problem

150

7.4 List of Open Problems

with a countable homogeneous structure, the following problem posed by
Cherlin [Cherlin, 1998] is of importance. Some partial results for graphs,
and forbidden subgraphs instead of forbidden induced substructures, can be
found in [Cherlin et al., 1999]. Let τ be a relational signature and N a finite
set of finite τ -structures.

Question 4 (Cherlin). When does there exist an ω-categorical structure
that is universal for Forb(N)? When is Forb(N) an amalgamation class?

We do not know an example of a monotone SNP sentence Φ that closed
under disjoint sums, that can not be stated as a constraint satisfaction prob-
lem with a finitely constrained ω-categorical template. We combine this
oberservation with Theorem 3.10, and ask the following question.

Question 5. Let Q be a problem that is closed under disjoint sums. Is it
true that Q is in MSNP if and only if it is contained in CSP∗?

The following question has a positive answer for finite templates, and is
open for countable homogeneous templates of finitely axiomatizable age. It
is already open for special ω-categorical structures, for instance for Λ.

Question 6. Let Γ be an ω-categorical structure. Given a first-order formula
ϕ over τ , is it decidable whether ϕ is on Γ equivalent to a primitive positive
formula?

The following question is already open for finite Γ; see the paragraph on
infinite signatures in Section 3.1.

Question 7. Is there a problem in CSP∗ which is tractable, but not globally
tractable?

Random ℵ0-categorical Structures. For which sets N of forbidden sub-
graphs has the class Forb(N) a first-order 0− 1-law? For the classes defined
by forbidden complete graphs Kn this is for instance the case [Kolaitis et al.,
1987], and the almost sure theory of the class of Kn-free graphs is even ω-
categorical. We would like to know:

Question 8. For which sets N of finite graphs (or, more generally, finite
structures over a finite signature) the almost-sure theory of Forb(N) is ω-
categorical?

151

Chapter 7. Conclusion and Outlook

7.4.2 Constraint Satisfaction and Datalog

Other questions concern the power of Datalog for constraint satisfaction. We
already mentioned the following question in Section 3.4.

Question 9. Let N be a finite set of finite structures, such that Forb(N) is
an amalgamation class, and let Γ be its Fräıssé-limit. Is it decidable whether
CSP(Γ) has width k, or bounded width? Is this decidable for a given reduct
Γ′ of Γ?

The above problem is already open for finite Γ. It would also be inter-
esting to learn more about the difference of bounded and of strict bounded
width. All known constraint satisfaction problems of bounded width either
have strict bounded width or width 2, and the following problem was in [Feder
and Vardi, 1993] asked in a similar form for finite structures:

Question 10. Is there a constraint satisfaction problem which has bounded
width k for k ≥ 3, but does not have bounded strict width or width 2?

Also the following problem was asked for finite structures Γ in [Feder and
Vardi, 1999].

Question 11. Given a finite set of finite forbidden substructures of a homo-
geneous relational structure Γ, is it decidable whether CSP(Γ) has bounded
strict width?

Finally we return to the computational problem of Consistent-genealogy.
We showed in Section 3.4 that this problem does not have width (2, 3). Chap-
ter 5, however, contains a polynomial time algorithm for that problem. We
ask:

Question 12. Does Consistent genealogy, i.e., CSP((Λ;<,�)), have bounded
width?

7.4.3 Computational Questions

One class of tractable constraint satisfaction problems we mentioned only
briefly: the class of constraint satisfaction problems with a template having
a Malt’sev operation. For finite templates, such problems can be solved by
group theoretic algorithms [Bulatov, 2002a].

152

7.4 List of Open Problems

Question 13. Let Γ be an ω-categorical structure with a finite relational
signature, where Pol(Γ) contains a Malt’sev operation. Is CSP(Γ) tractable?

We mentioned the G-free coloring problem in Section 3.3. This is gen-
eralized to the G-free coloring problem in [Cowen and Hechler, 2003]. They
ask: for which sets of graphs G is the G-free coloring problem NP-hard? This
is a special case of the following question:

Question 14. For which MMSNP(6=)-sentences on graphs the model-checking
problem is NP-hard?

We know that the dichotomy holds for CSP(H), if H is a finite graph. It
could even be the case that the dichotomy holds for CSP(H), where H is an
arbitrary infinite graph.

Question 15. Let H be an infinite graph. Is it true that CSP(H) is either
tractable or NP-hard?

Surjective homomorphism problems. We introduced the class of sur-
jective homomorphism problems because several constraint satisfaction prob-
lems with tree-like ω-categorical template turned out to be computationally
equivalent to such a problem. The class of surjective constraint satisfaction
problems itself appears to be an interesting class of computational problems.
We ask:

Question 16. Is every surjective homomorphism problem computationally
equivalent to a problem in CSP∗?

