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Abstract

We show that it is not possible to approximate the minimum Steiner tree problem
within 1 + 1

162 unless RP = NP . The currently best known lower bound is 1 + 1
400 .

The reduction is from H̊astad’s nonapproximability result for maximum satisfiability
of linear equation modulo 2. The improvement on the nonapproximability ratio is
mainly based on the fact that our reduction does not use variable gadgets. This idea
was introduced by Papadimitriou and Vempala.

Key words: Minimum Steiner tree, Approximability, Gadget reduction, Lower
bounds.

1 Introduction

Suppose that we are given a graph G = (V, E), a metric given by edge
weights c : E → R, and a set of required vertices T ⊂ V , the terminals. The
minimum Steiner tree problem consists of finding a subtree of G of minimum
weight that spans all vertices in T .

The Steiner tree problem in graphs has obvious applications in the design
of various communications, distributions and transportation systems. For ex-
ample the wire routing phase in physical VLSI–design can be formulated as
a Steiner tree problem [12]. Another type of problem that can be solved with
the help of Steiner trees is the computation of phylogenetic trees in biology.
For more examples see [10].

1 Graduate School “Algorithmische Diskrete Mathematik”, supported by Deutsche
Forschungsgemeinschaft, grant 219/3.



The Steiner tree problem is well known to be NP -complete even in the
very special cases of Euclidian or rectilinear metric. Arora [1] has shown that
Euclidian and rectilinear Steiner tree problems admit a polynomial time ap-
proximation scheme, i.e. they can be approximated in polynomial time up to
a factor of 1 + ǫ for any constant ǫ > 0. In contrast to these two special cases
the Steiner tree problems is known to be APX-complete [2,5] which means
that unless P = NP there does not exist a polynomial time approximation
scheme for this problem.

During the last ten years a lot of work has been done on designing approx-
imation algorithms for the Steiner tree problem [18,4,16,11,9]. The currently
best approximation ratio is 1.550 and is due to Robins and Zelikovsky [17].
For more details on approximation algorithms for the Steiner tree problem see
[7].

But very little is known about lower bounds. The presently best known lower
bound is 1.0025 and follows from a nonapproximability result for V ERTEX-
COV ER in graphs of bounded degree [3]. We improve this bound to 1.0062.

The improvement on the nonapproximability ratio is mainly based on the
fact that our reduction does not use variable gadgets. This idea was introduced
by Papadimitriou and Vempala [15]. They prove that the (symmetric) travel-
ing salesman problem cannot be approximated within 129

128
, unless P = NP .

We reduce from H̊astad’s nonapproximability result for maximum satisfia-
bility of linear equations modulo 2 with three variables per equation, MAX-
E3-LIN -2, [8]. Our construction uses two types of gadgets. There is one “equa-
tion gadgets” for each equation in the MAX-E3-LIN -2 instance. We also have
“edge gadgets” which connect the nodes of the equation gadgets corresponding
to literals x and x̄ in a special way that is induced by some d-regular bipartite
graph. We prove that if this graph is an expander then every optimal Steiner
tree for this instance has a special structure which allows us to derive a le-
gal truth assignment for the MAX-E3-LIN -2 instance (without relying on
variable gadgets).

Our nonapproximability ratio only depends on the parameters of the above
mentioned expanders, namely the degree d and the expansion coefficient c. In
[19] the existence of such graphs is proved by counting arguments. We adapt
the proof of Sarnak’s result [19] for our purpose. Stronger expanders would
automatically lead to a better nonapproximability ratio.

The rest of the paper is organized as follows: In Section 2 we describe the
reduction in detail and in Section 3 we prove our main theorem. The existence
of the expander graphs needed in the reduction is proved in Section 4. In the
last Section we shortly discuss some ideas how to possibly improve our main
result.
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Fig. 1. The gadgets

2 The Reduction

2.1 The Graph

We reduce from H̊astad’s nonapproximability result for maximum satisfia-
bility of linear equations modulo 2 with three variables per equation, MAX-
E3-LIN -2, [8]: Given a set of n linear equations over Z2, with exactly k
variables in each equation, find the maximal number of equations that can be
satisfied by any assignment.