Correspondingly to the primary classification question of [Feder and Vardi,
1999] for constraint satisfaction we can ask the following:

Question 17. Which finite structures have tractable surjective homomor-
phism problems?

The answer to this question seems to be harder as compared to CSP,
since hardness proofs tend to be tedious here. We even find single instances
of unknown computational complexity in this class.

3-PARTITION
INSTANCE: A ternary relation R on a vertex set V .

153

Chapter 7. Conclusion and Outlook

QUESTION: Is there a partition of V into three non-empty sets V1, V2, V3

such that for every tuple (x, y, z) ∈ R either x, y, z lie in the same part, or
x1 ∈ V1, x2 ∈ V2, x3 ∈ V3?

This problem is hard if we can specify in the instance that certain vertices
have to be in different parts; see Section 6.5.

Question 18. Is the problem 3-partition NP-hard?

We believe that this is indeed the case, as well as for the following problem.

NO-RAINBOW-COLORING
INSTANCE: A hypergraph H .
QUESTION: Is there a nontrivial coloring of the vertex set such that no edge
is rainbow-colored, at least two vertices of each edge edge is assigned the same
color?

This is open already for 3-uniform hypergraphs. If we could settle this
question, it would solve one of the remaining open problems in a classification
of computational problems in [Kral et al., 2002].

Question 19. Is the problem No-rainbow-coloring NP-hard?

154

Bibliography

[Abiteboul et al., 1995] Abiteboul, S., Hull, R., and Vianu, V. (1995). Foun-
dations of Databases. Addison Wesley.

[Achlioptas, 1997] Achlioptas, D. (1997). The complexity of G-free coloura-
bility. Discrete Mathematics, 165:21–30.

[Adeleke and Neumann, 1985] Adeleke, S. and Neumann, P. M. (1985).
Structure of partially ordered sets with transitive automorphism groups.
AMS Memoir, 57(334).

[Aho et al., 1981] Aho, A., Sagiv, Y., Szymanski, T., and Ullman, J. (1981).
Inferring a tree from lowest common ancestors with an application to
the optimization of relational expressions. SIAM Journal on Computing,
10(3):405–421.

[Allen, 1983] Allen, J. F. (1983). Maintaining knowledge about temporal
intervals. Communications of the ACM, 26(11):832–843.

[Althaus et al., 2001] Althaus, E., Duchier, D., Koller, A., Mehlhorn, K.,
Niehren, J., and Thiel, S. (2001). An efficient algorithm for the configura-
tion problem of dominance graphs. In Proceedings of the 12th ACM-SIAM
Symposium on Discrete Algorithms (SODA’01), pages 815–824, Washing-
ton, DC.

[Althaus et al., 2003] Althaus, E., Duchier, D., Koller, A., Mehlhorn, K.,
Niehren, J., and Thiel, S. (2003). An efficient graph algorithm for domi-
nance constraints. Journal of Algorithms, pages 194–219.

[Baader and Schulz, 2001] Baader, F. and Schulz, K. (2001). Combining con-
straint solving. H. Comon, C. March, and R. Treinen, editors, Constraints
in Computational Logics.

Bibliography

[Backofen et al., 1995] Backofen, R., Rogers, J., and Vijay-Shanker, K.
(1995). A first-order axiomatization of the theory of finite trees. Jour-
nal of Logic, Language, and Information, 4:5–39.

[Bauslaugh, 1995] Bauslaugh, B. (1995). Core-like properties of infinite
graphs and structures. Disc. Math., 138(1):101–111.

[Bauslaugh, 1996] Bauslaugh, B. (1996). Cores and compactness of infinite
directed graphs. Journal of Combinatorial Theory, Series B, 68(2):255–
276.

[Bodirsky et al., 2004] Bodirsky, M., Duchier, D., Niehren, J., and Miele, S.
(2004). A new algorithm for normal dominance constraints. In Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms (SODA’04), pages
59–67, New Orleans.

[Bodirsky and Kutz, 2002] Bodirsky, M. and Kutz, M. (2002). Pure domi-
nance constraints. In Proceedings of the 19th Annual Symposium on Theo-
retical Aspects of Computer Science (STACS’02), LNCS 2285, pages 287–
298, Antibes - Juan le Pins.

[Bodirsky and Nešetřil, 2003] Bodirsky, M. and Nešetřil, J. (2003). Con-
straint satisfaction with countable homogeneous templates. In Proceedings
of Computer Science Logic (CSL’03), pages 44–57, Vienna.

[Bodnarčuk et al., 1969] Bodnarčuk, V. G., Kalužnin, L. A., Kotov, V. N.,
and Romov, B. A. (1969). Galois theory for post algebras, part I and II.
Cybernetics, 5:243–539.

[Boerner et al., 2003] Boerner, F., Bulatov, A., Krokhin, A., and Jeavons, P.
(2003). Quantified constraints: Algorithms and complexity. In Proceedings
of 17th International Workshop Computer Science Logic (CSL’03), LNCS
2803, pages 58–70.

[Bos, 1996] Bos, J. (1996). Predicate logic unplugged. In Proceedings of the
10th Amsterdam Colloquium, pages 133–143.

[Bryant, 1997] Bryant, D. (1997). Building trees, hunting for trees, and com-
paring trees. PhD-thesis at the University of Canterbury.

[Bulatov, 2002a] Bulatov, A. (2002a). Malt’sev constraints are tractable.
Technical report PRG-RR-02-05, Oxford University.

156

Bibliography

[Bulatov, 2003] Bulatov, A. (2003). Tractable conservative constraint satis-
faction problems. In Proceedings of 18th Symposium on Logig in Computer
Science (LICS’03), pages 321–330.

[Bulatov and Dalmau, 2003] Bulatov, A. and Dalmau, V. (2003). Towards
a dichotomy theorem for the counting constraint satisfaction problem.
In Annual Symposium on Foundations of Computer Science (FOCS’03),
pages 562–574.

[Bulatov and Grohe, 2004] Bulatov, A. and Grohe, M. (2004). The complex-
ity of partition functions. Preprint.

[Bulatov et al., 2000] Bulatov, A., Krokhin, A., and Jeavons, P. (2000).
Constraint satisfaction problems and finite algebras. In Proceedings
of International Colloquium on Automata, Languages and Programming
(ICALP’00), LNCS 1853, pages 272–282.

[Bulatov et al., 2001] Bulatov, A., Krokhin, A., and Jeavons, P. (2001). The
complexity of maximal constraint languages. In Proceedings of the 33rd
Annual ACM Symposium on Theory of Computing (STOC’01), pages 667–
674.

[Bulatov et al., 2003] Bulatov, A., Krokhin, A., and Jeavons, P. G. (2003).
Classifying the complexity of constraints using finite algebras. Submitted.

[Bulatov, 2002b] Bulatov, A. A. (2002b). A dichotomy theorem for con-
straints on a three-element set. In Annual Symposium on Foundations of
Computer Science (FOCS’02), pages 649–658.

[Bürckert and Nebel, 1995] Bürckert, H.-J. and Nebel, B. (1995). Reasoning
about temporal relations: A maximal tractable subclass of Allen’s interval
algebra. Journal of the ACM, 42(1):43–66.

[Cameron, 1981] Cameron, P. J. (1981). Orbits of permutation groups on
unordered sets, II. Journal of the London Mathematical Society, 2:249–
264.

[Cameron, 1990] Cameron, P. J. (1990). Oligomorphic Permutation Groups.
Cambridge University Press.

[Cameron, 1996] Cameron, P. J. (1996). The random graph. R. L. Graham
and J. Nešetřil, Editors, The Mathematics of Paul Erdõs.

157

Bibliography

[Chandra and Harel, 1982] Chandra, A. and Harel, D. (1982). Structure and
complexity of relational queries. Journal of Computer and System Sci-
ences, 25:99–128.

[Chang and Keisler, 1977] Chang, C. and Keisler, H. (1977). Model The-
ory. volume 73 of Studies in Logic and the Foundations of Mathematics.
Elsevier, Amsterdam.

[Chaudhuri and Vardi, 1992] Chaudhuri, S. and Vardi, M. Y. (1992). On the
equivalence of recursive and nonrecursive datalog programs. In Proceedings
of the Symposium on Principles of Database Systems (PODS’92), pages
107–116.

[Cherlin, 1987] Cherlin, G. (1987). Homogeneous digraphs I. The imprimi-
tive case. Logic Colloquium 1985.

[Cherlin, 1998] Cherlin, G. (1998). The classification of countable homoge-
neous directed graphs and countable homogeneous n-tournaments. AMS
Memoir, 131(621).

[Cherlin and Lachlan, 1986] Cherlin, G. and Lachlan, A. H. (1986). Stable
finitely homogeneous structures. Transactions of the AMS, 296:815–850.

[Cherlin et al., 1999] Cherlin, G., Shelah, S., and Shi, N. (1999). Univer-
sal graphs with forbidden subgraphs and algebraic closure. Advances in
Applied Mathematics, 22:454–491.

[Chor and Sudan, 1998] Chor, B. and Sudan, M. (1998). A geometric
approach to betweenness. SIAM Journal on Discrete Mathematics,
11(4):511–523.