As already mentioned in [15] we can state H̊astad’s result [8] as follows:

Theorem 1 [8] For every ǫ > 0 there is an integer k such that it is NP -
hard to tell whether a set of n linear equations modulo 2 with three variables
per equation and with 2k occurrences of each variable has an assignment that
satisfies n(1 − ǫ) equations, or has no assignment that satisfies more than
n(1

2
+ ǫ) equations.

We start with such an instance of MAX-E3-LIN -2, namely a set of n
linear equations modulo 2, where each equation has exactly three literals and
with exactly 2k occurrences of each variable. We may also assume that each
variable appears exactly k times negated and k times unnegated and also that
all equations are of the form x+y+z = 1. The latter condition can be enforced
by flipping some literals, the former by adding three copies of each equation
with all pairs of literals negated. (e.g. x + y + z = 0 may be transformed to
x + y + z̄ = 1 and we add x̄ + ȳ + z̄ = 1, x̄ + y + z = 1 and x + ȳ + z = 1.)

We construct an instance for the Steiner tree problem as follows:

The graph consists of several gadgets. For each equation there is an equation
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Fig. 2. edge gadgets of variable x after identification of the terminals

gadget (see Figure 1(a)). The nodes drawn as boxes are terminals. All equation
gadgets share the node 0. The bold edges labeled with x, y and z correspond
to the variables in an equation of the form x + y + z = 1 and are not really
edges of the graph but represent whole substructures as shown in Figure 1(b).
(The edge weights and the value of d in the edge gadget will be specified later.)

As in [15] we do not use “variable gadgets” to assure a correct assignment
of the literals and their opposite. The construction will enforce this implicitly.
By assumption each variable appears exactly k times negated and k times
unnegated. Consider one variable, say x. In our graph we then have k edge
gadgets that correspond to the occurrences of x and k edge gadgets for the
occurrences of x̄. We now connect these edge gadgets in the following way:
Suppose we are given a bipartite d-regular graph H = (A ∪ B, E), |A| =
|B| = k. Now identify a terminal in the i-th edge gadget corresponding to an
occurrence of x with a terminal in the j-th edge gadget corresponding to a
occurrence of x̄ iff the i-th vertex in A is connected to the j-th vertex in B
(1 ≤ i, j ≤ k) (see Figure 2).

We will see in what follows that the only thing we need to know about H
is that it is an expander, i.e. with V (H) = A∪B, |A| = |B| = k we have that
for all S ⊂ A with |S| ≤ k

2
: |Γ(S)| ≥ c|S| for some c > 1 (where Γ(S) denotes

the set of neighbours of S).

If we now define the edge weights appropriately, our graph will have some
useful properties. First, a truth assignment for our MAX-E3-LIN -2 instance
directly yields a solution for the Steiner tree instance which has a “nice” struc-
ture: All subtrees of the resulting Steiner tree which correspond to satisfied
equations have the same length ls and a special structure. Also the subtrees
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which correspond to the equations that are not satisfied have some special
structure and the same length lns. Additionally we have that lns = ls + const.
By this the length of the Steiner tree reflects the number of equations that
are not satisfied.

Second, we will see that we always may assume that an optimal Steiner tree
has a simple special structure which makes it easy to define the corresponding
truth assignment.

2.2 The Edge Weights

We have already defined the graph for the Steiner tree instance. Let us
now define the edge weights. First, we want to guarantee that in any optimal
Steiner tree all the terminals in the edge gadgets have degree 1. We define the
weight of any edge in any edge gadget which is incident to a terminal to be
b. Then it suffices to have that the weight of a path (0, u•, v•) and (v•, w•, t•)
is at most b. (Whenever we write u•, w• etc. this always means ux, wx etc.
for all variables x. To indicate that the variables should be distinct we write
c(t•, t⋆) etc. for c(tx, ty) for all variables x and y with x 6= y.)