[Cohen et al., 2004] Cohen, D., Cooper, M., Jeavons, P., and Krokhin, A. A.
(2004). Identifying efficiently solvable cases of max csp. In Proceedings of
the 21st Annual Symposium on Theoretical Aspects of Computer Science
(STACS’04), LNCS 2285, pages 152–163.

[Cooper, 1989] Cooper, M. (1989). An optimal k-consistency algorithm. Ar-
tificial Intelligence, 41(1):89–95.

[Copestake et al., 1999] Copestake, A., Flickinger, D., Sag, I., and Pollard,
C. (1999). Minimal recursion semantics: An introduction. CSLI Draft.

[Cornell, 1994] Cornell, T. (1994). On determining the consistency of par-
tial descriptions of trees. In 32nd Annual Meeting of the Association for
Computational Linguistics, pages 163–170.

158

Bibliography

[Cowen and Hechler, 2003] Cowen, R. and Hechler, S. H. (2003). G-free col-
orability and the boolean prime ideal theorem. Preprint.

[Creignou et al., 2001] Creignou, N., Khanna, S., and Sudan, M. (2001).
Complexity classifications of boolean constraint satisfaction problems.
Monographs on Discrete Mathematics and Applications, 7.

[Dalmau, 2000a] Dalmau, V. (2000a). Computational complexity of prob-
lems over generalized formulas. PhD-thesis at the Departament de Llen-
guatges i Sistemes Informátics at the Universitat Politécnica de Catalunya.

[Dalmau, 2000b] Dalmau, V. (2000b). A new tractable class of constraint
satisfaction problems. Presented at the 6th International Symposium on
Mathematics and Artificial Intelligence.

[Dalmau et al., 2002] Dalmau, V., Kolaitis, P. G., and Vardi, M. Y. (2002).
Constraint satisfaction, bounded treewidth, and finite-variable logics. In
Constraint Programming (CP’02), pages 310–326.

[Dalmau and Pearson, 1999] Dalmau, V. and Pearson, J. (1999). Closure
functions and width 1 problems. Principles and Practice of Constraint
Programming (CP’99), pages 159–173.

[Datar et al., 2003] Datar, M., Feder, T., Gionis, A., Motwani, R., and Pan-
igrahy, R. (2003). A combinotorial algorithm for MAX CSP. Information
Processing Letters, 85(6):307–315.

[Dechter, 1992] Dechter, R. (1992). From local to global consistency. Artifi-
cial Intelligence, 55(1):87–107.

[Dechter, 2003] Dechter, R. (2003). Constraint Processing. Morgan Kauf-
mann.

[Dechter and van Beek, 1997] Dechter, R. and van Beek, P. (1997). Local
and global relational consistency. Journal of Theoretical Computer Science,
173(1):283–308.

[Demetrescu and Italiano, 2000] Demetrescu, C. and Italiano, G. F. (2000).
Fully dynamic transitive closure: breaking through the O(n2) barrier. In
Proceedings of the 41st IEEE Symposium on the Foundations of Computing
(STOC’00), pages 381–389.

[Diestel, 1997] Diestel, R. (1997). Graph Theory. Springer–Verlag, New
York.

159

Bibliography

[Droste, 1985] Droste, M. (1985). Structure of partially ordered sets with
transitive automorphism groups. AMS Memoir, 57(334).

[Droste et al., 1991] Droste, M., Holland, W., and Macpherson, D. (1991).
Automorphism groups of homogeneous semilinear orders: normal sub-
groups and commutators. Canadian Journal of Mathematics, 43:721–737.

[Duchier and Thater, 1999] Duchier, D. and Thater, S. (1999). Parsing with
tree descriptions: a constraint-based approach. In Sixth International
Workshop on Natural Language Understanding and Logic Programming
(NLULP’99), pages 17–32.

[Dyer and Greenhill, 2000] Dyer, M. E. and Greenhill, C. S. (2000). The
complexity of counting graph homomorphisms. Random Structures and
Algorithms, 17:260–289.

[Ebbinghaus and Flum, 1999] Ebbinghaus, H.-D. and Flum, J. (1999). Fi-
nite Model Theory. Springer. 2nd edition.

[Egg et al., 2001] Egg, M., Koller, A., and Niehren, J. (2001). The Con-
straint Language for Lambda Structures. Journal of Logic, Language, and
Information, 10:457–485.

[Erdös, 1959] Erdös, P. (1959). Graph theory and probability. Canad J.
Math., 11:34–38.

[Fagin, 1976] Fagin, R. (1976). Probabilities on finite models. Journal of
Symbolic Logic, 41:50–58.

[Feder and Kolaitis, 2004] Feder, T. and Kolaitis, P. (2004). Closures and
dichotomies for quantified constraints. Preprint.

[Feder et al., 2002] Feder, T., Madelaine, F., and Stewart, I. (2002). Di-
chotomies for classes of homomorphism problems involving unary func-
tions. To appear in Theoretical Computer Science.

[Feder and Vardi, 1993] Feder, T. and Vardi, M. (1993). Monotone monadic
snp and constraint satisfaction. In Proceedings of the Symposium on The-
ory of Computing (STOC’93), pages 612–622.

[Feder and Vardi, 1999] Feder, T. and Vardi, M. (1999). The computational
structure of monotone monadic SNP and constraint satisfaction: A study
through Datalog and group theory. SIAM Journal on Computing, 28:57–
104.

160

Bibliography

[Feder and Vardi, 2003] Feder, T. and Vardi, M. (2003). Homomorphism
closed vs. existential positive. In Symposium on Logic in Computer Science
(LICS’03), pages 311–320.

[Fräıssé, 1986] Fräıssé, R. (1986). Theory of Relations. North-Holland.

[Freuder, 1978] Freuder, E. C. (1978). Synthesizing constraint expressions.
Communications of the ACM, 21(11):958–966.

[Freuder, 1982] Freuder, E. C. (1982). A sufficient condition for backtrack-
free search. Journal of the Association for Computing Machinery,
29(1):24–32.

[Freuder, 1990] Freuder, E. C. (1990). Complexity of k-tree structured con-
straint satisfaction problems. In Proceedings of the 8th National Confer-
ence on Artificial Intelligence, pages 4–9.

[Gardent and Webber, 1998] Gardent, C. and Webber, B. (1998). Describing
discourse semantics. In Proceedings of the 4th TAG+ Workshop, Philadel-
phia. University of Pennsylvania.

[Garey and Johnson, 1978] Garey, M. and Johnson, D. (1978). A Guide to
NP-completeness. CSLI Press, Stanford.

[Geiger, 1968] Geiger, D. (1968). Closed systems of functions and predicates.
Pacific Journal of Mathematics, 27:95–100.

[Grohe, 2003] Grohe, M. (2003). The complexity of homomorphism and con-
straint satisfaction problems seen from the other side. In Proceedings of the
44th IEEE Symposium on Foundations of Comupter Science (FOCS’03).

[Gupta and Nishimura, 1996] Gupta, A. and Nishimura, N. (1996). Charac-
terizing the complexity of subgraph isomorphism for graphs of bounded
path-width. In Proceedings of the 13th Annual Symposium on Theoretical
Aspects of Computer Science (STACS’96), pages 453–464.

[Gurevich, 1984] Gurevich, Y. (1984). Toward logic tailored for computa-
tional complexity. Computation and Proof Theory, pages 175–216.

[Gusfield, 1997] Gusfield, D. (1997). Algorithms on strings, trees, and se-
quences. Computer Science and Computational Biology. Cambridge Uni-
versity Press, New York.

[Hell and Nešetřil, 1990] Hell, P. and Nešetřil, J. (1990). On the complexity
of H-coloring. Journal of Combinatorial Theory, Series B, 48:92–110.

161

Bibliography

[Henson, 1972] Henson, C. W. (1972). Countable homogeneous relational
systems and categorical theories. Journal of Symbolic Logic, 37:494–500.

[Henzinger and King, 1995] Henzinger, M. and King, V. (1995). Fully dy-
namic biconnectivity and transitive closure. In Proceedings 36th Sympo-
sium on Foundations of Computer Science (FOCS’95), pages 664–672.

[Henzinger et al., 1996] Henzinger, M., King, V., and Warnow, T. (1996).
Combining constraint solving. In Proceedings of the 7th Symposium on
Discrete Algorithms (SODA’96), pages 333–340.

[Hodges, 1993] Hodges, W. (1993). Model theory. Cambridge University
Press.

[Hodges, 1997] Hodges, W. (1997). A shorter model theory. Cambridge Uni-
versity Press.

[Holm et al., 2001] Holm, J., de Lichtenberg, K., and Thorup, M. (2001).
Poly-logarithmic deterministic fully-dynamic algorithms for connectivity,
minimum spanning tree, 2-edge, and biconnectivity. Journal of the ACM,
48(4):723–760.

[Immerman, 1998] Immerman, N. (1998). Descriptive Complexity. Graduate
Texts in Computer Science, Springer.

[Jeavons et al., 1998] Jeavons, P., Cohen, D., and Cooper, M. (1998). Con-
straints, consistency and closure. Artificial Intelligence, 101(1-2):251–265.

[Jeavons et al., 1997] Jeavons, P., Cohen, D., and Gyssens, M. (1997). Clo-
sure properties of constraints. Journal of the ACM, 44(4):527–548.

[Jeavons et al., 2003] Jeavons, P., Jonsson, P., and Krokhin, A. A. (2003).
Reasoning about temporal relations: The tractable subalgebras of allen’s
interval algebra. Journal of the ACM, 50(5):591–640.