Suppose now we are given a truth assignment to our MAX-E3-LIN -2 in-
stance. We define the corresponding Steiner tree as follows: Consider the nodes
v• in the edge gadgets corresponding to variables with assigned truth value 1
and connect them to all their adjacent terminals. Now connect all these ver-
tices v• to the remaining nodes in the equation gadgets to get a Steiner tree
(using optimal subtrees in the equation gadgets). If we consider an equation
gadget there are four possible cases: None, one, two or three of the nodes v•
have to be connected to the tree. The cases with one or three of these nodes
correspond to equations that are satisfied. We want them to have partial solu-
tions (subtrees of the equation gadgets) of the same weight ls. If none or two
nodes have to be connected to the tree, the corresponding equations were not
satisfied. The subtrees in these equation gadgets should also have the same
weight, lns.

For technical reasons which will become clear during the proof of the main
theorem we add up the edge weights of the edge gadgets and those of the
equation gadgets separately. If we now define c(0, u•) = a, c(u•, v•) = b − a,
c(v•, w•) = 0 and c(w•, t•) = b we have fulfilled the above mentioned condition.
Furthermore, connecting a vertex v• to the tree always costs b and without
loss of generality we may assume that connecting v• to the tree is the same as
connecting u• to the tree (that is to pay a in the equation gadget and b− a in
the edge gadget). Let us now define the remaining edge weights: c(0, t•) = f ,
where f = 2a + b, c(s, t•) = e where e = 2

3
(a + b) and c(t•, t⋆) = f (see Figure

3).

It is easy to find the optimal partial solution in all the four cases. They
are displayed in Figure 4. The subtrees corresponding to satisfied equations
(one or three variables have truth value 1) have weight 3a+3b (Figure 4, right
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hand side), those corresponding to equations that are not satisfied have weight
4a+3b (Figure 4, left hand side). Remember that we count the weights in the
edge gadgets separately.

The way these numbers a and b are related will become clear at the end of
the proof of the main theorem. We will also see how d, the number of terminals
in the edge gadgets, has to be chosen.

We have now fully described our Steiner tree instance and prove our main
theorem.

3 Proof of the Main Theorem

Theorem 2 No polynomial time approximation algorithm for the minimum
Steiner tree problem can have a peformance ratio below 1.0062, unless RP =
NP .

PROOF. Given a truth assignment to our MAX-E3-LIN -2 instance. We
have already seen in the last Section how to define the corresponding Steiner
tree. The weight of this Steiner tree consists of the weight of the edge gadgets
and the weight of the equation gadgets.

There are 3n edge gadgets, half of them correspond to literals with truth
value 1 (since each variable appears the same number of times and also the
same number of times negated and unnegated). The weight of an edge gadget
is b−a+db so that the total weight of all edge gadgets sums up to 3

2
n(b−a+db).

The subtrees in the equation gadgets corresponding to satisfied equations
have weight 3a+3b, those corresponding to unsatisfied equations have weight
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4a + 3b.

Suppose the truth assignment satisfies all but M equations. Then the Steiner
tree constructed above has weight 3

2
n(b − a + db) + n(3a + 3b) + Ma.

We call such a tree standard (for this assignment), i.e. for the collection
of edge gadget of any variable, say x, it is true that either all the nodes vx

corresponing to the occurrences of the literal x are Steiner nodes or all the
nodes vx̄ corresponing to the occurrences of the literal x̄ are of that kind.

To prove the theorem we have to show that an optimal Steiner tree is
standard (for some assignment). This is done in Lemma 3.

Now we use H̊astad’s result: for every ǫ > 0 it is NP -hard to decide whether
a set of n linear equations modulo 2 with three variables per equation has an
assignment that satisfies n(1−ǫ) equations, or has no assignment that satisfies
more than n(1

2
+ ǫ) equations. By our reduction the same is true for standard
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trees of length n(3
2
(db + (b− a)) + (3a + 3b)− ǫ) and n(3

2
(db + (b− a)) + (3a +

3b) + 1
2
a + ǫ).

We get an nonapproximability ratio of

r =
3
2
n(db + (b − a)) + n(3a + 3b) + 1

2
na

3
2
n(db + (b − a)) + n(3a + 3b)

.

If we set a = tb and cancel n and b, this reads as

r =
3
2
(d + 1 − t) + 3(1 + t) + 1

2
t

3
2
(d + 1 − t) + 3(1 + t)

.

With a = tb and c = b
b−2a

(see Lemma 3 below), we also get c = 1
1−2t

(t ≤ 1
3
,

since t = c−1
2c

and c ≤ 2). Plugging this in, we finally get

r =
3
2
(d + 1 − c−1

2c
) + 3(1 + c−1

2c
) + 1

2
c−1
2c

3
2
(d + 1 − c−1

2c
) + 3(1 + c−1

2c
)

= 1 +
c−1
2c

3(d + 3 + c−1
2c

)
. (1)

With d = 6 and c = 1.5144 the theorem follows (see Lemma 4). 2

Lemma 3 Every optimal Steiner tree can be transformed into a standard tree
without increasing the weight.

PROOF. Given an optimal Steiner tree. Remember that we may assume that
all terminals in the edge gadgets have degree 1.

Consider all edge gadgets corresponding to one variable, say x and x̄ and the
graph Hx which shows the identification of the terminals of the edge gadgets.
We partition the node set V (Hx) into three classes Ax, Tx and Bx̄ (see Figure
5). We then partition Ax into C1, which are the nodes in Ax that are Steiner
nodes of the tree, and U1, all other nodes in Ax. In the same way we partition
Bx̄ into C2 and U2 (see Figure 5).

Without loss of generality let |U1| ≤ |U2|. Consider the following modifi-
cation of the Steiner tree: (see Figure 5) All nodes in Ax and none in Bx̄ are
Steiner nodes after this step, all terminals in the edge gadgets are linked to
these Steiner nodes. The subtrees of those equation gadgets which contain the
nodes lying in U1 and C2 are changed. We construct them according to the
new conditions (number of vertices v• to be connected to the tree) completely
new (the result is on of the subtrees in Figure 4).

We claim that if we modify the Steiner tree in this way , the weight of the
resulting new tree does not increase. It is easy to see that if we have done this
for all variables, one after another, the result is a tree in standard form.

It remains to show that this modification does not increase the weight of
the tree. Consider Hx. In order to connect the Steiner nodes v• in Hx to the

8



.

.

.

.

.

.

.

.

.

.

.

.

x x

U1

C1

C2

U2

C1 U2

A T B A
T B

x x x x
x x

x x

H Hold

x

new

x

Fig. 5. Modification of the edges of the Steiner tree in the edge gadgets

tree we have to pay a weight of b − a for each of them. So the cost to do this
in the old tree is (b − a)(|C1| + |C2|). In the new tree we only need k(b − a)
with k = |U1| + |C1|, hence we gain (b − a)(|C2| − |U1|).

On the other hand we have to look at the newly constructed subtrees of the
equation gadgets, which contain nodes out of U1 and C2. Since the number
of nodes v• which have to be connected to the subtrees has changed, in each
such case we may have to pay an extra cost of a (see Figure 4). So the total
extra cost can be bounded by a(|U1| + |C2|).

We are done if we can show that

(|C2| − |U1|)(b − a) ≥ (|U1| + |C2|)a .

This inequality can be rearranged to stand as

|C2| ≥ b

b − 2a
|U1| . (2)

Let Γ(U1) be the set of nodes in Bx̄ which are reachable from U1 by paths
of length 2. We get that Γ(U1) ⊂ C2. If we can show that

Γ(U1) ≥ b

b − 2a
|U1|, (3)

we have proven (2).

But if we consider Hx as a bipartite graph with node sets Ax and Bx̄ and
recall that |U1| ≤ k

2
, (3) is just a typical expander condition with expansion

constant c = b
b−2a

.