[Jeavons, 1998] Jeavons, P. G. (1998). On the algebraic structure of combi-
natorial problems. Theoretical Computer Science, 200:185–204.

[Kalužnin and Pöschel, 1979] Kalužnin, L. A. and Pöschel, R. (1979).
Funktionen- und Relationenalgebren. Deutscher Verlag der Wis-
senschaften.

[Kolaitis et al., 1987] Kolaitis, P. G., Prömel, H. J., and Rothschild, B. L.
(1987). Kl+1-free graphs: asymptotic structure and a 0−1 law. Transac-
tions of the AMS, 303:637–671.

162

Bibliography

[Kolaitis and Vardi, 1992] Kolaitis, P. G. and Vardi, M. Y. (1992). 0-1 laws
and decision problems for fragments of second order logic. Journal of
Information and Computation, 98:258–294.

[Kolaitis and Vardi, 1995] Kolaitis, P. G. and Vardi, M. Y. (1995). On the
expressive power of Datalog: Tools and a case study. Journal of Computer
and System Sciences, 51(1):110–134.

[Kolaitis and Vardi, 1998] Kolaitis, P. G. and Vardi, M. Y. (1998).
Conjunctive-query containment and constraint satisfaction. In Proceedings
of the 17th ACM SIGACT SIGMOD SIGART Symposium on Principles
of Database Systems (PODS’98), pages 205–213.

[Kolaitis and Vardi, 2000] Kolaitis, P. G. and Vardi, M. Y. (2000). A game-
theoretic approach to constraint satisfaction. In Proceedings of the 17th
National Conference on Artificial Intelligence, pages 175–181.

[Koller et al., 2000] Koller, A., Mehlhorn, K., and Niehren, J. (2000). A
polynomial-time fragment of dominance constraints. In Proceedings of
the 38th Annual Meeting of the Association for Computational Linguistics
(ACL’00), pages 368–375, Hong Kong.

[Koller et al., 1998] Koller, A., Niehren, J., and Treinen, R. (1998). Dom-
inance constraints: Algorithms and complexity. In Third International
Conference on Logical Aspects of Computational Linguistics (LACL’98),
pages 106–125, Grenoble, France.

[Kral et al., 2002] Kral, D., Kratochvil, J., Proskurowski, A., and Voss, H.-J.
(2002). Mixed hypertrees. ITI Series, 048.

[Krasner, 1945] Krasner, M. (1945). Généralisation et analogues de la théorie
de Galois. Congrés de la Victoire de l’Ass. France avancement des sciences,
pages 54–58.

[Krasner, 1968] Krasner, M. (1968). Endothéorie de Galois abstraite.
Séminaire P. Dubreil (Algébre et Théorie des Nombres), 1(6).

[Kumar, 1992] Kumar, V. (1992). Algorithms for constraints satisfaction
problems: A survey. The AI Magazine, by the AAAI, 13(1):32–44.

[Lachlan, 1984] Lachlan, A. H. (1984). Countable homogeneous tourna-
ments. Transactions of the AMS, 284:431–461.

163

Bibliography

[Lachlan, 1996] Lachlan, A. H. (1996). Stable finitely homogeneous struc-
tures: A survey. In Algebraic Model Theory, NATO ASI Series, volume
496, pages 145–159.

[Lachlan and Woodrow, 1980] Lachlan, A. H. and Woodrow, R. (1980).
Countable ultrahomogeneous undirected graphs. Transactions of the AMS,
262(1):51–94.

[Ladner, 1975] Ladner, R. E. (1975). On the structure of polynomial time
reducibility. Journal of the ACM, 22(1):155–171.

[Larose and Tardif, 2001] Larose, B. and Tardif, C. (2001). Strongly rigid
graphs and projectivity. Multiple-Valued Logic 7, pages 339–361.

[Latka, 1994] Latka, B. (1994). Finitely constrained classes of homogeneous
directed graphs. J. of Symb. Logic, 59(1):124–139.

[Lincoln and Mitchell, 1992] Lincoln, P. and Mitchell, J. C. (1992). Algo-
rithmic aspects of type inference with subtypes. In Proceedings of the 19th
Symposium on Principles of Programming Languages, pages 293–304.

[Lippel, 2001] Lippel, D. (2001). Finitely axiomatizable omega-categorical
theories. PhD-dissertation, University of California, Berkeley.

[Luczak and Nešetřil, 2004] Luczak, T. and Nešetřil, J. (2004). A note on
projective graphs. J. Graph Theory, 47:81–86.

[Mackworth and Freuder, 1993] Mackworth, A. K. and Freuder, E. C.
(1993). The complexity of constraint satisfaction revisited. Artificial In-
telligence, 59(1-2):57–62.