It is known that such bipartite regular expanders exist, as well as how to
construct them probabilistically. The following Section will deal with this ques-
tion in detail. To get our nonapproximability result we use 6-regular expanders
with c = 1.5144 (see Lemma 4). 2
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4 Expanders

Let G = (I ∪ O, E) a bipartite d-regular graph, d ≥ 3, |I| = |O| = n. We
call G a (n, d, c)-expander, if for all A ⊂ I, |A| ≤ n

2
and some 2 ≥ c > 1

Γ(A) ≥ c|A|. (4)

Explicit constructions of such expanders seem to be very hard. This was
first done by Margulis in [14]. He could prove that the constant c arising in
his construction is bounded away from 1. In [6] such a constant was explicitly
calculated by Gabber and Galil, before Lubotzky, Philips and Sarnak [13]
came up with a different construction and a better constant c.

Compared to this it is quite easy to prove the existence of linear expanders
by counting arguments.

Following the ideas of [19] we will do this in greater detail. The main result
of this Section is
Lemma 4 For sufficiently large n there exist (n, d, c)-expanders for

d > max
{

c +
3

2
,

2

2 − c
,

c
2
ln( c

2
) + (1 − c

2
) ln(1 − c

2
) − ln(2)

c
2
ln(c) − c−1

2
ln(c − 1) − ln(2)

}

. (5)

PROOF. Let I = O = {1, 2, . . . , n} and X be a bipartite graph with V (X) =
I∪O. Consider d permutations π1, π2, . . . , πd of I and connect each j ∈ I with
all πr(j) ∈ O, 1 ≤ r ≤ d. We get a bipartite d-regular (multi)graph. Let us
call π = (π1, π2, . . . , πd) bad, if there is a set A ⊂ I, |A| ≤ n

2
and a set B ⊂ O,

|B| = c|A| such that πj(A) ⊂ B for all j = 1, 2, . . . , d.
We will bound the number of bad π′s from above. For some given A and B,

|A| = t ≤ n
2
, |B| = ct, the number of bad π′s is

(ct(ct − 1)(ct − 2) . . . (ct − t + 1)(n − t)!)d =
(

(ct)!(n − t)!

(ct − t)!

)d

.

So the total number of bad π′s, BAD, over all A and B is given by

BAD =
∑

t≤n

2

(

n

t

)(

n

ct

)

(

(ct)!(n − t)!

(ct − t)!

)d

. (6)

Since there are (n!)d π′s in total, we are interested in the function

R(t) =

(

n

t

)(

n

ct

)

(

(ct)!(n − t)!

(ct − t)!n!

)d

, 1 ≤ t ≤ n

2
, (7)

especially for n → ∞.
R(t) → 0 for n → ∞ means that if we pick a π randomly to construct our

graph X, we will get a (n, d, c)-expander with very high probability.
We proceed as follows: To analyse the function R(t) we consider its con-

tinuous version and its first derivative. We show that R′(t) ≈ R(t) ln(f(t))
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for some function f . By looking at f we can prove that R(t) decreases in the
interval 1 ≤ t ≤ α for some α that only depends on c and d and inreases for
all other values of t up to n

2
. We bound the values of R(1), R(

√
n) and R(n

2
)

to give upper bounds on (6) by
√

nR(1) + αnR(
√

n) + n
2
R(n

2
).

Let once again

BAD =
∑

t≤n

2

(

n

t

)(

n

ct

)

(

(ct)!(n − t)!

(ct − t)!

)d

and

R(t) =

(

n

t

)(

n

ct

)

(

(ct)!(n − t)!

(ct − t)!n!

)d

, 1 ≤ t ≤ n

2
.

We use that n! = Γ(n + 1) for n ∈ N and Γ′(t)/Γ(t) = γ(t) with γ(n) =
γ +

∑n−1
k=1

1
k

for n ∈ N and γ = 0.577216 . . . . Furthermore we have ln(n) =
∑n

k=1
1
k

+ γ + o(1).