[Madelaine and Stewart, 1999] Madelaine, F. and Stewart, I. A. (1999).
Some problems not definable using structure homomorphisms. MCS tech-
nical report. University of Leicester, 99(18).

[Marcus et al., 1983] Marcus, M. P., Hindle, D., and Fleck, M. M. (1983).
D-theory: Talking about talking about trees. In Proceedings of the 21st An-
nual Meeting of the Association for Computational Linguistics (ACL’83),
pages 129–136.

[Matijasevich, 1993] Matijasevich, Y. V. (1993). Hilbert’s Tenth Problem.
MIT Press.

164

Bibliography

[Mayr et al., 1998] Mayr, E. W., Prömel, H. J., and A. Steger, H. (1998).
Lectures on Proof Verification and Approximation Algorithms. Lecture
Notes in Computer Science Vol. 1367, Springer Verlag.

[Montanari, 1974] Montanari, U. (1974). Networks of constraints: Funda-
mental properties and applications to picture processing. Information Sci-
ences, 7:95–132.

[Nešetřil and Tardif, 2000] Nešetřil, J. and Tardif, C. (2000). Duality theo-
rems for finite structures (characterising gaps and good characterisations).
Journal of Combininatorial Theory Series B, 80:80–97.

[Ng et al., 2000] Ng, M. P., Steel, M., and Wormald, N. C. (2000). The
difficulty of constructing a leaf-labelled tree including or avoiding given
subtrees. Discrete Applied Mathematics, 98:227–235.

[Niehren and Thater, 2003] Niehren, J. and Thater, S. (2003). Bridging the
gap between underspecification formalisms: Minimal recursion semantics
as dominance constraints. In 41st Meeting of the Association for Compu-
tational Linguistics, pages 367–374.

[Papadimitriou and Yannakakis, 1991] Papadimitriou, C. H. and Yan-
nakakis, M. (1991). Optimization, approximation, and complexity classes.
Journal of Computer and System Sciences, 43:425–440.

[Paterson and Wegman, 1978] Paterson, M. S. and Wegman, M. N. (1978).
Linear unification. Journal of Computer and System Sciences, 16:158–167.

[Pinkal, 1996] Pinkal, M. (1996). Radical Underspecification. In Proceedings
of the 10th Amsterdam Colloquium, pages 587–606.

[Pöschel, 1980] Pöschel, R. (1980). A general galois theory for operations
and relations and concrete characterization of related algebraic structures.
Technical Report of Akademie der Wissenschaften der DDR (Berlin).

[Rogers and Shanker, 1992] Rogers, J. and Shanker, V. (1992). Reasoning
with descriptions of trees. In Proceedings of the 30th Meeting of the Asso-
ciation for Computational Linguistics, pages 72–80.

[Rogers and Vijay-Shanker, 1994] Rogers, J. and Vijay-Shanker, K. (1994).
Obtaining trees from their descriptions: An application to tree-adjoining
grammars. Computational Intelligence, 10:401–421.

[Rosen, 2002] Rosen, E. (2002). Some aspects of model theory and finite
structures. Bulletin of Symbolic Logic, 8(3):380 – 403.

165

Bibliography

[Rosenberg, 1986] Rosenberg, I. G. (1986). Minimal clones I: the five types.
Lectures in Universal Algebra (Proc. Conf. Szeged, 1983), Colloq. Math.
Soc. J. Bolyai, 43:405–427.

[Rothmaler, 1995] Rothmaler, P. (1995). Einführung in die Modelltheorie.
Spectrum Akademischer Verlag.

[Schaeffer, 1978] Schaeffer, T. J. (1978). The complexity of satisfiability
problems. In Proceedings of the 10th Symposium on Theory of Computing
(STOC’78), pages 216–226.

[Schmerl, 1979] Schmerl, J. H. (1979). Countable homogeneous partially
ordered sets. Algebra Universalis, 9:317–321.

[Sleator and Tarjan, 1983] Sleator, D. and Tarjan, R. (1983). A data struc-
ture for dynamic trees. Journal of Computer and System Sciences, 26:362–
390.

[Steel, 1992] Steel, M. (1992). The complexity of reconstructing trees from
qualitative charaters and subtrees. Journal of Classification, 9:91–116.

[Szabó, 1978] Szabó, L. (1978). Concrete representation of relational struc-
tures of universal algebras. Acta Sci. Math. (Szeged), 40:175–184.

[Szendrei, 1986] Szendrei, A. (1986). Clones in universal Algebra. Seminaire
de mathematiques superieures. Les Presses de L’Universite de Montreal.

[Tait, 1959] Tait, W. (1959). A counterexample to a conjecture of Scott and
Suppes. Journal of Symbolic Logic, 24(1):15–16.