To shorten the notation we set

f1(t) :=

(

n

t

)

=
n!

t!(n − t)!

f2(t) :=

(

n

ct

)

=
n!

(ct)!(n − (ct))!

f3(t) := f1(t)f2(t)

g(t) :=
(

(ct)!(n − t)!

(ct − t)!n!

)

, and

R(t) = f3(t)g(t)d = f1(t)f2(t)g(t)d.

Hence we have

R′(t) = (f ′
1(t)f2(t) + f1(t)f

′
2(t))g(t)d + df3(t)g

d−1(t)g′(t).

We consider these functions one after another:

Since

f1(t) =
Γ(n + 1)

Γ(t + 1)Γ(n − t + 1)
we get

f ′
1(t) = Γ(n + 1)

(−Γ(t + 1)γ(t + 1)Γ(n − t + 1) − Γ(t + 1)Γ(n − t + 1)γ(n − t + 1)

(Γ(t + 1)Γ(n − t + 1))2

)

=
Γ(n + 1)

Γ(t + 1)Γ(n − t + 1)
(γ(n − t + 1) − γ(t + 1))

= f1(t)f̃1(t) ,where

f̃1(t) := γ(n − t + 1) − γ(t + 1).
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Similarly we get

f ′
2(t) = f2(t)f̃2(t) ,where

f̃2(t) := c(γ(n − ct + 1) − γ(ct + 1),

g′(t) = g(t)g̃(t) ,where

g̃(t) := cγ(ct + 1) − γ(n − t + 1) − (c − 1)γ(t(c − 1) + 1).

Putting things together yields

R′(t) = R(t)(f̃1(t) + f̃2(t) + dg̃(t)) = R(t)f̃(t) ,where

f̃(t) := f̃1(t) + f̃2(t) + dg̃(t)

Using the facts above we can write f̃(t) as

f̃(t) = ln(n − t) − ln(t) + c(ln(n − ct) − ln(ct))

+ d(c ln(ct) − ln(n − t) − (c − 1) ln(t(c − 1))) + o(1)

= ln((n − t)1−d) − ln(t) + ln((ct)(c(d−1)))

+ c ln((n − ct)c) − ln((t(c − 1))d(c−1)) + o(1)

= ln
(

(ct)c(d−1)(n − ct)c

(n − t)d−1t(t(c − 1))d(c−1)

)

+ o(1)

= ln
(

td−c−1 (n − ct)c

(n − t)d−1

cc(d−1)

(c − 1)d(c−1)

)

+ o(1)

= ln(f(t)) + o(1) where

f(t) := td−c−1 (n − ct)c

(n − t)d−1

cc(d−1)

(c − 1)d(c−1)

= td−c−1 (n − ct)c

(n − t)d−1
const(c, d) where const(c, d) :=

cc(d−1)

(c − 1)d(c−1)

If we set t = xn, 0 < x ≤ 1
2

we can write f as a function of x

f(x) = xd−c−1 (1 − cx)c

(1 − x)d−1
const(c, d)

and

f ′(x)

const(c, d)
= (d − c − 1)xd−c−2 (1 − cx)c

(1 − x)d−1

+ xd−c−1
(

c(1 − cx)c−1(−c)(1 − x)d−1 + (1 − cx)c(d − 1)(1 − x)d−2

(1 − x)2(d−1)

)

=
xd−c−2(1 − cx)c−1

(1 − x)d

(

(d − c − 1)(1 − x)(1 − cx)

− c2x(1 − x) + (d − 1)x(1 − cx)
)

=
xd−c−2(1 − cx)c−1

(1 − x)d

(

(d − c − 1) + xc(2 − d)
)

.
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From this we conclude that f has its extremal points at x = d−c−1
c(d−2)

and

x = 1
c
. If we restrict our attention to the case where d ≥ 2

2−c
(we will later on

see that this is not really a restriction) it follows that both extremal points
are outside the interval 0 < x ≤ 1

2
. This means that f increases for all x in

this interval.