[Thiel, 2004a] Thiel, S. (2004a). Efficient algorithms for constraint prop-
agation and for processing tree descriptions. Dissertation, Max-Planck
Institut, Saarbrücken.

[Thiel, 2004b] Thiel, S. (2004b). A linear time algorithm for the configu-
ration problem of dominance graphs. Submitted. Max-Planck Institut,
Saarbrücken.

[Thorup, 1999] Thorup, M. (1999). Decremental dynamic connectivity. Jour-
nal of Algorithms, 33(2):229–243.

166

Erklärung

Hiermit erkläre ich, daß

• ich die vorliegende Dissertationsschrift selbständig und ohne unerlaubte
Hilfe verfaßt habe;

• ich mich nicht bereits anderwärts um einen Doktorgrad beworben habe
oder einen solchen besitze;

• mir die Promotionsordnung der Mathematisch-Naturwissenschaftlichen
Fakultät II der Humboldt-Universität zu Berlin bekannt ist.

Manuel Bodirsky

Manuel Bodirsky
Curriculum Vitae

Geboren am 30. Dezember 1976 in Freiburg im Breisgau, Deutschland.

Dienstadresse: Humboldt-Universität zu Berlin, Institut für Informatik,
Raum 3.410, Rudower Chausse 25, Berlin-Adlershof

Postanschrift: Unter den Linden 6, 10099 Berlin, Deutschland

Email: bodirsky@informatik.hu-berlin.de

Tel./Fax: +49 30 2093 3827/3191

Forschungsinteressen

Constraint Satisfaction, Logik in der Informatik, endliche und unendliche
Modelltheorie, deskriptive Komplexität, kombinatorische Spiele.
Zufällige Strukturen und deren effiziente Erzeugung, Komplexität von Zähl-
problemen, randomisierte Algorithmen. Planare Strukturen.

Ausbildung

2001 - 2004: Promotionsstudent der Informatik an der Humboldt-
Universität zu Berlin im europäischen Graduiertenkolleg
Combinatorics, Geometry and Computation (Thema der
Arbeit ist “Constraint Satisfaction with Infinite Domains”;
Betreuer ist Prof. Hans Jürgen Prömel).

1997 - 2001: Diplom in Informatik, Universität des Saarlandes (Note
1,0; Thema der Dimplomarbeit: “Beta Reduction Con-
straints”, betreut von Prof. Gerd Smolka und Dr. Joachim
Niehren).

1996 - 1997: Zivildienst am Institut für medizinische Informatik,
Freiburg.

1989 - 1996: Abitur am Martin Schongauer Gymnasium, Breisach.
(Durchschnittsnote 1,2; Leistungskurse Mathematik und
Physik).

Forschungstätigkeiten

2001 - : Arbeitsgruppe Algorithmen und Komplexität, Institut für
Informatik, Humboldt-Universität zu Berlin.

2002 - 2003: Sechsmonatiger Gastaufenthalt an der Karlsuniversität
Prag, Tschechien.

1998 - 2000: Wissenschaftliche Hilftkraft im Chorus Projekt, Son-
derforschungsbereich 378 Resourcenadaptive Kognitive
Prozesse, Universität des Saarlandes.

1997 - 1998: Wissenschaftliche Hilfskraft am DFKI Saarbrücken, Pro-
jekt Flag, Prof. Hans Uszkoreit.

Lehrtätigkeiten

SS 2003: Seminar The Strange Logic of Random Graphs, auf En-
glisch, zusammen mit Mihyun Kang.

WS 2000: Tutor der Vorlesung Algorithmen und Datenstrukturen,
Prof. Kurt Mehlhorn.

SS 2000: Tutor der Vorlesung Logik, Semantik und Verifikation,
Prof. Gerd Smolka.

WS 1999: Tutor der Vorlesung Formale Sprachen, Prof. Günter Hotz.

SS 1999: Tutor der Vorlesung Algorithmen und Datenstrukturen,
Prof. Raimund Seidel.

Förderung und Stipendien

2001 - 2004: Teilnehmer des Graduiertenkollgs Combinatorics, Geom-
etry, and Computation, unterstützt durch die Deutsche
Forschungsgemeinschaft (DFG).

1997 - 2001: Stipendiat der Studienstiftung des Deutschen Volkes.

Preise und Auszeichnungen

2001: Günter Hotz Medaille für bestes Diplom in Informatik an
der Universität des Saarlandes.

1996: Bundessieger im Bundeswettbewerb Informatik.

Mitgliedschaften

Deutsche Mathematiker Vereinigung (DMV)
DMV Subject Group Discrete Mathematics
Gesellschaft für Informatik e.V. (GI)
Bundeswettbewerb Informatik, Alumni und Freunde e.V.
Freunde der Saarbrücker Informatik e.V.