Since f(t) < 1 for t = 1 we conclude that R(t) decreases at the beginning
of the interval 0 < t ≤ n

2
. To be able to prove Lemma 4 for small values of

d, such as d = 3 or d = 4, we have to show that R(t) decreases not only for
small values of t, but in the whole interval 0 < t < αn for some α that only
depends on c and d. We claim that there is some m ∈ N such that with x̂ = 1

m

we have f(x̂) < 1. Indeed,

f
(

1

m

)

=
(

1

m

)d−c−1 (1 − c
m

)c

(1 − 1
m

)d−1
const(c, d)

=
( 1

m
)d−c−1

(m−1
m

)d−c−1

(m−c
m

)c

(m−1
m

)c
const(c, d)

=
(

1

m − 1

)d−c−1(m − c

m

)c

const(c, d)

<
(

1

m − 1

)d−c−1

const(c, d)

Hence f( 1
m

) < 1 if ln(m − 1) > ln(const(c,d))
d−c−1

.

We bound R(
√

n) by

R(
√

n) =

(

n√
n

)(

n

c
√

n

)

(

(c
√

n)!(n −√
n)!

n!((c − 1)
√

n)!

)d

≤ (e
√

n)
√

n(
e

c

√
n)c

√
n

(

(c
√

n)
√

n

(n −√
n)

√
n

)d

≤ e(1+c)
√

nc(d−c)
√

n

(

1

1 − ǫ

)

√
n√

n
(1+c−d)

√
n

since for any fixed ǫ > 0

we know that n −
√

n > n(1 − ǫ) for sufficiently large n

Hence nR(
√

n) → 0 for n → ∞ for all d > 1 + c + ǫ′, ǫ′ > 0. (8)

To bound R(n
2
) we write

13



R
(n

2

)

=

(

n
n
2

)(

n
cn
2

)

(

( cn
2
)!(n

2
)!

((c − 1)n
2
)!n!

)d

≈
(

(1

2

)− 1

2

(1

2

)− 1

2

)n(( c

2

)− c

2

(

1 − c

2

)−(1− c

2
)
)n( c

c

2 2
c−1

2

2
c

2 2
1

2 (c − 1)
c−1

2

)dn

=
(

2
( c

2

)− c

2

(

1 − c

2

)−(1− c

2
)
)n( c

c

2

2(c − 1)
c−1

2

)dn

,

from which we conclude that nR(n
2
) → 0 for n → ∞, if

d >
c
2
ln( c

2
) + (1 − c

2
) ln(1 − c

2
) − ln(2)

c
2
ln(c) − c−1

2
ln(c − 1) − ln(2)

. (9)

Finally we know that

R(1) ≤ n
nc

c!

(

c!(n − 1)!

(c − 1)!n!

)d

≤ cd

nd−c−1
,

so together with (8) and (9) this implies

BAD ≤
√

nR(1) +
n

2
(R(

√
n) + R(

n

2
))

≤ cd

nd−c− 3

2

+
n

2

(

R(
√

n) + R(
n

2
)
)

→ 0 for n → ∞,

if d > max
{

c +
3

2
,

2

2 − c
,

c
2
ln( c

2
) + (1 − c

2
) ln(1 − c

2
) − ln(2)

c
2
ln(c) − c−1

2
ln(c − 1) − ln(2)

}

.

2

5 Discussion

d 3 4 5 6 7 8 10 15 50 100

c 1.162 1.310 1.425 1.514 1.583 1.637 1.716 1.821 1.954 1.978

Table 1
Some values for c and d in (5)

Table 1 may help to see the numbers hidden in (5). The general form (1) of
our main result – the nonapproximability ratio is just a function of c and d –
immediately gives better results if better expanders are found. For example,
an (n, 5, 7

4
)-expander would give a ratio of 1.011.

We believe that using this method a nonapproximability ratio of about 1.01
is within reach.
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[7] C. Gröpl, S. Hougardy, T. Nierhoff, H. J. Prömel, Approximation algorithms
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